EP1903577B1 - Dispositif de mémoire à semi-conducteurs - Google Patents

Dispositif de mémoire à semi-conducteurs Download PDF

Info

Publication number
EP1903577B1
EP1903577B1 EP07115185A EP07115185A EP1903577B1 EP 1903577 B1 EP1903577 B1 EP 1903577B1 EP 07115185 A EP07115185 A EP 07115185A EP 07115185 A EP07115185 A EP 07115185A EP 1903577 B1 EP1903577 B1 EP 1903577B1
Authority
EP
European Patent Office
Prior art keywords
power supply
semiconductor memory
power consumption
memory device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07115185A
Other languages
German (de)
English (en)
Other versions
EP1903577A3 (fr
EP1903577A2 (fr
Inventor
Atsumasa c/o FUJITSU LIMITED Sako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Publication of EP1903577A2 publication Critical patent/EP1903577A2/fr
Publication of EP1903577A3 publication Critical patent/EP1903577A3/fr
Application granted granted Critical
Publication of EP1903577B1 publication Critical patent/EP1903577B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/063Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2227Standby or low power modes

Definitions

  • the present invention relates to a semiconductor memory device, and particularly to a semiconductor memory device suitable for use in a semiconductor memory device having a low power consumption state in which power consumption is lower than that in a normal operation.
  • a stabilization capacitor (decoupling capacitor) is provided between a power supply line and a ground line to suppress variation in power supply voltage, in general. It is under study that the stabilization capacitor is formed by a cell capacitor used for a memory cell of the DRAM.
  • Patent document 1 Japanese Patent Application Laid-Open No. Hei10-12838 (Patent document 1), there is described a capacitance element realized with good area efficiency by arranging a plurality of cell capacitors in a mutually isolated manner.
  • the cell capacitor of the DRAM has a low limit value (capacitor withstand voltage) with respect to an applied voltage, it is unusable as it is as a stabilization capacitor for a high-voltage power supply. Accordingly, to cope with the high-voltage power supply, the plurality of cell capacitors are connected in series between a high-voltage power supply line and the ground line to thereby divide the voltage, and a circuit giving a certain midpoint potential to connection point(s) of the cell capacitors is provided to suppress the voltage applied to each cell capacitor not to exceed the capacitor's withstand voltage.
  • stabilization capacitors formed by connecting a plurality of cell capacitors in series and keeping midpoint(s) of connection point(s) of the cell capacitors.
  • Fig. 8 is a view showing a configuration of the conventional semiconductor memory device provided with the stabilization capacitor formed by the plurality of cell capacitors connected in series.
  • a circuit portion related to a power supply in the semiconductor memory device is shown.
  • a booster power supply circuit 101 boosts a power supply voltage VDD supplied by a not-shown external power supply to supply a boost voltage VPP to a memory core 102.
  • a stabilization capacitor 104 to suppress variation in the boost voltage VPP is formed by cell capacitors C1, C2.
  • Each of the cell capacitors C1, C2 is composed of a plurality of cell capacitors.
  • the boost voltage VPP is supplied to a first electrode of the cell capacitor C1, a midpoint potential Vbias is supplied to the connection point of a second electrode of the cell capacitor C1 and a first electrode of the cell capacitor C2, and a second electrode of the cell capacitor C2 is grounded.
  • a bias generation circuit 103 controls the midpoint potential Vbias to be supplied to the connection point of the cell capacitors C1, C2.
  • the bias generation circuit 103 detects the boost voltage VPP to control the midpoint potential Vbias so that the voltages applied to the cell capacitors C1, C2 do not exceed the capacitor withhold voltages.
  • the booster power supply circuit 101 stops its operation of boosting the external voltage VDD and a supply line (power supply line) of the boost voltage VPP becomes floating.
  • the bias generation circuit 103 stops its operation as well, and a supply line of the midpoint potential Vbias becomes floating.
  • the booster power supply circuit 101 and the bias generation circuit 103 receive the low power consumption state signal DPDS of "L".
  • the booster power supply circuit 101 boosts the power supply voltage VDD supplied from the external power supply to boost the boost voltage VPP to be supplied to the memory core 102 to a predetermined voltage.
  • the midpoint potentials Vbias at the cell capacitors C1, C2 composing the stabilization capacitor 104 of the boost voltage VPP become voltage-divided levels of the boost voltage VPP. Since the cell capacitors C1, C2 have the same capacitance, the midpoint potential Vbias increases in a following manner at the half (1/2) level of the increased voltage of the boost voltage VPP.
  • the bias generation circuit 103 operates to make the midpoint potential Vbias be (VPP/2).
  • the booster power supply circuit 101 and the bias generation circuit 103 receive the low power consumption state signal DPDS of "L".
  • the booster power supply circuit 101 boosts the power supply voltage VDD to keep the boost voltage VPP at the predetermined voltage.
  • the midpoint voltage of the cell capacitors C1, C2 comes to (VPP/2) being the voltage-divided boost voltage VPP, so that the bias generation circuit 103 operates to make the midpoint potential Vbias be (VPP/2).
  • the booster power supply circuit 101 and the bias generation circuit 103 receive the low power consumption state signal DPDS of "H".
  • the booster power supply circuit 101 and the bias generation circuit 103 having received the low power consumption state signal DPDS of "H” stop operation to reduce the power consumption, so that the respective supply lines of the boost voltage VPP and the midpoint potential Vbias become floating.
  • the midpoint potential Vbias of the cell capacitors C1, C2 comes to (VPP/2) being the voltage-divided boost voltage VPP.
  • the boost voltage VPP gradually lowers toward the ground potential due to leak current of the memory core 102. Further, the midpoint potential Vbias gradually lowers as well at the level of (VPP/2).
  • the booster power supply circuit 101 and the bias generation circuit 103 receive the low power consumption state signal DPDS of "L" to start their operations.
  • the booster power supply circuit 101 boosts the power supply voltage VDD to increase the boost voltage VPP to the predetermined voltage.
  • the midpoint potential Vbias of the cell capacitors C1, C2 increases in a following manner at a half (1/2) level of the increased voltage of the boost voltage VPP.
  • the bias generation circuit 103 operates to make the midpoint potential Vbias be (VPP/2).
  • the midpoint potential Vbias is controlled to be kept by the bias generation circuit 103 in the start-up and normal operation.
  • the bias generation circuit 103 stops and does not operate, so that the midpoint potential Vbias may come close to the boost voltage VPP as shown for example in Fig. 10 .
  • S1 denotes the start-up
  • S2 denotes the normal operation time.
  • S3 denotes the low power consumption time
  • S4 denotes the transition from the low power consumption mode to the normal operation
