EP1898870A2 - Compositions de maquillage des matieres keratinioues - Google Patents

Compositions de maquillage des matieres keratinioues

Info

Publication number
EP1898870A2
EP1898870A2 EP06778641A EP06778641A EP1898870A2 EP 1898870 A2 EP1898870 A2 EP 1898870A2 EP 06778641 A EP06778641 A EP 06778641A EP 06778641 A EP06778641 A EP 06778641A EP 1898870 A2 EP1898870 A2 EP 1898870A2
Authority
EP
European Patent Office
Prior art keywords
particles
composition according
composition
monodisperse particles
monodisperse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06778641A
Other languages
German (de)
English (en)
French (fr)
Inventor
Christophe Dumousseaux
Makoto Kawamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOreal SA
Original Assignee
LOreal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LOreal SA filed Critical LOreal SA
Publication of EP1898870A2 publication Critical patent/EP1898870A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8111Homopolymers or copolymers of aliphatic olefines, e.g. polyethylene, polyisobutene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8117Homopolymers or copolymers of aromatic olefines, e.g. polystyrene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8158Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/88Polyamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/895Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • A61K2800/436Interference pigments, e.g. Iridescent, Pearlescent

Definitions

  • the present invention relates to cosmetic compositions and more particularly those intended for the makeup of keratin materials, in particular the skin, the lips, the nails, the eyelashes and the hair.
  • the use of such pigments and dyes can however raise difficulties.
  • the pigments and dyes may have relatively low UV resistance and become light-impaired.
  • the color produced may not be as bright and bright as desired.
  • Pigments and dyes can still impose formulation constraints.
  • a goniochromatic effect present in the formulation can still be provided by an ordered network of monodisperse particles, as taught in particular in WO 00/47167.
  • the publication WO 02/056854 of the applicant company discloses an iridescent composition for topical application, comprising at least one water-soluble surfactant and monodisperse particles in aqueous dispersion, these particles having a number-average size ranging from 50 to 300 nm and the amount of these particles being at least 3% by weight relative to the total weight of the composition.
  • the application WO 05/018566 discloses a topical system for application to the skin, comprising a colloidal crystalline lattice in a hydrophilic phase and at least one phase containing an oil.
  • compositions for producing color through at least one ordered array of monodisperse particles such a grating being sometimes referred to as "photonic crystal”.
  • the aim of the invention is to extend the optical effects, in particular the colonels, that can be obtained with such compositions.
  • the invention thus relates to a cosmetic composition comprising: a physiologically acceptable medium, monodisperse particles capable of forming an ordered network of monodisperse particles on a support on which the composition is applied, particles larger than the monodisperse particles. .
  • the large particles are large enough not to interfere with the formation of the network and can improve its formation by improving the confinement of monodisperse particles, for example by introducing into some network dislocations.
  • the larger particles advantageously have a size at least 3, better 5 times that of the monodisperse particles, more preferably at least 10 times greater.
  • These large particles may be particles of a pigment or a non-coloring filler for example to reduce the gloss.
  • the medium may thus comprise at least one effect pigment, the particles of which are relatively large.
  • effect pigment is meant, inter alia, reflective particles capable of creating highlight points visible to the naked eye, nacres, goniochromatic coloring agents and diffractive pigments.
  • the effect pigment may be present in the formulation at a concentration of from 0.1 to 70%, preferably 1 to 50%, more preferably 2 to 30%, more preferably 30 to 20%, preferably 5 to 20%.
  • the monodisperse particle content may be greater than or equal to 15%.
  • a relatively large concentration of particles can facilitate the formation of a crystal lattice, using a cosmetic applicator for example.
  • a relatively high concentration can indeed lead to a pre-organization of the particles by electrostatic repulsion in the composition and / or during the drying thereof.
  • the particles can form a compact crystal lattice after application.
  • This network may possibly be discontinuous with the presence of fractures and dislocations.
  • the diffracted wavelength is therefore mainly dependent on the angle of observation and the distance between the particles.
  • this distance depends mainly on the size of the particles. It is therefore possible to obtain different goniochromatic stains by varying the size of the particles present.
  • UV protection UV protection
  • IR range antichemical coating
  • the invention can make it possible, if desired, to produce a cosmetic composition free of dye or pigment, the color being produced by the ordered network of monodisperse particles.
  • the invention may also make it possible to produce a colored deposit sensitive to an external stimulus, such as, for example, temperature, humidity or ultraviolet radiation.
  • Such a stimulus can influence the distance between the particles of the network and thus change the color, as explained above.
  • the distance between the particles can be modified, for example due to a variation of the dimension, of the particles under the effect of the external stimulus and / or of a variation of the distance between the particles with a substantially constant size, for example due to to a variation of the repulsive forces therebetween and / or a variation in the size of at least one compound present between the particles.
  • the refractive index of the medium may possibly vary under the effect of the external stimulus, for example the temperature.
  • the invention may also make it possible to produce, where appropriate, a deposit whose color changes as a function of the degree of drying of the composition.
  • the invention can make it possible to obtain a durable and luminous coloration over a large surface.
  • Monodisperse particles designates, according to the invention, particles whose average size has a coefficient of variation CV less than or equal to 15%.
  • the average size D and standard deviation s can be measured on 250 particles by analysis of an image obtained by means of a scanning electron microscope, for example that of reference S-4500 from HITACHI.
  • An image analysis software can be used to facilitate this measurement, for example the Winroof ® software, marketed by Mitani Corporation.
  • the coefficient of variation of the monodisperse particles is less than or equal to 10%, better still less than or equal to 7%, or even better still lower or equal to 5%, being for example substantially of the order of 3.5%.
  • a small dispersion of the particle size may be favorable to the quality of the compact crystal lattice formed and thus to obtaining bright and bright colors.
  • the average size D of the monodisperse particles may be generally between 80 and 500 nm, better still between 100 and 500 nm or 150 and 450 ⁇ m, which may be chosen as a function, for example, of the color or colors to be obtained and of the surrounding medium.
  • a preferred average size range is from 150 to 450 nm, more preferably from 190 to 310 nm, for obtaining colors in the visible range.
  • the average size can range from 80 to 200 nm for UV filtration.
  • the mass content of monodisperse particles can range, for example, from 15 to 70%, being for example greater than 20%, 25%, 30%, 35%, 40% or 45%.
  • a different content for example from 1 to 70% may be allowed according to some other aspects of the invention.
  • the periodic network formed may be monolayer or multilayer, compact or not.
  • the shape of the monodisperse particles must be compatible with the formation of an ordered network of monodisperse particles.
  • the formed network may be at least partially cubic centered, cubic face-centered or hexagonal compact or hybrid, formed from these arrangements, or other.
  • the shape of the monodisperse particles is spherical, but other forms, including axial symmetry, are possible.
  • the monodisperse particles can be monomaterial or composite.
  • the monodisperse particles may be solid or hollow. Hollow monodisperse particles have a lower density than solid particles and thus allow to occupy more volume for the same mass concentration.
  • the monodisperse particles consist of a material of high density, for example an inorganic material
  • the hollow particles make it possible to limit the phenomena of sedimentation in the composition.
  • the presence of air or another gas inside the particles after drying makes it possible to obtain a large difference in refractive index between the particles and the surrounding medium, which is favorable in terms of peak intensity. diffraction and therefore the development of a very intense coloring.
  • Many non-volatile compounds can be added to the composition or the composition without losing the color and ending up with a transparent composition.
  • the monodisperse particles may be porous or non-porous. The presence of small pores within the particles can decrease the refractive index of these particles.
  • the refractive index n p of the monodisperse particles is different from that n c of the continuous medium extending around the particles after application of the formulation and the difference of these refractive indices is preferably greater than or equal to 0.02, better greater than or equal to 0.05, more preferably greater than or equal to 0.1, being for example between 0.02 and 2, in particular between 0.05 and 1.
  • a difference in refractive index n p -n c too much low may require a large number of layers of ordered network particles to obtain the desired result.
  • a too important index difference can accentuate the phenomena of light diffusion by the layer and bring about a bleaching of the deposit after application.
  • the refractive index of the monodisperse particles is defined as the average refractive index. In the case of composite particles, it is calculated linearly as a function of the volume proportion of each component.
  • the refractive index of the monodisperse particles may be greater than or equal to that of the medium, for example being greater than or equal to 1.4, especially between 1.4 and 1.7. All monodisperse particles corresponding to the same average size
  • the monodisperse particles may be colored, that is to say non-white, for example to enhance the intensity of the color produced and / or to avoid a whitening phenomenon of the composition after application to the keratin materials.
  • An example of a colored particle used to form a colloidal crystal is given in publication WO 05/012961.
  • the color of the monodisperse particles may be provided by the choice of the material or materials constituting each monodisperse particle. It can have the effect of increasing the absorption of light by the particles and decrease the diffusion.
  • the monodisperse particles may in particular incorporate at least one pigment or dye, organic or inorganic, the latter may optionally be fluorescent and have a fluorescence in the ultraviolet or infrared.
  • the monodisperse particles may comprise an inorganic compound, or even be entirely mineral.
  • the monodisperse particles when they are inorganic, they may for example comprise at least one oxide, in particular a metal, chosen for example from oxides of silica, iron, titanium, aluminum, chromium, zinc, copper, of zirconium and cerium and mixtures thereof.
  • the monodisperse particles may also include a metal, including titanium, silver, gold, aluminum, zinc, iron, copper, and mixtures and alloys thereof.
  • the monodisperse particles may comprise an organic compound, or even be entirely organic.
  • polymers in particular with a carbon or silicone chain, for example polystyrene (PS), polymethylmethacrylate (PMMA), polyacrylamide (PAM), polymers of silicone.
  • PS polystyrene
  • PMMA polymethylmethacrylate
  • PAM polyacrylamide
  • the monodisperse particles may comprise at least one polymer or copolymer capable of ionizing in order to improve the dispersibility in the medium and the electrostatic stabilization.
