EP1807576B1 - Insulating building component - Google Patents

Insulating building component Download PDF

Info

Publication number
EP1807576B1
EP1807576B1 EP05798038A EP05798038A EP1807576B1 EP 1807576 B1 EP1807576 B1 EP 1807576B1 EP 05798038 A EP05798038 A EP 05798038A EP 05798038 A EP05798038 A EP 05798038A EP 1807576 B1 EP1807576 B1 EP 1807576B1
Authority
EP
European Patent Office
Prior art keywords
insulating material
top layer
mineral fibers
large surface
mineral fibres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05798038A
Other languages
German (de)
French (fr)
Other versions
EP1807576A1 (en
Inventor
Gerd-RĂ¼diger Klose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Rockwool Mineralwoll GmbH and Co OHG
Original Assignee
Deutsche Rockwool Mineralwoll GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Rockwool Mineralwoll GmbH and Co OHG filed Critical Deutsche Rockwool Mineralwoll GmbH and Co OHG
Publication of EP1807576A1 publication Critical patent/EP1807576A1/en
Application granted granted Critical
Publication of EP1807576B1 publication Critical patent/EP1807576B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/292Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and sheet metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • E04B1/7662Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • E04C2/322Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with parallel corrugations
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7683Fibrous blankets or panels characterised by the orientation of the fibres