  • S5" denotes the normal operation time (this applies similarly to Fig. 11 , which will be described later).
  • the booster power supply circuit 101 receives the low power consumption state signal DPDS to boost the external voltage VDD to increase the boost voltage VPP to the predetermined voltage, while the bias generation circuit 103 operates to increase the midpoint potential Vbias to (VPP/2). Therefore, the midpoint potential Vbias of the cell capacitors C1, C2 increases from the voltage in the low power consumption mode to the half (1/2) of the increase in the boost voltage VPP, so that the midpoint potential Vbias sometimes deviates largely from the midpoint potential Vbias at the time of the normal operation. At that time, should the voltage applied to the cell capacitor C2 come to a large voltage V1 larger than the capacitor withstand voltage, there arise problems that the cell capacitor C2 is broken, the leak current increases, and the like, affecting reliability.
  • the midpoint potential Vbias sometimes comes close to a ground potential as shown in Fig. 11 .
  • the booster power supply circuit 101 receives the low power consumption state signal DPDS to boost the external voltage VDD to increase the boost voltage VPP to the predetermined voltage, while the bias generation circuit 103 operates to increase the midpoint potential Vbias to (VPP/2).
  • the midpoint potential Vbias of the cell capacitors C1, C2 increases from the voltage in the low power consumption mode to the half (1/2) of the increase in the boost voltage VPP, so that the midpoint potential Vbias sometimes deviates largely from the midpoint potential Vbias at the time of the normal operation.
  • the voltage applied to the cell capacitor C1 come to a large voltage V2 larger than the capacitor withstand voltage, there arise problems that the cell capacitor C1 is broken, the leak current increases, and the like, affecting reliability.
  • the voltages over the capacitor withstand voltages are sometimes applied, respectively, to the cell capacitors C1, C2 composing the stabilization capacitor 104.
  • US 5,530,640 shows a device having a clamp circuit that reduces Vpp to a set value when a booster power supply circuit stops a boosting operation.
  • An object of the present invention is to enable to control a midpoint potential of a connection point of a plurality of cell capacitors connected in series and composing a stabilization capacitor.
  • the present invention is defined in claim 1.
  • a semiconductor memory device of the present invention includes: a booster power supply circuit boosting a first power supply voltage to supply a second power supply voltage to the memory core section having a plurality of memory cells; a plurality of capacitors connected in series between a power supply line supplying the second power supply voltage and a ground; a bias generation circuit supplying a midpoint potential to connection point(s) of the capacitors connected in series; and a clamp circuit clamping the second power supply voltage to a set value when the booster power supply circuit stops a boosting operation.
  • the clamp circuit clamps the second power supply voltage to the set value, so that the midpoint potential can be prevented from deviating largely to the second power supply voltage side and the ground potential side in the transition to the normal operation thereafter.
  • Fig. 1 is a view showing a configuration example of a semiconductor memory device according to an embodiment of the present invention and showing only an experimental feature of the present invention.
  • a booster power supply circuit 11 boosts a power supply voltage VDD supplied from a not-shown external power supply to supply a boost voltage VPP to a memory core 12.
  • the memory core 12 is, for example, a memory core of a DRAM type as will be described later, and has a plurality of memory cells formed by cell capacitors (memory cell capacitors).
  • a stabilization capacitor 14 is to suppress variation in the boost voltage VPP and is formed by cell capacitors C1, C2.
  • the cell capacitors C1, C2 are formed by using the same cell capacitor as used for the memory cell, respectively.
  • the boost voltage VPP is supplied to a first electrode of the cell capacitor C1, a second electrode of the cell capacitor C1 and a first electrode of the cell capacitor C2 are connected, and a second electrode of the cell capacitor C2 is grounded.
  • the cell capacitors C1, C2 composing the stabilization capacitor 14 are connected in series between a supply line (power supply line) and the ground. Further, a midpoint potential Vbias is supplied to the connection point of the second electrode of the cell capacitor C1 and the first electrode of the cell capacitor C2.
  • a bias generation circuit 13 detects the boost voltage VPP to control the midpoint potential Vbias so that the voltages applied to the cell capacitors C1, C2 do not exceed capacitor withstand voltages.
  • the midpoint potential Vbias is a potential, for example, of such a boost voltage VPP that is voltage divided in accordance with the capacitance ratio between the cell capacitors C1, C2, and when the capacitance ratio therebetween is the same, the midpoint potential Vbias comes to VPP/2 (or approximately VPP/2).
  • a clamp circuit 15 is a circuit to reduce the boost voltage VPP to a set value, namely a circuit clamping the supply line (power supply line) supplying the boost voltage VPP to a predetermined potential.
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15 are supplied with a low power consumption state signal DPDS indicating either a low power consumption mode (power down mode) being a state in which the power consumption is reduced to lower than that in the normal operation or not.
  • a low power consumption mode power down mode
  • the low power consumption state signal DPDS is a high level (“H")
  • the low power consumption state signal DPDS is a low level (“L”
  • the operations of the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15 are controlled in accordance with the low power consumption state signal DPDS.
  • the booster power supply circuit 11 boosts the power supply voltage VDD supplied from the external power supply to supply the boost voltage VPP and the bias generation circuit 13 detects the boost voltage VPP to control the midpoint potential Vbias.
  • the clamp circuit 15 does not perform the clamping operation.
  • the clamp circuit 15 operates to clamp the boost voltage VPP to the determined voltage. In other words, when the low power consumption state signal DPDS is "H", the supply line of the midpoint potential Vbias becomes the floating, and the boost voltage VPP is clamped to the set voltage by the clamp circuit 15.
  • Fig. 2 is a view showing a configuration example of a semiconductor memory device according to the first embodiment.
  • the same block and so forth as shown in Fig. 1 are denoted by the same numerical references as of Fig. 1 and the redundant description thereof will be omitted.
  • a clamp circuit 15A is composed of a switching circuit connected between the supply line of the boost voltage VPP and the ground.
  • the clamp circuit 15A is formed by a n-channel MOS transistor (hereinafter called the "nMOS transistor") M1.
  • nMOS transistor M1 A drain of the nMOS transistor M1 is connected to the supply line of the boost voltage VPP and a source thereof is grounded.
  • the low power consumption state signal DPDS is supplied to a gate of the nMOS transistor M1.