  • this polymer or copolymer preferably contains carboxylic acid or sulfonic functions.
  • the monodisperse particles may for example comprise a core and a "bark" made of different materials, for example organic and / or inorganic materials.
  • the material of the core or bark may be chosen, for example, in order to improve the stability in the environment of the monodisperse particles, to increase their refractive index and / or to color them. and / or to impart to them fluorescence or magnetic susceptibility.
  • the core may consist of an insoluble material in the medium containing the particles, for example an inorganic material, such as silica for example, or an organic material, such as an acrylic polymer, for example.
  • the bark may consist of polymer chains, which may be soluble in the medium containing the particles, the polymer chains may comprise polymers grafted to the surface of the core of the monodisperse particles, which may be insoluble in the medium.
  • Such core particles and polymeric chains also called “hairy” particles, can be stabilized in the medium not only by electrostatic interactions but also by steric interactions of excluded volume type.
  • the additional stabilization and volume provided by the polymer chains makes it easy to incorporate other components into the composition without the risk of destabilization and aggregation of the particles.
  • these other components are, for example, coloring agents or fillers intended, for example, to modify the appearance of the composition or of the support coated therewith.
  • the polymer chains may comprise graft polymer chains, which may contain chemical functions (carboxylic acid, amine, amide, thiol, etc.) capable of interacting with the keratin materials and of improving the adhesion of the composition to the covered support.
  • Polymeric chains can also improve the resistance of the particle network after application to keratin materials.
  • hairy particles are given for example in the publication Ishizu et al., Kagaku To Kogyo, 57 (7) (2004) in the case of a polymer core or in the publication Okubo et al., Colloid & Polymer Science, 280 (3), pp. 290-295 (2002) in the case of a core of silica and polymers polymethyl methacrylate or poly (styrene co maleic anhydride) bark.
  • Composite monodisperse particles may further comprise inclusions of a first material in a matrix of a second material.
  • the first material may have a high refractive index to increase the overall refractive index of the particle.
  • the particle may for example comprise inclusions of nanoparticles, for example nanoparticles of titanium oxide.
  • the monodisperse particles may be manufactured according to synthetic methods as described, for example, in the publication Xia et al, Adv. Mater., 12, 693-713 (2000), incorporated by reference.
  • Hipresica ® FQ sica in Ube-Nitto company Eposter ® MX-100W (PMMA) and Eposter ® MX-200W (PMMA) from Nippon Shokubai.
  • the monodisperse particles may, where appropriate, have a size which is sensitive to an external stimulus, for example the concentration of a compound and / or the temperature and / or the pressure.
  • the monodisperse particles are, for example, particles of a polymer which are swollen in a solvent, these particles forming a microgel.
  • the monodisperse particles may be contained at least before application in a physiologically acceptable medium allowing the forming on the support on which the composition is applied an ordered network of monodisperse particles.
  • physiologically acceptable medium synonymous with the expression “cosmetically acceptable medium” means a non-toxic medium and may be applied to keratin materials of human beings, including the skin, mucous membranes or superficial body growths.
  • the physiologically acceptable medium is generally adapted to the nature of the support on which the composition is to be applied and to the form in which the composition is intended to be packaged.
  • the monodisperse particles may be contained in a liquid phase.
  • the medium may be chosen so as to promote the dispersion of the particles in the medium before the application thereof, in order to avoid aggregation of the particles.
  • the medium may be chosen such that the ordered network of monodisperse particles is formed by regular stacking thereof, after application to the keratin materials, the network not existing in the composition before application and forming for example during the evaporation of a solvent contained in the composition.
  • the refractive index of the medium advantageously has, as indicated previously, a difference with that of the monodisperse particles, this difference being in absolute value preferably greater than or equal to 0.02, better still greater than or equal to 0.05, in particular between 0 , 05 and 1, more preferably greater than or equal to 0.1.
  • the medium may be aqueous, the monodisperse particles may be contained in an aqueous phase.
  • aqueous medium is meant a liquid medium at room temperature and atmospheric pressure which contains a significant fraction of water based on the total weight of the medium.
  • the additional fraction may contain or consist of physiologically acceptable organic solvents miscible with water, for example alcohols or alkylene glycols.
  • the mass content of water of the aqueous medium is preferably greater than or equal to 30%, better still 40%, even more preferably 50%.
  • the content of other solid bodies that the monodisperse particles will be sufficiently low not to interfere with the formation of the ordered network of monodisperse particles and obtaining the desired result in terms of coloring in particular.
  • the medium may comprise at least one compound having an OH bond, in particular an alcohol function, in a mass content for example greater than or equal to 5%, better 10%.
  • a compound having an OH bond in particular an alcohol function, in a mass content for example greater than or equal to 5%, better 10%.
  • the medium may comprise an alcohol, such as ethanol or isopropanol, for example, or a derivative of glycol, in particular. P ethylene glycol or propylene glycol.
  • the medium has a relative dielectric constant ⁇ greater than or equal to 10, better still 20, even better than 30.
  • the dielectric constant is measured at a temperature of 25 ° C.
  • a relatively high dielectric constant favors particle ordering monodisperses in network.
  • the conductivity of the composition may be between 5 and 2,000 ⁇ S.cm -1 , in particular between 10 and 4,000 ⁇ S cm -1 , or even between 20 and 400 ⁇ S cm -1 .
  • the medium can be transparent or translucent, and colored or not.
  • the medium containing the monodisperse particles may contain no pigment or dye.
  • the coloration of the medium may correspond to the addition of an additional coloring agent.
  • the color of the medium corresponds for example to one of the colors likely to be generated by the ordered network of monodisperse particles, for example the color produced by the network when observed at normal incidence.
  • the color of the medium can also be black in order to limit the diffusion of light.
  • the ordered network of monodisperse particles can make it possible to easily obtain the colors green, red or blue.
  • the color domain can be extended by the presence of an additional coloring agent, for example a dye, an absorbent pigment or an effect pigment, for example at a concentration of 0.1 to 15% by weight.
  • pigments of a relatively large size such as nacres for example, may not prevent the formation of the network next to the pigment particles, but on the contrary promote its formation by improving the confinement of the monodisperse particles, the large particles which can be introduced in certain dislocations of the network.
  • the medium may thus comprise larger particles having a size at least 3, better 5 times that of the monodisperse particles, more preferably 10 times higher. These large particles may be particles of a pigment or a non-coloring filler. The medium may thus comprise at least one effect pigment.
  • the presence of monodisperse particles makes it possible to produce a periodic network after application to the keratin materials.
  • This network makes it possible to obtain a color effect by diffraction of light and the Applicant has found that it is possible to associate a second optical effect with an effect pigment while maintaining the periodic grating.
  • the two optical effects will be additional and the presence of the pigment thus makes it possible to extend the color range and the optical effects obtained by the network formed on the keratin materials.
  • the effect pigment may be present in the formulation at a concentration of between 0.1 and 70%, preferably 1 to 50%, preferably 5 to 20%.
  • Reflective particles can be used to create highlight points visible to the naked eye. Reflective particles can have various shapes. These particles may in particular be in the form of platelets or globular, in particular spherical. These particles may comprise a substrate covered with a reflective material.
  • the substrate may be chosen from glasses, metal oxides, aluminas, silicas, silicates, especially aluminosilicates and borosilicates, mica, synthetic mica, synthetic polymers and mixtures thereof.
  • the reflective material may include a layer of metal or a metal compound.
  • Platelet-coated silver-coated glass substrate particles are sold under the name METASHINE by Nippon Sheet Glass.
  • reflective particles By way of example of reflective particles, mention may also be made, for example, of particles comprising a synthetic mica substrate coated with titanium dioxide, or particles of coated glass of brown iron oxide, of titanium oxide, of tin oxide or a mixture thereof such as those sold under the trade name REFLECKS® by ENGELHARD.
  • pigments of the METASHINE 1080R range marketed by NIPPON SHEET GLASS CO. LTD are C-GLASS glass flakes comprising 65 to 72% SiO 2 , coated with a titanium oxide layer of rutile type (TiO 2 ). These glass flakes have an average thickness of 1 micron and an average size of 80 microns, a ratio in average size / average thickness of 80. They have blue, green, yellow or silver-tone reflections depending on the thickness of the glass. TiO 2 layer.
  • particles having a size of between 80 and 100 ⁇ m comprising a synthetic mica substrate (fluorophlogopite) coated with titanium dioxide representing 12% of the total weight of the particle, sold under the name PROMINENCE by the company NIHON KOKEN.
  • the reflective particles may also be chosen from particles formed from a stack of at least two layers with different refractive indices. These layers may be polymeric or metallic in nature and in particular include at least one polymeric layer. Thus, the reflective particles may be particles derived from a multilayer polymeric film. Such particles are described in particular in WO 99/36477, US Pat. No. 6,299,979 and US Pat. No. 6,387,498. Reflective particles comprising a stack of at least two polymer layers are marketed by the company 3M under the name MIRROR GLITTER. These particles comprise 2,6-PEN and polymethyl methacrylate layers in a weight ratio of 80/20. Such particles are described in US Pat. No. 5,825,643. Nacres
  • nacres it is necessary to include colored particles of any shape, iridescent or not, in particular produced by certain shellfish in their shell or else synthesized and which exhibit a color effect by optical interference.
  • the nacres may be chosen from pearlescent pigments such as iron oxide-coated titanium mica, bismuth oxychloride-coated mica, titanium mica coated with chromium oxide, titanium mica coated with an organic dye. especially of the aforementioned type as well as pearlescent pigments based on bismuth oxychloride. It may also be mica particles on the surface of which are superimposed at least two successive layers of metal oxides and / or organic dyestuffs. Mention may also be made, by way of example of nacres, of natural mica coated with titanium oxide, with iron oxide, with natural pigment or with bismuth oxychloride.
  • the goniochromatic coloring agents in the sense of the present invention have a color change, also called “color flop", depending on the angle of observation, greater than that which can be encountered with nacres.
  • the goniochromatic coloring agent may be chosen, for example, from interferential multilayer structures and liquid crystal coloring agents.
  • symmetrical interferential multilayer pigments that can be used in compositions produced in accordance with the invention are, for example:
  • goniochromatic coloring agents having a multilayer structure comprising an alternation of polymeric layers, for example of the polyethylene naphthalate and polyethylene terephthalate type.
  • Such agents are described in particular in WO-A-96/19347 and WO-A-99/36478.
  • liquid crystal coloring agents comprise, for example, silicones or cellulose ethers onto which mesomorphic groups are grafted.
  • liquid crystal goniochromatic particles it is possible to use, for example, those sold by CHENLX as well as those marketed under the name HELICONE® HC by SICPA.
  • the composition may further comprise dispersed goniochromatic fibers. Such fibers may, for example, have a size of between 50 ⁇ m and 2 mm. Goniochromatic fibers with a polyethylene bilayer structure terephthalate / nylon-6 are marketed by TEIJIN under the name MORPHOTEX and MORPHOTONE.
  • diffractive pigment is meant a pigment comprising a periodic pattern constituting a diffraction grating. Since the distance between the periodic patterns is of the same order of magnitude as the visible light, this pigment will be able to diffract the light and produce, for example, a rainbow effect.
  • Such pigments are commercially available under the name SPECTRAFLAIR from JDS Uniphase Corporation. Such pigments can also be made according to the methods taught by patents US6818051, US6894086 and EP 1634619. These patents describe pigments consisting of a 3-dimensional network of silica particles similar to the structure of opals. Inverse opal structures can also be obtained and used. The medium in which the ordered network of monodisperse particles is formed can evaporate or not after application of the composition.
  • the medium may comprise a volatile solvent.
  • volatile solvent means any liquid capable of evaporating on contact with the skin at ambient temperature and under atmospheric pressure.
  • the medium can in particular be chosen so that the composition contains at least 10%, or even at least 30% of volatile solvent.
  • the pH of the composition may range from 1 to 11, for example from 3 to 9.
  • the pH most suitable for the formation of the network may depend on the nature of the monodisperse particles.
  • a basic pH is preferred when the monodisperse particles are inorganic, especially comprising silica.
  • the medium may comprise smaller particles having an average size D less than that of the monodisperse particles by a factor of at least 2, better still at least 3, in order to allow their insertion into the voids left between the monodisperse particles.
  • These interstitial particles can be inorganic or organic and can improve the cohesion of the network or change the absorption of light by the layers of the network.
  • interstitial particles As an example of interstitial particles, mention may be made of nanoparticles of titanium dioxide, silica, iron oxide, carbon black, of average size ranging from 5 to 150 nm, for example from 10 to 100 nm. . . - • .
  • interstitial particles there may be mentioned particles of a polymer, which is for example in the already polymerized state in the composition before its application to keratin materials, the medium comprising, for example, a latex.
  • the size of the interstitial particles may, where appropriate, vary depending on an external stimulus and / or the concentration of a compound in the medium.
  • the interstitial particles may be water-absorbing. The size of the particles may then for example vary according to the concentration of water in the medium. The variation in size of the interstitial particles may, if necessary, exert an action on the distance between the monodisperse particles and thus have an action on the color produced by the network.
  • the medium may comprise at least one polymer to improve the behavior of the network after its formation.
  • This polymer is for example in the not completely polymerized and / or crosslinked state in the composition before the application thereof and its drying.
  • the crosslinking and / or polymerization may take place after the application of the composition to the keratin materials.
  • the polymerization and / or crosslinking may occur for example after formation of the monodisperse particle network or alternatively before and / or concomitantly with the latter.
  • the medium may comprise a film-forming polymer.
  • Film-forming polymer
  • film-forming polymer is intended to mean a polymer capable of forming, by itself or in the presence of an auxiliary film-forming agent, a macroscopically continuous and adherent film on keratin materials, and preferably a cohesive film, and better still a film whose cohesion and mechanical properties are such that said film can be isolable and manipulable in isolation, for example when said film is made by casting on a non-stick surface such as a teflon or silicone surface.
  • the composition may comprise an aqueous phase and the fimiogenic polymer may be present in this aqueous phase.
  • the fimiogenic polymer may be present in this aqueous phase.
  • it will preferably be a dispersion polymer or an amphiphilic or associative polymer.
  • aqueous dispersion polymers can be used: Ultrasol 2075 from Ganz Chemical, Daitosol 5000AD from Daito Kasei, Avalon UR 450 from Noveon, DYNAMX from National Starch, Syntran 5760 from Interpolymer, Acusol OP 301 from Rohm & Haas, Neocryl A 1090 from Avecia.
  • Neocryl XK-90® The acrylic dispersions sold under the names Neocryl XK-90®, Neocryl A-1070®, Neocryl A-1090®, Neocryl BT-62®, Neocryl A-1079® and Neocryl A-523® by the company Avecia-Neoresins, Dow Latex 432® by DOW CHEMICAL, Daitosol 5000 AD® or Daitosol 5000 SJ® by DAITO KASEY KOGYO; Syntran 5760® by the company Interpolymer, Allianz OPT by the company Rohm & Haas, aqueous dispersions of acrylic or styrene / acrylic polymers sold under the trade name JONCRYL® by JOHNSON POLYMER or the aqueous polyurethane dispersions sold under the denominations Neorez R-981® and Neorez R-974® by the company AVECIA-NEORESINS, Avalure UR-405®, Avalure UR-410®,
  • amphiphilic or associative polymers polymers having one to several hydrophilic moieties which render them partially soluble in water and one or more hydrophobic moieties through which the polymers associate or interact.
  • the following associative polymers can be used: Nuvis FX1100 from Elementis, Aculyn 22, Aculyn 44, Aculyn 46 from Rohrn & Haas, Viscophobe DB1000 from Amerchol.
  • the diblock copolymers consisting of a hydrophilic block (polyacrylate, polyethylene glycol) and a hydrophobic block (polystyrene, polysiloxane, can also be used.
  • Soluble polymers in an aqueous phase containing the monodisperse particles can be avoided because they can cause an aggregation of the monodisperse particles.
  • the film-forming polymer may thus be insoluble in such a phase.
  • the composition may comprise an oily phase and the film-forming polymer may be present in this oily phase.
  • the polymer may then be in dispersion or in solution.
  • NAD non-aqueous dispersion
  • microgel for example KSG
  • PS-PA polymers
  • styrene-based copolymers Karlon, Regalite
  • non-aqueous dispersions of lipid-dispersible film-forming polymer in the form of non-aqueous dispersions of polymer particles in one or more silicone and / or hydrocarbon oils and which can be stabilized at their surface by at least one stabilizing agent, in particular a block polymer, grafted or statistical, mention may be made of acrylic dispersions in isododecane, such as
  • Mexomère PAP® from the company CHMEX, particle dispersions of a grafted ethylenic polymer, preferably acrylic, in a liquid fatty phase, the ethylenic polymer being advantageously dispersed in the absence of additional stabilizer at the surface of the particles such as described in particular in WO 04/055081.
  • radical-forming film-forming polymer is meant a polymer obtained by polymerization of unsaturated monomers, especially ethylenic monomers, each monomer being capable of homopolymerizing (unlike polycondensates).
  • the radical-type film-forming polymers may in particular be polymers, or copolymers, vinylic polymers, in particular acrylic polymers.
  • the vinyl film-forming polymers may result from the polymerization of ethylenically unsaturated monomers having at least one acidic group and / or esters of these acidic monomers and / or amides of these acidic monomers.
  • ⁇ , ⁇ -ethylenic unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid. It is preferable to use (meth) acrylic acid and crotonic acid, and more preferably (meth) acrylic acid.
  • the acidic monomer esters are advantageously chosen from esters of (meth) acrylic acid (also called (meth) acrylates), in particular alkyl (meth) acrylates, in particular C 1 -C 30 alkyl, preferably C1-C20, (meth) acrylates of aryl, in particular of C6-C10 aryl, hydroxyalkyl (meth) acrylates, in particular of C2-C6 hydroxyalkyl.
  • alkyl (meth) acrylates mention may be made of methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate.
  • hydroxyalkyl (meth) acrylates mention may be made of hydroxyethyl acrylate, 2-hydroxypropyl acrylate, hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate.
  • aryl (meth) acrylates mention may be made of benzyl acrylate and phenyl acrylate.
  • Particularly preferred (meth) acrylic acid esters are alkyl (meth) acrylates.
  • the alkyl group of the esters can be either fluorinated or perfluorinated, ie some or all of the hydrogen atoms of the alkyl group are substituted by fluorine atoms.
  • Amides of the acidic monomers include, for example, (meth) acrylamides, and especially N-alkyl (meth) acrylamides, in particular C 2 -C 12 alkyl.
  • N-alkyl (meth) acrylamides mention may be made of N-ethyl acrylamide, Nt-butyl acrylamide, Nt-octyl acrylamide and N-undecylacrylamide.
  • the vinyl film-forming polymers can also result from the homopolymerization or copolymerization of monomers chosen from vinyl esters and styrene monomers. In particular, these monomers can be polymerized with acidic monomers and / or their esters and / or their amides, such as those mentioned above.
  • vinyl esters examples include vinyl acetate, vinyl neodecanoate, vinyl pivalate, vinyl benzoate and vinyl t-butyl benzoate.
  • Styrene monomers include styrene and alpha-methyl styrene.
  • film-forming polycondensates mention may be made of polyurethanes, polyesters, polyester amides, polyamides, and epoxy ester resins, polyureas.
  • the polyurethanes may be chosen from anionic, cationic, nonionic or amphoteric polyurethanes, polyurethane-acrylics, poly-urethanes-polyvinylpyrrolidones, polyester-polyurethanes, polyether-polyurethanes, polyureas, polyurea-polyurethanes, and their polyurethanes. mixtures.
  • the polyesters can be obtained, in known manner, by polycondensation of dicarboxylic acids with polyols, especially diols.
  • the dicarboxylic acid can be aliphatic, alicyclic or aromatic.
  • examples of such acids are: oxalic acid, malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, acid 2, 2-dimethylglutaric acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, itaconic acid, phthalic acid, dodecanedioic acid, 1,3-acid cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, isophthalic acid, terephthalic acid, 2,5-norbornane dicarboxylic acid, diglycolic acid, thiodipropionic acid, 2,5-naphthalenedicarboxylic acid 2,6-naphthalenedicarboxylic acid.
  • These dicarboxylic acid monomers may be used alone or in combination with at least two di
  • the diol may be chosen from aliphatic, alicyclic and aromatic diols.
  • a diol chosen from: ethylene glycol, diethylene glycol, Methylene glycol, 1,3-propanediol, cyclohexane dimethanol, 4-butanediol.
  • the polyester amides can be obtained in a similar manner to the polyesters by polycondensation of diacids with diamines or amino alcohols.
  • Diamines that may be used include ethylenediamine, hexamethylenediamine, meta- or para-phenylenediamine.
  • aminoalcohol monoethanolamine can be used.
  • the polyester may further comprise at least one monomer bearing at least one -SO3M group, with M representing a hydrogen atom, an NH4 + ammonium ion or a metal ion, for example an Na +, Li +, K +, Mg2 + or Ca2 + ion. , Cu2 +, Fe2 +, Fe3 +.
  • M representing a hydrogen atom, an NH4 + ammonium ion or a metal ion, for example an Na +, Li +, K +, Mg2 + or Ca2 + ion. , Cu2 +, Fe2 +, Fe3 +.
  • a bifunctional aromatic monomer comprising such a group -SO3M.
  • the aromatic nucleus of the bifunctional aromatic monomer additionally carrying a group -SO3M as described above may be chosen for example from benzene, naphthalene, anthracene, diphenyl, oxydiphenyl, sulfonyldiphenyl and methylenediphenyl nuclei.
