EP1812348A1 - Procede pour la synthese de nanoparticules de dioxyde de titane - Google Patents

Procede pour la synthese de nanoparticules de dioxyde de titane

Info

Publication number
EP1812348A1
EP1812348A1 EP05807465A EP05807465A EP1812348A1 EP 1812348 A1 EP1812348 A1 EP 1812348A1 EP 05807465 A EP05807465 A EP 05807465A EP 05807465 A EP05807465 A EP 05807465A EP 1812348 A1 EP1812348 A1 EP 1812348A1
Authority
EP
European Patent Office
Prior art keywords
water
tio
titanium
particles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05807465A
Other languages
German (de)
English (en)
Other versions
EP1812348A4 (fr
Inventor
Insoo Kim
Young Jin Choi
Gang Hyuk Kim
Woo Jin Lee
Charles E. Smith, Jr.
Youg Jin Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokusen USA Inc
Original Assignee
Tokusen USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokusen USA Inc filed Critical Tokusen USA Inc
Publication of EP1812348A1 publication Critical patent/EP1812348A1/fr
Publication of EP1812348A4 publication Critical patent/EP1812348A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • TiO 2 TiO 2
  • metal-doped TiO 2 metal-doped TiO 2
  • metal-coated TiO 2 particles of spherical form factor and needle type of which the average particle size is below 150nm.
  • Titanium dioxide is a material having diverse fields of application such as paints, plastics, cosmetics, inks, paper, chemical fiber, and optical catalysts.
  • TiO 2 is currently being produced all over the world using a sulfate and chloride process, but there is a problem in applying this process in a field that requires ultra-micro characteristics, since this process produces a relatively large particle diameter (sub-micron level) which does not have a high degree of purity.
  • nano-sized TiO 2 As a need for nano-sized TiO 2 increases in diverse fields, a number of researches have been conducted in this field. However, nano-sized TiO 2 is not used extensively due to the high price resulting from the complex production processes now in use. To solve this problem, it is desirable that a production process be developed so that the production cost of nano-sized TiO 2 can be lowered by increased production efficiency in a simplified production process for nano- sized pure T ⁇ O2, metal-doped TiO 2 , and metal-coated TiO 2 .
  • the present invention is a method for synthesizing TiO 2 , metal-doped TiO 2 , and metal-coated TiO 2 particles of spherical form factor and needle type of which the average particle size is below 150nm.
  • the method of the invention is to synthesize Ti(OH) 4 , metal-doped Ti(OH) 4 or metal-coated Ti(OH) 4 , and then react the same by applying a pressure at or above the saturated vapor pressure at a temperature above 10O 0 C.
  • the pressure is achieved by means of the pressure of water vapor generated during the reaction inside of a closed reactor, by pressure applied from the outside, or a mixture of both.
  • Gases to increase the pressure from outside are preferably inert gases such as Ar and N 2 but are not limited to inert gases.
  • Figs. 1 (a)-(b) relate to the TiO 2 powder obtained by the process described in Example 1.
  • Fig 1 ⁇ a) is an FESEM microphotograph.
  • Fig. 1 ⁇ b) is an XRD pattern.
  • Figs. 2(a)-(e) relate to the Ag-doped TiO 2 powder obtained by the process described in Example 2.
  • Fig. 2(a) is an FESEM microphotograph.
  • Fig. 2(b) is an XRD pattern.
  • Fig. 2(c) is an XPS survey scan.