  • the nMOS transistor M1 When the low power consumption state signal DPDS is "H”, the nMOS transistor M1 is put into an ON state and the boost voltage VPP is short-circuited to the ground (the boost voltage VPP is clamped to a gourd potential). Meanwhile, when the low power consumption state signal DPDS is "L”, the nMOS transistor M1 is put into an OFF state to perform no clamp operation to the boost voltage VPP.
  • the operation of the semiconductor memory device according to the first embodiment will be described with reference to Fig. 3 .
  • the cell capacitors C1, C2 are assumed to have the same capacitance.
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15A receive the low power consumption state signal DPDS of "L".
  • the booster power supply circuit 11 boosts the power supply voltage VDD supplied from the external power supply to boost the boost voltage VPP to be supplied to the memory core 12 to the predetermined voltage.
  • the midpoint potentials Vbias at the cell capacitors C1, C2 composing the stabilization capacitor 14 of the boost voltage VPP become such levels of the boost voltage VPP that are voltage divided in accordance with the capacitance ratio between the cell capacitors C1, C2.
  • the midpoint potential Vbias increases in a following manner at a half (1/2) level of the increased voltage of the boost voltage VPP.
  • the bias generation circuit 13 operates to make the midpoint potential Vbias be (VPP/2).
  • the clamp circuit 15A does not perform the clamp operation of the boost voltage VPP in that the low power consumption state signal DPDS is "L" in which the nMOS transistor M1 is put into the OFF state.
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15A receive the low power consumption state signal DPDS of "L".
  • the booster power supply circuit 11 boosts the power supply voltage VDD to keep the boost voltage VPP at the predetermined voltage. Further, the midpoint voltage of the cell capacitors C1, C2 comes to (VPP/2) being the voltage-divided boost voltage VPP, so that the bias generation circuit 13 operates to make the midpoint potential Vbias be (VPP/2).
  • the clamp circuit 15A does not perform the clamping operation of the boost voltage VPP.
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15A receive the low power consumption state signal DPDS of "H".
  • the booster power supply circuit 11 stops its operation to reduce the power consumption.
  • the nMOS transistor M1 is put into the ON state, and the clamp circuit 15A clamps the boost voltage VPP to the ground potential.
  • the midpoint potential Vbias of the cell capacitors C1, C2 comes to the ground potential since the boost voltage VPP is the ground potential.
  • the bias generation circuit 13 stops its operation to reduce the power consumption and the supply line of the midpoint potential Vbias becomes floating.
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15A receive the low power consumption state signal DPDS of "L". Accordingly, the booster power supply circuit 11 and the bias generation circuit 13 start their operations, respectively, and the clamp circuit 15A does not perform the clamping operation.
  • the booster power supply circuit 11 boosts the power supply voltage VDD to increase the boost voltage VPP to the predetermined voltage.
  • the midpoint potential Vbias of the cell capacitors C1, C2 increases in a following manner at the half (1/2) level of the increase in the boost voltage VPP.
  • the bias generation circuit 13 operates to make the midpoint potential Vbias be (VPP/2).
  • the clamp circuit 15A clamps the boost voltage VPP to the ground potential in the low power consumption mode, so that the boost voltage VPP and the midpoint potential Vbias increase in voltage together from the ground potential in the transition from the low power consumption mode to the normal operation. Therefore, the midpoint potential Vbias comes to (VPP/2) without deviating to the boost voltage VPP side nor the ground potential side. Accordingly, the midpoint potential Vbias can be controlled appropriately so as not to apply the voltage over the capacitor withstand voltages to the cell capacitors C1, C2, so that problems such as a cell capacitor breakage, a leak current increase, and so on can be prevented from arising and reliability can be ensured.
  • Fig. 4 is a view showing a configuration example of a semiconductor memory device according to the second embodiment.
  • the same block and so forth as shown in Fig. 1 are denoted by the same numerical references as of Fig. 1 and the redundant description thereof will be omitted.
  • a clamp circuit 15B is composed of two nMOS transistors M11, M12 as shown in Fig. 4 .
  • a drain and a gate of the nMOS transistor M11 are connected to the supply line of the boost voltage VPP, and a source thereof is connected to a drain of the nMOS transistor M12.
  • the nMOS transistor M11 is diode-connected.
  • a source of the nMOS transistor M12 is grounded and the low power consumption state signal DPDS is supplied to a gate thereof.
  • the nMOS transistor M12 When the low power consumption state signal DPDS is "H", the nMOS transistor M12 is put into the ON state and the source of the diode-connected nMOS transistor M11 is short-circuited to the ground, so that the boost voltage VPP is short-circuited to a threshold voltage Vth of the nMOS transistors (the boost voltage VPP is clamped to the voltage Vth). Meanwhile, when the low power consumption state signal DPDS is "L”, the nMOS transistor M12 is put into the OFF state to perform no clamp operation.
  • Fig. 5A The operation of the semiconductor memory device according to the second embodiment will be described with reference to Fig. 5A .
  • the cell capacitors C1, C2 are assumed to have the same capacitance.
  • Fig. 5A a case where the midpoint potential Vbias comes close to the boost voltage VPP in the low power consumption mode in which the bias generation circuit 13 stops operating, is shown.
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15B receive the low power consumption state signal DPDS of "L".
  • the booster power supply circuit 11 boosts the power supply voltage VDD supplied from the external power supply to boost the boost voltage VPP to be supplied to the memory core 12 to the predetermined voltage.
  • the midpoint potentials Vbias at the cell capacitors C1, C2 composing the stabilization capacitor 14 of the boost voltage VPP comes to voltage divided levels of the boost voltage VPP.
  • the midpoint potentials Vbias at the cell capacitors C1, C2 composing the stabilization capacitor 14 of the boost voltage VPP become such levels of the boost voltage VPP that are voltage divided.
  • the midpoint potential Vbias increases in a following manner at the half (1/2) level of the increased voltage of the boost voltage VPP.
  • the bias generation circuit 13 operates to make the midpoint potential Vbias be (VPP/2).
  • the clamp circuit 15B does not perform the clamping operation of the boost voltage VPP since the low power consumption state signal DPDS is "L".
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15B receive the low power consumption state signal DPDS of "L".
  • the booster power supply circuit 11 boosts the power supply voltage VDD to keep the boost voltage VPP at the predetermined voltage.
  • the midpoint voltage of the cell capacitors C1, C2 comes to (VPP/2) being the voltage-divided boost voltage VPP, so that the bias generation circuit 13 operates to make the midpoint potential Vbias be (VPP/2).