Definitions

  • the invention relates to a component for a building wall or a building roof, consisting of at least one cover layer and an insulating element made of mineral fibers, preferably rock wool, in the form of a plate or a web having two large surfaces, which are arranged at a distance from each other, wherein the covering layer is arranged on a large surface and wherein the insulating element formed of a meandering mineral fiber web forms webs which are oriented substantially perpendicular to the large surfaces and interconnected in the region of a large surface via deflection regions, wherein the mineral fibers in the webs at right angles and extend in the deflection areas obliquely to parallel to the large surfaces of the insulating element, wherein the surface of the insulating element with the predominantly rectangular.
  • Generic components are known from the prior art, see for example the WO-A-88/00265 , And consist of an insulating element and at least one cover layer, which is arranged on a large surface of the insulating element.
  • These insulating elements are made for example of mineral fibers.
  • the artificially produced glassy solidified mineral fibers have a mean diameter of about 6 to 8 microns and are arranged in a very loose three-dimensional aggregate and partially bound with predominantly organic binders.
  • the organic binders used are often thermosetting phenolic, formaldehyde and / or urea resins. Occasionally, some of these resins are also substituted by polysaccharides.
  • the resins contain small amounts of adhesion-promoting substances, such as silanes.
  • film-forming thermoplastic binders are used occasionally for the binding of flexible insulating elements.
  • the proportions of organic binders in the insulating elements are low and are far from sufficient to point-wise connect all mineral fibers ideally.
  • the insulating elements usually contain not more than about 2 to about 4.5% by weight of dry matter of the binder.
  • insulating elements made of mineral fibers that they are designed to be primarily water repellent. This property, as well as the improved binding of the finest mineral fibers, that is a dust bond achieved by, for example, substances such as high-boiling mineral oils, oil-in-water emulsions, waxes, silicone oils and resins are added to the binders. These substances are referred to collectively as additives or as lubricants.
  • additives or lubricants For example, in the production of insulating elements made of mineral fibers, in particular rock wool, a proportion of 0.1 to about 0.4 mass% of mineral oil is used in the binder.
  • These mineral oils or additives or lubricants are distributed much more uniformly in the insulating elements, as the binder, which form films on the mineral fibers, which have a material thickness of a few nanometers.
  • Mineral fiber insulation elements with their large surfaces are bonded to profiled sheets as cover layers and form sandwich elements.
  • the profiling of the sheets can be designed differently, wherein a sandwich element consists of a middle layer of insulating elements made of mineral fibers and two outer profiled sheets. From such sandwich elements both building walls and building roofs are made.
  • the outer panels in the building are usually formed in these sandwich elements with a stronger profiling or pronounced beads.
  • sandwich elements are known whose outer sheet metal is formed wavy in the building.
  • the internal panels in the building usually have only embossing and / or flat beads, which give these sheets a panel-like structure.
  • the sheets arranged insulating elements are those made of a non-combustible mineral wool with a melting point> 1000 ° C according to DIN 4101, Part 17 are used, which usually bulk densities of more than 100 kg / m 3 and in which the fibers predominantly in one steep storage and / or are arranged at right angles to the large surfaces of the insulating element.
  • the preparation of such insulating elements is for example in the US-A-5,981,024 described.
  • the previously known from this document insulation elements have a web-like arrangement.
  • the above-described orientation of the mineral fibers at right angles to the large surfaces or in a steep storage for this serves primarily to increase the transverse tensile strength of the insulating elements at right angles to the large surfaces.
  • the rigidity is increased parallel to the orientation of the web-like arrangement.
  • the size of the shrinkage depends inter alia on the shape and arrangement of the mineral fibers, the packing density and / or the bulk density.
  • the horizontal shrinkages ie in the direction of the mineral fibers significantly lower than in a direction perpendicular thereto.
  • mineral wool lamella plates or mineral wool lamellae are often used. These in turn are separated slice by slice in the desired thickness of insulation boards, which have previously been obtained from a multi-folded mineral fiber web.
  • the primary mineral fiber web is characterized by flake-like agglomerations, in which the mineral fibers are preferably aligned parallel to the flow direction of the transport air in the collecting chambers and in which the mineral fibers are obviously more strongly impregnated with binders and water. On this primary mineral fiber web are the less or unbound mineral fibers or flakes, which have a different trajectory.
  • the collected to maximum heights mineral fiber webs are then vertically compressed by obliquely arranged conveyors vertically to transmit shear forces from the outside and to induce a horizontally directed compression by delaying the conveying speed can. Due to the superimposed upsetting movements, there is an intense unfolding of the mineral fibers. Here, the core areas of the original primary mineral fiber web can be seen as narrow web-like structures between which mineral fibers are in rolled, but at least lesser density. These ridge-like densities extend in a seemingly horizontal position across the folded mineral fiber web. After solidification of the mostly used thermosetting resin mixtures with the aid of hot air, the unfolded structure is fixed. At the crude density range in question of about 90 to about 160 kg / m 3 is currently the maximum thickness of insulation boards that can be produced in this way, about 200 mm.
