CN101065325A - 纳米尺寸二氧化钛颗粒的合成方法 - Google Patents

纳米尺寸二氧化钛颗粒的合成方法 Download PDF

Info

Publication number
CN101065325A
CN101065325A CNA2005800348184A CN200580034818A CN101065325A CN 101065325 A CN101065325 A CN 101065325A CN A2005800348184 A CNA2005800348184 A CN A2005800348184A CN 200580034818 A CN200580034818 A CN 200580034818A CN 101065325 A CN101065325 A CN 101065325A
Authority
CN
China
Prior art keywords
water
tio
titanium
ion
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800348184A
Other languages
English (en)
Other versions
CN101065325B (zh
Inventor
金仁洙
崔永进
金矼赫
李宇镇
C·E·小史密斯
金永真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokusen USA Inc
Original Assignee
Tokusen USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokusen USA Inc filed Critical Tokusen USA Inc
Publication of CN101065325A publication Critical patent/CN101065325A/zh
Application granted granted Critical
Publication of CN101065325B publication Critical patent/CN101065325B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种合成平均粒度小于150纳米的球形和针形TiO2、掺杂金属的TiO2、金属涂布的TiO2颗粒的方法。本发明的方法是合成Ti(OH)4、掺杂金属的Ti(OH)4或金属涂布的Ti(OH)4,在高于100℃的温度下施加等于或超过饱和蒸气压的压力使上述物质反应。该压力通过在封闭反应器内部反应过程中产生的蒸气的压力、从外部施加的压力或者这两种方式的组合来实现。用于从外部提高压力的气体优选是Ar和N2之类的惰性气体,但是不限于惰性气体。