  • the clamp circuit 15B does not perform the clamping operation of the boost voltage VPP.
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15B receive the low power consumption state signal DPDS of "H".
  • the booster power supply circuit 11 stops its operation to reduce the power consumption, while the clamp circuit 15B performs the clamping operation to clamp the boost voltage VPP to the threshold voltage Vth of the nMOS transistors.
  • the midpoint potential Vbias of the cell capacitors C1, C2 comes to (Vth/2) being such a boost voltage VPP as voltage divided into (1/2).
  • the bias generation circuit 13 stops its operation to reduce the power consumption and the supply line of the midpoint potential Vbias becomes floating.
  • the midpoint potential Vbias is controlled to be kept by the bias generation circuit 13, while, in the example shown in Fig. 5A , there is shown a case where, in the low power consumption mode, the midpoint potential Vbias comes close to the threshold voltage Vth of the nMOS transistors being the same as the boost voltage VPP as time goes on.
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15A receive the low power consumption state signal DPDS of "L". Accordingly, the booster power supply circuit 11 and the bias generation circuit 13 start their operations, respectively, and the clamp circuit 15B does not perform the clamping operation.
  • the booster power supply circuit 11 boosts the power supply voltage VDD to increase the boost voltage VPP to the predetermined voltage.
  • the midpoint potential Vbias of the cell capacitors C1, C2 increases in a following manner at the half (1/2) level of the increase in the boost voltage VPP.
  • the bias generation circuit 13 operates to make the midpoint potential Vbias be (VPP/2).
  • Vth + (VPP - Vth) / 2 VPP / 2 + Vth / 2.
  • the midpoint potential Vbias of the cell capacitors C1, C2 in the transition from the low power consumption mode to the normal operation comes to substantially (1/2) of the boost voltage VPP.
  • time period S1 The operations in the start-up (time period S1), the normal operation (time period S2), and the low power consumption mode (time period S3) are the same as already described with reference to Fig. 5A , and the description thereof will be omitted. Note that, however, in the example shown in Fig. 5B , it is assumed that the midpoint potential Vbias comes to the ground potential as time goes on in the low power consumption mode.
  • the booster power supply circuit 11, the bias generation circuit 13, and the clamp circuit 15B receive the low power consumption state signal DPDS of "L".
  • the booster power supply circuit 11 boosts the power supply voltage VDD to increase the boost voltage VPP to the predetermined voltage.
  • the midpoint potential Vbias of the cell capacitors C1, C2 increases in a following manner at the half (1/2) level of the increased voltage of the boost voltage VPP.
  • the bias generation circuit 13 operates to make the midpoint potential Vbias be (VPP/2).
  • the clamp circuit 15B does not perform the clamping operation.
  • the clamp circuit 15B clamps the boost voltage VPP to the threshold voltage Vth of the nMOS transistors in the low power consumption mode, so that the midpoint potential Vbias in the transition from the low power consumption mode to the normal operation comes to substantially (VPP/2) without largely deviating to the boost voltage VPP side nor the ground potential side. Accordingly, the midpoint potential Vbias can be controlled appropriately so as not to apply the voltage over the capacitor withstand voltages to the cell capacitors C1, C2, so that the problems such as the cell capacitor breakage, the leak current increase, and so on can be prevented from arising and the reliability can be ensured.
  • Fig. 6 is a block diagram showing an example of overall configuration of the semiconductor memory device according to the embodiment of the present invention.
  • the same block and so forth as shown in Fig. 1 are denoted by the same numerical references as of Fig. 1 .
  • a semiconductor memory device 20 includes: a command control circuit 21, an operation control circuit 22, an address input circuit 23, an address decoder 24, a data input/output circuit 25, the booster power supply circuit 11, the memory core 12, the bias generation circuit 13, the stabilization capacitor 14 and the clamp circuit 15.
  • the command control circuit 21 receives chip enable signals /CE1, CE2, an output enable signal /OE, and a write enable signal /WE, as an external command CMD.
  • the command control circuit 21 deciphers the external command CMD received and the decipherment result is outputted to the operation control circuit 22 as an internal command signal.
  • a command indicated by the internal command signal there are a read command, a write command, a low power consumption mode, and the like.
  • the semiconductor memory device 20 can be put into the low power consumption mode by setting the chip enable signals CE2 composing the external command CMD to "L"
  • the semiconductor memory device 20 can be put into the normal operation mode by setting the chip enable signals CE2 composing the external command CMD to "H".
  • the operation control circuit 22 generates a timing signal to perform an read operation, a write operation or a refresh operation, or the low power consumption state signal DPDS to the memory core 12, in accordance with the internal command signal (the read command, the write command, the low power consumption mode command, or the like) or a refresh command generated inside the semiconductor memory device 20. Further, when the read command or the write command, each of which is the internal command signal, and the refresh command generated inside are competitive, the operation control circuit 22 includes a (not-shown) arbiter arbitrating these commands. Note that the refresh command is generated periodically by a not-shown refresh timer.
  • the timing signal generated by the operation control circuit 22 is supplied to the memory core 12, the data input/output circuit 25 and the like. Further, the low power consumption state signal DPDS generated by the operation control circuit 22 is supplied to the booster power supply circuit 11, the bias generation circuit 13, the clamp circuit 15, and the like.
  • the address input circuit 23 receives an external address signal ADD via an address terminal to supply the external address signal ADD received to the address decoder 24.
  • the address decoder 24 decodes the external address signal ADD supplied from the address input circuit 23 to output the decoded signal to the memory core 12.
  • the data input/output circuit 25 outputs the read data, which is transferred from the memory core 12 via a common data bus, as a data signal DAT via an external data terminal. Further, in the write operation, the data input/output circuit 25 receives a write data to be inputted as a data signal DAT via the external data terminal to transfer the write data received to the memory core 12 via the common data bus. The data input/output operation in the data input/output circuit 25 is performed based on the timing signal from the operation control circuit 22.