  • the web-like structures are arranged at right angles to separating surfaces of adjacent layers of the mineral fiber web, while the mineral fibers in these structures are oriented flat or at shallow angles thereto. Between the web-like structures mineral fibers are in a loose bandage, which reduces the shear strength in the horizontal direction.
  • the mineral wool slats are either joined together to form large mineral wool lamella plates or successively glued to a carrier layer.
  • the insulating elements are produced with smooth surfaces or with surface contours formed largely according to a profiling of the sheets.
  • an adhesive layer preferably made of a polyurethane adhesive, with which the insulating elements and the corrosion protection coated sheets are sufficiently coated, so that the adhesive layer, inter alia, by dimensional tolerances caused cavities between the insulating elements and the sheets almost completely fill out.
  • the bonding of the insulating elements with the sheets leads to solid tough plastic connections.
  • these adhesive layers are applied with a material thickness between 0.5 and 5 mm on the insulating elements or the sheets, wherein in the region of the vertices of curvatures of the sheets greater thicknesses of the adhesive layer are applied.
  • the sheets form metallic cover layers, which are reinforced or corrugated to increase their moments of resistance in the longitudinal direction by profiling and mostly complemented by flatter beads.
  • the outer layers in the building are more profiled, among other things because of the weather protection, the drainage as well as architectural reasons than the inside of the building cover layers, which usually get flat contouring and corresponding beads and thus give a panel-like appearance.
  • the cover layers have edges that are shaped so that adjacently arranged sandwich elements intermesh positively and cause a sufficient adhesion after attachment of the sandwich elements with the supporting structural elements or layers.
  • the connections are For example, in roof elements usually outside the water-bearing levels or are additionally secured by sealing strips.
  • the side surfaces of the insulating elements are usually profiled on both sides.
  • the profilings have tight dimensional tolerances, so that only very narrow joints between the insulating elements are formed. This should prevent convection currents over the joints and the entry of moisture into the insulation or at least significantly reduced. In the same sense, the thermal bridge effect of the joints is reduced.
  • the production of the profiles of the insulating elements is a complex process.
  • Vapor-retarding coatings or impregnations may reduce or eliminate the negative effects of joint designs.
  • the profiles can be due to the predominant arrangement of mineral fibers at right angles to the large surfaces of the insulating elements and the stratification of the individual mineral fiber layers collapse in parallel easily.
  • the disadvantage is that regularly present binder-free or poor areas of the insulating elements weaken the strength of the profiles and easily deform, so that they already damaged during the production, but especially during storage, transport or assembly of the sandwich elements or even sheared off completely become. Changing outside temperatures or solar radiation also lead to strong expansions of the outer layers.
  • the insulating elements made of mineral fibers are not subject to thermally induced changes in shape in this temperature range.
  • the sandwich elements described above are connected after their installation in the wall or ceiling area with a support structure.
  • fastening means such as screws are used, with which the sandwich elements anchored to the support structure and the sheets are positively connected to each other.
  • the side surfaces of the sandwich elements remain open, and it is common in the field of the design of a roof of such sandwich elements to cover these side surfaces by upper and lower ridge plates to the outside and the interior.
  • the side surfaces are covered by a folded sheet metal, which is inserted between the supporting structure or the roof substructure, a gutter plate and the lower plate of the sandwich element and fastened together with the two sheets of the sandwich element.
  • a wind deflector is provided in the roof area, which takes over a part of the weather protection and is mounted on the outside in the building sheet metal of the sandwich element.
  • the invention has the object, a component such that its production is economically possible without excessive waste, with a high compressive strength in the region of the insulating element is achieved in a simple manner.
  • the cover layer is formed profiled.
  • the component according to the invention thus consists of a cover layer and an insulating element, wherein the insulating element is formed of a meandering deposited mineral fiber web.
  • the mineral fiber web thus has parallel webs with a fiber profile parallel to the large surfaces of the webs or at right angles to the large surfaces of the insulating element.
  • two adjacently arranged webs are connected to one another by a deflection region in that the mineral fibers are oriented obliquely or parallel to a large surface of the insulating element arranged in this region.
  • Two juxtaposed and interconnected via a deflection region webs thus form a substantially U-shaped element.
  • the individual webs of the meandering mineral fiber web deposited are connected to each other, wherein the compound is formed in particular by binder, which cures in a hardening furnace.
  • the deflection regions of adjacently arranged webs lie overall in the region of a large surface of the insulating element, while the free ends of the webs, in which the previously existing deflection regions have been removed, run into the cover layer with the mineral fibers substantially at right angles. It can be seen that the insulating element is formed sufficiently rigid in particular in an area below the cover layer.