Description

纳米尺寸二氧化钛颗粒的合成方法
本申请要求于2004年10月14日提交的题为“纳米尺寸TiO2粉末的合成”的美国临时申请第60/618781号的优先权。
技术领域
本发明是平均粒度小于150纳米的球形和针形二氧化钛(TiO2)、掺杂金属的TiO2和金属涂布的TiO2颗粒的合成方法。
背景技术
二氧化钛是能够用于许多领域的材料,例如油漆、塑料、化妆品、油墨、纸张、化学纤维和光学催化剂。目前在全世界范围内,使用硫酸盐和氯化物方法来生产TiO2,但是在需要超微特征的领域中使用该方法却存在问题,因为该方法制得的是不具有高纯度的较大粒度(亚微米级)的颗粒。
随着各种应用中对纳米尺寸TiO2的需要的增加,在该领域中已经进行了许多研究。但是,由于目前使用的复杂的生产工艺而导致价格昂贵,纳米尺寸的TiO2没有得到广泛应用。
为了解决该问题,需要开发一种生产方法,可以在简化了的纳米尺寸纯TiO2、掺杂金属的TiO2和金属涂布的TiO2的生产方法中通过提高生产效率来降低纳米尺寸TiO2的生产成本。
发明概述
本发明是平均粒度小于150纳米的球形和针形TiO2、掺杂金属的TiO2、金属涂布的TiO2颗粒的合成方法。本发明的方法是合成Ti(OH)4、掺杂金属的Ti(OH)4或金属涂布的Ti(OH)4,然后在高于100℃的温度下施加等于或超过饱和蒸气压的压力使上述物质反应。该压力通过在封闭反应器内部反应过程中产生的水蒸气的压力、从外部施加的压力、或者这两种方式的组合来实现。用于从外部提高压力的气体优选是Ar和N2之类的惰性气体,但是不限于惰性气体。
根据以下结合附图对优选实施方式的详细说明和所附权利要求可以更好地理解本发明的这些和其它特征、目标和优点。
附图简要说明
图1(a)-(b)涉及通过实施例1所述的方法制得的TiO2粉末。图1(a)是FESEM显微照片。图1(b)是XRD图谱。
图2(a)-(e)涉及通过实施例2所述的方法制得的掺杂Ag的TiO2粉末。图2(a)是FESEM显微照片。图2(b)是XRD图谱。图2(c)是XPS全谱扫描。图2(d)是对银峰的XPS窄谱扫描(narrow scan)。图2(e)是紫外可见吸收光谱。
图3(a)-(c)涉及通过实施例3所述的方法制得的掺杂Cr的TiO2粉末。图3(a)是FESEM显微照片。图3(b)是XRD图谱。图3(c)是EDS分析。
图4(a)-(d)涉及通过实施例4所述的方法制得的Ag涂布的TiO2粉末。图4(a)是FESEM显微照片。图4(b)是XRD图谱。图4(c)是XPS全谱扫描。图4(d)是XPS窄谱扫描。
本发明的最佳实施方式
参考图1-4,本发明优选实施方式的描述如下。
本发明的目的是开发一种方法,该方法能够合成初级颗粒粒度小于150纳米的大量纯TiO2、掺杂金属的TiO2和金属涂布的TiO2。该方法首先合成溶液、浆料、饼块或干燥粉末形式的Ti(OH)4、掺杂金属的Ti(OH)4或金属涂布的Ti(OH)4,然后将上述物质中的一种放入封闭的反应器中。在封闭的反应器中,通过在高于100℃的温度和等于或大于水饱和蒸气压的压力下进行热处理而分别由Ti(OH)4、掺杂金属的Ti(OH)4或金属涂布的Ti(OH)4合成晶体TiO2、掺杂金属的TiO2或金属涂布的TiO2。封闭的反应器中的压力通过反应器内部产生的水蒸气压、从反应器外部施加的水蒸气压、从反应器外部供应的气体、或它们的组合来实现。
为了合成Ti(OH)4,通过向钛源中加入碱性物质,然后将其pH调节到4或4以上而以Ti(OH)4的形式得到水溶性钛离子。四氯化钛、三氯化钛、氯氧化钛和硫酸钛可用作钛源,但是本发明不限于这些钛源,可以使用能够溶解在水中形成钛离子或钛离子络合物的任何有机或无机物质或混合物。NaOH、KOH和NH4OH可用作碱性物质,但是本发明不限于这些物质,可使用能溶解在水中提高溶液pH值的任何碱性物质。
使用离心和超滤系统对所得的Ti(OH)4进行若干次水洗涤步骤,以除去残留在其中的杂质离子。通过浓缩和干燥步骤得到溶液、浆料、饼块或干燥粉末形式的经过水洗的Ti(OH)4