  • the booster power supply circuit 11 receives the low power consumption state signal DPDS from the operation control circuit 22, and when the low power consumption state signal DPDS is "L", namely when it is not in the low power consumption mode, then the booster power supply circuit 11 boosts the power supply voltage VDD supplied from the not-shown power supply to increase the boost voltage VPP to be supplied to the memory core 12. Meanwhile, when the low power consumption state signal DPDS is "H", namely it is in the low power consumption mode, the booster power supply circuit 11 stops its boosting operation of the power supply voltage VDD.
  • the memory core 12 is the memory core of the DRAM type and includes a memory cell array 26, a word decoder 27, a sense amplifier 28 and a column decoder 29.
  • the memory cell array 26 includes a plurality of memory cells (dynamic memory cells) arranged in arrays, in which each cell includes a transfer transistor and a cell capacitor to memorize data. Further, the memory cell array 26 includes a word line connected to a gate of the transfer transistor in the each memory cell and a bit line connected to a data input/output node of the transfer transistor.
  • the word decoder 27 selects any word line from among a plurality of the word lines in accordance with a raw decoded signal of the decoded signal supplied.
  • the sense amplifier 28 amplifies the signal amount of the data read from the memory cell via the bit line, for example, in the read operation.
  • the column decoder 29 transmits the read data, which is read out to the bit line and amplified by the sense amplifier 28, to the common data bus or otherwise outputs a control signal controlling a column switch to transmit the write data supplied via the common data bus to the bit line, in accordance with a column decoded signal of the decoded signal supplied.
  • the stabilization capacitor 14 is to suppress the variation in the boost voltage VPP, and is composed of the plurality of cell capacitors C1, C2 connected in series between the supply line (power supply line) supplying the boost voltage VPP and the ground.
  • the cell capacitors C1, C2 are formed, respectively, by using the same cell capacitor as used for the memory cell.
  • the bias generation circuit 13 receives the low power consumption state signal DPDS from the operation control circuit 22, and when the low power consumption state signal DPDS is "L" (it is not in the low power consumption mode), the bias generation circuit 13 controls the midpoint potential Vbias to be applied to the connection point of the cell capacitors C1, C2 of the stabilization capacitor 14 so that the voltages applied to the cell capacitors C1, C2 do not exceed the capacitor withstand voltages. Meanwhile, when the low power consumption state signal DPDS is "H" (it is in the low power consumption mode), the bias generation circuit 13 does not operate.
  • the clamp circuit 15 receives the low power consumption state signal DPDS from the operation control circuit 22 and does not operate when the low power consumption state signal DPDS is "L" (it is not in the low power consumption mode). Meanwhile, the clamp circuit 15 clamps the boost voltage VPP to the set value when the low power consumption state signal DPDS is "H” (it is in the low power consumption mode).
  • the midpoint potential Vbias supplied to the connection point of the cell capacitors C1, C2 composing the stabilization capacitor 14 and connected in series is assumed to have a potential being such a boost voltage VPP that is voltage divided in accordance with the capacitance ratio between the cell capacitors C1, C2; however, the midpoint potential Vbias is not limited thereto.
  • any potential is acceptable as long as the potential suppresses the voltage applied to the cell capacitors C1, C2 not to exceed their respective capacitor withstand voltages, and when the withstand voltages of the cell capacitors C1, C2 are defined as VC1, VC2, respectively, then the midpoint potential Vbias is acceptable when it satisfies both (VPP - Vbias) ⁇ VC1 and Vbias ⁇ VC2.
  • the stabilization capacitor 14 is composed of the two cell capacitors C1, C2, however, the number is not limited to two, and the stabilization capacitor 14 may be composed of two or more cell capacitors connected in series. In that case, it is all right when the midpoint potential Vbias is supplied appropriately to the connection points of the respective cell capacitors composing the stabilization capacitor 14 and the respective midpoint potentials Vbias are appropriately controlled by the bias generation circuit 13.
  • a cell-phone unit applying an electronic device including the semiconductor memory device according to the above-described embodiment and a CPU (control device) supplying the external command CMD to the semiconductor memory device and capable of controlling the operating state of the semiconductor memory device.
  • Fig. 7 is a block diagram showing a configuration example of the cell-phone unit applying the electronic device according to the present embodiment.
  • the present cell-phone unit is composed basically in the same manner as in the conventional cell-phone unit, and includes: a transmitter/receiver section 32 provided with an antenna 31, a sound signal processing section 33 sorting the data into a modulation of a transmitting signal, a demodulation of a receiving signal and sound, a sound input/output section 34 inputting/outputting the sound, a DSP (Digital Signal Processor) 35 performs a process related to a coding of the transmitting data and a decoding of the received data, a CPU 36 realizing respective functions by comprehensively controlling transmission/reception and respective functional sections, a memory section 37 storing a processing program, the received data and the like, an input section 38 inputting a telephone number, instructive operation, and the like, and a display section 39 displaying the data.
  • a transmitter/receiver section 32 provided with an antenna 31
  • the memory section 37 is composed of the semiconductor memory device 20 according to the embodiment of the present invention, including: the booster power supply circuit 11, the memory core, the bias generation circuit 13, the stabilization capacitor 14 composed of the cell capacitors, and the clamp circuit 15.
  • the external command CMD is supplied from the CPU 36 and the operation mode (operating state) of the memory core 12 is controlled by the external command CMD.
  • the write and read operations of the data are performed in accordance with the external command CMD from the CPU 36.
  • the operating state of the memory section 37 is switched to the normal operation state or the low power consumption mode in accordance with the external command CMD from the CPU 36, and that the operation of the memory section 37 is stopped or temporally restricted to reduce the power consumption with the low power consumption mode command based on the external command CMD from the CPU 36 when the memory section 37 is not used.
  • the clamp circuit clamps the second power supply voltage to the set value, so that the midpoint potential can be prevented from deviating largely to the second power supply voltage side and the ground potential side in the transition to the normal operation thereafter, and at the same time, the midpoint potential can be controlled appropriately so that the voltages over the respective capacitor withstand voltages are not applied to the capacitors, respectively. Accordingly, problems such as a destruction of the capacitor, a leak current increase and the like can be prevented from arising, so that reliability can be ensured.