  • Fig. 2(d) is an XPS narrow scan for silver peaks.
  • Fig. 2(e) is a chart of UV-visible absorption.
  • Figs. 1 (a)-(b) relate to the TiO 2 powder obtained by the process described in Example 1.
  • Fig 1 ⁇ a) is an FESEM microphotograph.
  • Fig. 1 ⁇ b) is an XRD pattern.
  • Fig. 3(a)-(c) relate to the Cr-doped TiO 2 powder obtained by the process described in Example 3.
  • Fig. 3(a) is an FESEM microphotograph.
  • Fig. 3(b) is an XRD pattern.
  • Fig. 3(c) is an EDS analysis.
  • Figs. 4(a)-(d) relate to the Ag-coated TiO 2 powder obtained by the process described in Example 4.
  • Fig. 4(a) is an FESEM microphotograph.
  • Fig. 4(b) is an XRD pattern.
  • Fig. 4(c) is an XPS survey scan.
  • Fig. 4(d) is an XPS narrow scan.
  • the object of the present development is to develop a method that synthesizes a large volume of pure TiO 2 , metal-doped TiO 2 , and metal-coated TiO 2 having a primary particle size below 150nm.
  • the method first synthesizes Ti(OH) 4 , metal-doped Ti(OH) 4 or metal-coated Ti(OH)4 in a solution, slurry, cake or dry powder form, and then places one of the foregoing into a closed reactor.
  • crystalline TiO 2 , metal-doped TiO 2 or metal-coated TiO 2 is synthesized from the Ti(OH) 4 , metal-doped Ti(OH) 4 or metal-coated Ti(OH) 4 , respectively, by heat treatment at a temperature above 10O 0 C under a pressure at or above the saturated vapor pressure of water.
  • the pressure in the closed reactor is achieved by water vapor pressure generated inside the reactor, water vapor pressure applied from outside the reactor, gas supplied from outside the reactor, or a mixture thereof.
  • titanium tetrachloride, titanium trichloride, titaniumoxychloride and. titanium sulfate may be used as a titanium source, but the present invention is not limited to these titanium sources and may use any organic or inorganic substance or mixtures that can dissolve in water and form titanium ions or titanium ion complexes.
  • NaOH, KOH, and NH 4 OH may be used as the alkaline substance, but the present invention is not so limited and may use any alkaline substance that can dissolve in water and increase the pH of the solution.
  • Educed Ti(OH) 4 undergoes several water cleaning processes using a centrifuge and ultrafilter system to remove impure ions residing therein.
  • Water washed Ti(OH) 4 can be obtained in the form of a solution, slurry, cake or dry powder through a concentration and drying process.
  • Metal doped Ti(OH) 4 is obtained by putting one or more metal salts into the water-soluble titanium source.
  • the water-soluble metal ion and the titanium ion are co-precipitated by adding the alkaline substance to the solution in which the titanium and metal are dissolved, and then adjusting the pH of the solution to 4 or higher as described above.
  • the present invention may use, but is not limited to, titanium tetrachloride, titanium trichloride, titaniumoxychloride or titanium sulfate as a titanium source.
  • the present invention may use, but it is not limited to NaOH, KOH, and NH 4 OH as the alkaline substance.
  • Water soluble salts of Ag, Zn, Cu, V, Cr, Mn, Fe, Co, Ni, Ge, Mo, Ru, Rh, Pd, Sn, W, Pt, Au, Sr, Al, and Si can be used as the source of the metal ion, although the present invention is not limited thereto and all water soluble metal salts may be used as well.
