EP1898084B1 - Hochdruckbrennstoffförderpumpe - Google Patents

Hochdruckbrennstoffförderpumpe Download PDF

Info

Publication number
EP1898084B1
EP1898084B1 EP07015699A EP07015699A EP1898084B1 EP 1898084 B1 EP1898084 B1 EP 1898084B1 EP 07015699 A EP07015699 A EP 07015699A EP 07015699 A EP07015699 A EP 07015699A EP 1898084 B1 EP1898084 B1 EP 1898084B1
Authority
EP
European Patent Office
Prior art keywords
pressure
path
fuel
relief
discharge valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07015699A
Other languages
English (en)
French (fr)
Other versions
EP1898084A1 (de
Inventor
Satoshi Usui
Hiroyuki Yamada
Kenichiro Tokuo
Minoru Hashida
Takefumi Yamamura
Tohru Himoto
Sunao Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to EP10185169.9A priority Critical patent/EP2336545B1/de
Publication of EP1898084A1 publication Critical patent/EP1898084A1/de
Application granted granted Critical
Publication of EP1898084B1 publication Critical patent/EP1898084B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/0245Means for varying pressure in common rails by bleeding fuel pressure between the high pressure pump and the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/367Pump inlet valves of the check valve type being open when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/462Delivery valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/005Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0054Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0056Throttling valves, e.g. having variable opening positions throttling the flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically

Definitions

  • the present invention relates to a high-pressure fuel supply pump used to pressurize fuel supplied from a feed pump and then supply the pressurized fuel to a fuel injection valve and, more particularly, to a high-pressure fuel supply pump used in cylinder direct fuel injection type of internal combustion engine.
  • the present invention relates to a high-pressure fuel supply pump in which a relief valve mechanism is incorporated in a pump housing as a safety valve to eliminate an excessive pressure rise of the fuel in a fuel path on a high pressure side.
  • a fuel relief path is provided in the pump housing in the high-pressure fuel supply pump, the fuel relief path connecting a high-pressure fuel path downstream of an discharge valve (outlet valve) to a low-pressure fuel path upstream of an inlet valve, and a check valve is provided in the fuel relief path as a relief valve that passes fuel only from the high-pressure fuel path to the low-pressure fuel path, as disclosed in Japanese Patent Application Laid-open Publication No. 2003-343395 .
  • the relief valve structured as the check valve opens and part of the high-pressure fuel is released to the low-pressure path, eliminating the excessively high pressure.
  • EP 1 365 142 A relates to a simple structured highpressure fuel pump.
  • the fuel pump comprises a reciprocably-supported cylinder, a pressurising chamber using part of the outer surface of the cylinder as the wall surface which move to change the internal volume, a fuel intake passage forming a fuel passage which introduces fuel to the pressurizing chamber, a fuel discharge passage for the compressed fuel coming out from the pressurizing chamber.
  • a fuel intake valve is provided in fuel intake passage.
  • a fuel discharge valve is provided in said fuel discharge passage.
  • a connecting passage connects upstream side of the intake valve in the fuel intake passage and the downstream side of it.
  • a check valve which flows fuel from the fuel discharge flow passage to the fuel intake passage is provided in the connecting passage.
  • a high-pressure fuel supply pump structured as described above causes a state in which the pressure of the fuel to be discharged exceeds a pressure to open the relief valve in momentary in a transient state in which the discharge valve is opened and the fuel is being pressurized by the high-pressure fuel pump.
  • the present invention addresses this problem with the object of preventing the relief valve from opening even when the pressure of the fuel to be discharged is raised in momentary in the transient state in which.the discharge valve is opened and the fuel is being pressurized by the high-pressure fuel pump.
  • the above object is achieved by providing, in the relief path, an energy attenuating mechanism that prevents energy acting on the relief valve on the basis of a pressure rise caused in a short period on the discharge path side while the high-pressure fuel supply pump is performing a valve open operation.
  • the energy attenuating mechanism can be structured with a plate that is disposed near the relief valve on the high-pressure path side (a discharge port side) and has at least one orifice.
  • the energy attenuating mechanism can be structured with a discharge valve in an open state that narrows or shuts down a fuel relief path near upstream of the relief valve.
  • a high-pressure fuel supply pump which has a high compression ratio, that is, a high energy coefficient with the effect that when an excessive (abnormal) high-pressure is generated due to a fuel injection valve failure or the like, The fuel pressurerized to the excessiv (abnormal) high-pressure is released through the relief valve and high-pressure side piping and other high-pressure side devices are not damaged by the excessive (abnormal) high-pressure.
  • FIG. 1 is the vertical cross section drawing to show an entire high-pressure fuel supply pump in embodiments of the present invention.
  • FIG. 2 is the horizontal cross section drawing to show an entire high-pressure fuel supply pump in the first embodiment of the present invention.
  • FIG. 4 is the drawing to show pressure waveforms in individual parts and a common rail in the high-pressure fuel supply pump in the embodiments of the present invention.
  • FIG. 8 is the drawing to show the structure of a relief valve mechanism in an example relating to background of the present invention.
  • FIG. 9 is the vertical cross section drawing to show the high-pressure fuel supply pump in the example relating to background of the present invention.
  • FIG. 12 is the schematical drawing to show the operation of an discharge valve mechanism in the high-pressure fuel supply pump in the example relating to background of the present invention, and the high-pressure fuel supply pump is in an discharge process.
  • FIG. 14 is the assembly drawing of the discharge valve mechanism in the high-pressure fuel supply pump in the example relating to background of the present invention.
  • FIG. 15 is the drawing to show the structure of the discharge valve mechanism in the high-pressure fuel supply pump in the example relating to background of the present invention, and the high-pressure fuel supply pump is in the discharge process.
  • a section enclosed by broken lines is a pump housing 1 of the high-pressure fuel supply pump.
  • the mechanisms and parts within the broken lines are included in the pump housing 1 in an integrated manner.
  • the fuel which has passed through the inlet port 10a, further passes through a pressure pulsation reducing mechanism 9 and inlet paths 10c and 10d, and then reaches an inlet port 30a in an electromagnetic inlet valve mechanism 30.
  • the pressure pulsation reducing mechanism 9 will be described in detail later.
  • the electromagnetic inlet valve mechanism 30 has an electromagnetic coil 30b; while the electromagnetic coil 30b is energized, an electromagnetic plunger 30c is shifted to the right side in FIG. 3 and a spring 33 is kept compressed.
  • An inlet valve body 31 attached to an end of the electromagnetic plunger 30c then opens an inlet port 32 that communicates with a pressurizing chamber 11 of the high-pressure pump.
  • the inlet valve body 31 When the electromagnetic coil 30b is not energized and there is no difference in fluid pressure between the inlet path 10d (inlet port 30a) and the pressurizing chamber 11, the inlet valve body 31 is biased by a bias force of the spring 33 in the closing direction, keeping the inlet port 32 closed.
  • the inlet valve body 31 is set so that when the valve opening force due to the differential fluid pressure becomes stronger than the bias force of the spring 33, the inlet valve body 31 opens and thus the inlet port 32 opens.
  • the volume of the pressurizing chamber 11 decreases as the plunger 2 is raised. In this state, however, the fuel intaked into the pressurizing chamber 11 is spilled to the inlet path 10d (inlet port 30a) through the inlet valve body 31 in the open state, so the pressure in the pressurizing chamber is not increased. This process is called a spill process.