  • an insulating element which has a web-like or band-like structure, wherein the individual webs extend parallel to each other.
  • two adjacent webs are connected to one another via deflection regions, wherein these deflection regions are arranged away from the cover layer and thus the region of the insulation element which has to absorb high transverse tensile forces lies remote from the cover layer.
  • the cover layer has wave troughs and wave peaks, wherein the deflection regions adjoins the cover layer in the region of the wave peaks with mineral fibers running obliquely to parallel to the large surface, while the insulation element is free of deflection regions and thus in the region of the wave troughs is formed obliquely to parallel to the large surface extending mineral fibers.
  • the cover layer wave troughs and peaks has and thus is wave-shaped.
  • this profiling can also be replaced by a trapezoidal cross-sectional design.
  • the deflection regions with mineral fibers running obliquely to parallel to the large surface adjoins the cover layer in the region of the wave crests, while the insulation element is formed in the region of the wave troughs free of deflection regions and thus obliquely parallel to the large surface running mineral fibers.
  • the deflection regions are thus immediately below the cover layer in the region of their wave peaks, while below the cover layer in the region of the wave troughs, the mineral fibers extend substantially perpendicular to the cover layer.
  • This embodiment of the component according to the invention is particularly suitable for small-sized or in the longitudinal direction well stiffened components whose insulating elements are produced by a central horizontal section of an insulating material web.
  • An embodiment of the first embodiment of the device according to the invention provides that the cover layer is profiled, in particular wave-shaped.
  • the cover layer can of course also be designed as a trapezoidal sheet with upper and lower chords.
  • a further embodiment of the first embodiment provides that the large surface of the insulating element below the cover layer is formed gewalkt at least in partial areas. By swaging the surface, the compound of the mineral fibers is dissolved among each other and an elasticized surface layer is formed, whereby the compound of the cover layer is improved with the insulating element based on an adhesive layer.
  • the wave crests have a height of 1 to 3 cm with respect to the wave troughs. Furthermore, it has proven to be advantageous to form the waves with a wavelength between 10 and 25 cm, in particular between 12 and 20 cm. Due to the amplitudes of the sinusoidal waves and the aforementioned wavelengths, the wavy surface of the insulating element can be arranged such that its negative half-waves reach the regions with the mineral fibers oriented at right angles to the large surfaces, while a substantial part of the positive half-waves is guided through the deflection regions , As a result, a reduction of the volume to be separated from the original meandering mineral fiber web is achieved, without the required compressive strength is adversely affected.
  • the insulating element is applied substantially over the entire surface of the cover layer.
  • the mineral fibers in the deflection areas are oriented predominantly obliquely to the large surfaces of the insulating element.
  • the fibers running parallel to the large surfaces are removed in the deflection regions.
  • the mineral bevels running diagonally to the large surfaces remain, so that the total amount of mineral fibers to be removed can be reduced by 25 to 60%.
  • a component 1 is shown for a building wall or a building roof.
  • the component 1 consists of a cover layer 4 and an insulating element 5.
  • the insulating element 5 has two large surfaces, which are arranged at a distance to each other, wherein a large surface 3 is wave-shaped and facing the cover layer 4, which also formed as a profiled sheet wavy is.
  • the insulating element 5 consists of a meandering deposited mineral fiber web forming webs 6, wherein two adjacently arranged webs 6 are connected to each other via a deflection region 7. The individual webs 6 are connected to one another via binders.
  • the insulating element 5 consists of mineral fibers 2, which are aligned at right angles to the large surfaces 3 in the webs 6. In the diversion areas 7, the mineral fibers 2 run obliquely and / or parallel to the large surfaces 3.
  • the deflecting regions 7 opposite free ends of the webs 6 directly adjoin the cover layer 4.
  • the formed from the webs 6 large surface 3 of the insulating element 5 is formed gewalkt, so that the inclusion of an adhesive for the connection of the insulating element 5 with the cover layer 4 is improved by a relaxed fiber composite.
  • the mineral fibers 2 extending parallel to the large surface 3 are removed essentially by grinding or cutting off. Accordingly, the mineral fibers 2 are aligned in the deflection areas 7 directly in the region of the surface 3 obliquely to the large surface 3 extending.
  • the cover layer 4 rests on the entire surface of the surface 3 of the insulating element 5.
  • FIG. 2 a second embodiment of the device 1 according to the invention is shown.
  • the deflection regions 7 of adjacent webs 6 are arranged below the cover layer 4 in the region of a wave crest 8, so that the webs 6 open with their free ends into the opposite large surface 3.
  • a wave trough 9 is arranged between two wave crests 8 .
  • the deflection regions 7 of adjacent webs 6 are removed such that the mineral fibers 2 of the webs 6 are aligned substantially perpendicular to both large surfaces 3 of the insulating element 5 in the region of the corrugation 9.
  • the wave 10 formed from a wave crest 8 and a wave trough 9 has a wavelength of 15 cm, while the height of the wave crests is 2 cm in relation to the wave troughs.