  • Co- precipitated metal-doped Ti(OH) 4 undergoes several water cleaning processes by using a centrifuge and ultrafilter system to remove impure ions residing therein. As a result of assay for water-washed metal-doped Ti(OH) 4 educts, added metal ingredients were detected, which are believed to co-precipitate together with the Ti ion upon addition of an alkaline substance. Water-washed metal-doped Ti(OH) 4 can be obtained in the form of a solution, slurry, cake, and dry powder through the concentration and drying process described above.
  • titanium tetrachloride, titanium trichloride, titaniumoxychloride or titanium sulfate may be used as the titanium source, but the present invention is not limited thereto and may use all organic and inorganic substances or mixtures that can dissolve in water and form titanium ions or titanium complex ions.
  • NaOH, KOH, and NH 4 OH can be used as the alkaline substance, but the present invention is not limited thereto and may use all alkaline substances that can dissolve in water and increase the pH of the solution.
  • metal salts of a desired amount are added into the dispersed Ti(OH) 4 , it is aged for a time that exceeds 5 minutes. It is preferable that the aging be at a temperature below 10O 0 C.
  • Water soluble salts of Ag, Zn, Cu, V, Cr, Mn, Fe 1 Co, Ni, Ge, Mo, Ru, Rh, Pd, Sn, W, Pt, Au, Sr, Al, and Si may be used as the metal salts in the present invention, but the practice of the present invention is not limited thereto and may use all water soluble metal salts.
  • the educts undergo a water cleaning process of 2-3 times to remove impure ions, obtaining metal-coated Ti(OH) 4 thereby.
  • water-washed Ti(OH) 4 , metal-doped Ti(OH) 4 , and metal-coated Ti(OH) 4 can exist in the form of a solution, slurry, cake or dry powder according to its moisture content and concentration degree. Considering the need for production efficiency, it is desirable to opt for the form of cake or dry powder having high titanium content.
  • Some condensed water is absolutely necessary in the reactor to decrease the reaction temperature to ensure that amorphous TiO 2 becomes anatase TiO 2 and to prevent the yellow color change mentioned above.
  • the pressure may be supplied by water vapor from the reaction, water vapor introduced into the reactor from outside, a gas such as an inert gas, or a combination of the preceding.
  • cake or dried Ti(OH) 4 was put into a closed reactor under the condition of removed humidity, and then it was reacted for 2 hours at 160°C by adding nitrogen having a pressure corresponding to the saturated vapor pressure. The phase obtained thereby was non-crystalline and it manifested a yellow color.
  • Titanium oxychloride ((dissolved TiCU in H 2 O by approximately 50 wt%)) was put into distilled water of 1 ,560cc. The final pH was adjusted to 6.5 by adding ammonia water after titanium oxychloride was completely dissolved. Then impure ions were removed by washing the educts with water. The Ti(OH) 4 with impure ions removed was then concentrated using a filtering system and it was dried for 12 hours at 6O 0 C. After dried specimen was put into the closed reactor and the pressure of the closed reactor was adjusted to 0.83 * 10 6 N/m 2 with argon gas, it was reacted for 2 hours at 16O 0 C.
  • Crystalline phase Ag-coated Ti ⁇ 2 having a primary particle size of approximately 10nm was formed (See Figs. 4(a) and (b)). It was verified that silver exists in the form of pure silver or silver oxide (See Figs. 4(c) and (d)).