  • the pump housing 1 further includes relief paths 210 and 215 for enabling the downstream side of the discharge valve 8b to communicate with the inlet path 10c.
  • a relief valve mechanism 200 comprises a relief valve seat 201, a relief valve 202, a relief retainer 203, a relief spring 204, and a relief spring adjuster 205.
  • the relief valve seat 201 is press-fitted into the pump housing 1 and fixed.
  • An orifice plate 214 is fixed between the pump housing 1 and the relief valve seat 201.
  • the relief valve 202 is seated against the relief valve seat 201 by a pressing force generated by the relief spring 204, the pressing force being transmitted through the relief retainer 203.
  • the force to open the relief valve 202 is determined by the pressing force generated by the relief spring 204, and the pressing force is determined by engaging threads formed on the outer periphery of the relief spring adjuster 205 into threads formed on the pump housing 1 and adjusting an amount by which the relief spring 204 is compressed.
  • An O-ring 213 prevents the fuel from leaking to the outside.
  • the relief valve 202 is pressed against the relief valve seat 201 by the relief spring 204, which generates the pressing force.
  • the relief valve 202 is released from the relief valve seat 201, opening the relief valve 202.
  • the orifice plate 214 is disposed at some midpoint in the relief path 210; the relief valve 202 is adapted so that it does not open sensitively in response to a rapid pressure change in the relief path 210.
  • the discharge valve mechanism 8 and electromagnetic inlet valve mechanism 30 are disposed coaxially in series with the pressurizing chamber 11 positioned therebetween.
  • the relief valve mechanism 200 is incorporated into relief valve mounting holes formed in the pump housing in parallel to mounting axis lines for the discharge valve mechanism 8 and electromagnetic inlet valve mechanism 30.
  • the axis lines of the concave 11A for mounting the discharge valve mechanism 8 and the hole 30A for attaching the electromagnetic inlet valve mechanism 30 are formed so that they are orthogonal to the central axis line of the concave 1A formed as the pressurizing chamber 11.
  • a cylinder 6 for guiding the reciprocating motion of the plunger 2 is attached in a way that it extends to the pressurizing chamber 11.
  • the concave 11A for mounting the discharge valve mechanism 8 and the hole 30A for attaching the electromagnetic inlet valve mechanism 30 are formed so that their axis lines are aligned. Accordingly, straight assembling is possible from the hole 30A for attaching the electromagnetic inlet valve mechanism 30 to the concave 11A for mounting the discharge valve mechanism 8. Alternatively, a force to press-fit the discharge valve mechanism 8 can be applied from the hole 30A for attaching the electromagnetic inlet valve mechanism 30. In this case, the smallest diameter of the hole 30A must be greater than the maximum outer diameter of the discharge valve mechanism 8.
  • the discharge valve mechanism 8 needs to be assembled from an opening 1B formed for attaching the cylinder 6.
  • the outer periphery of the cylinder 6 is held by a cylinder holder 7, and fixed to the pump housing 1 because the males threads formed on the outer periphery of the cylinder holder 7 are screwed into the female threads formed on the pump housing 1.
  • the cylinder 6 slidably holds the plunger 2, which reciprocates in the pressurizing chamber 11, along the reciprocating motion.
  • An end of the cylinder 6 can be thus inserted up to a position at which the end faces the internal end of the discharge valve mechanism 8 mounted in the concave 11A. Accordingly, the volume to accommodate fuel in the pressurizing chamber 11 can be made small, increasing the fuel compression efficiency.
  • a meal seal part is formed on a mating surface S1 between a flange-like annular surface part formed on the outer periphery of the cylinder 6 and the end surface of the opening 1B in the pump housing 1 so as to isolate the pressurizing chamber 11 from the ambient atmosphere.
  • the mating surface S1 erodes due to cavitation generated by variations in pressure in the pressurizing chamber 11.
  • the cylinder 6 is adapted to extend into the pressurizing chamber and thus the matching surface S1 for sealing can be positioned away from the generated cavitation, the possibility of erosion can be reduced.
  • the cylindrical member 11D also has a function for increasing the fuel compression efficiency by reducing the volume of the pressurizing chamber 11.
  • the cylinder 6 can be used to prevent the discharge valve mechanism 8 from coming off.
  • the discharge valve mechanism 8 After the discharge valve mechanism 8 is press-fitted into the concave 11A, the discharge valve mechanism 8 itself can be used as the retainer by, for example, swaging the periphery on the pressurizing chamber 11 side to the internal wall of the pump housing. In this case, the cylindrical member 11D is not necessary.
  • the cylinder 6 When the cylinder 6 is shortened so that it does not reach the position of the discharge valve mechanism 8, it is also possible to fix the cylinder 6 first and then mount the discharge valve mechanism 8 into the concave 11A.
  • a tappet 3 that converts the rotational motion of a cam 5 attached to a cam shaft of the engine into vertical motion and transfers the vertical motion to the plunger 2.
  • the plunger 2 is seated against the tappet 3 by a spring 4 through a retainer 15. Accordingly, the plunger 2 can advance and retract (reciprocate) as the cam 5 rotates.
  • a plunger seal 13 held at the bottom of the internal periphery of the cylinder holder 7 is provided in a state in which the plunger seal 13 is slidably in contact with the outer periphery of the plunger 2 at the bottom, shown in the drawing, of the cylinder 6, preventing fuel from leaking to the outside. It is also prevented that a lubricant (possibly engine oil) for lubricating a sliding part in the engine room enters the inside of the pump housing 1.
  • a lubricant possibly engine oil
  • the pressure pulsation reducing mechanism 9, which reduces the propagation of pressure pulsation generated in the pump to the fuel pipe 28, is fixed to a damper cover 14.
  • the damper cover 14 is fixed to the pump housing 1.
  • the inlet path as the low-pressure path comprises 10a, 10b, and 10c.
  • the pressure pulsation reducing mechanism 9, which reduces the propagation of pressure pulsation generated in the pump to the fuel pipe 28 as a result of the reciprocating motion of the plunger 2, comprises two metal diaphragm assemblies 9A and 9B.
  • the pump housing 1 includes a damper housing 10B, which is part of the inlet paths.
  • the two metal diaphragm assemblies 9A and 9B are accommodated in the damper housing 10B.
  • Supporting members 10A1 and 10A2 are provided on the periphery so that the two metal diaphragm assemblies 9A and 9B are disposed with a particular interval therebetween.
  • the threads formed on the outer periphery of the damper cover 14 are screwed into the thread grooves 10C formed on the inner periphery of the damper housing 10B, and a seal member 10D is pressed so as to provide a seal, making the damper chamber hermetic. Accordingly, the damper chamber is defined in the inlet path 10, and the pressure pulsation reducing mechanism 9 is formed.
