EP1838907B1 - Verfahren zur herstellung von polyoxymethylenfasern sowie verwendung solcher fasern - Google Patents

Verfahren zur herstellung von polyoxymethylenfasern sowie verwendung solcher fasern Download PDF

Info

Publication number
EP1838907B1
EP1838907B1 EP06700914.2A EP06700914A EP1838907B1 EP 1838907 B1 EP1838907 B1 EP 1838907B1 EP 06700914 A EP06700914 A EP 06700914A EP 1838907 B1 EP1838907 B1 EP 1838907B1
Authority
EP
European Patent Office
Prior art keywords
fibres
brushes
temperature
copolymers
pom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06700914.2A
Other languages
English (en)
French (fr)
Other versions
EP1838907A1 (de
Inventor
Dirk Zierer
Rainer Bernstein
Jörg Schweitzer
Klaus Kurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ticona GmbH
Original Assignee
Ticona GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ticona GmbH filed Critical Ticona GmbH
Publication of EP1838907A1 publication Critical patent/EP1838907A1/de
Application granted granted Critical
Publication of EP1838907B1 publication Critical patent/EP1838907B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products

Definitions

  • the present invention relates to a process for the production of polyoxymethylene fibers with high Wiederaufraumsw, in particular monofilaments, which can be used in particular as bristles in brushes, brooms and brushes of all kinds.
  • Polyoxymethylene (hereinafter also referred to as "POM") is a high performance polymer with good mechanical properties and excellent chemical resistance. Moldings made of POM are characterized by high crystallinity and high moduli of elasticity.
  • a method of making high molecular weight linear POM filaments is known. This involves preparing a spinning solution of a certain viscosity and spinning this solution by the dry or wet spinning process into POM filaments, which are then subjected to drawing on a heating stirrup. Typical draw ratios are around 1:10.
  • the JP-A-01 / 172.821 describes the production of POM fibers by melt spinning.
  • the process comprises melting the raw material and spinning under defined conditions and carrying out at least a 1: 4 draw at defined input and output speeds.
  • the process is characterized by high productivity and high-strength POM filaments are produced.
  • EP-A-1,321,546 describes the production of high-strength and high-modulus POM split fibers.
  • a film is produced using selected POM copolymers with defined viscosities. By selecting the raw material, the crystallization rate can be controlled and stable film formation and controlled stretching of the film is possible.
  • EP-A-1,431,428 describes high-strength and high-modulus POM fibers. These are obtained by melt spinning using POM copolymers of selected crystallization rate. Again, by the selection of the raw material controlled stretching is possible, so that fibers are produced with very high tensile strengths.
  • Another object of the present invention is to provide bristles which are excellent for use in paintbrushes, brooms or brushes of all kinds and whose abrasion resistance is excellent in comparison with bristles of other materials.
  • Another object of the present invention is to provide a process for producing these POM fibers which is characterized by high productivity.
  • All polyoxymethylene copolymers are suitable for the production of the fibers according to the invention, provided that they have the mentioned melt indices.
  • polyoxymethylenes as used for example in the DE-A-29 47 490
  • POM polyoxymethylenes
  • they are straight-chain linear polymers which generally contain at least 80%, preferably at least 90%, oxymethylene units (-CH 2 -O-).
  • polyoxymethylene in this case comprises copolymers of formaldehyde or its cyclic oligomers, such as trioxane or tetroxane, with monomers copolymerizable therewith.
  • Copolymers are thus polymers derived from formaldehyde and / or its cyclic oligomers, in particular trioxane, and cyclic ethers, cyclic acetals and / or linear polyacetals.
  • the hydroxyl end groups of these copolymers are chemically stabilized against degradation in a conventional manner, for. B. by esterification or by etherification.
  • these polymers have at least 50 mole percent of recurring units -CH 2 -O- in the polymer backbone.
  • the POM copolymers are generally prepared by copolymerization of formaldehyde or trioxane with suitable comonomers, preferably in the presence of suitable catalysts.
  • POM copolymers which, in addition to the repeating units -CH 2 -O-, also contain up to 50, preferably from 0.1 to 20 and in particular 0.5 to 10 mol% of recurring units wherein R 1 to R 4 are independently a hydrogen atom, a C 1 to C 4 alkyl group or a halogen-substituted alkyl group having 1 to 4 carbon atoms and R 5 is a -CH 2 -, -O-CH 2 -, a C 1 to C 4 alkyl or C 1 to C 4 haloalkyl substituted methylene group or a corresponding oxymethylene group and n has a value in the range of 0 to 3.
  • these groups can be introduced into the copolymers by ring opening of cyclic ethers.
  • Preferred cyclic ethers are those of the formula wherein R 1 to R 5 and n have the abovementioned meaning.
  • ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, 1,3-butylene oxide, 1,3-dioxane, 1,3-dioxolane, 1,3-dioxepane and 1,3,6-trioxacyclo-octane as cyclic ethers and linear oligo- or polyformals, such as polydioxolane or polydioxepane, called comonomers.
  • Copolymers of 99.5-95 mol% of trioxane and 0.5 to 5 mol% of one of the abovementioned comonomers are particularly advantageously used.
  • the POM copolymers preferably used have melting points of at least 140 ° C and molecular weights (weight average) M w in the range of 5,000 to 200,000, preferably from 7,000 to 150,000.
  • End-group-stabilized POM copolymers which have C-C bonds or the methoxy end groups at the chain ends are particularly preferably used to prepare the fibers according to the invention.