Abstract

L’invention décrit un procédé pour la synthèse de TiO2, de TiO2 dopé par un métal, et de particules de TiO2 revêtues d’un métal de forme sphérique et de type aiguille dont la taille moyenne des particules est inférieure à 150 nm. Le procédé de l’invention consiste à synthétiser du Ti(OH)4, du Ti(OH)4 dopé par un métal ou du Ti(OH)4 revêtu par un métal, et à le faire réagir en appliquant une pression supérieure à la pression de la vapeur saturante à une température supérieure à 100 °C. La pression est obtenue à l’aide de la pression de la vapeur générée au cours de la réaction à l’intérieur d’un réacteur fermé, par de la pression appliquée de l’extérieur, ou d’un mélange des deux. Les gaz utilisés pour augmenter la pression de l’extérieur sont de préférence des gaz inertes tels que l’Ar et le N2 mais ne se limitent pas à des gaz inertes.
EP05807465A 2004-10-14 2005-10-13 Procede pour la synthese de nanoparticules de dioxyde de titane Withdrawn EP1812348A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61878104P 2004-10-14 2004-10-14
PCT/US2005/036745 WO2006044495A1 (fr) 2004-10-14 2005-10-13 Procede pour la synthese de nanoparticules de dioxyde de titane

Publications (2)

Publication Number Publication Date
EP1812348A1 true EP1812348A1 (fr) 2007-08-01
EP1812348A4 EP1812348A4 (fr) 2009-12-23

Family

ID=36203288

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05807465A Withdrawn EP1812348A4 (fr) 2004-10-14 2005-10-13 Procede pour la synthese de nanoparticules de dioxyde de titane

Country Status (6)

Country Link
US (1) US20080064592A1 (fr)
EP (1) EP1812348A4 (fr)
JP (1) JP2008516880A (fr)
KR (1) KR100869666B1 (fr)
CN (1) CN101065325B (fr)
WO (1) WO2006044495A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1819467A4 (fr) * 2004-10-14 2010-01-20 Tokusen U S A Inc Procede de production de particules d'argent de haute purete
DE102006029284A1 (de) * 2006-06-23 2007-12-27 Kronos International, Inc. Verfahren zur Identifizierung und Verifizierung von Titandioxid-Pigmentpartikel enthaltenden Produkten
US8557217B2 (en) * 2006-09-21 2013-10-15 Tokusen, U.S.A., Inc. Low temperature process for producing nano-sized titanium dioxide particles
KR100864230B1 (ko) * 2007-01-30 2008-10-17 고려대학교 산학협력단 티타니아 나노와이어 형성방법
KR101020738B1 (ko) * 2008-07-24 2011-03-09 경상대학교산학협력단 나노 사이즈의 이산화티탄의 제조 방법, 이에 의해제조되는 나노 사이즈의 이산화 티탄 및 이를 이용하는태양 전지
KR101016603B1 (ko) * 2008-10-17 2011-02-22 서강대학교산학협력단 티타네이트 나노쉬트의 제조방법
KR101082058B1 (ko) 2009-02-18 2011-11-10 한국수력원자력 주식회사 나노크기의 이산화티타늄 제조방법 및 이를 이용한 원자로 증기발생기 전열관의 응력부식균열 억제방법
EP2509920B1 (fr) 2009-11-10 2014-02-26 E. I. du Pont de Nemours and Company Procédé de fabrication in situ de chlorures de silicone et d'aluminium dans la fabrication de dioxyde de titane
WO2011102863A1 (fr) 2010-02-22 2011-08-25 E. I. Du Pont De Nemours And Company Procédé de formation in situ de chlorures de silicium, d'aluminium et de titane dans la préparation du dioxyde de titane
US20120216717A1 (en) * 2010-09-21 2012-08-30 E. I. Dupont De Nemours And Company Tungsten containing inorganic particles with improved photostability
US8734756B2 (en) 2010-09-21 2014-05-27 E I Du Pont De Nemours And Company Process for in-situ formation of chlorides in the preparation of titanium dioxide
DE102011081000A1 (de) * 2011-08-16 2013-02-21 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verfahren zur herstellung von titaniumdioxidpartikeln
KR20130025536A (ko) * 2011-09-02 2013-03-12 (주)현대단조 이산화티타늄 제조방법
CN102515269A (zh) * 2011-11-25 2012-06-27 黑龙江大学 水热法制备高活性多孔纳米晶二氧化钛光催化剂的方法
CN103055840B (zh) * 2012-12-06 2014-10-01 上海纳米技术及应用国家工程研究中心有限公司 超临界二氧化碳法制备稀土掺杂纳米二氧化钛光催化剂的方法及装置
CN104925750B (zh) * 2015-05-07 2017-01-04 南京文钧医疗科技有限公司 一种具有Yolk-Shell结构的TiO2纳米线-Ag/AgCl-Fe3O4复合材料的制备方法
CN106006726B (zh) * 2016-05-03 2018-11-27 广东风华高新科技股份有限公司 掺杂锐钛矿二氧化钛材料、其制备方法及其应用
CN113896235B (zh) * 2020-07-06 2023-09-26 宁波极微纳新材料科技有限公司 一种单分散纳米二氧化钛的制备方法及装置
CN113896230B (zh) * 2020-07-06 2024-02-06 极微纳(福建)新材料科技有限公司 一种提升二氧化钛分散性的方法
WO2022007764A1 (fr) * 2020-07-06 2022-01-13 宁波极微纳新材料科技有限公司 Méthode de préparation de dioxyde de titane et méthode d'amélioration de la dispersibilité du dioxyde de titane
CN113896233B (zh) * 2020-07-06 2024-02-09 极微纳(福建)新材料科技有限公司 一种低温晶化二氧化钛的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2221901A (en) * 1988-08-15 1990-02-21 Kemira Oy Titanium dioxide pigment
EP0547663A1 (fr) * 1991-12-19 1993-06-23 METALLGESELLSCHAFT Aktiengesellschaft Procédé pour la production de pastilles contenant du TiO2 et leur utilisation