  • damper cover 14 is fixed to the pump housing by being screwed in this embodiment, the damper cover 14 can also be fixed by, for example, welding the entire periphery at the P position. In this case, a seal is also provided by the welding, so the seal member 10D in the first embodiment can be eliminated.
  • the discharge valve mechanism 8 is provided at the exit of the pressurizing chamber 11.
  • the discharge valve mechanism 8 comprises a seat member 8a, an discharge valve 8b, an discharge valve spring 8c, a holding member 8d used as an discharge valve stopper.
  • the discharge valve 8b When there is no differential pressure between the pressurizing chamber 11 and the discharge port 12, the discharge valve 8b is seated against the seat member 8a by the biased force of the discharge valve spring 8c and thus placed in the closed state. Only when the fuel pressure in the pressurizing chamber 11 is higher than the fuel pressure at the discharge port 12 by a predetermined value, the discharge valve 8b opens against the discharge valve spring 8c, discharging the fuel in the pressurizing chamber 11 to the common rail 23 through the discharge port 12.
  • the discharge valve 8b After being opened, the discharge valve 8b comes into contact with the holding member 8d and its operation is restricted. Accordingly, the stroke of the discharge valve 8b is appropriately determined by the holding member 8d. If the stroke is too large, the closing of the discharge valve 8b is delayed and the fuel discharged to the discharge port 12 spills to the pressurizing chamber 11, lowering the efficiency of the high pressure pump. While the discharge valve 8b repeats valve opening and closing motions, the holding member 8d guides the discharge valve 8b so that the discharge valve 8b moves only in the stroke direction. This arrangement enables the discharge valve mechanism 8 to function as the check valve for limiting the fuel flow direction.
  • the orifice plate 214 has one or two or more orifices as shown in FIGs. 5 and 6 .
  • orifices (214a, 214b, 214c) of the orifice plate 214 is an attenuating mechanism that attenuates the energy of the pressure overshoot of he discharged fuel because it explained above.
  • the holding member 8d used as the discharg valve stopper is fitted to the seat member 8a by being slightly press-fitted with the discharge valve 8b and discharge valve spring 8c disposed, and assembled to the pump housing 1 as the discharge valve mechanism 8 by being press-fitted from the pressurizing chamber 11 side.
  • the ease of assembling can be improved.
  • the relief valve can be easily incorporated in the pump.
  • a stopper part of the discharge valve mechanism 8 is provided in the pump housing 1; the cylinder 6 disposed in the pressurizing chamber 11 has a part for preventing the seat member 8a from coming off; a clearance smaller than a length by which the seat member 8a is press-fitted to the pump housing 1 is provided between the seat member 8a and the cylinder 6.
  • the seat member does not come off, so the press-fitting force (the difference) does not need to be large. This prevents the seat part from being deformed during press-fitting and thus prevents the valve seat capability from being lowered. Accordingly, tolerance ranges for press-fitting forces (the differences) can be roughly managed, making inexpensive machining possible.
  • the inner diameter of the discharge port 12 into which a joint for piping on the discharging side is screwed can also be made equal to or smaller than the outer diameter of the seat member 8a having the largest outer diameter in the discharge valve mechanism 8. Accordingly, it is also possible to reduce the area of the sealed part between the discharge port and the joint and thereby to reduce the area of the sealed part at which a pressure is received.
  • the outer periphery of the cylinder 6 is held by the cylinder holder 7.
  • the cylinder holder 7 obtains a thrust, fixing the cylinder 6 to pump housing 1.
  • the cylinder 6 holds the plunger 2, which is the pressurizing member, while allowing the plunger 2 to slide upward and downward.
  • the high-pressure fuel supply pump is fixed to the engine through the flange holder 40 and flange 41.
  • the flange holder 40 is pressed against and fixed to the engine with setscrews 42 through the flange 41. Since the flange holder 40 is fixed to the pump housing 1 by the threads formed on the inner periphery, the pump housing is thus fixed to the engine.
  • the relief path 215 is connected through the inlet path 10c to the inlet path 10b in which the pressure pulsation reducing mechanism 9 is disposed.
  • the exit of the relief valve 202 is thus connected between the pressure pulsation reducing mechanism 9 and the inlet valve 31.
  • the orifice plate 214 has one or two or more orifices.
  • FIGs. 5 and 6 show examples of the orifice plate 214.
  • the example in FIG. 5 has one orifice 214a; one example in FIG. 6 has four orifices 214b, and the other example has many orifices 214c.
  • each of the orifices is adapted to have a such a small diameter that the viscosity of the fuel to causes an effect.
  • the function of the orifice will be described below.
  • a pressure overshoot is generated in the pressurizing chamber 11.
  • the pressure overshoot generated in the pressurizing chamber 11 propagates from the discharge port 12 through the relief path 210 to the orifice plate 214.
  • the orifice 214a (214b or 214c) as an energy attenuating mechanism prevents the pressure overshoot that has propagated up to the orifice plate 214 from further propagating to the relief path 211, so the pressure overshoot in the relief path 211 can be reduced. Accordingly, malfunction of the relief valve is eliminated and a drop in the amount of fuel discharged under high pressure can also be reduced. That is, the efficiency as the high-pressure fuel supply pump can be maintained at a high level.
  • FIG. 7 indicates the relation between the amount of fuel discharged under high pressure from the high-pressure fuel supply pump and the pressure in the common rail 23.
  • the fuel pressure in the common rail 23 always increases even when the pressure to open the relief valve 202 is the same.
  • the malfunction of the relief valve 202 due to the pressure overshoot propagated from compression chamber 11 to the relief path 210 as described above can be reduced.
  • the orifice 214a must be very small. If an excessively high pressure is generated, the high-pressure fuel passes through the orifice 214a and is spilled through the relief path 215 to the inlet path 10b. However, a pressure drop is generated at the orifice 214a. As a result, the fuel pressure in the common rail 23 or the like is much higher than the pressure to open the relief valve 202, which is problematic in terms of the durability of the high-pressure part and costs.
  • the exit of the relief path is connected to the inlet (low-pressure) path.