  • An example of a bifunctional aromatic monomer also bearing an -SO 3 M group is sulfoisophthalic acid, sulphoterephthalic acid, sulphophthalic acid and 4-sulphonaphthalene-2,7-dicarboxylic acid.
  • the film-forming polymer may be a polymer solubilized in a liquid fatty phase comprising organic oils or solvents (it is said that the film-forming polymer is a liposoluble polymer).
  • the liquid fatty phase comprises a volatile oil, optionally mixed with a non-volatile oil.
  • a fat-soluble polymer mention may be made of vinyl ester copolymers (the vinyl group being directly connected to the oxygen atom of the ester group and the vinyl ester having a saturated hydrocarbon radical, linear or branched, from 1 to 19 carbon atoms, linked to the carbonyl ester group) and from at least one other monomer which may be a vinyl ester (different from the vinyl ester already present), an ⁇ -olefin (having from 8 to 28 carbon atoms), an alkyl vinyl ether (the alkyl group of which contains 2 to 18 carbon atoms), or an allyl or methallyl ester (having a linear or branched, saturated hydrocarbon radical of 1 to 19 carbon atoms, bonded to the carbonyl ester group).
  • vinyl ester copolymers the vinyl group being directly connected to the oxygen atom of the ester group and the vinyl ester having a saturated hydrocarbon radical, linear or branched, from 1 to 19 carbon atoms, linked to the carbonyl ester group
  • copolymers may be crosslinked using crosslinking agents which may be of the vinyl type, or of the allyl or methallyl type, such as tetraallyloxyethane, divinylbenzene, divinyl octanedioate, divinyl dodecanedioate, and octadecanedioate. divinyl.
  • crosslinking agents which may be of the vinyl type, or of the allyl or methallyl type, such as tetraallyloxyethane, divinylbenzene, divinyl octanedioate, divinyl dodecanedioate, and octadecanedioate. divinyl.
  • copolymers examples include copolymers: vinyl acetate / allyl stearate, vinyl acetate / vinyl laurate, vinyl acetate / vinyl stearate, vinyl acetate / octadecene, vinyl acetate / octadecylvinylether vinyl propionate / allyl laurate, vinyl propionate / vinyl laurate, vinyl stearate / octadecene-1, vinyl acetate / dodecene-1, vinyl stearate / ethyl vinyl ether, vinyl propionate / cetyl vinyl ether, stearate of vinyl vinyl / allyl acetate, 2,2-dimethyl-2 vinyl octanoate / vinyl laurate, 2,2-dimethyl-2-allyl pentanoate / vinyl laurate, vinyl dimethyl propionate / vinyl stearate, dimethyl allyl propionate / stearate,
  • liposoluble film-forming polymers examples include vinyl ester copolymers and at least one other monomer which may be a vinyl ester, in particular vinyl neodecanoate, vinyl benzoate and vinyl t-butyl benzoate, an ⁇ olefin, an alkyl vinyl ether, or an allylic or methallyl ester.
  • vinyl ester copolymers and at least one other monomer which may be a vinyl ester, in particular vinyl neodecanoate, vinyl benzoate and vinyl t-butyl benzoate, an ⁇ olefin, an alkyl vinyl ether, or an allylic or methallyl ester.
  • Liposoluble film-forming polymers that may also be mentioned include liposoluble copolymers, and in particular those resulting from the copolymerization of vinyl esters having from 9 to 22 carbon atoms or of alkyl acrylates or methacrylates, the alkyl radicals having from 10 to 20 carbon atoms.
  • Such liposoluble copolymers may be chosen from copolymers of vinyl polycrystearate, vinyl polystearate crosslinked with divinylbenzene, diallyl ether or diallyl phthalate, copolymers of stearyl poly (meth) acrylate, polyvinylpolate , of lauryl poly (meth) acrylate, these poly (meth) acrylates which can be crosslinked with ethylene glycol dimethacrylate or tetraethylene glycol.
  • the liposolizable copolymers defined above are known and in particular described in application FR-A-2232303; they can have a weight average molecular weight ranging from 2,000 to 500,000 and preferably from 4,000 to 200,000.
  • liposoluble film-forming polymers that can be used in the invention, mention may also be made of polyalkylenes and especially copolymers of C2-C20 alkenes, such as polybutene, alkylcelluloses with a linear or branched, saturated or non-saturated C1 to C8 alkyl radical, for example ethylcellulose and propylcellulose, copolymers of vinylpyrrolidone (PV) and especially copolymers of vinylpyrrolidone and alkene in
  • VP / eicosene VP / hexadecene
  • VP / triacontene VP / styrene
  • VP / acrylic acid / lauryl methacrylate VP / acrylic acid / lauryl methacrylate.
  • silicone resins generally soluble or swellable in silicone oils, which are crosslinked polyorganosiloxane polymers.
  • MDTQ The nomenclature of silicone resins is known as "MDTQ", the resin being described in function. of the different monomeric siloxane units that it comprises, each of the letters "MDTQ” characterizing a type of unit.
  • polymethylsilsesquioxane resins examples include those sold by Wacker under the reference Resin MK such as Belsil PMS MK: by SHIN-ETSU under the references KR-220L.
  • siloxysilicate resins mention may be made of trimethylsiloxysilicate (TMS) resins such as those sold under the reference SR1000 by the company General Electric or under the reference TMS 803 by the company Wacker. Mention may also be made of timethylsiloxysilicate resins sold in a solvent such as cyclomethicone, sold under the name "KF-7312J” by the company Shin-Etsu, "DC 749", “DC 593” by the company Dow Corning.
  • TMS trimethylsiloxysilicate
  • silicone resin copolymers such as those mentioned above with polydimethylsiloxanes, such as the pressure-sensitive adhesive copolymers marketed by Dow Corning under the reference BIO-PSA and described in document US 5 162 410 or the silicone copolymers resulting from the reaction of a silicone resin, such as those described above, and a diorganosiloxane as described in document WO 2004/073626.
  • the film-forming polymer is a film-forming ethylenic linear polymer, which preferably comprises at least a first sequence and at least a second sequence having different glass transition temperatures (Tg), said first and second sequences being interconnected by an intermediate sequence comprising at least one constituent monomer of the first block and at least one constituent monomer of the second block.
  • Tg glass transition temperatures
  • the first and second sequences and the block polymer are incompatible with each other.
  • Such polymers are described for example in EP 1411069 or WO04 / 028488.
  • the film-forming polymer may be chosen from polymers and / or block copolymers or. static materials including polyurethanes, polyacrylics, silicones, fluoropolymers, butyl gums, copolymers of ethylene, natural gums and polyvinyl alcohols and mixtures thereof. Monomers of block or static copolymers comprising at least one combination of monomers whose polymer results in a glass transition temperature below room temperature
  • (25 ° C) can be chosen from among others butadiene, ethylene, propylene, acrylic, methacrylic, isoprene, isobutene, a silicone and mixtures thereof.
  • the film-forming polymer may also be present in the composition in the form of particles in dispersion in an aqueous phase or in a non-aqueous solvent phase, generally known under the name of latex or pseudolatex.
  • the techniques for preparing these dispersions are well known to those skilled in the art.
  • the composition according to the invention may comprise a plasticizer promoting the formation of a film with the film-forming polymer.
  • a plasticizer can be chosen from all the compounds known to those skilled in the art as being capable of fulfilling the desired function.
  • the medium containing the monodisperse particles contains a film-forming polymer
  • this is for example an aqueous dispersion of acrylic, vinylic, fluorinated or silicone polymer, or mixtures thereof.
  • the mass content of the film-forming polymer (s) in the composition containing the monodisperse particles ranges, for example, from 0.1 to 10%.
  • the polymerization and / or crosslinking may be carried out by thermal initiation or by ultraviolet radiation.
  • the polymerization can also be carried out by adding an initiator and optionally a crosslinking agent.
  • This method allows the production of high molecular weight polymers or crosslinked polymers. This can make it possible to vary the rheology of the system formed.
  • the medium may also comprise a polymer allowing the formation of a gel, for example before or after the application of the composition to the support to be made up.
  • the formation of a gel may, for example, improve the cohesion of the network of monodisperse particles and / or render the latter sensitive to an external stimulus and / or to the concentration of a compound in the medium, for example the concentration of water.
  • the polymer for forming a gel may be chosen from cellulose derivatives, alginates and their derivatives, in particular derivatives such as propylene glycol alginate, or their salts such as sodium alginate, calcium alginate, derivatives of polyacrylic or polymethacrylic acid, polyacrylamide derivatives, polyvinylpyrrolidone derivatives, ether or polyvinyl alcohol derivatives, and mixtures thereof, among others.
  • the polymer may in particular be chosen from chemically modified cellulose derivatives, for example chosen from carboxymethylcellulose, sodium carboxymethylcellulose, carboxymethylhydroxyethylcellulose, carboxyethylcellulose, hydroxyethylcellulose, hydroxyethylethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose and methylcellulose. , sodium methylcellulose, microcrystalline cellulose, sodium cellulose sulfate and mixtures thereof.
  • the polymer that makes possible the formation of a gel may also be chosen from natural polymeric derivatives, for example gelatin and glucomannan and galactomannan polysaccharides extracted from seeds, plant fibers, fruits, seaweeds, starch, plant resins, or of microbial origin.
  • natural polymeric derivatives for example gelatin and glucomannan and galactomannan polysaccharides extracted from seeds, plant fibers, fruits, seaweeds, starch, plant resins, or of microbial origin.
  • the mass quantity of polymer intended for the formation of a gel in the composition may be between 0.5 and 40%, better still between 1 and 20%.
  • the polymer intended for the formation of a gel can polymerize after the application of the composition to the support to be made up. Alternatively, the gel is formed before applying the composition to the keratin materials, and then applied thereto.
  • Hydrogels can be obtained from acrylamide monomers, acrylic monomers, vinylpyrrolidone for example.
  • An example of a hydrogel obtained by this method based on N-isopropylacrylamide polymerized under a UV lamp in a colloidal polystyrene crystal is for example described in the patent WO 98/41859.
  • the article by FOULGER et al, Advanced Materials, 13, 1898-1901 (2001) describes a hydrogel based on polyethylene glycol methacrylate and dimethacrylate.
  • the realization of the gel can also take place before the manufacture of the composition. It is possible, for example, to produce an oily gel based on polydimethylsiloxane elastomer from a network of polystyrene spheres as described in the article by H. Fudouzi et al, Langmuir, 19, 9653-9660 (2003). Fatty phase
  • composition containing the monodisperse particles may be oil-free
  • the composition according to the invention may nevertheless comprise, in certain embodiments, a fatty phase.
  • the monodisperse particles may or may not be present in this fatty phase.
  • the fatty phase can in particular be volatile.
  • the introduction of one or more oils can be done so as not to lose the staining effect or spectral reflectance sought.
  • composition may comprise an oil such as, for example, the esters and
  • a composition according to the invention may comprise at least one volatile oil.
  • volatile oil means an oil (or non-aqueous medium) capable of evaporating on contact with the skin in less than one hour, at ambient temperature and at atmospheric pressure.
  • the volatile oil is a volatile cosmetic oil which is liquid at ambient temperature, in particular having a non-zero vapor pressure, at ambient temperature and atmospheric pressure, in particular having a vapor pressure ranging from 0.01 Pa to
  • the volatile hydrocarbon oils may be chosen from hydrocarbon-based oils of animal or vegetable origin having from 8 to 16 carbon atoms, and especially C 8 -C 16 branched alkanes (also known as isoparaffins), such as isododecane (also known as isododecane). 2,2,4,4,6-pentamethyl), isodecane isohexadecane, and for example the oils sold under the trade names Isopar ® or Permethyls® ®.