Abstract

The invention concerns a component designed for a building partition or wall, consisting of at least one covering layer and one insulating material element made of mineral fibers, preferably rock wool, in the form of a panel or strip and comprising two large surfaces mutually spaced apart. The covering layer is arranged on one large surface and the insulating material element made of mineral fibers deposited in meanders, ribbons substantially perpendicular to the large surface, mutually linked in the zone of one large surface via deflection zones, the mineral fibers being perpendicular to the large surfaces of the element made of insulating material in the ribbons and inclined even parallel relative thereto in the deflection zones. The invention aims at producing such a component capable of being economically manufactured without undue cuts, providing simply, high pressure resistance at the element made of insulating material. Therefor, the surface (3) of the element made of insulating material (5) is adjacent to the covering layer (4) with the substantially perpendicular extension of the mineral fibers (2).

Description

Verlauf der Mineralfasern an die Deckschicht angrenztCourse of the mineral fibers adjacent to the top layer

Die Erfindung betrifft ein Bauelement fĂ¼r eine Gebäudewand oder ein Gebäudedach, bestehend aus zumindest einer Deckschicht und einem Dämmstoffelement aus Mineralfasern, vorzugsweise aus Steinwolle, in Form einer Platte oder einer Bahn, das zwei groĂŸe Oberflächen aufweist, die im Abstand zueinander verlaufend angeordnet sind, wobei die Deckschicht auf einer groĂŸen Oberfläche angeordnet ist und wobei das aus einer mäandrierend abgelegten Mineralfaserbahn ausgebildete Dämmstoffelement Stege ausbildet, die im wesentlichen rechtwinklig zu den groĂŸen Oberflächen ausgerichtet und im Bereich einer groĂŸen Oberfläche Ă¼ber Umlenkungsbereiche miteinander verbunden sind, wobei die Mineralfasern in den Stegen rechtwinklig und in den Umlenkungsbereichen schräg bis parallel zu den groĂŸen Oberflächen des Dämmstoffelementes verlaufen, wobei die Oberfläche des Dämmstoff elements mit dem Ă¼berwiegend rechtwinkligen.The invention relates to a component for a building wall or a building roof, consisting of at least one cover layer and an insulating element made of mineral fibers, preferably rock wool, in the form of a plate or a web having two large surfaces, which are arranged at a distance from each other, wherein the covering layer is arranged on a large surface and wherein the insulating element formed of a meandering mineral fiber web forms webs which are oriented substantially perpendicular to the large surfaces and interconnected in the region of a large surface via deflection regions, wherein the mineral fibers in the webs at right angles and extend in the deflection areas obliquely to parallel to the large surfaces of the insulating element, wherein the surface of the insulating element with the predominantly rectangular.

GattungsgemĂ¤ĂŸe Bauelemente sind aus dem Stand der Technik bekannt, siehe beispielweise die WO-A-88/00265 , und bestehen aus einem Dämmstoffelement und zumindest einer Deckschicht, die auf einer groĂŸen Oberfläche des Dämmstoffelementes angeordnet ist. Diese Dämmstoffelemente werden beispielsweise aus Mineralfasern hergestellt. Die kĂ¼nstlich hergestellten glasig erstarrten Mineralfasern weisen einen mittleren Durchmesser von ca. 6 bis 8 µm auf und werden in einem sehr lockeren dreidimensionalen Haufwerk angeordnet und mit Ă¼berwiegend organischen Bindemitteln partiell gebunden.Generic components are known from the prior art, see for example the WO-A-88/00265 , And consist of an insulating element and at least one cover layer, which is arranged on a large surface of the insulating element. These insulating elements are made for example of mineral fibers. The artificially produced glassy solidified mineral fibers have a mean diameter of about 6 to 8 microns and are arranged in a very loose three-dimensional aggregate and partially bound with predominantly organic binders.

Als organische Bindemittel werden vielfach duroplastisch aushärtende Phenol-, Formaldehyd- und/oder Harnstoffharze verwendet. Gelegentlich wird ein Teil dieser Harze auch durch Polysaccharide substituiert. Die Harze enthalten in geringen Mengen haftvermittelnde Stoffe, wie beispielsweise Silane. Filmbildende thermoplastische Bindemittel werden darĂ¼ber hinaus vereinzelt fĂ¼r die Bindung von flexiblen Dämmstoffelementen verwendet.The organic binders used are often thermosetting phenolic, formaldehyde and / or urea resins. Occasionally, some of these resins are also substituted by polysaccharides. The resins contain small amounts of adhesion-promoting substances, such as silanes. In addition, film-forming thermoplastic binders are used occasionally for the binding of flexible insulating elements.