  • the POM copolymers used to prepare the fibers according to the invention have a melt index (MVR value 190 / 2.16) of 0.3 to 30 ml / 10 min (ISO 1133), preferably an MVR value of 1 to 10 ml / 10 min and most preferably an MVR value of 1 to 3 ml / 10 min.
  • Preferred POM copolymers have in addition to recurring oxymethylene groups 0.5 to 10 mol%, preferably 1 to 5 mol% and in particular 1.5 to 4 mol%, of structural units derived from comonomers.
  • the latter are usually comonomers which are only bifunctional, that is, which can not form branches or crosslinks.
  • the POM copolymers used according to the invention are therefore in the essentially linear and are characterized by a high crystallization half-life.
  • Typical crystallization half-lives of the POM copolymers used according to the invention are at least 30 seconds, determined by cooling from 200 ° C to a temperature which is usually 10 ° C below the melting temperature of the respective POM copolymer, at a cooling rate of 80 ° C / minute and maintaining that temperature at that observation temperature. The determination of the time takes place from reaching the observation temperature.
  • Preferred POM copolymers have no or as few constituents as possible, which can accelerate the crystallization behavior. These include inorganic or organic nucleating agents, nucleating POM terpolymers or impurities resulting from the preparation of the POM copolymer. The latter can preferably be removed by reprecipitation, wherein the POM copolymer preferably in a water methanol mixture, which may contain other components such as trioxane, formaldehyde, amines, etc., under pressure, preferably between 1 bar and 50 bar, at temperatures of 100 ° C. to 250 ° C, preferably from 140 ° C, more preferably from 150 ° C to 200 ° C is dissolved. This process is also referred to as solution hydrolysis.
  • Particularly preferably used POM copolymers have, in addition to recurring oxymethylene groups of the formula I, 0.5 to 10 mol%, preferably 1 to 5 mol% and in particular 1.5 to 3 mol%, of oxyalkylene groups of the forms II, - [CH 2 -O] - (I), - [(CH 2 ) m -O] y - (II), wherein m is an integer from 2 to 4, preferably 2, and y is 1 or 2.
  • the determination of the MVR value of the polyoxymethylene copolymers used according to the invention is carried out according to ISO 1133: 190 ° C / 2.16 kg
  • Preferred polyoxymethylene copolymer fibers are derived from polyoxymethylene copolymers whose crystallization half-life is at least 100 seconds, most preferably at least 150 seconds.
  • Preferred polyoxymethylene copolymer fibers have a recovery capacity, measured by the double loop method in air and / or water, of at least 130 °.
  • the polyoxymethylene copolymer fibers typically have a tensile strength, determined according to DIN 53834-1 (tensile test on monofilaments), of up to 45 cN / tex, more preferably up to 40 cN / tex.
  • the polyoxymethylene copolymer fibers typically have an elongation at break, determined according to DIN 53834-1 (tensile test on monofilaments), of up to 100%, particularly preferably 25 to 100% and very particularly preferably from 30 to 100%.
  • POM copolymer fibers are to be understood as meaning any POM copolymer-containing fibers.
  • filaments or staple fibers which consist of several individual fibers, but in particular monofilaments.
  • Important for achieving the property profile is the use of a certain POM raw material and a not too high draw ratio.
  • the filament formed is drawn several times.
  • the fibers can be present in any desired form, for example as multifilaments, as staple fibers or in particular as monofilaments.
  • the titer of the fibers can vary widely. Examples are 100 to 45,000 dtex, in particular 400 to 7,000 dtex.
  • a polyoxymethylene raw material stabilized against thermal degradation is used, which may optionally contain further additives customary for POM molding compounds.
  • stabilizers are antioxidants, acid scavengers, formaldehyde scavengers, and / or UV stabilizers.
  • adhesion promoters such as glass beads, calcium carbonate, talc, wollastonite or silica
  • Fillers such as glass beads, calcium carbonate, talc, wollastonite or silica
  • Reinforcing materials such as carbon fibers, aramid fibers or glass fibers, antistatic agents or additives, which give the molding composition a desired property, such as dyes and / or pigments and / or impact modifiers and / or electrical conductivity-imparting additives, e.g. Carbon black or metal particles, as well as mixtures of these additives, but without limiting the scope of the examples mentioned.
  • the proportion of these stabilizers and additives in the fibers according to the invention is usually 0.2 to 30 wt.%, Preferably 0.5 to 25 wt.%, Based on the mass of the fibers.
  • the hot polymer filament is cooled by introduction into a liquid bath.
  • the liquid bath has a temperature of less than 150 ° C; the temperature of the liquid bath can vary within wide ranges, for example from -80 ° C to 150 ° C, preferably 20 ° C to 90 ° C. It can be used different cooling liquids, preferably water or a mixture of water and alcohol. Instead of a cooling bath, the filament can also be passed through different cooling baths. The cooled filament is withdrawn from the cooling bath and optionally subsequently wound up. The removal speed is greater than the injection rate of the polymer melt.
  • the fiber thus produced is subsequently subjected to post-drawing, particularly preferably in several stages, in particular a two- or three-stage post-drawing, with a total draw ratio of up to 1: 6, in particular from 1: 2 to 1: 6, preferably from 1: 4 to 1 : 6, subjected.
  • Stretching can be done on heated godets, by passing over a heated iron and / or by passing the filament through an infrared tunnel or a heating bath.