  • hydrocarbon-based oils of animal or vegetable origin having from 8 to 16 carbon atoms, and especially C 8 -C 16 branched alkanes (also known as isoparaffins), such as isododecane (also known as isododecane). 2,2,4,4,6-pentamethyl), isodecane isohexadecane, and for example the oils sold under the trade names Isopar ® or Permethyls® ®.
  • volatile oils it is also possible to use volatile silicones, for example volatile linear or cyclic silicone oils, especially those having volatile linear or cyclic silicone oils, especially those having volatile linear or cyclic silicone oils, especially those having volatile linear or cyclic silicone oils, especially those having volatile linear or cyclic silicone oils, especially those having volatile linear or cyclic silicone oils, especially those having volatile linear or cyclic silicone oils, especially those having volatile linear or cyclic silicone oils, especially those having volatile linear or cyclic silicone oils, especially those having
  • volatile silicone oil that can be used in the invention, mention may be made in particular of dimethicones of viscosity 5 and 6 cSt, octamethyl cyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, heptamethylhexyltrisiloxane, heptamethyloctyltrisiloxane and hexamethyl disiloxane; octamethyl trisiloxane, decamethyl tetrasiloxane, dodecamethyl pentasiloxane, and mixtures thereof.
  • Fluorinated volatile oils such as nonafluoromethoxybutane or perfluoromethylcyclopentane and mixtures thereof can also be used.
  • Non-volatile oils means an oil having a vapor pressure of less than 0.13 Pa and in particular oils of high molar mass.
  • non-volatile oils may in particular be chosen from fluorinated hydrocarbon oils which may be fluorinated and / or non-volatile silicone oils.
  • fluorinated hydrocarbon oils which may be fluorinated and / or non-volatile silicone oils.
  • non-volatile hydrocarbon oil which may be suitable for the implementation of the invention, mention may notably be made of:
  • hydrocarbon oils of vegetable origin such as phytostearyl esters, such as phytostearyl oleate, physostearyl isostearate and lauroyl / octyldodecylglutanate / phytostearyl glutanate, for example sold under the name ELDEW PS203 by AJINOMOTO, triglycerides consisting of esters of fatty acids and of glycerol, the fatty acids of which can have various chain lengths of C 4 to C 24 , the latter being linear or branched, saturated or unsaturated; these oils are in particular heptanoic or octanoic triglycerides, wheat germ, sunflower, grape seed, sesame, corn, apricot, castor oil, shea, avocado, olive, soya, sweet almond, palm, rapeseed, cotton, hazelnut, macadamia, jojoba, alfalfa, poppy, pumpkin, squash, blackcurrant, evening prim
  • Synthetic ethers having from 10 to 40 carbon atoms
  • Linear or branched hydrocarbons of mineral or synthetic origin such as petroleum jelly, polydecenes, hydrogenated polyisobutene such as sesam, squalane and their mixtures, and in particular hydrogenated polyisobutene,
  • Synthetic esters such as oils of formula R 1 COOR 2 in which R 1 represents the residue of a linear or branched fatty acid containing from 1 to 40 carbon atoms and R 2 represents a hydrocarbon chain, in particular branched, containing from 1 to 40 carbon atoms with the proviso that R 1 + R 2 is> 10.
  • esters may in particular be chosen from esters, in particular of fatty acids, for example:
  • Cetostearyl octanoate esters of isopropyl alcohol, such as isopropyl myristate, isopropyl palmitate, ethyl palmitate, 2-ethylhexyl palmitate, stearate or isostearate Isostearyl isostearate, octyl stearate, hydroxylated esters such as isostearyl lactact, octyl hydroxystearate, diisopropyl adipate, heptanoates, and especially heptanoate.
  • isopropyl alcohol such as isopropyl myristate, isopropyl palmitate, ethyl palmitate, 2-ethylhexyl palmitate, stearate or isostearate
  • Isostearyl isostearate octyl stearate
  • hydroxylated esters such as isostearyl lactact, octyl
  • Polyol esters and pentaerythritol esters such as dipentaerythritol tetrahydroxystearate / tetraisostearate,
  • esters of diol dimers and diacid dimers such as Lusplan DD-DA5® and Lusplan DD-D A7®, marketed by the company Nippon Fine Chemical and described in the application FR 03 02809, Branched-chain and / or unsaturated carbon-containing liquid alcohols having 12 to 26 carbon atoms, such as 2-octyldodecanol, isostearyl alcohol, oleic alcohol, 2-hexyldecanol or 2-butyloctanol, and 2-undecylpentadecanol; • higher fatty acids such as oleic acid, linoleic acid, linolenic acid and mixtures thereof, and
  • Di-alkyl carbonates the 2 alkyl chains being identical or different, such as dicaprylyl carbonate sold under the name Cetiol CC®, by Cognis, non-volatile silicone oils, for example polydimethylsiloxanes (PDMS) non-volatile, polydimethylsiloxanes comprising pendant alkyl or alkoxy groups and / or end groups, groups each having from 2 to 24 carbon atoms, phenyl silicones such as phenyl trimethicones, phenyl dimethicones, phenyl trimethylsiloxy diphenylsiloxanes, diphenyl dimethicones, diphenyl methyldiphenyl trisiloxanes, and 2-phenylethyl trimethylsiloxysilicates, dimethicones or phenyltrimethicone with a viscosity less than or equal to 100 Cst, and mixtures thereof,
  • PDMS polydimethylsiloxa
  • composition containing the monodisperse particles may be free of oil, in particular containing no non-volatile oil. Kits
  • the invention also relates to kits comprising a composition according to the invention.
  • kits may comprise at least one composition intended to form a base layer, also called “base coat” and / or a layer of recouyrement, also called “top coat”.
  • the kit can thus include:
  • a first composition comprising:
  • monodisperse particles a medium allowing the formation on a support on which the composition is applied of an ordered network of monodisperse particles; at least one effect pigment or other particles larger than the monodisperse particles,
  • a second composition comprising a film-forming polymer.
  • Such a composition may allow the formation of a base layer or covering.
  • the kit may also comprise, according to a variant:
  • a first composition comprising:
  • a second composition comprising at least one coloring agent, for example a black pigment or dye, or an effect pigment (reflective particles, nacres, goniochromatic coloring agent, diffracting pigments).
  • a coloring agent for example a black pigment or dye, or an effect pigment (reflective particles, nacres, goniochromatic coloring agent, diffracting pigments).
  • Such a second composition can improve the optical properties of the first composition.
  • the base layer and the cover layer may be simultaneously present, the kit may then comprise:
  • a first cosmetic composition comprising;
  • larger particles such as effect pigments or a filler, for example, a physiologically acceptable medium for forming on a support on which the composition is applied an ordered network of monodisperse particles,
  • a second cosmetic composition to be applied to the support before the application of the first composition, so as to improve its adhesion to the support and smooth the keratinous surfaces
  • a third cosmetic composition to be applied to the first composition so as to change the color and possibly improve the behavior of the second composition.
  • Base layer is compatible with its application on keratin materials, for example skin, lips, nails, eyelashes or hair, depending on the nature of the makeup sought, including one of those listed above. .
  • the base layer may comprise a polymer chosen in particular from film-forming polymers.
  • the base layer can, according to different aspects of the invention, perform one or more of the following functions:
  • the base layer can smooth the support before the application of the composition comprising the monodisperse particles in order to facilitate the formation of the first layers of the network and to obtain a network with the widest possible monocrystalline zones,
  • the base layer can color the support in order to bring out or modify the color produced by the network.
  • the base layer may comprise at least one coloring agent making it possible to reduce the clarity of the support.
  • the base layer may for example comprise a pigment or a black dye, or a different color, to create a colored background for adding an additional color to a given color by the network of monodisperse particles.
  • the dyes or pigments that may be present in the base layer there may be mentioned in particular black iron oxide, carbon black, black titanium dioxide,
  • the base layer can improve the adhesion of the composition containing the monodisperse particles to the coated support.
  • the base layer may comprise at least one polymer having adhesive or adhesive properties, that is to say capable of becoming adhesive by interaction with another compound.
  • the polymer may in particular have adhesive or adhesive properties in the meaning given in patents FR 2834884, FR 2811546 and FR 2811547.
  • the base layer may also exert an action on the surface tension of the keratin materials in order, for example, to allow a good wettability by the layer of composition containing monodisperse particles and to promote the stacking of monodisperse particles.
  • the base layer may comprise the same polymer providing at least two of the aforementioned functions, for example those of smoothing and increasing adhesion, or possibly a coloring function.
  • the base layer can be formulated according to the nature of the monodisperse particles.
  • the monodisperse particles may be of polystyrene and the base layer comprise a non-aqueous dispersion NAD in isododecane or polymers DAITOSOL (Daito Kasei) or ULTRASOL (Ganz Chemical) .
  • the monodisperse particles being silica
  • the base layer may comprise Eastman AQ polymer (20%) or PVA (10%).
  • the base layer may comprise a volatile phase.
  • the polymer is preferably capable of forming a film after application and drying of the composition. The formation of the film can be done with the aid of a coalescing agent.
  • the polymer may be in dispersion or in solution in an aqueous or anhydrous phase. This polymer is preferably dispersed in water or in an oil. Even more preferably, the polymer contains at least one function capable of being ionized in aqueous solution, such as a carboxylic acid. The polymer will preferably be insoluble in contact with an aqueous phase after application and drying.
  • polymers in aqueous dispersion examples include: Ultrasol 2075 from Ganz Chemical, Daitosol 5000AD from Daito Kasei, Avalure UR 450 from Noveon, DYNAMX from National Starch, Syntran 5760 from Merpolymer, Acusol OP 301 from Rohm & Haas, Neocryl A 1090 of Avecia.
  • an oily dispersion polymer mention may be made of: NAD and the polymers disclosed in the application EP-AI 411 069 of the company L'Oréal, the acrylic-silicone polymer dispersion ACRIT 8HV-1023 from the company Tasei Chemical Industries
  • the volatile phase may be an aqueous phase or an anhydrous phase.
  • an aqueous phase it is preferably water, alcohol and glycol.
  • anhydrous phase it preferably consists of at least one volatile oil as defined above.
  • the base layer can be colored or unstained.
  • a colored base layer it may contain dyes or pigments.
  • the pigments should preferably be dispersed as finely as possible in order to avoid adding roughness to the formed film.
  • the basecoat may contain other solid components (fillers, effect pigments) or other nonvolatile liquid components. These will preferably be in small quantities.
  • the covering layer may in particular have the function of changing a visible characteristic such as color or brightness and / or the function of improving the resistance of the network of monodisperse particles to the support, in particular to increase the resistance to friction of the network and avoid its crumbling.
  • the covering layer may comprise one or more polymers that may or may not penetrate into the particle network, the penetration of the polymer causing a change in the refractive index of the medium around the particles and therefore a change in the color, as mentioned above.
  • the covering layer may have a volatile phase, which may make it possible to limit the color change over time, which may cease during the evaporation of the volatile phase.
  • the second composition may especially comprise a volatile oil, as defined above.
  • the cover layer may include a non-volatile solvent, which may increase the durability of the color change. This solvent will penetrate and remain in the medium between the particles and modify the refractive index around the particles.