通过将一种或多种金属盐放入水溶性钛源中得到掺杂金属的Ti(OH)4。通过向溶解了钛和金属的溶液中加入碱性物质,然后如上所述将溶液的pH值调节到4或4以上,而使水溶性金属离子和钛离子共沉淀。如上所述,本发明可使用(但不限于)四氯化钛、三氯化钛、氯氧化钛或硫酸钛作为钛源。同样,本发明可使用(但不限于)NaOH、KOH和NH4OH作为碱性物质。Ag、Zn、Cu、V、Cr、Mn、Fe、Co、Ni、Ge、Mo、Ru、Rh、Pd、Sn、W、Pt、Au、Sr、Al和Si的水溶性盐可用作金属离子的源,但是本发明不限于此,可以使用所有水溶性金属盐。通过离心和超滤系统对共沉淀的掺杂金属的Ti(OH)4进行若干次水洗涤步骤,以除去残留在其中的杂质离子。作为分析经过水洗的掺杂金属的Ti(OH)4析出物的结果,检测到加入的金属成分,据信该金属成分在加入碱性物质后与Ti离子一起共沉淀。通过上述浓缩和干燥步骤可以得到溶液、浆料、饼块和干燥粉末形式的经过水洗的掺杂金属的Ti(OH)4
为了合成金属涂布的Ti(OH)4,通过向钛源中加入碱性物质,然后将其pH值调节到4或4以上,而以Ti(OH)4的形式得到水溶性钛离子。四氯化钛、三氯化钛、氯氧化钛和硫酸钛可用作钛源,但是本发明不限于这些钛源,可以使用能够溶解在水中形成钛离子或钛络合物离子的任何有机或无机物质或混合物。NaOH、KOH和NH4OH可用作碱性物质,但是本发明不限于这些物质,可使用能溶解在水中提高溶液pH值的所有碱性物质。在对得到的Ti(OH)4进行3-4次水洗涤步骤后,完全除去杂质,通过超声处理将其分散在蒸馏水中。
在向分散的Ti(OH)4中加入所需量的一种或多种金属盐后,陈化(age)一段时间(5分钟以上)。优选陈化在低于100℃的温度进行。Ag、Zn、Cu、V、Cr、Mn、Fe、Co、Ni、Ge、Mo、Ru、Rh、Pd、Sn、W、 Pt、Au、Sr、Al和Si的水溶性盐可用作本发明的金属盐,但是本发明的实施不限于此,可以使用所有水溶性金属盐。在陈化后,对析出物进行2-3次水洗涤过程,以除去杂质离子,从而得到金属涂布的Ti(OH)4。作为分析经过水洗的金属涂布的Ti(OH)4析出物的结果,检测到加入的金属成分,据信加入的金属离子被吸附到Ti(OH)4颗粒的表面,尽管本发明人还并不知道金属附加到Ti(OH)4颗粒上的确切机理。通过浓缩和干燥方法可以得到溶液、浆料、饼块或干燥粉末形式的经过水洗的金属涂布的Ti(OH)4
如同已经提及的,经过水洗的Ti(OH)4、掺杂金属的Ti(OH)4和金属涂布的Ti(OH)4根据其含湿量和浓度可以溶液、浆料、饼块或干燥粉末的形式存在。考虑到生产效率的需要,希望选择具有高钛含量的饼块或干燥粉末形式。但是,如果在封闭反应器内部的反应过程中析出物的含水量过低或者甚至不存在水,那么会有诸如此类的问题:(1)当不存在冷凝水或水蒸气时相转移反应所需的温度比反应器内部存在冷凝水或水蒸气时高,例如,如果水存在时的反应温度是160℃,则不存在水时的反应温度需超过300℃,差值超过100℃;(2)观察到TiO2表面的颜色发生变化(通常为黄色);(3)在压碎过程中由于形成的颗粒过于坚硬而难以得到微小颗粒。
反应器内绝对需要一些冷凝水,以降低反应温度,确保无定形TiO2成为锐钛矿型TiO2,防止发生上述黄色变化的现象。通常,即使是干燥粉末,由于反应Ti(OH)4=TiO2+2H2O在反应器中也会产生少量水。通过将反应器内的压力维持在等于或大于水的饱和蒸气压,以确保反应器内有一定量的冷凝水。如上文所讨论的,该压力可通过来自反应器的水蒸气、从外部引入到反应器中的水蒸气、惰性气体之类的气体、或它们的组合来提供。
为了证实上述问题与析出物(Ti(OH)4、掺杂金属的Ti(OH)4和金属涂布的Ti(OH)4)的含湿量密切相关,本发明人进行了以下实验。
将块状或干燥的Ti(OH)4粉末放入到封闭的反应器中,然后在饱和蒸气压和160℃的条件下反应2小时。得到的相是晶体TiO2。与此相反,当将块状或干燥的Ti(OH)4粉末放入到开放的反应器中,在大气压和300℃的条件下反应3小时,得到的相是非晶体相,显示为黄色。从这些结果,本发明人认为施加给反应器的压力和反应器内的水蒸气或冷凝水是与从非晶体到晶体形式的相变化有关的温度改变和颜色改变的原因。