  • the relief valve can be disposed at a position near the pressurizing chamber, preferably in the pressurizing chamber. If only the compression efficiency is not lowered, the exit of the relief path can be connected to the pressurizing chamber so as to spill the fuel to the pressurizing chamber at the occurrence of an excessively high pressure.
  • the relief valve B202, relief valve retainer B203, and relief spring B204 are inserted in succession into a relief valve housing B206 in that order.
  • the relief spring adjuster B205 is then fixed to the relief valve housing B206 by being press-fitted.
  • a load set by the relief spring B204 is determined.
  • a pressure to open the relief valve B202 is determined by the load set by the relief spring B204.
  • the relief valve mechanism B200. structured in this way is fixed to the pump housing 1 by being press-fitted.
  • the relief path 211 is integrally formed to the pump housing 1, in parallel to the cylinder 6.
  • the discharge valve mechanism 8 is disposed at the exit of the pressurizing chamber 11.
  • the discharge valve mechanism 8 comprises an discharge valve seat 8a, an discharge valve 8b, an discharge valve spring 8c, and an discharge valve holder 8d.
  • the discharge valve 8b is slidably held by the discharge valve holder 8d, and guided by the discharge valve holder 8d so that the discharge valve 8b moves only in the stroke direction when the discharge valve 8b repeats open and close motions.
  • the discharge valve 8b opens and comes into contact with a contact part 8d3 of the discharge valve holder 8d, the operation of the discharge valve 8b is restricted. Accordingly, it is prevented that fuel discharged to the discharge port 12 under high pressure is spilled to the pressurizing chamber 11 due to a delay of the discharge valve 8b being closed and thus the efficiency as a high pump is lowered.
  • Discharge ports 8d1, relief ports 8d2, and a spill port 8d4 are formed in the discharge valve holder 8d.
  • the relief ports 8d2 communicate with the relief path 211.
  • the discharge valve 8b While the high-pressure fuel supply pump is in the discharge process, the discharge valve 8b is in the open state as shown in FIG. 12 .
  • the discharge valve 8b comes in contact with the discharge valve holder 8d at the contact part 8d3, at which fuel is sealed, so the discharge path 12b is blocked from the relief path 211 and thus communication therebetween is disabled.
  • the discharge valve 8b While the high-pressure fuel supply pump is in the intake and spill processes, the discharge valve 8b is in the closed state as shown in FIG. 13 .
  • the discharge valve 8b blocks the discharge path 12b from the pressurizing chamber 11 at a seat part 8a3 on the discharge valve seat 8a. Accordingly, even when the pressure in the pressurizing chamber 11 is reduced due the motion of the plunger 2, the fuel under high pressure in the discharge path 12b does not spill to the pressurizing chamber 11.
  • a clearance is formed between the discharge valve 8b and the discharge valve holder 8d at the contact part 8d3 by the amount equal to the stroke of the discharge valve 8b.
  • the discharge port 12 communicates with the relief path 211 through this clearance. That is, while in the discharge process, there is no communication between the discharge path 12b and the relief path 211; while in the intake and spill processes, there is communication between the discharge port 12 and the relief path 211.
  • the fuel highly pressurized in the pressurizing chamber 11 is supplied from the discharge port 12 through the high-pressure pipe 29 to the common rail 23, as shown in FIG. 12 .
  • a pressure overshoot is generated in the pressurizing chamber 11 at this time.
  • the pressure overshoot generated in pressurizing chamber 11 propagates to the discharge port 12, but the discharge valve 8b is in the open state. That is, there is no communication between the discharge port 12 and relief path 211 as described above, so the pressure overshoot does not propagate to the relief path 211.
  • the fuel under excessively (abnormal) high pressure flows from the discharge path 12b through the relief path 211, and reaches the relief valve B202.
  • the fuel that passes through the relief valve B202 further passes through a relief path B205a formed in the relief spring adjuster B205, and is released to the inlet path 10b, which is a low-pressure part.
  • the high-pressure parts such as the common rail 23 are thus protected.
  • the pressure pulsation reducing mechanism 9 disposed further upstream in the inlet path 10b can sufficiently reduce this pressure pulsation, preventing the pressure pulsation from propagating to the low-pressure pipe 28 and thereby preventing the pipe from being broken.
  • the discharge valve mechanism 8 is assembled outside the pump housing 1 as a sub-assembly before being incorporated into the pump housing 1.
  • the discharge valve spring 8c, discharge valve 8b, and discharge valve seat 8a are inserted in succession into the discharge valve holder 8d in that order.
  • the discharge valve seat 8a is then fixed to the discharge valve holder 8d at a press-fitted part 8a1 by being press-fitted.
  • the discharge valve mechanism 8 structured in this way is fixed to the pump housing by being press-fitted. Places in which press-fitting is performed are a press-fitted part 8a2, which is a side part of the discharge valve seat 8a, and press-fitted parts 8d5, which are sides of the discharge valve holder 8d. Other sides of the discharge valve holder 8d have a shape formed by cutting two planes 8d6 parallel on its cylindrical shape. That is, the sides of the discharge valve holder 8d comprise the press-fitted parts 8d5, which are cylindrical, and the planes 8d6.
  • the fuel pressurized in the pressurizing chamber 11 is delivered from the discharge ports 8d1, flows along the planes 8d6 machined on the sides of the discharge valve holder 8d, and are discharged to the discharge path 12b through the clearance in the pump housing 1, as shown in FIGs. 15 and 17 .
  • the relief path 211 is blocked from the discharge path 12b by the contact part 8d3 on the discharge valve holder 8d, so there is no communication therebetween. Accordingly, the pressure overshoot generated in the pressurizing chamber 11 does not propagate to the relief valve B202.
  • a clearance is formed at the contact part 8d3 between the discharge valve 8b and the discharge valve holder 8d by the amount equal to the stroke of the discharge valve 8b, as shown in FIGs. 16 and 18 .
  • This clearance is used for the discharge port 12 to communicate with the relief path 211 through the communicating port 8d4 and relief ports 8d2 formed in the discharge valve holder 8d.
  • the fuel under excessively (abnormal) high pressure can reach the relief valve B202, passes through a relief path B205a formed in the relief spring adjuster B205, and is released to the inlet path 10b, which is a low-pressure part.
  • the clearance between the press-fitted parts 8d5 and the pump housing 1 may be such a minute clearance that the viscosity of the fuel causes an effect. Accordingly, the same effect as described above is obtained, and the load to press-fit the discharge valve mechanism 8 to the pump housing 1 can be reduced, improving the ease of assembling the high-pressure fuel supply pump.