  • the second composition intended to form the covering layer may thus comprise a non-volatile oil, as defined above.
  • the cover layer may have a high transparency to avoid affecting color and / or color intensity from the monodisperse particle array.
  • the covering layer can be colored further, for example to exert an influence on the color and / or the brightness produced by the network of monodisperse particles.
  • the cover layer can further slow down moisture uptake or drying of the composition layer containing the ordered network and reduce the variability of the result over time.
  • the covering layer can, on the contrary, increase the sensitivity to the environment, in order to create, for example, a dependence of the color on the ambient temperature or humidity.
  • the covering layer preferably comprises a film-forming polymer.
  • the formulation of the covering layer can be adapted to the nature of the monodisperse particles.
  • the coating layer may comprise a non-aqueous NAD dispersion in isododecane.
  • the coating layer may comprise, for example, an acrylic copolymer or PVA.
  • the covering layer comprises, for example, a non-aqueous dispersion NAD, PVA (10%) or Eastman AQ (20%), DAITOSOL or ULTRASOL polymers.
  • the cover layer may contain monodisperse particles having an average size different from those of the monodisperse particles covered by the cover layer. This can change the color of the underlying composition.
  • the covering layer may in this case be covered, optionally, by a layer intended to improve the holding.
  • the cosmetic composition containing the monodisperse particles, the base layer and the covering layer may comprise at least one additive chosen from the usual adjuvants in the cosmetics field, such as fillers, hydrophilic or lipophilic gelling agents, and active, water-soluble or liposoluble agents. preservatives, moisturizers such as polyols and in particular glycerol, sequestering agents, antioxidants, solvents, perfumes, physical and chemical sunscreens, in particular with UVA and / or UVB, odor absorbers, pH adjusters (acids or bases) and mixtures thereof.
  • the at least one additive may be chosen from those mentioned in
  • composition containing the monodisperse particles may be in different galenical forms used in the cosmetic field, used for topical application: direct, inverse or multiple emulsions, gel, creams, solutions, suspensions, lotions.
  • the composition may be in the form of an aqueous solution or an oily solution, especially gelled, of a liquid or semi-liquid consistency of the milk type, obtained by dispersion of a fatty phase in an aqueous phase (O / W) or vice versa.
  • E / H a triple emulsion
  • EfHJE or H / E / H a triple emulsion
  • suspension or emulsion of soft consistency emulsion of soft consistency.
  • the composition according to the invention may constitute a skincare, make-up and / or sun protection composition.
  • the composition may be in the form of a facial makeup product, especially the skin and / or lips, eyes or nails. Makeup processes
  • the subject of the invention is also a method for making up keratin materials, comprising the following steps:
  • a base coat to a makeup support
  • a cosmetic composition comprising monodisperse particles, at least one effect pigment or other particles larger than the monodisperse particles and a medium allowing the formation to be formed on the base layer; an ordered network of monodisperse particles.
  • Such a process makes it possible to improve the quality of application of the composition comprising the monodisperse particles, especially when they are in an aqueous medium, and also makes it possible to obtain good "crystallization" after application to the skin or the hair for example.
  • the base layer makes it possible, as mentioned above, to control and standardize the surface properties of the keratin materials, especially the surface tension. It also smoothes and evenens surface roughness. An electrostatic repulsion effect can also occur if the base layer is likely to create an electrostatic charge in contact with water.
  • the base layer may optionally have the effect of fixing the layer of monodisperse particles, making it more stable with respect to external aggressions.
  • the base layer preferably contains a polymer and a volatile phase.
  • the composition containing the monodisperse particles may comprise an aqueous medium.
  • the base layer may comprise, as mentioned above, a polymer having adhesive properties and / or a coloring agent, in particular of black color.
  • composition containing the monodisperse particles may be carried out after drying of the base layer, for example for a duration greater than or equal to 30 s.
  • the subject of the invention is, according to another of its aspects, a method comprising the following steps: applying to a makeup carrier, optionally coated with a base layer, a composition comprising monodisperse particles at least one effect pigment or other particles which are larger than the monodisperse particles and a medium allowing the formation of a network ordered monodisperse particles, "- applying on the deposit of the composition containing the monodisperse particles, a top layer for improving the holding of the composition layer containing the monodisperse particles.
  • the covering layer may comprise a film-forming polymer as mentioned above.
  • the application of the covering layer can be carried out after drying of the composition layer containing the monodisperse particles, for example for a duration greater than or equal to 30 s.
  • the subject of the invention is also a method in which a first network of monodisperse particles is formed, then a second network of monodisperse particles having an average size different from that of the monodisperse particles of the first network is formed above this first network.
  • the subject of the invention is also a method comprising the following steps: applying a first composition comprising monodisperse particles, at least one effect pigment or other particles larger than the monodisperse particles and a medium allowing the formation of a network of these particles, applying to the first composition a second composition for changing the color of the first composition, in particular by modifying the refractive index of the medium around the particle network and / or by modifying the distance between the particles of the network.
  • the applicant has in particular found that it is possible to modify the coloration obtained by a first cosmetic composition by a second non-colored composition, subsequently applied.
  • the crystal lattice formed by the first composition may be composed of a continuous layer or of discontinuous islands.
  • the light is diffracted by this network crystalline and the diffracted wavelength depends on the distance between the particles and the refractive index.
  • the second composition which forms the cover layer, may contain at least one liquid medium capable of penetrating into the first composition and modifying the distance between the particles and / or the refractive index.
  • the liquid medium may be volatile or not. In the case where it is completely volatile, the color change is temporary and the color gradually returns to the initial state. In the case where a large proportion of the liquid medium is non-volatile, a lasting change in the color can be obtained.
  • the crystal lattice may be compact or not, continuous or not. It can be formed prior to application or formed during application.
  • the second composition may contain at least one liquid phase, which may come to swell the network or change the refractive index of the medium.
  • the liquid phase will have a refractive index different from the initial medium surrounding the monodisperse particles.
  • the second composition may also contain a polymer to fix the first composition.
  • monomers or prepolymers which are also able to polymerize after application to the skin, either by UV action, heat or the presence of water, for example.
  • examples that may be mentioned include cyanoacrylate monomers or low mass silicone polymers carrying reactive functions.
  • a colored or non-colored base layer may optionally be applied before these two compositions to the keratin materials.
  • Another subject of the invention is a process in which an array of monodisperse particles is formed on the keratin materials in the presence of at least one effect pigment and a composition is applied to this network. allowing to modify the refractive index around the particles of the network, in particular those of the surface layer of the network, which can make it possible to change the color.
  • composition containing the monodisperse particles, as well as the compositions intended for forming the base and recovery layers may be applied using an applicator, preferably flocked, for example a mouthpiece or a flocked foam, or a brush, especially with fine and flexible bristles.
  • an applicator preferably flocked, for example a mouthpiece or a flocked foam, or a brush, especially with fine and flexible bristles.
  • the application may also be carried out differently, for example by means of a foam, a felt, a spatula, a frit, a brush, a comb, a woven or not woven.
  • the application may also be carried out with the finger or by directly depositing the composition on the support to be treated, for example by spraying or spraying using for example a piezoelectric device or by transfer of a layer of composition deposited on an intermediate support.
  • the composition containing the monodisperse particles may be applied in a thickness of, for example, between 1 and 10 ⁇ m, better still between 2 and 5 ⁇ m.
  • composition containing the monodisperse particles is carried out for example with a specific gravity of between 1 and 5 mg / cm 2 .
  • the network of monodisperse particles that is formed comprises for example at least six layers of particles, better between six and 20 layers.
  • the application of the composition to the keratin materials can be done in such a way as to allow the network of monodisperse particles to form after the deposition.
  • the medium of the composition can be formulated in such a way that the evaporation of the solvent (s) it contains is sufficiently slow to allow the particles to time to order and also to limit the risk of disorderly agglomeration of the particles. before application.
  • the covering layer is for example applied to a thickness ranging from 0.5 to 10 ⁇ m.
  • the base layer is for example applied to a thickness ranging from 0.5 to 10 ⁇ m.
  • the application of the covering layer can be done by spraying, which reduces the risk of damage to the underlying lattice.
  • the composition may be packaged in any receptacle or on any support provided for this purpose.
  • the composition may be in the form of a kit comprising two compositions packaged in two separate receptacles.
  • the composition may be in the form of a kit comprising a first receptacle containing the composition comprising the monodisperse particles and a second receptacle containing at least one of the compositions intended to form the base layer and the covering layer.
  • the different compositions are applied on a black support.
  • the composition of Example 1 has a violet color.
  • the composition of Example 2 has a green-yellow color with highlight points.
  • the composition of Example 3 is green in color with blue highlight points.
  • the composition of Example 4 is blue in color with night blue highlights.
  • the composition of Example 5 is blue in color with green highlight points in the form of rods.
  • composition of the base layer :
  • the base layer is first deposited, then the compositions are applied after drying of the base layer.
  • a blue color appears for the compositions examples 6 and 7 while the deposit remains white in the case of Comparative Example 8.
  • the coating is more matte in the case of the composition of Example 6 than for the composition of Example 7.
  • the photograph corresponding to FIG. 1 represents the network of the composition of Example 6 after deposition and drying, using the HITACHI S-4500 electron microscope.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cosmetics (AREA)
EP06778641A 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues Withdrawn EP1898870A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69258505P 2005-06-22 2005-06-22
US75854506P 2006-01-13 2006-01-13
PCT/FR2006/001438 WO2006136723A2 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues

Publications (1)

Publication Number Publication Date
EP1898870A2 true EP1898870A2 (fr) 2008-03-19

Family

ID=37110220

Family Applications (4)

Application Number Title Priority Date Filing Date
EP06778640A Withdrawn EP1895975A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques
EP06778643A Withdrawn EP1895976A2 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues
EP06778641A Withdrawn EP1898870A2 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues
EP06778638A Withdrawn EP1895974A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP06778640A Withdrawn EP1895975A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques
EP06778643A Withdrawn EP1895976A2 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratinioues

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06778638A Withdrawn EP1895974A1 (fr) 2005-06-22 2006-06-22 Compositions de maquillage des matieres keratiniques

Country Status (4)

Country Link
US (4) US20090041695A1 (ja)
EP (4) EP1895975A1 (ja)
JP (4) JP2008546748A (ja)
WO (7) WO2006136722A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200526262A (en) * 2004-01-14 2005-08-16 Shiseido Co Ltd Skin preparations for external use for wrinkle diminution
FR2902647B1 (fr) * 2006-06-22 2008-10-17 Oreal L' Compositions de maquillage des matieres keratiniques
FR2907007A1 (fr) * 2006-10-16 2008-04-18 Oreal Procede de maquillage des matieres keratiniques non fibreuses et composition de maquillage
DE102007010861B4 (de) 2007-03-01 2008-11-20 Coty Prestige Lancaster Group Gmbh Kosmetisches Lichtschutzmittel
EP2158259A1 (en) * 2007-05-18 2010-03-03 Unilever PLC Monodisperse particles
FR2923390B1 (fr) * 2007-11-13 2010-12-31 Oreal Fard a paupieres comprenant une dispersion aqueuse de polymere filmogene.
FR2925849B1 (fr) * 2007-12-27 2010-06-04 Oreal Procede cosmetique procurant un effet allongeant des cils et kit correspondant a base d'un polymere filmogene
WO2011045746A2 (en) 2009-10-12 2011-04-21 L ' Oreal A composition comprising a dispersion of photonic particles; methods of treating various materials
FR2956315A1 (fr) * 2010-02-17 2011-08-19 Oreal Procede de traitement cosmetique
WO2011045741A2 (en) 2009-10-12 2011-04-21 L'oreal Photonic particles; compositions containing them; methods of photoprotecting various materials
FR2951076B1 (fr) * 2009-10-12 2012-03-30 Oreal Procede de traitement cosmetique.
CN102573761A (zh) * 2009-10-12 2012-07-11 欧莱雅 用光子颗粒抗太阳uv辐射的光照保护材料的方法及组合物
US9381383B2 (en) 2009-10-22 2016-07-05 L'oreal Photoprotective compositions and films, and a preparation method
WO2011056332A1 (en) * 2009-11-09 2011-05-12 Avon Products, Inc. A low flashpoint cosmetic composition comprising solvents of varying evaporation rates
RU2012132445A (ru) 2009-12-29 2014-02-10 У.Р. Грейс Энд Ко.-Конн. Композиции для образования пленок, имеющих желательную степень матирования, и способы их получения и применения
JP6112381B2 (ja) * 2012-03-14 2017-04-12 株式会社寿吉 耳装飾用台座シート剤
US9320687B2 (en) 2013-03-13 2016-04-26 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168393B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168394B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
US9168209B2 (en) 2013-03-13 2015-10-27 Johnson & Johnson Consumer Inc. Pigmented skin-care compositions
EP2979686A1 (en) * 2013-03-29 2016-02-03 FUJIFILM Corporation Artificial nail composition, artificial nail, method for forming artificial nail, method for removing artificial nail, and nail art kit
EP2979687A4 (en) * 2013-03-29 2016-08-17 Fujifilm Corp ARTIFICIAL NAIL COMPOSITION, ARTIFICIAL NAIL, METHOD OF FORMING ARTIFICIAL NAIL, AND NAIL DECORATION KIT
WO2016031708A1 (ja) * 2014-08-28 2016-03-03 富士フイルム株式会社 人工爪組成物、人工爪、人工爪の除去方法、及び、ネイルアートキット
US10231919B2 (en) * 2016-10-28 2019-03-19 L'oreal Excellent water resistance with an association of two film formers
US10039705B1 (en) 2017-04-28 2018-08-07 National Tsing Hua University Sun protection material and sun protection composition containing the same
US11253461B2 (en) * 2017-10-30 2022-02-22 L'oreal Matte nail compositions containing polylactic acid microparticles
FR3073406B1 (fr) 2017-11-15 2019-10-11 L'oreal Composition comprenant des particules photoniques, un filtre uv et un polymere acrylique
FR3104988B1 (fr) 2019-12-20 2022-01-07 Oreal Procédé de coloration des fibres kératiniques mettant en œuvre une composition comprenant des particules monodisperses à base d’au moins un polymère cationique et une étape de séchage à l’aide d’un dispositif de séchage à air pulsé
FR3104950B1 (fr) 2019-12-20 2022-01-07 Oreal Procédé de coloration des fibres kératiniques mettant en œuvre une composition comprenant des particules monodisperses à base d’au moins un polymère non-ionique et une étape de séchage à l’aide d’un dispositif de séchage à air pulsé