为了研究压力的影响,将块状或干燥的Ti(OH)4放入到封闭的反应器中,然后在160℃反应2小时。然后分别在饱和蒸气压、2.07*106N/m2和3.45*106N/m2压力下进行压力实验,所述压力是通过从反应器外部通入氩气所提供的。所有三个样品都显示出相同的锐钛矿型晶体相。由此结果,证实压力不会对与从非晶体Ti(OH)4到晶体TiO2的相变化相关的温度造成影响或起到不利作用。
为了研究冷凝水和水蒸气的影响,将块状或干燥的Ti(OH)4在除去水分的情况下放入到封闭的反应器中,然后通入氮气在相当于饱和蒸气压的压力下、在160℃反应2小时。由此得到的相是非晶体,显示为黄色。
由这些实验证实,最好最大程度的减少反应过程中水蒸气的损失,以防止与从非晶体到晶体的相变化有关的温度升高、颜色变化以及形成饼块或干燥粉末类的坚硬形式的TiO2。本发明的完成是通过从外部提供两种或多种由水蒸气、气体或水蒸气和气体组成的混合气体而引起封闭反应器内部的反应。本发明对生产TiO2进行了描述,但是所述的方法同样可以按照以下实施例中所述的方式用于生产掺杂金属的TiO2和金属涂布的TiO2
实施例1
将440毫升氯氧化钛(TiCl4溶解在水中,浓度约为50重量%)放入到1560毫升的蒸馏水中。在氯氧化钛完全溶解后,加入氨水将最终的pH调节到6.5。然后用水洗涤析出物,除去杂质离子。然后使用过滤系统对除去杂质离子的Ti(OH)4进行浓缩,在60℃干燥12小时。在将干燥的样品放入到封闭的反应器中后,用氩气将封闭反应器内的压力调节到0.83*106N/m2,在160℃反应2小时。在反应后,通过从外部向封闭的反应器内反复供水,而除去反应器内部产生的氨气,然后排出水蒸气和气体,反应器冷却到正常温度。通过该方法得到白色TiO2粉末。该粉末的初级颗粒粒度大约为10纳米(见图1(a)),显示为晶体相的锐钛矿型TiO2(见图1(b))。
实施例2
将77毫升氯氧化钛(TiCl4溶解在水中,浓度约为50重量%)放入273毫升蒸馏水中,向该溶液中加入0.22克AgNO3。在氯氧化钛和AgNO3完全溶解后,加入约70毫升的氨水将最终的pH值调节到6.5。然后用水洗涤析出物,除去杂质离子。在使用超滤器制备1M掺杂Ag的Ti(OH)4后,将该产物放入封闭的反应器中,在160℃反应2小时。图2(a)-(e)显示反应之后的样品的分析结果。
反应后得到掺杂Ag的TiO2形成初级颗粒粒度约为10纳米的锐钛矿型TiO2颗粒(见图2(a)和(b))。据信掺杂的Ag以纯银或氧化银的形式存在(见图2(c)和2(d))。图2(e)显示掺杂了各种元素的TiO2的紫外可见吸收光谱。可以看出,根据所掺杂的元素得到不同的吸收光谱。
实施例3
将7.7毫升氯氧化钛(TiCl4溶解在水中,浓度约为50重量%)放入342.3毫升蒸馏水中,向该溶液中加入0.717克六水合氯化铬(III)。在氯氧化钛和铬化合物完全溶解后,加入约10毫升氨水将最终的pH值调节到9。然后用水洗涤析出物,除去杂质离子。将除去杂质离子的0.1M掺杂铬的Ti(OH)4溶液放入到封闭的反应器中,在150℃反应3小时。
由此形成的掺杂铬的TiO2显示为针形的锐钛矿型TiO2(长轴=~100纳米,短轴=~20纳米)(见图3(a)和(b))。通过该方法,制得掺杂了约5重量%的Cr的TiO2粉末(见图3(c))。
实施例4
将77毫升氯氧化钛(TiCl4溶解在水中,浓度约为50重量%)放入273毫升蒸馏水中。在氯氧化钛完全溶解后,加入约70毫升的氨水将最终的pH值调节到6.5。在用水洗涤析出物而除去杂质离子后,通过超声处理进行分散。在将0.22克AgNO3放入到分散的Ti(OH)4中后,在正常温度下保持1小时。在陈化后,进行2-3次水洗涤步骤,除去杂质离子,这样得到Ag涂布的Ti(OH)4。将1M Ag涂布的Ti(OH)4溶液放入到封闭的反应器中,然后在170℃反应2小时。
形成初级颗粒粒度大约为10纳米的晶体相Ag涂布的TiO2(见图4(a)和(b))。经证实,银以纯银或氧化银的形式存在(见图4(c)和(d))。
工业适用性
已经参考某些优选和可选的实施方式对本发明进行了描述,这些实施方式是示例性的,不用来限制本发明的全部范围,本发明的范围由所附权利要求限定。