  • the temperature during stretching is preferably 150 to 190 ° C, particularly preferably 170 to 180 ° C.
  • the polyoxymethylene fibers are used in particular in the form of monofilaments or bristles in a wide variety of applications.
  • Preferred applications include toothbrushes, hair brushes, artist and writing brushes, technical brushes, paintbrushes and painters brushes, paint rollers and ink pads, cosmetic brushes, cleaning brushes and brooms for street and household and brushes and brushes for body care.
  • Plastic granules (1) are melted in an extruder (2) and pressed through a melt pump (4) through the fine opening of a nozzle plate (5).
  • the extruded filament (8) is passed through a tempered water bath (7) and, before being wound between stretching units (10, 13, 16), drawn in heating furnaces (11, 14) in order to achieve the necessary parallel alignment of the molecules.
  • the furnace temperatures and the stretching ratios between the individual stretching units are of crucial importance for the property profile of the monofilament produced.
  • Crystallization half-life The crystallization of thin, melted at 200 ° C POM films (layer thickness 10-100 microns) was followed after rapid cooling to the respective observation temperature under the polarizing microscope with a photocell. The crystallization half-life resulted from the time between the optically detectable onset of crystallization and the achievement of half the maximum light intensity.
  • MVR value determined in accordance with ISO 1133 (MVR 190 ° C / 2.16 kg)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyoxymethylenfasern mit hohem Wiederaufrichtungsvermögen, insbesondere Monofilamente, die sich insbesondere als Borsten in Bürsten, Besen und Pinseln aller Art einsetzen lassen.
  • Polyoxymethylen (nachstehend auch als "POM" bezeichnet) ist ein Hochleistungspolymer mit guten mechanischen Eigenschaften und ausgezeichneter Chemikalienbeständigkeit. Formkörper aus POM zeichnen sich durch hohe Kristallinität und hohe E-Moduli aus.
  • Es sind auch bereits Fasern aus POM bekannt, die sich durch gute mechanische Eigenschaften auszeichnen, beispielsweise durch hohe Festigkeiten und hohe E-Moduli, und die nach ihrer Herstellung hoch verstreckt werden, um das Potential des Werkstoffes voll auszuschöpfen.
  • Aus der DE-A-1 660 287 ist ein Verfahren zur Herstellung von Fäden aus hochmolekularem linearen POM bekannt. Dieses umfaßt das Herstellen einer Spinnlösung einer bestimmten Viskosität und das Verspinnen dieser Lösung nach dem Trocken- oder Nassspinnverfahren zu POM-Fäden, die danach einer Verstreckung auf einem Heizbügel unterworfen werden. Typische Verstreckverhältnisse bewegen sich um 1 : 10.
  • Die JP-A-01/172,821 beschreibt die Herstellung von POM-Fasern durch Schmelzspinnen. Das Verfahren umfaßt ein Aufschmelzen des Rohstoffs und ein Verspinnen unter definierten Bedingungen sowie das Durchführen einer Verstreckung von mindestens 1 : 4 unter definierten Eingangs- und Ausgangsgeschwindigkeiten. Das Verfahren zeichnet sich durch eine hohe Produktivität aus und es werden hochfeste POM-Filamente erzeugt. EP-A-1,321,546 beschreibt die Herstellung hochfester und hochmoduliger POM-Spaltfasern. Dazu wird eine Folie hergestellt, wobei ausgewählte POM-Copolymere mit definierten Viskositäten zum Einsatz kommen. Durch die Auswahl des Rohstoffes läßt sich die Kristallisationsgeschwindigkeit kontrollieren und es ist eine stabile Filmbildung und eine kontrollierte Verstreckung des Films möglich.
  • In EP-A-1,431,428 werden hochfeste und hochmodulige POM-Fasern beschrieben. Diese werden durch Schmelzspinnen erhalten, wobei POM-Copolymere mit ausgewählter Kristallisationsgeschwindigkeit verwendet werden. Auch hier ist durch die Auswahl des Rohstoffes eine kontrollierte Verstreckung möglich, so daß Fasern mit sehr hohen Zugfestigkeiten erzeugt werden.
  • Die bekannten Entwicklungen zielten bislang auf die Erzeugung von POM-Fasern mit möglichst hohen Zugfestigkeiten und E-Moduli ab. Allerdings besitzen derartige Fasern geringe Elastizität und Querfestigkeit, was sich in einer niedrigen Knotenfestigkeit und einem schlechten Wiederaufrichtungs-vermögen nach dem Biegen oder Knicken äußert.
  • Ausgehend von diesem Stand der Technik ist es Aufgabe der vorliegenden Erfindung, Fasern mit ausgezeichnetem Rückstellvermögen ausgedrückt durch deren Wiederaufrichtungsvermögen bereitzustellen.
  • Eine weitere Aufgabe der vorliegenden Erfindung betrifft das Bereitstellen von Borsten, die sich in Pinseln, Besen oder Bürsten aller Art hervorragend einsetzen lassen und deren Scheuerbeständigkeit im Vergleich mit Borsten aus anderen Materialien hervorragend ist.
  • Eine weitere Aufgabe der vorliegenden Erfindung betrifft das Bereitstellen eines Verfahrens zur Herstellung dieser POM-Fasern, das sich durch hohe Produktivität auszeichnet.
  • Ein Beispiel für Anwendungen, bei denen die Kombination hoher mechanischer und chemischer Beanspruchungen vorliegt, ist der Einsatz von Monofilamenten oder Borsten in Bürsten, wie Scheuerbürsten oder insbesondere Zahnbürsten. Dieser Einsatz verlangt ein Monofilamentmaterial mit ausgezeichneten mechanischen Eigenschaften, wie hohem Anfangsmodul, Reißfestigkeit, Knoten- und Schlingenfestigkeit, sowie eine hohe Abriebfestigkeit verbunden mit einer hohen Resistenz gegenüber Chemikalien.
  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fasern enthaltend Polyoxymethlen-Copolymere mit einem Schmelzindex MVR (ermittelt nach ISO 1133 bei 190°C und einer Belastung von 2,16 kg) von 0,3 bis 30 ml/10 min, die ein Wiederaufrichtungsvermögen, gemessen nach der Doppelschlaufenmethode in Luft und/oder Wasser, von mindestens 125° besitzen, umfassend die Maßnahmen:
    • i) Extrudieren einer Schmelze enthaltend Polyoxymethylen-Copolymer mit einem Schmelzindex MVR (ermittelt nach ISO 1133 bei 190°C und einer Belastung von 2,16 kg) von 0,3 bis 30 ml/10 min durch eine Spinndüse,