Claims (12)

  1. Dispositif de mémoire à semi-conducteurs, comportant:
    - une section centrale de mémoire (12) comprenant une pluralité de cellules de mémoire;
    - un circuit amplificateur d'alimentation (11) amplifiant une première tension d'alimentation pour délivrer une seconde tension d'alimentation (VPP) à la section centrale de mémoire (12), le circuit amplificateur d'alimentation (11) étant désactivé en réponse à un signal d'état de faible consommation d'énergie (DPDS);
    - des premier et second condensateurs (C1, C2) reliés en série entre une ligne d'alimentation délivrant la seconde tension d'alimentation (VPP) depuis le circuit amplificateur d'alimentation (11) et une masse;
    - un circuit de génération de polarisation (13) délivrant un potentiel de polarisation entre la seconde tension d'alimentation (VPP) et la masse à un point de connexion des premier et second condensateurs (C1, C2) et commutant sa sortie dans un état de flottement en réponse au signal d'état de faible consommation d'énergie (DPDS);
    caractérisé en ce que
    - un circuit limiteur(15) est prévu pour réduire la seconde tension d'alimentation (VPP) à une valeur déterminée lorsque le circuit amplificateur d'alimentation (11) stoppe une opération d'amplification,
    - le circuit limiteur (15) étant activé en réponse au signal d'état de faible consommation d'énergie (DPDS).
  2. Dispositif de mémoire à semi-conducteurs selon la revendication 1,
    dans lequel le circuit limiteur (15) limite la seconde tension d'alimentation à la valeur déterminée dans le mode de faible consommation d'énergie.
  3. Dispositif de mémoire à semi-conducteurs selon la revendication 1,
    dans lequel le circuit limiteur (15) est un circuit de commutation monté entre la ligne d'alimentation délivrant la seconde tension d'alimentation et la masse.
  4. Dispositif de mémoire à semi-conducteurs selon la revendication 1,
    dans lequel le circuit limiteur (15) réduit la seconde tension d'alimentation à un potentiel de masse.
  5. Dispositif de mémoire à semi-conducteurs selon la revendication 2,
    dans lequel le circuit limiteur (15A) comprend un transistor (M1) relié à la ligne d'alimentation délivrant la seconde tension d'alimentation grâce à son drain et à la masse grâce à sa source et sa grille est alimentée par un signal indiquant si oui ou non il se trouve dans le mode de faible consommation d'énergie.
  6. Dispositif de mémoire à semi-conducteurs selon la revendication 2,
    dans lequel le circuit limiteur (15B) comprend un premier transistor (M11) relié à la ligne d'alimentation délivrant la seconde tension d'alimentation grâce à son drain et à sa grille et un second transistor (M12) relié à une source du premier transistor grâce à son drain et à la masse grâce sa source et sa grille est alimentée par un signal indiquant si oui ou non il se trouve dans le mode de faible consommation d'énergie.
  7. Dispositif de mémoire à semi-conducteurs selon la revendication 1,
    dans lequel les premier et second condensateurs (C1, C2) sont formés en utilisant un condensateur de cellule de mémoire, respectivement.
  8. Dispositif de mémoire à semi-conducteurs selon la revendication 1,
    dans lequel le potentiel de polarisation est un potentiel de la seconde tension d'alimentation qui est divisé en tension conformément à un rapport de capacité entre les premier et second condensateurs (C1, C2).
  9. Dispositif de mémoire à semi-conducteurs selon la revendication 1,
    dans lequel les premier et second condensateurs (C1, C2) possèdent une même capacité, et
    dans lequel le potentiel de polarisation est un demi (1/2) ou sensiblement un demi (1/2) du potentiel de la seconde tension d'alimentation.
  10. Dispositif de mémoire à semi-conducteurs selon la revendication 1,
    dans lequel le circuit de génération de polarisation (13) commute une sortie dans un état de flottement en réponse au signal d'état de faible consommation d'énergie (DPDS).
  11. Dispositif de mémoire à semi-conducteurs selon la revendication 1,
    dans lequel un état de mode de faible consommation d'énergie et un état de fonctionnement normal peuvent être commutés conformément à une commande externe (CMD) entrée.
  12. Dispositif électronique comportant:
    - un dispositif de mémoire à semi-conducteurs (20) conformément à la revendication 1 et
    - un dispositif de commande (36) entrant une commande dans le dispositif de mémoire à semi-conducteurs et pouvant commander l'état de fonctionnement du dispositif de mémoire à semi-conducteurs avec la commande.
EP07115185A 2006-09-19 2007-08-29 Dispositif de mémoire à semi-conducteurs Expired - Fee Related EP1903577B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252900A JP2008077705A (ja) 2006-09-19 2006-09-19 半導体記憶装置