Die Anteile an organischen Bindemitteln in den Dämmstoffelementen sind gering und reichen bei weitem nicht aus, um alle Mineralfasern im Idealfall punktweise miteinander zu verbinden. Um die Eigenschaft der Nichtbrennbarkeit der Dämmstoffelementen und ihren elastisch-federnden Charakter zu erhalten und gleichzeitig auch die Herstellungskosten zu begrenzen, werden im Allgemeinen nicht mehr als ca. 12 Masse-% Trockensubstanz des Bindemittels eingesetzt. Bei Dämmstoffelementen aus Steinwolle, die beispielsweise mit Hilfe von Kaskaden-Spinnmaschinen hergestellt werden, enthalten die Dämmstoffelemente in der Regel nicht mehr als ca. 2 bis ca. 4,5 Masse-% Trockensubstanz des Bindemittels.The proportions of organic binders in the insulating elements are low and are far from sufficient to point-wise connect all mineral fibers ideally. To the property of non-combustibility of the insulation elements and to maintain their elastic-resilient character while also limiting the cost of production, generally not more than about 12% by mass of dry substance of the binder is used. For insulation elements made of rock wool, which are produced for example by means of cascade spinning machines, the insulating elements usually contain not more than about 2 to about 4.5% by weight of dry matter of the binder.

In der Regel ist es bei Dämmstoffelementen aus Mineralfasern erforderlich, dass diese primär wasserabweisend ausgebildet sind. Diese Eigenschaft wird ebenso wie die verbesserte Bindung von feinsten Mineralfasern, dass heiĂŸt eine Staubbindung dadurch erreicht, dass beispielsweise Substanzen, wie hochsiedende Mineralöle, Ă–l-in-Wasser-Emulsionen, Wachse, Silikonöle und -harze den Bindemitteln zugefĂ¼gt werden. Diese Substanzen werden insgesamt als Zusatz- oder als Schmälzmittel bezeichnet. Beispielsweise wird bei der Herstellung von Dämmstoffelementen aus Mineralfasern, insbesondere aus Steinwolle, ein Anteil von 0,1 bis ca. 0,4 Masse-% Mineralöl im Bindemittel verwendet. Diese Mineralöle bzw. Zusatz- oder Schmälzmittel verteilen sich wesentlich gleichmĂ¤ĂŸiger in den Dämmstoffelementen, als das Bindemittel, wobei sich auf den Mineralfasern Filme bilden, die eine Materialdicke von wenigen Nanometern aufweisen.In general, it is necessary for insulating elements made of mineral fibers that they are designed to be primarily water repellent. This property, as well as the improved binding of the finest mineral fibers, that is a dust bond achieved by, for example, substances such as high-boiling mineral oils, oil-in-water emulsions, waxes, silicone oils and resins are added to the binders. These substances are referred to collectively as additives or as lubricants. For example, in the production of insulating elements made of mineral fibers, in particular rock wool, a proportion of 0.1 to about 0.4 mass% of mineral oil is used in the binder. These mineral oils or additives or lubricants are distributed much more uniformly in the insulating elements, as the binder, which form films on the mineral fibers, which have a material thickness of a few nanometers.