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB591670A (en) * 1943-08-28 1947-08-26 Honorary Advisory Council Sci Silver catalyst and method of preparing same
US3377160A (en) * 1964-12-31 1968-04-09 Allis Chalmers Mfg Co Process of making a high surface area silver catalyst
US3702259A (en) * 1970-12-02 1972-11-07 Shell Oil Co Chemical production of metallic silver deposits
US4186244A (en) * 1977-05-03 1980-01-29 Graham Magnetics Inc. Novel silver powder composition
US4463030A (en) * 1979-07-30 1984-07-31 Graham Magnetics Incorporated Process for forming novel silver powder composition
US5250101A (en) * 1991-04-08 1993-10-05 Mitsubishi Gas Chemical Company, Inc. Process for the production of fine powder
US5369429A (en) * 1993-10-20 1994-11-29 Lasermaster Corporation Continuous ink refill system for disposable ink jet cartridges having a predetermined ink capacity
US5876511A (en) * 1994-02-02 1999-03-02 Gea Till Gmbh & Co. Method for cleaning and rinsing containers
KR0139437B1 (ko) * 1995-06-19 1998-06-01 윤덕용 물-알콜의 혼합 용매 중의 티탄염 용액으로부터 결정질 티타니아 분말의 제조 방법
JP2822317B2 (ja) * 1996-04-15 1998-11-11 日鉄鉱業株式会社 抗菌性チタニア及びその製造方法
US5973175A (en) * 1997-08-22 1999-10-26 E. I. Du Pont De Nemours And Company Hydrothermal process for making ultrafine metal oxide powders
US6444189B1 (en) * 1998-05-18 2002-09-03 E. I. Du Pont De Nemours And Company Process for making and using titanium oxide particles
KR100277164B1 (ko) * 1998-07-16 2001-01-15 장인순 저온균질침전법을이용한사염화티타늄수용액으로부터의결정성tio₂초미립분말의제조방법
EP1167296A4 (fr) * 1999-02-04 2005-03-16 Kawasaki Heavy Ind Ltd Procede de production d'oxyde de titane du type anatase et d'un materiau de revetement a base de dioxyde de titane
US6440383B1 (en) * 1999-06-24 2002-08-27 Altair Nanomaterials Inc. Processing aqueous titanium chloride solutions to ultrafine titanium dioxide
JP3515034B2 (ja) * 2000-01-26 2004-04-05 多木化学株式会社 酸化チタンゾル及びその製造方法
KR100350226B1 (ko) * 2000-02-29 2002-08-27 나노케미칼 주식회사 저온균일침전법으로 큰 비표면적을 갖도록 제조된 광촉매용 이산화티탄 분말 및 그 제조방법
EP1614659A3 (fr) 2000-07-31 2008-05-14 Sumitomo Chemical Company, Limited Procédé de préparation d'oxyde de titane
JP2002047012A (ja) * 2000-07-31 2002-02-12 Sumitomo Chem Co Ltd 酸化チタンの製造方法
US6660058B1 (en) * 2000-08-22 2003-12-09 Nanopros, Inc. Preparation of silver and silver alloyed nanoparticles in surfactant solutions
JP2002154824A (ja) * 2000-11-09 2002-05-28 Kobe Steel Ltd 微粒子酸化チタンの製造方法
JP4078479B2 (ja) * 2000-12-21 2008-04-23 住友化学株式会社 酸化チタンの製造方法
DE10107777A1 (de) * 2001-02-16 2002-09-05 Bayer Ag Kontinuierlicher Prozess für die Synthese von nanoskaligen Edelmetallpartikeln
ATE399740T1 (de) * 2001-03-24 2008-07-15 Evonik Degussa Gmbh Mit einer hülle umgebene, dotierte oxidpartikeln
US7045005B2 (en) * 2001-07-19 2006-05-16 Sumitomo Chemical Company, Limited Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
US20030185889A1 (en) * 2002-03-27 2003-10-02 Jixiong Yan Colloidal nanosilver solution and method for making the same
US20040055420A1 (en) * 2002-05-30 2004-03-25 Arkady Garbar Method for enhancing surface area of bulk metals
JP2004196626A (ja) * 2002-12-20 2004-07-15 Sumitomo Chem Co Ltd 酸化チタンの製造方法
TW200420499A (en) * 2003-01-31 2004-10-16 Sumitomo Chemical Co A method for producing titanium oxide
US6969690B2 (en) * 2003-03-21 2005-11-29 The University Of North Carolina At Chapel Hill Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles
JP2005219966A (ja) * 2004-02-05 2005-08-18 Jfe Steel Kk 酸化チタン溶液の製造方法および酸化チタン溶液ならびに光触媒コーティング材料
US7208126B2 (en) * 2004-03-19 2007-04-24 E. I. Du Pont De Nemours And Company Titanium dioxide nanopowder manufacturing process
US7270695B2 (en) * 2004-04-01 2007-09-18 Dong-A University Synthesis of nanosized metal particles
US7205049B2 (en) * 2004-04-16 2007-04-17 Tioxoclean Inc. Metal peroxide films
US20050265918A1 (en) * 2004-06-01 2005-12-01 Wen-Chuan Liu Method for manufacturing nanometer scale crystal titanium dioxide photo-catalyst sol-gel
EP1819467A4 (fr) * 2004-10-14 2010-01-20 Tokusen U S A Inc Procede de production de particules d'argent de haute purete
TW200638867A (en) * 2005-05-06 2006-11-16 Golden Biotechnology Corp Incubation and application methods for the culture of antrodia camphorata