Publications (3)

Publication Number Publication Date
EP1903577A2 EP1903577A2 (fr) 2008-03-26
EP1903577A3 EP1903577A3 (fr) 2008-07-09
EP1903577B1 true EP1903577B1 (fr) 2011-03-23

Family

ID=38896693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07115185A Expired - Fee Related EP1903577B1 (fr) 2006-09-19 2007-08-29 Dispositif de mémoire à semi-conducteurs

Country Status (6)

Country Link
US (1) US7652934B2 (fr)
EP (1) EP1903577B1 (fr)
JP (1) JP2008077705A (fr)
KR (1) KR100867162B1 (fr)
CN (1) CN101149966B (fr)
DE (1) DE602007013332D1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996046B2 (ja) * 2004-08-30 2012-08-08 富士通セミコンダクター株式会社 半導体装置の中間電位生成回路
TWI340547B (en) * 2007-08-08 2011-04-11 Nanya Technology Corp Signal receiver circuit
JP5134975B2 (ja) * 2008-01-08 2013-01-30 株式会社東芝 半導体集積回路
JP5238458B2 (ja) * 2008-11-04 2013-07-17 株式会社東芝 不揮発性半導体記憶装置
KR20110002178A (ko) 2009-07-01 2011-01-07 삼성전자주식회사 Dram의 비트라인 프리차지 회로
KR102033528B1 (ko) 2013-03-14 2019-11-08 에스케이하이닉스 주식회사 스탠바이 전류를 감소시키는 반도체 메모리 장치
CN106504793B (zh) * 2016-11-03 2020-01-24 中国电子科技集团公司第四十七研究所 一种为flash存储器芯片提供编程电压的升压电路
FR3077673B1 (fr) * 2018-02-07 2020-10-16 Ingenico Group Circuit securise d'alimentation de memoire volatile