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072615B2 (ja) * 1986-02-25 1995-01-18 住友セメント株式会社 化粧料
GB8911859D0 (en) * 1989-05-23 1989-07-12 Ilford Ltd Polymer particles
GB2237199A (en) * 1989-10-27 1991-05-01 Unilever Plc Oral composition comprising monodisperse colloidal silica suspension
US5162410A (en) * 1990-04-13 1992-11-10 Dow Corning Corporation Hot-melt silicon pressure sensitive adhesives with phenyl-containing siloxane fluid additive and related methods and articles
JPH0710765B2 (ja) * 1990-12-27 1995-02-08 花王株式会社 粉体化粧料
JPH072639A (ja) * 1992-11-27 1995-01-06 I S I:Kk サンスクリーン化粧料
US5825643A (en) * 1993-08-25 1998-10-20 Square D Company Programming device for a circuit breaker
WO1997000662A1 (fr) * 1995-06-21 1997-01-09 L'oreal Composition cosmetique comprenant une dispersion de particules de polymere
US5658574A (en) * 1995-10-13 1997-08-19 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Cleansing compositions with dendrimers as mildness agents
FR2743297B1 (fr) * 1996-01-05 1998-03-13 Oreal Composition cosmetiques a base de polycondensats ionisables multisequences polysiloxane/polyurethane et/ou polyuree en solution et utilisation
JP3455066B2 (ja) * 1997-06-30 2003-10-06 花王株式会社 Uv反射粉体及びそれを含有する化粧料
DE19834194B4 (de) * 1998-07-29 2009-03-05 Basf Se Farbmittel enthaltende Dispersionen von Kern/Schale-Partikeln und Kern/Schale-Partikel
FR2783418B1 (fr) * 1998-09-17 2000-11-10 Oreal Composition anti-rides comprenant une association de polymeres tenseurs d'origine synthetique et/ou naturelle et de polyesters dendritiques
FR2783417B1 (fr) * 1998-09-17 2002-06-28 Oreal Compositions topiques cosmetiques ou dermatologiques comprenant des polyesters dendritiques
US6150022A (en) * 1998-12-07 2000-11-21 Flex Products, Inc. Bright metal flake based pigments
WO2000047167A1 (en) * 1999-02-09 2000-08-17 Color Access, Inc. Cosmetic and pharmaceutical compositions containing crystalline color system and method of preparing same
GB9925439D0 (en) * 1999-10-27 1999-12-29 Unilever Plc Hair treatment compositions
US6299979B1 (en) * 1999-12-17 2001-10-09 Ppg Industries Ohio, Inc. Color effect coating compositions having reflective organic pigments
DE20003080U1 (de) * 2000-01-07 2000-04-27 Invitek Gmbh Testkit zur Isolierung hochreiner total RNA unter selektiver Entfernung kontaminierender DNA
DE10024466A1 (de) * 2000-05-18 2001-11-22 Merck Patent Gmbh Pigmente mit Opalstruktur
FR2811546B1 (fr) * 2000-07-13 2003-09-26 Oreal Kit et procede de maquillage longue tenue
FR2811547B1 (fr) * 2000-07-13 2003-09-26 Oreal Composition cosmetique longue tenue comprenant un materiau pro-adhesif particulier
JP2002104932A (ja) * 2000-09-25 2002-04-10 Kao Corp 粉体化粧料
US6649138B2 (en) * 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
DE10055588A1 (de) * 2000-11-09 2002-05-23 Merck Patent Gmbh Konjugat, dessen Herstellung und Verwendung
FR2819410B1 (fr) * 2001-01-18 2003-02-21 Oreal Composition cosmetique irisee et ses utilisations
FR2819411B1 (fr) * 2001-01-18 2003-02-21 Oreal Composition cosmetique irisee et ses utilisations
JP4530194B2 (ja) * 2001-07-05 2010-08-25 株式会社資生堂 メーキャップ化粧料
US6894086B2 (en) * 2001-12-27 2005-05-17 Ppg Industries Ohio, Inc. Color effect compositions
MXPA03008714A (es) * 2002-09-26 2004-09-10 Oreal Polimeros secuenciados y composiciones cosmeticas que comprenden tales polimeros.
US7297298B2 (en) * 2002-12-25 2007-11-20 Fujifilm Corporation Nano-particles and process for producing nano-particles
US7297678B2 (en) * 2003-03-12 2007-11-20 Genencor International, Inc. Use of repeat sequence protein polymers in personal care compositions
CA2535945A1 (en) * 2003-08-22 2005-03-03 E-L Management Corp. Topical delivery system containing colloidal crystalline arrays
US7122078B2 (en) * 2003-12-22 2006-10-17 E. I. Du Pont De Nemours And Company Ink jet ink composition
DE102004032120A1 (de) * 2004-07-01 2006-02-09 Merck Patent Gmbh Beugungsfarbmittel für die Kosmetik
MX2007011376A (es) * 2005-03-16 2008-03-18 Unilever Nv Composiciones colorantes y su uso.
FR2907009A1 (fr) * 2006-10-16 2008-04-18 Oreal Composition cosmetique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006136723A3 *

Also Published As

Publication number Publication date
US20080268002A1 (en) 2008-10-30
WO2006136725A3 (fr) 2007-02-22
WO2006136723A2 (fr) 2006-12-28
JP2008546748A (ja) 2008-12-25
JP2008546746A (ja) 2008-12-25
JP2008546747A (ja) 2008-12-25
WO2006136722A1 (fr) 2006-12-28
EP1895974A1 (fr) 2008-03-12
WO2006136723A3 (fr) 2007-05-10
EP1895976A2 (fr) 2008-03-12
WO2006136721A1 (fr) 2006-12-28
WO2006136724A3 (fr) 2007-03-01
US20090041696A1 (en) 2009-02-12
WO2006136725A2 (fr) 2006-12-28
EP1895975A1 (fr) 2008-03-12
WO2006136724A2 (fr) 2006-12-28
US20090117160A1 (en) 2009-05-07
WO2006136719A1 (fr) 2006-12-28
JP2008546745A (ja) 2008-12-25
US20090041695A1 (en) 2009-02-12
WO2006136720A1 (fr) 2006-12-28

Similar Documents

Publication Publication Date Title
WO2006136723A2 (fr) Compositions de maquillage des matieres keratinioues
FR2902647A1 (fr) Compositions de maquillage des matieres keratiniques
EP1799064B1 (fr) Procede de maquillage des matieres keratiniques et kit pour la mise en oeuvre d'un tel procede
EP1433460B1 (fr) Procédé de maquillage des peaux foncées
FR2909844A1 (fr) Stylo a pointe feutre pour le maquillage des ongles
CA2380793A1 (fr) Produit de maquillage bicouche contenant un pigment goniochromatique et un pigment monocolore et kit de maquillage contenant ce produit
FR3015251A1 (fr) Composition cosmetique comprenant un polymere a motif dendrimere carbosiloxane et des particules de polymeres expanses
EP1913933A1 (fr) Composition cosmétique de particules monodisperses
FR3059002A1 (fr) Composition filmogene a base de pullulan, et ses utilisations dans des compositions cosmetiques pour le maquillage et/ou le soin des matieres keratiniques, de la peau et des levres
FR3075041B1 (fr) Dispersion aqueuse coloree de particules comprenant au moins une matiere colorante particulaire, une charge matifiante, des particules de polymere filmogene, un agent epaississant et un agent dispersant polymerique ionique
EP1502573A1 (fr) Produit cosmétique bicouche ses utilisations et kit de maquillage contenant ce produit
FR2907007A1 (fr) Procede de maquillage des matieres keratiniques non fibreuses et composition de maquillage
FR2907008A1 (fr) Composition cosmetique
EP3831357B1 (fr) Composition cosmétique à effet métallique
EP1897529A1 (fr) Composition cosmétique
FR3007260A1 (fr) Applicateur pour appliquer un produit sur les sourcils
FR3055212A1 (fr) Composition fluide aqueuse d’eyeliner, ensemble et procede de maquillage
FR3007257A1 (fr) Applicateur pour appliquer un produit sur les sourcils
FR2910310A1 (fr) Composition comprenant un compose silicone et un monomere cyanoacrylate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUMOUSSEAUX, CHRISTOPHE

Inventor name: KAWAMOTO, MAKOTO

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091013