Claims (18)

1.一种合成二氧化钛(TiO2)颗粒的方法,所述方法包括以下步骤:
在封闭的反应容器中,在至少为水饱和蒸气压的压力和高于100℃的温度使Ti(OH)4反应,产生TiO2颗粒。
2.如权利要求1所述的方法,还包括以下步骤:在所述反应步骤前,通过向水溶性钛离子或钛络合物离子的溶液中加入碱性物质,将混合物的pH值调节到4或4以上来合成Ti(OH)4
3.如权利要求2所述的方法,其特征在于,所述水溶性钛离子选自包括以下的组:四氯化钛、三氯化钛、氯氧化钛和硫酸钛。
4.如权利要求2所述的方法,其特征在于,所述碱性物质选自包括以下的组:NaOH、KOH和NH4OH。
5.如权利要求2所述的方法,还包括以下步骤:在合成Ti(OH)4之后且在所述反应步骤之前,从所述Ti(OH)4中除去杂质离子。
6.如权利要求1所述的方法,其特征在于,所述压力通过以下方式提供:反应器内部的水蒸气、来自反应器外部的水蒸气、从反应器外部提供的气体、或它们的组合。
7.如权利要求6所述的方法,其特征在于,所述气体是惰性气体。
8.如权利要求2所述的方法,还包括以下步骤:在加入所述碱性物质之前,向所述水溶性钛离子或钛络合物离子的溶液中加入至少一种含有金属离子的水溶性金属盐,使所述金属离子和所述钛离子作为掺杂金属的Ti(OH)4共沉淀,由此通过所述反应步骤所产生所述TiO2颗粒是掺杂金属的TiO2
9.如权利要求8所述的方法,其特征在于,所述水溶性金属盐选自包括以下的组:Ag、Zn、Cu、V、Cr、Mn、Fe、Co、Ni、Ge、Mo、Ru、Rh、Pd、Sn、W、Pt、Au、Sr、Al和Si的水溶性金属盐。
10.如权利要求5所述的方法,还包括以下步骤:在除去杂质离子之后且在所述反应步骤之前,通过超声处理将所述Ti(OH)4分散在蒸馏水中。
11.如权利要求10所述的方法,还包括以下步骤:在所述反应步骤之前,向所述分散的Ti(OH)4中加入至少一种水溶性金属盐,将金属盐和分散的Ti(OH)4的混合物陈化至少5分钟,由此通过所述反应步骤所产生的所述TiO2颗粒是金属涂布的TiO2
12.如权利要求11所述的方法,其特征在于,所述陈化步骤在低于100℃的温度进行。
13.如权利要求11所述的方法,其特征在于,所述水溶性金属盐选自包括以下的组:Ag、Zn、Cu、V、Cr、Mn、Fe、Co、Ni、Ge、Mo、Ru、Rh、Pd、Sn、W、Pt、Au、Sr、Al和Si的水溶性金属盐。
14.如权利要求1所述的方法,其特征在于,所述TiO2颗粒包括初级颗粒的平均粒度小于150纳米的颗粒。
15.如权利要求1所述的方法,其特征在于,所述TiO2颗粒包括球形颗粒。
16.如权利要求1所述的方法,其特征在于,所述TiO2颗粒包括针形颗粒。
17.如权利要求5所述的方法,还包括浓缩和干燥所述Ti(OH)4的步骤。
18.如权利要求17所述的方法,其特征在于,所述经过浓缩和干燥的Ti(OH)4根据Ti(OH)4浓缩的程度以溶液、浆料、饼块或干燥粉末的形式产生。
CN2005800348184A 2004-10-14 2005-10-13 纳米尺寸二氧化钛颗粒的合成方法 Expired - Fee Related CN101065325B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61878104P 2004-10-14 2004-10-14
US60/618,781 2004-10-14
PCT/US2005/036745 WO2006044495A1 (en) 2004-10-14 2005-10-13 Method for synthesizing nano-sized titanium dioxide particles

Publications (2)

Publication Number Publication Date
CN101065325A true CN101065325A (zh) 2007-10-31
CN101065325B CN101065325B (zh) 2010-08-11

Family

ID=36203288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800348184A Expired - Fee Related CN101065325B (zh) 2004-10-14 2005-10-13 纳米尺寸二氧化钛颗粒的合成方法

Country Status (6)