    • ii) Einbringen des gebildeten Filaments in ein Flüssigkeitsbad, das eine Temperatur von weniger als 150°C aufweist, iii) Abziehen des gebildeten Filaments,
    • iv) ein- oder mehrfaches Verstrecken mit einem gesamten Verstreckverhältnis von nicht mehr als 1:6, und
    • v) gegebenenfalls Erhitzen des verstreckten Filaments unter Zulassung von Schrumpf.
  • Für die Herstellung der erfindungsgemäßen Fasern eignen sich alle Polyoxymethylen-Copolymeren, sofern diese die genannten Schmelzindizes aufweisen.
  • Beispiele für geeignete Polyoxymethylen-Copolymere finden sich in der EP-A-1,431,428 und in der 1,321,546 .
  • Bei den Polyoxymethylenen (POM), wie sie beispielsweise in der DE-A-29 47 490 beschrieben sind, handelt es sich im Allgemeinen um unverzweigte lineare Polymere, die in der Regel mindestens 80 %, vorzugsweise mindestens 90 %, Oxymethyleneinheiten (-CH2-O-) enthalten.
  • Der Begriff Polyoxymethylene umfasst dabei Copolymere des Formaldehyds oder seiner cyclischen Oligomeren, wie Trioxan oder Tetroxan, mit damit copolymerisierbaren Monomeren.
  • Copolymere sind also Polymere abgeleitet von Formaldehyd und/oder seinen cyclischen Oligomeren, insbesondere Trioxan, und cyclischen Ethern, cyclischen Acetalen und/oder linearen Polyacetalen. Die Hydroxylendgruppen dieser Copolymeren sind in an sich bekannter Weise chemisch gegen Abbau stabilisiert sind, z. B. durch Veresterung oder durch Veretherung.
  • Derartige POM-Copolymerisate sind dem Fachmann an sich bekannt und in der Literatur beschrieben.
  • Ganz allgemein weisen diese Polymere mindestens 50 mol-% an wiederkehrenden Einheiten -CH2-O- in der Polymerhauptkette auf. Die POM-Copolymeren werden im allgemeinen durch Copolymerisation von Formaldehyd oder Trioxan mit geeigneten Comonomeren hergestellt, vorzugsweise in der Gegenwart von geeigneten Katalysatoren.
  • Zur Herstellung der erfindungsgemäßen Fasern werden POM-Copolymere bevorzugt, die neben den wiederkehrenden Einheiten -CH2-O- noch bis zu 50, vorzugsweise von 0,1 bis 20 und insbesondere 0,5 bis 10 Mol- % an wiederkehrenden Einheiten
    Figure imgb0001
    enthalten, wobei R1 bis R4 unabhängig voneinander ein Wasserstoffatom, eine C1-bis C4-Alkylgruppe oder eine halogensubstituierte Alkylgruppe mit 1 bis 4 C-Atomen und R5 eine -CH2-, -O-CH2-, eine C1- bis C4-Alkyl- oder C1- bis C4- Haloalkyl substituierte Methylengruppe oder eine entsprechende Oxymethylengruppe darstellen und n einen Wert im Bereich von 0 bis 3 hat.
  • Vorteilhafterweise können diese Gruppen durch Ringöffnung von cyclischen Ethern in die Copolymeren eingeführt werden. Bevorzugte cyclische Ether sind solche der Formel
    Figure imgb0002
    wobei R1 bis R5 und n die obengenannte Bedeutung haben.
  • Nur beispielsweise seien Ethylenoxid, 1,2-Propylenoxid, 1,2-Butylenoxid, 1,3-Butylenoxid, 1,3-Dioxan, 1,3-Dioxolan, 1,3-Dioxepan und 1,3,6-Trioxacyclo-octan als cyclische Ether sowie lineare Oligo- oder Polyformale, wie Polydioxolan oder Polydioxepan, als Comonomere genannt.
  • Besonders vorteilhaft werden Copolymere aus 99,5 - 95 Mol-% Trioxan und 0,5 bis 5 mol-% eines der vorgenannten Comonomere eingesetzt.
  • Verfahren zur Herstellung der vorstehend beschriebenen POM-Copolymerisate sind dem Fachmann bekannt und in der Literatur beschrieben.
  • Die bevorzugt eingesetzten POM-Copolymere haben Schmelzpunkte von mindestens 140°C und Molekulargewichte (Gewichtsmittelwert) Mw im Bereich von 5.000 bis 200.000, vorzugsweise von 7.000 bis 150.000.
  • Endgruppenstabilisierte POM-Copolymerisate, die an den Kettenenden C-C-Bindungen oder die Methoxy-Endgruppen aufweisen, werden zur Herstellung der erfindungsgemäßen Fasern besonders bevorzugt eingesetzt.
  • Die zur Herstellung der erfindungsgemäßen Fasern eingesetzten POM-Copolymeren weisen einen Schmelzindex (MVR Wert 190/2,16) von 0,3 bis 30 ml/10 min (ISO 1133) auf, bevorzugt einen MVR-Wert von 1 bis 10 ml/10 min und ganz besonders bevorzugt einen MVR-Wert von 1 bis 3 ml/10 min.
  • Bevorzugt eingesetzte POM-Copolymere weisen neben wiederkehrenden Oxymethylengruppen 0,5 bis 10 mol %, vorzugsweise 1 bis 5 mol % und insbesondere 1,5 bis 4 mol %, an Struktureinheiten auf, die sich von Comonomeren ableiten. Bei letzteren handelt es sich üblicherweise um Comonomere, die nur bifunktionell sind, d.h., die keine Verzweigungen oder Vernetzungen ausbilden können. Die erfindungsgemäß eingesetzten POM-Copolymere sind also im wesentlichen linear und zeichnen sich durch eine hohe Kristallisations-Halbwertszeit aus.
  • Typische Kristallisations-Halbwertszeiten der erfindungsgemäß eingesetzten POM-Copolymeren betragen mindestens 30 Sekunden, ermittelt durch Abkühlung von 200 °C auf eine Temperatur, die üblicherweise 10°C unter der Schmelztemperatur des jeweiligen POM-Copolymeren liegt, bei einer Abkühlgeschwindigkeit von 80°C/Minute und Aufrechterhalten dieser Temperatur bei dieser Beobachtungstemperatur. Die Ermittlung der Zeit erfolgt ab Erreichen der Beobachtungstemperatur.
  • Bevorzugte POM-Copolymere weisen keine oder möglichst wenig Bestandteile auf, die das Kristallisationsverhalten beschleunigen können. Dazu zählen anorganische oder organische Nukleierungsmittel, nukleierend wirkende POM-Terpolymere oder Verunreinigungen, die bei der Herstellung des POM-Copolymers anfallen. Letztere können vorzugsweise durch Umfällen entfernt werden, wobei das POM-Copolymer vorzugsweise in einem Wasser Methanolgemisch, das weitere Komponenenten wie Trioxan, Formaldehyd, Amine etc. enthalten kann, unter Druck, bevorzugt zwischen 1 bar und 50 bar, bei Temperaturen von 100 °C bis 250 °C, bevorzugt von 140 °C, besser von 150 °C bis 200°C aufgelöst wird. Dieser Prozess wird auch als Lösungshydrolyse bezeichnet.
  • Besonders bevorzugt eingesetzte POM-Copolymere weisen neben wiederkehrenden Oxymethylengruppen der Formel I 0,5 bis 10 mol %, vorzugsweise 1 bis 5 mol % und insbesondere 1,5 bis 3 mol %, an Oxyalkylengruppen der Formen II auf,