Claims (6)

  1. Hochdruck-Kraftstoffförderpumpe mit
    einem Druckbeaufschlagungsraum (11) zum Druckbeaufschlagen von Kraftstoff, einem Niederdruck-Kraftstoffweg (28) stromaufwärts eines Saugventils (30) zum Ansaugen von Kraftstoff in den Druckbeaufschlagungsraum (11),
    einem Hochdruck-Kraftstoffweg (29) stromabwärts eines Druckventils (8) zum Auslassen von Kraftstoff, der in dem Druckbeaufschlagungsraum (11) mit Druck beaufschlagt wird,
    einem Kraftstoffentlastungsweg (215) zum Verbinden des Hochdruck-Kraftstoffwegs mit dem Niederdruck-Kraftstoffweg, und
    einem Entlastungsventil (202), das in dem Kraftstoffentlastungsweg vorgesehen ist, um zu erlauben, dass der Kraftstoff nur von dem Hochdruck-Kraftstoffweg zu dem Niederdruck-Kraftstoffweg fließt, wobei das Entlastungsventil so aufgebaut ist, dass das Entlastungsventil geöffnet wird, wenn ein Differenzdruck zwischen seinem Eingang und seinem Ausgang auf oder über einen vorgegebenen Ventilöffnungsdruck erhöht wird,
    wobei ein Energiedämpfungsmechanismus zum Reduzieren von Energie auf der Grundlage eines unmittelbaren Druckanstiegs im Hochdruck-Kraftstoffwegstromaufwärts des Entlastungsventils (202) im Kraffstoffentlastungsweg (215) auf einer Seite vorgesehen ist, die dem Druckventil (8) zugewandt ist, wobei die Energie auf das Entlastungsventil (202) in eine Richtung zum Öffnen des Entlastungsventils wirkt, während sich das Druckventil (8) in einem offenen Betrieb befindet, und
    wobei der Energiedämpfungsmechanismus dadurch aufgebaut ist, dass er eine Platte (214) mit einer oder mehreren Öffnungen aufweist, wobei die Platte auf einer Hochdruck-Kraftstoffwegseite nahe dem Entlastungsventil angeordnet ist.
  2. Hochdruck-Kraftstofförderpumpe nach Anspruch 1, wobei die Platte (214) des Energiedämpfungsmechanismus zwei oder mehr Öffnungen hat.
  3. Hochdruck-Kraftstoffförderpumpe nach mindestens einem der Ansprüche 1 bis 2, wobei der Energiedämpfungsmechanismus dadurch aufgebaut ist, dass er das Druckventil (8) einschließt; das Druckventil (8) den Hochdruckweg nahe dem Entlastungsventil verengt oder blockiert, während sich das Druckventil (8) im offenen Betrieb befindet.
  4. Hochdruck-Kraftstoffförderpumpe nach mindestens einem der Ansprüche 1 bis 3, wobei eine Verbindungsöffnung zwischen dem Entlastungsweg und dem Hochdruck-Kraftstoffweg auf einer Seite eines zylindrischen Halteteils ausgebildet ist, das eine Pendelbewegung des Druckventils (8) führt; das Druckventil die Verbindungsöffnung verengt oder blockiert, wenn das Druckventil (8) offen ist.
  5. Hochdruck-Kraftstoffförderpumpe nach Anspruch 4, wobei ein Führungsweg auf einer Seite des zylindrischen Halteteils vorgesehen ist, um den Kraftstoff in den Druckbeaufschlagungsraum (11) zum Hochdruck-Kraftstoffweg zu leiten, während sich das Druckventil (8) im offenen Betrieb befindet.
  6. Hochdruck-Kraftstoffförderpumpe nach Anspruch 4 oder 5, wobei das zylindrische Halteteil an einem Auslassöffnungsteil in dem Druckbeaufschlagungsraum (11) befestigt ist; ein Sitzelement für das Druckventil (8) an einem Ende auf der Seite des Druckbeaufschlagungsraums (11) des zylindrischen Halteteils befestigt ist; das Druckventil (8) von einer Feder, die in dem zylindrischen Halteteil gehalten ist, gegen das Sitzelement gedrückt wird.
EP07015699A 2006-08-31 2007-08-09 Hochdruckbrennstoffförderpumpe Active EP1898084B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10185169.9A EP2336545B1 (de) 2006-08-31 2007-08-09 Hochdruckbrennstoffförderpumpe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235866A JP2008057451A (ja) 2006-08-31 2006-08-31 高圧燃料供給ポンプ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10185169.9 Division-Into 2010-10-01