Country Link
US (1) US20080064592A1 (zh)
EP (1) EP1812348A4 (zh)
JP (1) JP2008516880A (zh)
KR (1) KR100869666B1 (zh)
CN (1) CN101065325B (zh)
WO (1) WO2006044495A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104925750A (zh) * 2015-05-07 2015-09-23 南京文钧医疗科技有限公司 一种具有Yolk-Shell结构的TiO2纳米线-Ag/AgCl-Fe3O4复合材料的制备方法
CN106006726A (zh) * 2016-05-03 2016-10-12 广东风华高新科技股份有限公司 掺杂锐钛矿二氧化钛材料、其制备方法及其应用
CN113896233A (zh) * 2020-07-06 2022-01-07 宁波极微纳新材料科技有限公司 一种低温晶化二氧化钛的方法
CN113896230A (zh) * 2020-07-06 2022-01-07 宁波极微纳新材料科技有限公司 一种提升二氧化钛分散性的方法
WO2022007764A1 (zh) * 2020-07-06 2022-01-13 宁波极微纳新材料科技有限公司 制备二氧化钛的方法以及提升二氧化钛分散性的方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1819467A4 (en) * 2004-10-14 2010-01-20 Tokusen U S A Inc PROCESS FOR PRODUCING HIGH PURITY SILVER PARTICLES
DE102006029284A1 (de) * 2006-06-23 2007-12-27 Kronos International, Inc. Verfahren zur Identifizierung und Verifizierung von Titandioxid-Pigmentpartikel enthaltenden Produkten
JP2010504272A (ja) * 2006-09-21 2010-02-12 トクセン ユー.エス.エー.、インコーポレイテッド ナノサイズ二酸化チタン粒子製造のための低温方法
KR100864230B1 (ko) * 2007-01-30 2008-10-17 고려대학교 산학협력단 티타니아 나노와이어 형성방법
KR101020738B1 (ko) * 2008-07-24 2011-03-09 경상대학교산학협력단 나노 사이즈의 이산화티탄의 제조 방법, 이에 의해제조되는 나노 사이즈의 이산화 티탄 및 이를 이용하는태양 전지
KR101016603B1 (ko) * 2008-10-17 2011-02-22 서강대학교산학협력단 티타네이트 나노쉬트의 제조방법
KR101082058B1 (ko) 2009-02-18 2011-11-10 한국수력원자력 주식회사 나노크기의 이산화티타늄 제조방법 및 이를 이용한 원자로 증기발생기 전열관의 응력부식균열 억제방법
EP2509920B1 (en) 2009-11-10 2014-02-26 E. I. du Pont de Nemours and Company Process for in-situ formation of chlorides of silicon and aluminum in the preparation of titanium dioxide
AU2010346502B2 (en) 2010-02-22 2015-01-22 E. I. Du Pont De Nemours And Company Process for in-situ formation of chlorides of silicon, aluminum and titanium in the preparation of titanium dioxide
CN102596815A (zh) 2010-09-21 2012-07-18 纳幕尔杜邦公司 在二氧化钛的制备中原位形成氯化物的方法
US20120216717A1 (en) * 2010-09-21 2012-08-30 E. I. Dupont De Nemours And Company Tungsten containing inorganic particles with improved photostability
DE102011081000A1 (de) * 2011-08-16 2013-02-21 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verfahren zur herstellung von titaniumdioxidpartikeln
KR20130025536A (ko) * 2011-09-02 2013-03-12 (주)현대단조 이산화티타늄 제조방법
CN102515269A (zh) * 2011-11-25 2012-06-27 黑龙江大学 水热法制备高活性多孔纳米晶二氧化钛光催化剂的方法
CN103055840B (zh) * 2012-12-06 2014-10-01 上海纳米技术及应用国家工程研究中心有限公司 超临界二氧化碳法制备稀土掺杂纳米二氧化钛光催化剂的方法及装置
CN113896235B (zh) * 2020-07-06 2023-09-26 宁波极微纳新材料科技有限公司 一种单分散纳米二氧化钛的制备方法及装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB591670A (en) * 1943-08-28 1947-08-26 Honorary Advisory Council Sci Silver catalyst and method of preparing same
US3377160A (en) * 1964-12-31 1968-04-09 Allis Chalmers Mfg Co Process of making a high surface area silver catalyst
US3702259A (en) * 1970-12-02 1972-11-07 Shell Oil Co Chemical production of metallic silver deposits
US4186244A (en) * 1977-05-03 1980-01-29 Graham Magnetics Inc. Novel silver powder composition
US4463030A (en) * 1979-07-30 1984-07-31 Graham Magnetics Incorporated Process for forming novel silver powder composition
FI91270C (fi) * 1988-08-15 1994-06-10 Kemira Oy Menetelmä titaanidioksidipigmentin valmistamiseksi
US5250101A (en) * 1991-04-08 1993-10-05 Mitsubishi Gas Chemical Company, Inc. Process for the production of fine powder
DE4141936C2 (de) * 1991-12-19 1993-10-28 Metallgesellschaft Ag Verfahren zur Herstellung von aus TiO¶2¶ bestehenden Pellets
US5369429A (en) * 1993-10-20 1994-11-29 Lasermaster Corporation Continuous ink refill system for disposable ink jet cartridges having a predetermined ink capacity
US5876511A (en) * 1994-02-02 1999-03-02 Gea Till Gmbh & Co. Method for cleaning and rinsing containers
KR0139437B1 (ko) * 1995-06-19 1998-06-01 윤덕용 물-알콜의 혼합 용매 중의 티탄염 용액으로부터 결정질 티타니아 분말의 제조 방법
JP2822317B2 (ja) * 1996-04-15 1998-11-11 日鉄鉱業株式会社 抗菌性チタニア及びその製造方法
US5973175A (en) * 1997-08-22 1999-10-26 E. I. Du Pont De Nemours And Company Hydrothermal process for making ultrafine metal oxide powders
US6444189B1 (en) * 1998-05-18 2002-09-03 E. I. Du Pont De Nemours And Company Process for making and using titanium oxide particles
KR100277164B1 (ko) * 1998-07-16 2001-01-15 장인순 저온균질침전법을이용한사염화티타늄수용액으로부터의결정성tio₂초미립분말의제조방법
WO2000046153A1 (fr) * 1999-02-04 2000-08-10 Kawasaki Jukogyo Kabushiki Kaisha Procede de production d'oxyde de titane du type anatase et d'un materiau de revetement a base de dioxyde de titane
US6440383B1 (en) * 1999-06-24 2002-08-27 Altair Nanomaterials Inc. Processing aqueous titanium chloride solutions to ultrafine titanium dioxide
JP3515034B2 (ja) * 2000-01-26 2004-04-05 多木化学株式会社 酸化チタンゾル及びその製造方法
KR100350226B1 (ko) * 2000-02-29 2002-08-27 나노케미칼 주식회사 저온균일침전법으로 큰 비표면적을 갖도록 제조된 광촉매용 이산화티탄 분말 및 그 제조방법
JP2002047012A (ja) * 2000-07-31 2002-02-12 Sumitomo Chem Co Ltd 酸化チタンの製造方法
CA2342665A1 (en) * 2000-07-31 2002-01-31 Sumitomo Chemical Company Limited Titanium oxide production process
US6660058B1 (en) * 2000-08-22 2003-12-09 Nanopros, Inc. Preparation of silver and silver alloyed nanoparticles in surfactant solutions
JP2002154824A (ja) * 2000-11-09 2002-05-28 Kobe Steel Ltd 微粒子酸化チタンの製造方法
JP4078479B2 (ja) * 2000-12-21 2008-04-23 住友化学株式会社 酸化チタンの製造方法
DE10107777A1 (de) * 2001-02-16 2002-09-05 Bayer Ag Kontinuierlicher Prozess für die Synthese von nanoskaligen Edelmetallpartikeln
DE50114065D1 (de) * 2001-03-24 2008-08-14 Evonik Degussa Gmbh Mit einer Hülle umgebene, dotierte Oxidpartikeln
TWI240700B (en) * 2001-07-19 2005-10-01 Sumitomo Chemical Co Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
US20030185889A1 (en) * 2002-03-27 2003-10-02 Jixiong Yan Colloidal nanosilver solution and method for making the same
US20040055420A1 (en) * 2002-05-30 2004-03-25 Arkady Garbar Method for enhancing surface area of bulk metals
JP2004196626A (ja) * 2002-12-20 2004-07-15 Sumitomo Chem Co Ltd 酸化チタンの製造方法
TW200420499A (en) * 2003-01-31 2004-10-16 Sumitomo Chemical Co A method for producing titanium oxide
US6969690B2 (en) * 2003-03-21 2005-11-29 The University Of North Carolina At Chapel Hill Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles
JP2005219966A (ja) * 2004-02-05 2005-08-18 Jfe Steel Kk 酸化チタン溶液の製造方法および酸化チタン溶液ならびに光触媒コーティング材料
US7208126B2 (en) * 2004-03-19 2007-04-24 E. I. Du Pont De Nemours And Company Titanium dioxide nanopowder manufacturing process
US7270695B2 (en) * 2004-04-01 2007-09-18 Dong-A University Synthesis of nanosized metal particles
US7205049B2 (en) * 2004-04-16 2007-04-17 Tioxoclean Inc. Metal peroxide films
US20050265918A1 (en) * 2004-06-01 2005-12-01 Wen-Chuan Liu Method for manufacturing nanometer scale crystal titanium dioxide photo-catalyst sol-gel
EP1819467A4 (en) * 2004-10-14 2010-01-20 Tokusen U S A Inc PROCESS FOR PRODUCING HIGH PURITY SILVER PARTICLES
TW200638867A (en) * 2005-05-06 2006-11-16 Golden Biotechnology Corp Incubation and application methods for the culture of antrodia camphorata