            -[CH2-O]-     (I),

            -[(CH2)m-O]y-     (II),

    worin m eine ganze Zahl von 2 bis 4, vorzugsweise 2 ist, und y 1 oder 2 bedeutet.
  • Die Ermittlung des MVR-Wertes der erfindungsgemäß eingesetzten Polyoxymethylen-Copolymeren erfolgt gemäß ISO 1133: 190°C/2,16 kg
  • Die Ermittlung der Kristallisations-Halbwertszeit und des Wiederaufricht-vermögens der erfindungsgemäßen Fasern erfolgt wie in den nachfolgenden Beispielen beschrieben.
  • Bevorzugte Polyoxymethylen-Copolymerfasern leiten sich von Polyoxymethylen-Copolymeren ab, deren Kristallisations-Halbwertszeit mindestens 100 Sekunden, ganz besonders bevorzugt mindestens 150 Sekunden beträgt.
  • Bevorzugte Polyoxymethylen-Copolymerfasern besitzen ein Wiederaufrichtungsvermögen, gemessen nach der Doppelschlaufenmethode in Luft und/oder Wasser, von mindestens 130°.
  • Die Polyoxymethylen-Copolymerfasern besitzen typischerweise eine Zugfestigkeit, ermittelt nach DIN 53834-1 (Zugversuch an Monofilen), von bis zu 45 cN/tex, besonders bevorzugt bis zu 40 cN/tex.
  • Die Polyoxymethylen-Copolymerfasern besitzen typischerweise eine Reißdehnung, ermittelt nach DIN 53834-1 (Zugversuch an Monofilen), von bis zu 100 %, besonders bevorzugt 25 bis 100 % und ganz besonders bevorzugt von 30 bis 100 %.
  • Unter POM-Copolymerfasern sind im Rahmen dieser Beschreibung beliebige POM-Copolymer enthaltende Fasern zu verstehen.
  • Beispiele dafür sind Filamente oder Stapelfasern, die aus mehreren einzelnen Fasern bestehen, insbesondere jedoch Monofilamente.
  • Wichtig zur Erzielung des Eigenschaftsprofils ist der Einsatz eines bestimmten POM-Rohstoffes und ein nicht zu hohes Verstreckverhältnis.
  • In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren wird das gebildete Filament mehrfach verstreckt.
  • Die Fasern können in beliebiger Form vorliegen, beispielsweise als Multifilamente, als Stapelfasern oder insbesondere als Monofilamente.
  • Der Titer der Fasern kann in weiten Bereichen schwanken. Beispiele dafür sind 100 bis 45.000 dtex, insbesondere 400 bis 7.000 dtex.
  • Besonders bevorzugt werden Monofilamente, deren Querschnittsform rund, oval oder n-eckig ist, wobei n größer gleich 3 ist.
  • Zur Herstellung der Fasern wird ein gegenüber thermischem Abbau stabilisierter Polyoxymethylen-Rohstoff eingesetzt, der gegebenenfalls weitere für POM-Formmassen übliche Zusatzstoffe enthalten kann.
  • Beispiele für Stabilisatoren sind Antioxidantien, Säurefänger, Formaldehydfänger, und/oder UV-Stabilisatoren.
  • Beispiele für weitere für POM-Formmassen übliche Zusatzstoffe sind Haftvermittler, Gleitmittel, Entformungsmittel, Füllstoffe, wie Glaskugeln, Calciumcarbonat, Talkum, Wollastonit oder Siliciumdioxid; Verstärkungs-materialien, wie Carbonfasern, Aramidfasern oder Glasfasern, Antistatika oder Zusätze, die der Formmasse eine gewünschte Eigenschaft verleihen, wie Farbstoffe und/oder Pigmente und/oder Schlagzähmodifiziermittel und/oder elektrische Leitfähigkeit vermittelnde Zusätze, z.B. Ruß oder Metallpartikel, sowie Mischungen dieser Zusätze, ohne jedoch den Umfang auf die genannten Beispiele zu beschränken.
  • Der Anteil dieser Stabilisatoren und Zusatzstoffe in den erfindungsgemäßen Fasern beträgt üblicherweise 0,2 bis 30 Gew. %, vorzugsweise 0,5 bis 25 Gew. %, bezogen auf die Masse der Fasern.
  • Nach dem Pressen der Polymerschmelze durch eine Spinndüse wird der heiße Polymerfaden durch Einbringen in ein Flüssigkeitsbad abgekühlt. Das Flüssigkeitsbad weist eine Temperatur von weniger als 150°C auf; die Temperatur des Flüssigkeitsbades kann in weiten Bereichen variieren, beispielsweise von -80°C bis 150°C, vorzugsweise 20°C bis 90°C. Es können unterschiedliche Kühlflüssigkeiten eingesetzt werden, vorzugsweise Wasser oder ein Gemisch von Wasser und Alkohol. Anstelle eines Kühlbads kann das Filament auch durch unterschiedliche Kühlbäder geleitet werden. Das abgekühlte Filament wird aus dem Kühlbad abgezogen
    und gegebenenfalls anschließend aufgewickelt. Die Abziehgeschwindigkeit ist dabei größer als die Spritzgeschwindigkeit der Polymerschmelze.