Publications (2)

Publication Number Publication Date
EP1898084A1 EP1898084A1 (de) 2008-03-12
EP1898084B1 true EP1898084B1 (de) 2013-01-09

Family

ID=38886397

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10185169.9A Active EP2336545B1 (de) 2006-08-31 2007-08-09 Hochdruckbrennstoffförderpumpe
EP07015699A Active EP1898084B1 (de) 2006-08-31 2007-08-09 Hochdruckbrennstoffförderpumpe

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10185169.9A Active EP2336545B1 (de) 2006-08-31 2007-08-09 Hochdruckbrennstoffförderpumpe

Country Status (4)

Country Link
US (1) US20080056914A1 (de)
EP (2) EP2336545B1 (de)
JP (1) JP2008057451A (de)
CN (1) CN101135283B (de)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007038984A1 (de) * 2007-08-17 2009-02-19 Robert Bosch Gmbh Kraftstoffpumpe für ein Kraftstoffsystem einer Brennkraftmaschine
JP5103138B2 (ja) * 2007-11-01 2012-12-19 日立オートモティブシステムズ株式会社 高圧液体供給ポンプ
JP4945504B2 (ja) * 2008-04-17 2012-06-06 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
JP5002523B2 (ja) 2008-04-25 2012-08-15 日立オートモティブシステムズ株式会社 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
DE102008043217A1 (de) * 2008-10-28 2010-04-29 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
JP5478051B2 (ja) * 2008-10-30 2014-04-23 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
JP2010112303A (ja) * 2008-11-07 2010-05-20 Bosch Corp 燃料供給ポンプ
DE102008059638A1 (de) * 2008-11-28 2010-06-02 Continental Automotive Gmbh Hochdruckpumpe
DE102008062518B4 (de) * 2008-12-16 2016-05-25 Continental Automotive Gmbh Hochdruckpumpe
ITBO20090197A1 (it) * 2009-03-30 2010-09-30 Magneti Marelli Spa Pompa carburante con camera di raccolta per un sistema di iniezione diretta
IT1396473B1 (it) * 2009-03-30 2012-12-14 Magneti Marelli Spa Pompa carburante con una valvola di massima pressione perfezionata per un sistema di iniezione diretta
ATE556217T1 (de) * 2009-05-21 2012-05-15 Fiat Ricerche Brennstoffversorgungssystem für einen verbrennungsmotor
EP2287462B1 (de) * 2009-07-08 2012-04-18 Delphi Technologies Holding S.à.r.l. Pumpeneinheit
JP5286221B2 (ja) * 2009-10-06 2013-09-11 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプの吐出弁機構
KR101526375B1 (ko) * 2009-11-11 2015-06-08 현대자동차 주식회사 고압 연료 펌프의 토출 밸브와 압력 릴리프 밸브 일체형 구조
JP5472395B2 (ja) * 2010-06-29 2014-04-16 株式会社デンソー 高圧ポンプ
KR101182131B1 (ko) 2010-08-23 2012-09-12 (주)모토닉 직접분사식 가솔린 엔진용 고압연료펌프
KR101182130B1 (ko) 2010-08-23 2012-09-12 (주)모토닉 직접분사식 가솔린 엔진용 고압연료펌프
US8727752B2 (en) * 2010-10-06 2014-05-20 Stanadyne Corporation Three element diaphragm damper for fuel pump
JP5702984B2 (ja) * 2010-10-15 2015-04-15 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ
DE102010062668A1 (de) * 2010-12-08 2012-06-14 Robert Bosch Gmbh Kraftstofffördersystem einer Brennkraftmaschine, mit einer Rotationspumpe
DE102010064219A1 (de) * 2010-12-27 2012-06-28 Robert Bosch Gmbh Druckregelanordnung eines Kraftstoffeinspritzsystems mit einem druckseitig von einer Pumpe angeordneten Ventil
JP5501272B2 (ja) 2011-03-08 2014-05-21 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
JP5537498B2 (ja) * 2011-06-01 2014-07-02 日立オートモティブシステムズ株式会社 電磁吸入弁を備えた高圧燃料供給ポンプ
WO2013018186A1 (ja) * 2011-08-01 2013-02-07 トヨタ自動車株式会社 燃料噴射ポンプ
CN103717873B (zh) * 2011-08-01 2017-06-27 丰田自动车株式会社 燃料泵
US9243596B2 (en) * 2011-09-13 2016-01-26 Continental Automotive Systems, Inc. Pressure operated mechanical flow control valve for gasoline direct injection pump
JP5628121B2 (ja) * 2011-09-20 2014-11-19 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
KR101329653B1 (ko) * 2011-12-13 2013-11-14 (주)모토닉 가솔린 직접분사 엔진의 출구체크밸브
US20130312706A1 (en) * 2012-05-23 2013-11-28 Christopher J. Salvador Fuel system having flow-disruption reducer
DE102012221540A1 (de) 2012-11-26 2014-05-28 Robert Bosch Gmbh Ventileinrichtung
JP2014105669A (ja) * 2012-11-29 2014-06-09 Hitachi Automotive Systems Ltd 高圧燃料供給ポンプ
DE102013210760A1 (de) * 2013-06-10 2014-12-11 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe für ein Kraftstoffsystem für eine Brennkraftmaschine
JP6221410B2 (ja) * 2013-06-27 2017-11-01 トヨタ自動車株式会社 高圧燃料ポンプ
EP2821646A1 (de) * 2013-07-01 2015-01-07 Delphi International Operations Luxembourg S.à r.l. Hochdruckpumpe
GB201313338D0 (en) * 2013-07-26 2013-09-11 Delphi Tech Holding Sarl High Pressure Pump
JP6193402B2 (ja) * 2013-12-27 2017-09-06 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
US9556836B2 (en) 2014-04-21 2017-01-31 Stanadyne Llc Pressure relief valve for single plunger fuel pump
JP6470267B2 (ja) * 2014-04-25 2019-02-13 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
JP2015218678A (ja) * 2014-05-20 2015-12-07 日立オートモティブシステムズ株式会社 リリーフ弁を備えた高圧燃料供給ポンプ
GB201411598D0 (en) 2014-06-30 2014-08-13 Delphi International Operations Luxembourg S.�.R.L. Pressure limiting valve
DE102014214627B4 (de) * 2014-07-25 2020-04-02 Continental Automotive Gmbh Hochdruckpumpe
EP3252300B1 (de) * 2015-01-26 2021-07-07 Hitachi Automotive Systems, Ltd. Ventilmechanismus und hochdruckkraftstoffförderpumpe damit
JP6406035B2 (ja) 2015-01-29 2018-10-17 株式会社デンソー 高圧燃料ポンプ
JP6421701B2 (ja) * 2015-06-10 2018-11-14 株式会社デンソー 高圧ポンプ
US9777879B2 (en) 2015-07-20 2017-10-03 Delphi Technologies, Inc. Pulsation damper
JP6434871B2 (ja) * 2015-07-31 2018-12-05 トヨタ自動車株式会社 ダンパ装置
DE102016204128A1 (de) * 2016-03-14 2017-09-14 Robert Bosch Gmbh Hochdruckpumpe
CN109154267B (zh) * 2016-06-27 2021-08-10 日立汽车系统株式会社 高压燃料供给泵
JP6310026B2 (ja) * 2016-09-20 2018-04-11 日立オートモティブシステムズ株式会社 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
KR101986017B1 (ko) * 2017-09-20 2019-09-03 주식회사 현대케피코 고압연료펌프
JP6747482B2 (ja) * 2017-09-29 2020-08-26 株式会社デンソー 高圧ポンプ
US10094346B1 (en) * 2017-10-18 2018-10-09 MAGNETI MARELLI S.p.A. Fuel pump with an improved maximum-pressure valve for a direct-injection system
JP7146249B2 (ja) * 2018-09-20 2022-10-04 株式会社不二工機 パルセーションダンパー
JP7150319B2 (ja) * 2018-09-20 2022-10-11 株式会社不二工機 パルセーションダンパー
DE102018216850A1 (de) * 2018-10-01 2020-04-02 Robert Bosch Gmbh Kraftstoffhochdruckpumpe mit einem Anschlussstutzen
JP7236906B2 (ja) * 2019-03-28 2023-03-10 本田技研工業株式会社 高圧燃料ポンプ
US10895233B2 (en) * 2019-05-16 2021-01-19 Caterpillar Inc. Fuel system having fixed geometry flow regulating valve for limiting injector cross talk
DE102019131537B4 (de) * 2019-11-21 2022-01-27 Kendrion (Villingen) Gmbh Vorrichtung zur Druckregelung in einer Kraftstoffzuführung eines Verbrennungsmotors mit einer Common-Rail-Einspritzung
US20220268265A1 (en) * 2021-02-23 2022-08-25 Delphi Technologies Ip Limited Fuel pump and damper cup thereof
DE102021208117A1 (de) * 2021-07-28 2023-02-02 Robert Bosch Gesellschaft mit beschränkter Haftung Kraftstoff-Hochdruckpumpe
CN114439660B (zh) * 2022-01-27 2023-08-11 浙江吉利控股集团有限公司 一种油泵