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104925750A (zh) * 2015-05-07 2015-09-23 南京文钧医疗科技有限公司 一种具有Yolk-Shell结构的TiO2纳米线-Ag/AgCl-Fe3O4复合材料的制备方法
CN106006726A (zh) * 2016-05-03 2016-10-12 广东风华高新科技股份有限公司 掺杂锐钛矿二氧化钛材料、其制备方法及其应用
CN106006726B (zh) * 2016-05-03 2018-11-27 广东风华高新科技股份有限公司 掺杂锐钛矿二氧化钛材料、其制备方法及其应用
CN113896233A (zh) * 2020-07-06 2022-01-07 宁波极微纳新材料科技有限公司 一种低温晶化二氧化钛的方法
CN113896230A (zh) * 2020-07-06 2022-01-07 宁波极微纳新材料科技有限公司 一种提升二氧化钛分散性的方法
WO2022007764A1 (zh) * 2020-07-06 2022-01-13 宁波极微纳新材料科技有限公司 制备二氧化钛的方法以及提升二氧化钛分散性的方法
CN113896230B (zh) * 2020-07-06 2024-02-06 极微纳(福建)新材料科技有限公司 一种提升二氧化钛分散性的方法
CN113896233B (zh) * 2020-07-06 2024-02-09 极微纳(福建)新材料科技有限公司 一种低温晶化二氧化钛的方法