  • Die so hergestellte Faser wird anschließend einer Nachverstreckung, besonders bevorzugt in mehreren Stufen, insbesondere einer zwei- oder dreistufigen Nachverstreckung, mit einem Gesamtverstreckungsverhältnis von bis zu 1 : 6, insbesondere von 1 : 2 bis 1 : 6, vorzugsweise von 1 : 4 bis 1 : 6, unterzogen. Das Verstrecken kann auf beheizten Galetten, durch Überleiten über ein beheiztes Bügeleisen und/oder durch Durchleiten des Filaments durch einen Infrarottunnel oder ein Heizbad erfolgen. Die Temperatur beim Verstrecken beträgt vorzugsweise 150 bis 190°C, besonders bevorzugt 170 bis 180°C.
  • Nach der Verstreckung schließt sich vorzugsweise eine Thermofixierung an, wobei typischerweise Temperaturen von 150 bis 200°C zum Einsatz kommen; dabei wird bei konstanter Länge gearbeitet oder es wird ein Schrumpf zugelassen.
  • Als besonders vorteilhaft für die Herstellung der Fasern hat es sich erwiesen, wenn bei einer Schmelzetemperatur im Bereich von 180 bis 230°C gearbeitet wird.
  • Die Polyoxymethylenfasern werden insbesondere in der Form von Monofilamenten oder Borsten in unterschiedlichsten Anwendungs-gebieten eingesetzt. Bevorzugte Einsatzgebiete sind Zahnbürsten, Haar-bürsten, Künstler- und Schreibpinsel, technische Bürsten, Malerpinsel und Malerbürsten, Farbroller und Farbkissen, Kosmetikpinsel, Reinigungsbürsten und Besen für Straße und Haushalt sowie Bürsten und Pinsel zur Körperpflege.
  • Diese Verwendungen sind ebenfalls Gegenstand der vorliegenden Erfindung.
  • In der Figur ist das Herstellungsverfahren der erfindungsgemäßen Monofilamente skizziert.
  • Kunststoffgranulat (1) wird in einem Extruder (2) aufgeschmolzen und über eine Schmelzepumpe (4) durch die feine Öffnung einer Düsenplatte (5) gepreßt. Das extrudierte Filament (8) wird durch ein temperiertes Wasserbad (7) geführt und vor der Aufwicklung zwischen Reckwerken (10, 13, 16) in Wärmeöfen (11, 14) verstreckt um die nötige parallele Ausrichtung der Moleküle zu erreichen. Dabei sind die Ofentemperaturen und die Verstreckverhältnisse zwischen den einzelnen Reckwerken von entscheidender Bedeutung für das Eigenschaftsprofil des erzeugten Monofilaments.
  • Einige Verfahrensparameter sowie Eigenschaften der erhaltenen Monofilamente sind in der nachfolgenden Tabelle dargestellt. Bei den Versuchen wurde ein POM-Copolymeres eingesetzt, das durch folgende Größen gekennzeichnet war:
  • Kristallisations-Halbwertszeit: Die Kristallisation von dünnen, bei 200°C aufgeschmolzenen POM-Filmen (Schichtdicke 10-100 µm) wurde nach dem raschen Abkühlen auf die jeweilige Beobachtungstemperatur unter dem Polarisationsmikroskop mit einer Photozelle verfolgt. Die Kristallisations-halbwertszeit ergab sich aus der Zeitspanne zwischen dem optischen erkennbaren Beginn der Kristallisation und dem Erreichen der halben maximalen Lichtintensität. Als Beobachtungstemperatur Tb wurde für POM-Polymere mit Schmelzpunkten Tm eine Temperatur von Tb = Tm-10K gewählt. Für POM-Typen mit Schmelzpunkten von 162°C lag Tb also bei 152°C.
  • MVR-Wert: ermittelt gemäß ISO 1133 (MVR 190°C/2,16 kg)
  • Wiederaufrichtevermögen: Die Charakterisierung erfolgte nach der Doppelschlaufenmethode. Dazu wurden die Proben 24 Stunden in einem vollklimatisierten Messraum bei 23°C und einer Luftfeuchte von 50% konditioniert (gemäß DIN 50014-23/50-1 von 07/85).
  • Zur Durchführung der Messung wurden fünf Einzelfäden mit einer Länge von 600 ± 2 mm zugeschnitten. Aus den Einzelfäden wurden jeweils zwei Fäden von 300 mm Länge geschnitten, wobei diese Fäden zu zwei ineinander-hängenden Schlaufen verknotet wurden. Eine Schlaufe wurde auf den Haken eines Stativs gehängt, während an die zweite Schlaufe das nach der unten stehenden Formel berechnete Gewicht gehängt wurde. Die Belastungsdauer betrug 5 Minuten. Durch die Belastung wurde eine Knickung um 180° erreicht, wobei der Krümmungsradius mit dem Fadenradius übereinstimmte. Nach der Entlastung wurden die Schlaufen jeweils 5 cm von der Knickstelle entfernt aufgeschnitten. Der Abschnitt der ersten Schlaufe wurde auf einer Glasplatte an der Luft fünf Minuten entspannt. Unmittelbar nach Ablauf der fünf Minuten wurde der aufgehende Winkel mit einem Winkelmesser ermittelt. Der Abschnitt_der zweiten Schlaufe wurde fünf Minuten bei Raumtemperatur in einem Wasserbad entspannt. Nach Ablauf der fünf Minuten wurde der Faden aus dem Wasserbad entnommen, auf eine Glasplatte gelegt und dort der aufgehende Winkel mit einem Winkelmesser ermittelt.
  • Die Belastung wurde nach folgender Formel berechnet: G = d 2 * π * 1280 * 2 4
    Figure imgb0003