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2221901A (en) * 1988-08-15 1990-02-21 Kemira Oy Titanium dioxide pigment
EP0547663A1 (fr) * 1991-12-19 1993-06-23 METALLGESELLSCHAFT Aktiengesellschaft Procédé pour la production de pastilles contenant du TiO2 et leur utilisation

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHENG H ET AL: "HYDROTHERMAL PREPARATION OF UNIFORM NANOSIZE RUTILE AND ANATASE PARTICLES" CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, vol. 7, no. 4, 1 April 1995 (1995-04-01), pages 663-671, XP000513055 ISSN: 0897-4756 *
JEON S ET AL: "HYDROTHERMAL SYNTHESIS OF ER-DOPED LUMINESCENT TIO2 NANOPARTICLES" CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, vol. 15, no. 6, 25 March 2003 (2003-03-25), pages 1256-1263, XP001233343 ISSN: 0897-4756 *
KUTTY T R N ET AL: "Photocatalytic activity of tin-substituted TiO2 in visible light" CHEMICAL PHYSICS LETTERS, NORTH-HOLLAND, AMSTERDAM, vol. 163, no. 1, 3 November 1989 (1989-11-03), pages 93-97, XP026466433 ISSN: 0009-2614 [retrieved on 1989-11-03] *
NISHIZAWA H ET AL: "The crystallization of anatase and the conversion to bronze-type TiO2 under hydrothermal conditions" JOURNAL OF SOLID STATE CHEMISTRY, ORLANDO, FL, US, vol. 56, no. 2, 1 February 1985 (1985-02-01), pages 158-165, XP024192564 ISSN: 0022-4596 [retrieved on 1985-02-01] *
See also references of WO2006044495A1 *
YANQING Z ET AL: "HYDROTHERMAL PREPARATION AND CHARACTERIZATION OF BROOKITE-TYPE TIO2 NANOCRYSTALLITES" JOURNAL OF MATERIALS SCIENCE LETTERS, CHAPMAN AND HALL LTD. LONDON, GB, vol. 19, no. 16, 15 August 2000 (2000-08-15), pages 1445-1448, XP001006656 ISSN: 0261-8028 *