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2838344B2 (ja) * 1992-10-28 1998-12-16 三菱電機株式会社 半導体装置
US5530640A (en) * 1992-10-13 1996-06-25 Mitsubishi Denki Kabushiki Kaisha IC substrate and boosted voltage generation circuits
JPH1012838A (ja) 1996-06-21 1998-01-16 Mitsubishi Electric Corp 半導体装置
US6204723B1 (en) 1999-04-29 2001-03-20 International Business Machines Corporation Bias circuit for series connected decoupling capacitors
JP2001014877A (ja) * 1999-06-25 2001-01-19 Mitsubishi Electric Corp 電圧発生回路およびそれを備えた半導体記憶装置
JP3753898B2 (ja) 1999-07-19 2006-03-08 富士通株式会社 半導体記憶装置の昇圧回路
JP4080696B2 (ja) * 2001-01-12 2008-04-23 株式会社東芝 半導体集積回路
JP3751537B2 (ja) * 2001-04-05 2006-03-01 富士通株式会社 電圧発生回路、半導体装置及び電圧発生回路の制御方法
JP2003257187A (ja) * 2002-02-28 2003-09-12 Hitachi Ltd 不揮発性メモリ、icカード及びデータ処理装置
KR100542709B1 (ko) * 2003-05-29 2006-01-11 주식회사 하이닉스반도체 반도체 메모리 소자의 부스팅 회로
JP4996046B2 (ja) * 2004-08-30 2012-08-08 富士通セミコンダクター株式会社 半導体装置の中間電位生成回路

Also Published As

Publication number Publication date
US20080068916A1 (en) 2008-03-20
DE602007013332D1 (de) 2011-05-05
EP1903577A3 (fr) 2008-07-09
CN101149966A (zh) 2008-03-26
CN101149966B (zh) 2012-02-15
KR100867162B1 (ko) 2008-11-06
US7652934B2 (en) 2010-01-26
EP1903577A2 (fr) 2008-03-26
JP2008077705A (ja) 2008-04-03
KR20080026024A (ko) 2008-03-24

Similar Documents

Publication Publication Date Title
EP1903577B1 (fr) Dispositif de mémoire à semi-conducteurs
US7646653B2 (en) Driver circuits for integrated circuit devices that are operable to reduce gate induced drain leakage (GIDL) current in a transistor and methods of operating the same
KR100816403B1 (ko) 저소비 전력형 다이내믹 랜덤 액세스 메모리
US6897684B2 (en) Input buffer circuit and semiconductor memory device
US6335895B1 (en) Semiconductor storage device and system using the same
US8009505B2 (en) Semiconductor memory device
US7248522B2 (en) Sense amplifier power-gating technique for integrated circuit memory devices and those devices incorporating embedded dynamic random access memory (DRAM)
US7961548B2 (en) Semiconductor memory device having column decoder
US8149632B2 (en) Output circuit for a semiconductor memory device and data output method
US7215178B2 (en) MOS type semiconductor integrated circuit device
JP2010067900A (ja) 半導体装置
US6707747B2 (en) Dynamic input thresholds for semiconductor devices
US7158436B2 (en) Semiconductor memory devices
US6990029B2 (en) Column read amplifier power-gating technique for integrated circuit memory devices and those devices incorporating embedded dynamic random access memory (DRAM)
US6049498A (en) Double transistor switch for supplying multiple voltages to flash memory wordlines
JPH10289582A (ja) センシング回路
US7924606B2 (en) Memory controller and decoder
US8351272B2 (en) Apparatuses and methods to reduce power consumption in digital circuits
JP2002343080A (ja) 半導体集積回路装置
KR19980077602A (ko) 공통 입/출력 라인 프리챠아지 회로
KR20010045221A (ko) 워드 라인 드라이버 회로
KR19980040622A (ko) 입출력 드라이버
KR19990001628U (ko) 싱크로너스 디램
KR20050068753A (ko) 반도체 메모리 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FUJITSU MICROELECTRONICS LIMITED

17P Request for examination filed

Effective date: 20090108

17Q First examination report despatched

Effective date: 20090206

AKX Designation fees paid

Designated state(s): DE FR IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FUJITSU SEMICONDUCTOR LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 602007013332

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007013332

Country of ref document: DE

Effective date: 20110505

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007013332

Country of ref document: DE

Effective date: 20111227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007013332

Country of ref document: DE

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007013332

Country of ref document: DE

Representative=s name: REICHERT & LINDNER PARTNERSCHAFT PATENTANWAELT, DE

Effective date: 20150512

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007013332

Country of ref document: DE

Owner name: SOCIONEXT INC., YOKOHAMA-SHI, JP

Free format text: FORMER OWNER: FUJITSU SEMICONDUCTOR LTD., YOKOHAMA, KANAGAWA, JP

Effective date: 20150512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007013332

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302