    G = Belastungsgewicht in Gramm
    d = Faserdurchmesser in mm Tabelle
    Beispiel Nr. Reckwerk 1 (m/min) Ofen 1 (°C) Reckwerk 2 (m/min) Ofen 2 (°C) Verstreckung Zugspannung (N/mm2) Festigkeit (cN/tex) Dehnung (%) Wiederauf richtung in Luft (Grad) Wiederaufrichtung in Wasser (Grad) Durchmesser (mm)
    V1 12 180 126 190 10,96 875 62,0 26,7 95 97 0,156
    V2 16 173 114 180 7,13 762 54,4 27,5 106 110 0,139
    V3 16 175 110 175 6,88 733 52,4 25,9 109 113 0,142
    4 27 175 150 175 5,56 569 40,6 33,2 129 131 0,139
    5 20 175 110 175 5,50 466 33,3 33,3 129 132 0,142
    6 18 175 100 175 5,56 326 23,2 34,7 130 133 0,139
    7 16 175 90 175 5,63 222 15,9 46,0 131 132 0,137
    8 18 180 96 180 5,33 230 16,4 46,7 131 133 0,145
    9 18 175 100 175 5,56 353 25,2 38,5 131 134 0,148

Claims (16)

  1. Verfahren zur Herstellung von Fasern enthaltend Polyoxymethlen-Copolymere mit einem Schmelzindex MVR, ermittelt nach ISO 1133 bei 190°C und einer Belastung von 2,16 kg, von 0,3 bis 30 ml/10 min, die ein Wiederaufrichtungsvermögen, gemessen nach der Doppelschlaufenmethode in Luft und/oder Wasser, von mindestens 125° besitzen, umfassend die Maßnahmen:
    i) Extrudieren einer Schmelze enthaltend Polyoxymethylen-Copolymer mit einem Schmelzindex MVR, ermittelt nach ISO 1133 bei 190°C und einer Belastung von 2,16 kg, von 0,3 bis 30 ml/10 min durch eine Spinndüse,
    ii) einbringen des gebildeten Filaments in ein Flüssigkeitsbad, das eine Temperatur von weniger als 150°C aufweist,
    iii) Abziehen des gebildeten Filaments,
    iv) ein- oder mehrfaches Verstrecken mit einem gesamten Verstreckverhältnis von nicht mehr als 1:6, und
    v) gegebenenfalls Erhitzen des verstreckten Filaments unter Zulassung von Schrumpf.
  2. Verfahren zur Herstellung der Fasern nach Anspruch 1 umfassend das Umfällen des Polyoxymethylen-Copolymeren unter Druck bei einer Temperatur von 150°C bis 200°C.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Fasern Polyoxymethylen-Copolymere enthalten, die Schmelzpunkte von mindestens 140°C und Molekulargewichte (Gewichtsmittelwert) Mw im Bereich von 5.000 bis 200.000 aufweisen.
  4. Verfahren gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Fasern Polyoxymethylen-Copolymere enthalten, die einen Schmelzindex (MVR Wert 190/2,16) von 1 bis 10 ml/min aufweisen.
  5. Verfahren gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Fasern Polyoxymethylen-Copolymere enthalten, die neben wiederkehrenden Oxymethylengruppen 0,5 bis 10 mol% an Struktureinheiten aufweisen, die sich von Comonomeren ableiten.
  6. Verfahren gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Fasern Polyoxymethylen-Copolymere enthalten, die Kristallisations-Halbwertszeiten mindestens 30 Sekunden aufweisen, ermittelt durch Abkühlung von 200°C auf eine Temperatur, die 10°C unter der Schmelztemperatur des jeweiligen POM-Copolymeren liegt, bei einer Abkühlgeschwindigkeit von 80°C/Minute und Aufrechterhalten dieser Temperatur bei dieser Beobachtungstemperatur.
  7. Verfahren gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Fasern keine Nukleierungsmittel enthalten.
  8. Verfahren gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Fasern lösungshydrolisierte Polyoxymethylen-Copolymere enthalten.
  9. Verfahren gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Fasern Polyoxymethylen-Copolymere enthalten, die neben wiederkehrenden Oxymethylengruppen der Formel I 0,5 bis 10 mol% an Oxyalkylengruppen der Formel II aufweisen

            -[CH2-O]-     (I),

            -[(CH2)m-O]y-     (II),

    worin m eine ganze Zahl von 2 bis 4, vorzugsweise 2 ist, und y 1 oder 2 bedeutet.
  10. Verfahren gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Fasern ein Wiederaufrichtungsvermögen, gemessen nach der Doppelschlaufenmethode in Luft und/oder Wasser, von mindestens 130° besitzen.
  11. Verfahren gemäß mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Fasern eine Zugfestigkeit, ermittelt nach DIN 53834-1 von bis zu 45cN/tex besitzen.
  12. Verfahren gemäß mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Fasern eine Reißdehnung, ermittelt nach DIN 53834-1, von bis zu 100% besitzen.
  13. Verfahren gemäß mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Fasern Monofilamente sind.
  14. Verfahren gemäß mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Fasern einen Titer von 100 bis 45000 dtex aufweisen.
  15. Verwendung von Fasern enthaltend Polyoxymethlen-Copolymere mit einem Schmelzindex MVR (ermittelt nach ISO 1133 bei 190°C und einer Belastung von 2,16 kg) von 0,3 bis 30 ml/10 min, die ein Wiederaufrichtungsvermögen, gemessen nach der Doppelschlaufenmethode in Luft und/oder Wasser, von mindestens 125° besitzen in Pinseln und Bürsten.
  16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass die Fasern in der Form von Monofilamenten in Zahnbürsten, Haarbürsten, Künstler- und Schreibpinseln, technischen Bürsten, Malerpinseln und Malerbürsten, Farbrollern und Farbkissen, Kosmetikpinseln, Reinigungsbürsten für Straße und Haushalt sowie in Bürsten und Pinseln zur Körperpflege eingesetzt werden.
EP06700914.2A 2005-01-12 2006-01-10 Verfahren zur herstellung von polyoxymethylenfasern sowie verwendung solcher fasern Not-in-force EP1838907B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510001373 DE102005001373A1 (de) 2005-01-12 2005-01-12 Polyoxymethylenfasern, Verfahren zu deren Herstellung und deren Verwendung
PCT/EP2006/000118 WO2006074889A1 (de) 2005-01-12 2006-01-10 Polyoxymethylenfasern, verfahren zu deren herstellung und deren verwendung

Publications (2)

Publication Number Publication Date
EP1838907A1 EP1838907A1 (de) 2007-10-03
EP1838907B1 true EP1838907B1 (de) 2013-07-31

Family

ID=36178177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06700914.2A Not-in-force EP1838907B1 (de) 2005-01-12 2006-01-10 Verfahren zur herstellung von polyoxymethylenfasern sowie verwendung solcher fasern