Also Published As

Publication number Publication date
KR20070106975A (ko) 2007-11-06
EP1812348A4 (fr) 2009-12-23
KR100869666B1 (ko) 2008-11-21
WO2006044495A1 (fr) 2006-04-27
CN101065325A (zh) 2007-10-31
JP2008516880A (ja) 2008-05-22
US20080064592A1 (en) 2008-03-13
CN101065325B (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
US20080064592A1 (en) Method for Synthesizing Nano-Sized Titanium Dioxide Particles
Lee et al. Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H2O2 and NH4OH
Goudarzi et al. Synthesis, characterization and degradation of organic dye over Co 3 O 4 nanoparticles prepared from new binuclear complex precursors
Uekawa et al. Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol
Nam et al. Preparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation
KR20090064576A (ko) 나노 사이즈의 티타늄 이산화물 입자들을 제조하기 위한 저온 방법
Deki et al. Synthesis of metal oxide thin films by liquid-phase deposition method
EP3165509B1 (fr) Procédé de production des particules fines d'oxyde de titane
US20080311031A1 (en) Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby
Sun et al. Controllable synthesis and morphology-dependent photocatalytic performance of anatase TiO 2 nanoplates
Li et al. Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO 3
JP2002537204A (ja) 沈殿処理
WO2021065936A1 (fr) Poudre magnétique d'oxyde à base de fer et son procédé de fabrication
Soltani et al. Comparison of benzene and toluene photodegradation under visible light irradiation by Ba-doped BiFeO 3 magnetic nanoparticles with fast sonochemical synthesis
Junlabhut et al. Effect of metal (Mn, Co, Zn, Ni) doping on structural, optical and photocatalytic properties of TiO2 nanoparticles prepared by sonochemical method
Kil et al. Glycothermal synthesis and photocatalytic properties of highly crystallized anatase TiO2 nanoparticles
Savinkina et al. Synthesis and morphology of anatase and η-TiO 2 nanoparticles
Matijević Preparation and properties of well defined finely dispersed metals
Khodaie et al. Green synthesis and characterization of copper nanoparticles using Eryngium campestre leaf extract
Begum et al. Morphology‐Controlled Assembly of ZnO Nanostructures: A Bioinspired Method and Visible Luminescence
Egorysheva et al. Synthesis of Bi–Fe–Sb–O Pyrochlore Nanoparticles with Visible‐Light Photocatalytic Activity
Kolen'ko et al. Phase composition of nanocrystalline titania synthesized under hydrothermal conditions from different titanyl compounds
Egorysheva et al. Microwave-Assisted Hydrothermal Synthesis of Bi 6 (NO 3) 2 O 7 (OH) 2 and Its Photocatalytic Properties
Tadjarodi et al. Synthesis, characterization and adsorption capability of CdO microstructure for congo red from aqueous solution
Ge et al. Synthesis and Visible-Light Photocatalytic Activity of CeO2 Nanoboxes Based on Pearson’s Principle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20091119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20100125