Also Published As

Publication number Publication date
KR100869666B1 (ko) 2008-11-21
EP1812348A1 (en) 2007-08-01
CN101065325B (zh) 2010-08-11
WO2006044495A1 (en) 2006-04-27
JP2008516880A (ja) 2008-05-22
US20080064592A1 (en) 2008-03-13
EP1812348A4 (en) 2009-12-23
KR20070106975A (ko) 2007-11-06

Similar Documents

Publication Publication Date Title
CN101065325B (zh) 纳米尺寸二氧化钛颗粒的合成方法
Mortazavi-Derazkola et al. Preparation and characterization of Nd 2 O 3 nanostructures via a new facile solvent-less route
Zinatloo-Ajabshir et al. Schiff-base hydrothermal synthesis and characterization of Nd 2 O 3 nanostructures for effective photocatalytic degradation of eriochrome black T dye as water contaminant
Zheng et al. One-step solvothermal synthesis of Fe3O4@ C core–shell nanoparticles with tunable sizes
JP5598995B2 (ja) プルシアンブルー型金属錯体超微粒子、その分散液
Nalbandian et al. Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources
JP5035767B2 (ja) プルシアンブルー型金属錯体超微粒子、その分散液、及びそれらの製造方法
Vivekanandhan et al. Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties
Salavati-Niasari et al. Synthesis, characterization and optical properties of tin oxide nanoclusters prepared from a novel precursor via thermal decomposition route
Deki et al. Synthesis of metal oxide thin films by liquid-phase deposition method
Zinatloo-Ajabshir et al. Preparation of nanocrystalline praseodymium oxide with different shapes via a simple thermal decomposition route
CN103998379B (zh) 中孔二氧化钛纳米颗粒及其制备方法
CN109071259A (zh) 生产新纳米材料的方法
Rangappa et al. Synthesis and organic modification of CoAl 2 O 4 nanocrystals under supercritical water conditions
Kernazhitsky et al. Optical and photocatalytic properties of titanium–manganese mixed oxides
Soltani et al. Comparison of benzene and toluene photodegradation under visible light irradiation by Ba-doped BiFeO 3 magnetic nanoparticles with fast sonochemical synthesis
Savinkina et al. Synthesis and morphology of anatase and η-TiO 2 nanoparticles
Goto et al. Photocatalytic properties and controlled morphologies of TiO2-modified hydroxyapatite synthesized by the urea-assisted hydrothermal method
Duggan et al. The synthesis and arrested oxidation of amorphous cobalt nanoparticles using DMSO as a functional solvent
Zhang et al. Facet-mediated interaction between humic acid and TiO 2 nanoparticles: implications for aggregation and stability kinetics in aquatic environments
Wang et al. Elimination of radionuclide uranium (VI) from aqueous solutions using an α-MnO2@ CTS composite adsorbent
Xaba et al. “Green” synthesis of Cu2S nanoparticles from (Z)-1-methyl-2-(pyrrolidin-2-ylidene) thiourea ligand for the preparation of Cu2S-chitosan nanocomposites for the removal of Cr (VI) ion from wastewater
Gharibshahian et al. Effects of solution concentration and capping agents on the properties of potassium titanyl phosphate noparticles synthesized using a co-precipitation method
Sreedhar et al. Shape evolution of strontium carbonate architectures using natural gums as crystal growth modifiers
JP2909531B2 (ja) 光触媒粒子の合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100811

Termination date: 20201013

CF01 Termination of patent right due to non-payment of annual fee