Country Status (5)

Country Link
EP (1) EP1838907B1 (de)
JP (1) JP2008527192A (de)
CN (1) CN101103148B (de)
DE (1) DE102005001373A1 (de)
WO (1) WO2006074889A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009123064A1 (ja) 2008-03-31 2011-07-28 三菱瓦斯化学株式会社 ポリアセタール含有ブラシ
JP5648477B2 (ja) * 2008-07-02 2015-01-07 三菱瓦斯化学株式会社 低フィッシュアイ・ポリアセタール樹脂
CN102011201B (zh) * 2010-12-15 2012-10-10 四川省纺织科学研究院 一种聚甲醛纤维的熔融纺丝方法
CN102677217B (zh) * 2012-05-18 2014-06-18 东华大学 一种改性pom纤维及其制备方法
JP2014201838A (ja) * 2013-04-01 2014-10-27 三菱瓦斯化学株式会社 先端テーパー状を有するポリアセタール樹脂モノフィラメント及びブラシ用ブリッスル
CN104499087B (zh) * 2014-12-23 2016-06-01 江苏苏博特新材料股份有限公司 一种聚氧亚甲基纤维的制备方法
CN109837627B (zh) * 2019-02-15 2021-11-12 南通纺织丝绸产业技术研究院 一步法纳米纤维纱增强方法及一种亲水化纤织物
CN110129921B (zh) * 2019-03-27 2022-02-08 中国水产科学研究院东海水产研究所 一种渔用聚甲醛单丝及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1095750A (en) * 1965-12-06 1967-12-20 Montedison Spa Process for the spinning of crystalline polyoxymethylene polymers
DE2947490A1 (de) 1979-11-24 1981-06-04 Hoechst Ag, 6000 Frankfurt Polyoxymethylenfibride und verfahren zu ihrer herstellung
JP4907023B2 (ja) * 2001-09-18 2012-03-28 ポリプラスチックス株式会社 ポリオキシメチレン繊維の製造方法
JP4260392B2 (ja) 2001-12-14 2009-04-30 ポリプラスチックス株式会社 ポリオキシメチレン樹脂製フラットヤーン、その製造方法及び用途
JP2004360146A (ja) * 2003-06-09 2004-12-24 Polyplastics Co ポリオキシメチレン樹脂製不織布及びその製造方法

Also Published As

Publication number Publication date
CN101103148A (zh) 2008-01-09
CN101103148B (zh) 2013-01-02
DE102005001373A1 (de) 2006-07-27
JP2008527192A (ja) 2008-07-24
EP1838907A1 (de) 2007-10-03
WO2006074889A1 (de) 2006-07-20

Similar Documents

Publication Publication Date Title
EP1838907B1 (de) Verfahren zur herstellung von polyoxymethylenfasern sowie verwendung solcher fasern
DE60004960T2 (de) Hochfeste polyethylenfasern und deren verwendung
DE3023726C2 (de) Verfahren zur Herstellung von Filamenten
DE2343571C3 (de) Verfahren zur Herstellung von Acrylnitrilpolymer-Fäden
DE1100275B (de) Verfahren zur Verbesserung der mechanischen und der Verarbeitungseigenschaften von isotaktischem Polypropylen
DE2410747C2 (de) Polyäthylenpolymermaterial
DE60100458T2 (de) Polypropylenfasern
DE2509557A1 (de) Verfahren zur herstellung eines polyaethylenfadens mit hohem modul
DE2533087C2 (de) Thermoplastische Form- und Preßharze und ihre Herstellung
US7410696B2 (en) Polyoxymethylene fibers, production thereof and use thereof
DE2205370B2 (de) Verfahren zur Herstellung von Fasern aus Buten-1-homopolymeren oder -copolymeren mit Äthylen oder Propylen
EP0031078B2 (de) Feinsttitrige Synthesefasern und -fäden und Trockenspinnverfahren zu ihrer Herstellung
DD145642A5 (de) Acrylnitrilpolymerfasern und verfahren zur herstellung derselben
DE2161182B2 (de) Verfahren zur Herstellung eines orientierten Acrylnitrilpolymeren
KR101429686B1 (ko) 고점도 고강력 산업용 폴리에스테르 섬유의 제작
DE69920611T2 (de) Verfahren zur Herstellung von multilobalen Hochdenier-Filamenten aus thermotropischen Flüssigkristallpolymeren
EP2135982A2 (de) Mit Perfluorpolyethern modifizierte Monofilamente
JP2001172821A (ja) ポリオキシメチレン繊維の製造方法
EP2818587B1 (de) Polyphenylensulfidfaser, filtertuch mit polyphenylensulfidfasern und verfahren zur herstellung der polyphenylensulfidfaser
US3539676A (en) Process for producing filaments and films of polymers of alkylene sulfides
DE19860335B4 (de) Betonverstärkende Faser
Fan et al. Effects of molecular weight distribution on the melt spinning of polypropylene fibers
US4719150A (en) Monofils and bristles of homopolymers or copolymers of acrylonitrile, and a process for their manufacture
EP0944750B1 (de) Hochfeste polyacrylnitrilfasern hohen moduls, verfahren zu deren herstellung und deren verwendung
DE69924300T2 (de) Poly(arylensulfid)zusammensetzungen und deren verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100421

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006013076

Country of ref document: DE

Owner name: CELANESE SALES GERMANY GMBH, DE

Free format text: FORMER OWNER: TICONA GMBH, 65451 KELSTERBACH, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 624730

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013076

Country of ref document: DE

Effective date: 20130926

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140108

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140108

Year of fee payment: 9

26N No opposition filed

Effective date: 20140502

BERE Be: lapsed

Owner name: TICONA G.M.B.H.

Effective date: 20140131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013076

Country of ref document: DE

Effective date: 20140502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140110

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 624730

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150114

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006013076

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006013076

Country of ref document: DE

Owner name: CELANESE SALES GERMANY GMBH, DE

Free format text: FORMER OWNER: TICONA GMBH, 65451 KELSTERBACH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060110

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170104

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013076

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801