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339231A (ja) * 1997-06-06 1998-12-22 Hitachi Ltd 燃料ポンプ
JPH1172053A (ja) * 1997-08-29 1999-03-16 Denso Corp 燃料供給装置
US5975061A (en) * 1998-02-17 1999-11-02 Walbro Corporation Bypass fuel pressure regulator
JP3633314B2 (ja) * 1998-10-14 2005-03-30 三菱電機株式会社 高圧燃料ポンプ装置
JP2000291509A (ja) * 1999-04-01 2000-10-17 Mitsubishi Electric Corp 直噴式ガソリンエンジン用燃料供給装置
JP2000303933A (ja) * 1999-04-20 2000-10-31 Mitsubishi Electric Corp 高圧燃料ポンプ装置
JP2001055961A (ja) * 1999-08-11 2001-02-27 Mitsubishi Electric Corp 高圧燃料供給装置
US6401693B1 (en) * 2000-09-01 2002-06-11 Schrader-Bridgeport International, Inc. Pressure spike attenuator for automotive fuel injection system
DE10157884B4 (de) * 2000-11-27 2013-05-08 Denso Corporation Druckspeicherkraftstoffeinspritzsystem zum Vermeiden eines Fehlverhalten eines Entlastungsventils, das durch Druckpulsation bewirkt wird
DE10106095A1 (de) * 2001-02-08 2002-08-29 Bosch Gmbh Robert Kraftstoffsystem, Verfahren zum Betreiben des Kraftstoffsystems, Computerprogramm sowie Steuer- und/oder Regelgerät zur Steuerung des Kraftstoffsystems
JP3593081B2 (ja) * 2001-10-02 2004-11-24 三菱電機株式会社 燃料供給装置
JP3786002B2 (ja) * 2001-12-14 2006-06-14 トヨタ自動車株式会社 内燃機関の高圧燃料供給装置
JP3823060B2 (ja) * 2002-03-04 2006-09-20 株式会社日立製作所 高圧燃料供給ポンプ
US6830439B2 (en) * 2002-04-08 2004-12-14 Airtex Products Electric fuel pump with universal relief valve installed in the pump inlet
JP3944413B2 (ja) * 2002-05-24 2007-07-11 株式会社日立製作所 高圧燃料供給ポンプ
US6755625B2 (en) * 2002-10-07 2004-06-29 Robert H. Breeden Inlet throttle valve
JP2004197834A (ja) * 2002-12-18 2004-07-15 Bosch Automotive Systems Corp 圧力リリーフ装置及びこれを用いた蓄圧式燃料供給システム
JP2004218547A (ja) * 2003-01-15 2004-08-05 Bosch Automotive Systems Corp 高圧燃料ポンプ
JP4036153B2 (ja) * 2003-07-22 2008-01-23 株式会社日立製作所 ダンパ機構及び高圧燃料供給ポンプ
DE102007016134A1 (de) * 2006-04-25 2007-11-08 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe

Also Published As

Publication number Publication date
CN101135283B (zh) 2010-06-16
CN101135283A (zh) 2008-03-05
EP2336545A1 (de) 2011-06-22
US20080056914A1 (en) 2008-03-06
EP1898084A1 (de) 2008-03-12
EP2336545B1 (de) 2013-07-31
JP2008057451A (ja) 2008-03-13

Similar Documents

Publication Publication Date Title
EP1898084B1 (de) Hochdruckbrennstoffförderpumpe
US10788004B2 (en) High-pressure fuel supply pump
EP1788231B1 (de) Hochdruck-Kraftstoffpumpe
JP4940329B2 (ja) 高圧燃料供給ポンプ
EP3467297B1 (de) Hochdruckkraftstoffförderpumpe
CN111322187B (zh) 高压燃料供给泵
JP2009257197A (ja) 高圧燃料供給ポンプ
EP3653867B1 (de) Hochdruckbrennstoffpumpe
WO2014083979A1 (ja) 高圧燃料供給ポンプ
EP3543519B1 (de) Hochdruckbrennstoffförderpumpe
WO2018012211A1 (ja) 高圧燃料供給ポンプ
JP2007218213A (ja) 高圧燃料供給ポンプ及びその組立方法
JP6862574B2 (ja) 高圧燃料供給ポンプ
JP2019167897A (ja) 燃料供給ポンプ
JP6572241B2 (ja) バルブ機構、及びこれを備えた高圧燃料供給ポンプ
JP7139265B2 (ja) 高圧燃料供給ポンプ及びリリーフ弁機構
JP2017160915A (ja) 高圧燃料供給ポンプ
JP6596542B2 (ja) バルブ機構及びこれを備えた高圧燃料供給ポンプ
JP2019090365A (ja) 燃料供給ポンプ
JP6385840B2 (ja) バルブ機構及びこれを備えた高圧燃料供給ポンプ
WO2019207904A1 (ja) 燃料供給ポンプ及び燃料供給ポンプの製造方法
JP2014148980A (ja) 高圧燃料供給ポンプ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080331

17Q First examination report despatched

Effective date: 20080505

AKX Designation fees paid

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007027889

Country of ref document: DE

Effective date: 20130314

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007027889

Country of ref document: DE

Effective date: 20131010

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007027889

Country of ref document: DE

Owner name: HITACHI ASTEMO, LTD., HITACHINAKA-SHI, JP

Free format text: FORMER OWNER: HITACHI AUTOMOTIVE SYSTEMS, LTD., HITACHINAKA-SHI, IBARAKI, JP

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007027889

Country of ref document: DE

Owner name: HITACHI ASTEMO, LTD., HITACHINAKA-SHI, JP

Free format text: FORMER OWNER: HITACHI, LTD., TOKYO, JP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230627

Year of fee payment: 17