Dämmstoffelemente aus Mineralfasern werden mit ihren groĂŸen Oberflächen mit profilierten Blechen als Deckschichten verklebt und bilden Sandwich-Elemente. Die Profilierung der Bleche kann unterschiedlich ausgebildet sein, wobei ein Sandwich-Element aus einer mittleren Lage aus Dämmstoffelementen aus Mineralfasern und zwei auĂŸenliegenden profilierten Blechen besteht. Aus derartigen Sandwich-Elementen werden sowohl Gebäudewände als auch Gebäudedächer hergestellt. Die im Gebäude auĂŸenliegenden Bleche sind bei diesen Sandwich-Elementen Ă¼blicherweise mit einer stärkeren Profilierung bzw. mit ausgeprägten Sicken ausgebildet. Beispielsweise sind derartige Sandwich-Elemente bekannt, deren im Gebäude auĂŸenliegendes Blech gewellt ausgebildet ist. Die im Gebäude innenliegenden Bleche weisen Ă¼blicherweise lediglich Prägungen und/oder flache Sicken auf, die diesen Blechen eine paneelartige Struktur geben.Mineral fiber insulation elements with their large surfaces are bonded to profiled sheets as cover layers and form sandwich elements. The profiling of the sheets can be designed differently, wherein a sandwich element consists of a middle layer of insulating elements made of mineral fibers and two outer profiled sheets. From such sandwich elements both building walls and building roofs are made. The outer panels in the building are usually formed in these sandwich elements with a stronger profiling or pronounced beads. For example, such sandwich elements are known whose outer sheet metal is formed wavy in the building. The internal panels in the building usually have only embossing and / or flat beads, which give these sheets a panel-like structure.

Als zwischen den Blechen angeordnete Dämmstoffelemente werden solche aus einer nicht brennbaren Mineralwolle mit einem Schmelzpunkt > 1.000° C nach DIN 4101, Teil 17 verwendet, die in der Regel Rohdichten von zumeist Ă¼ber 100 kg/m3 aufweisen und bei denen die Fasern Ă¼berwiegend in einer steilen Lagerung und/oder rechtwinklig zu den groĂŸen Oberflächen des Dämmstoffelementes angeordnet sind. Die Herstellung derartiger Dämmstoffelemente ist beispielsweise in der US-A-5 981 024 beschrieben. Die aus dieser Druckschrift vorbekannten Dämmstoffelemente weisen eine stegartige Anordnung auf. Die voranstehend beschriebene Orientierung der Mineralfasern rechtwinklig zu den groĂŸen Oberflächen bzw. in einer steilen Lagerung hierzu dient in erster Linie der Erhöhung der Querzugfestigkeit der Dämmstoffelemente rechtwinklig zu den groĂŸen Oberflächen. Durch die stegartige Anordnung wird die Steifigkeit parallel zur Ausrichtung der stegartigen Anordnung erhöht.As between the sheets arranged insulating elements are those made of a non-combustible mineral wool with a melting point> 1000 ° C according to DIN 4101, Part 17 are used, which usually bulk densities of more than 100 kg / m 3 and in which the fibers predominantly in one steep storage and / or are arranged at right angles to the large surfaces of the insulating element. The preparation of such insulating elements is for example in the US-A-5,981,024 described. The previously known from this document insulation elements have a web-like arrangement. The above-described orientation of the mineral fibers at right angles to the large surfaces or in a steep storage for this serves primarily to increase the transverse tensile strength of the insulating elements at right angles to the large surfaces. By the web-like arrangement, the rigidity is increased parallel to the orientation of the web-like arrangement.

In dem genannten Temperaturbereich kommt es zu Rekristallisation der Dämmstofffasern, verbunden mit Schwindungsprozessen. Die GrĂ¶ĂŸe der Schwindungen ist unter anderem abhängig von der Form und Anordnung der Mineralfasern, der Packungs- und/oder der Rohdichte. Bei flach Ă¼bereinander liegenden Mineralfasern sind die horizontalen Schwindungen, also in Richtung der Mineralfasern deutlich geringer als in einer hierzu rechtwinklig verlaufenden Richtung.In the temperature range mentioned, there is recrystallization of the insulating fibers, associated with shrinkage processes. The size of the shrinkage depends inter alia on the shape and arrangement of the mineral fibers, the packing density and / or the bulk density. In flat superimposed mineral fibers are the horizontal shrinkages, ie in the direction of the mineral fibers significantly lower than in a direction perpendicular thereto.

FĂ¼r die Herstellung von Sandwich-Elementen werden vielfach sogenannte Mineralwolle-Lamellenplatten oder Mineralwolle-Lamellen eingesetzt. Diese wiederum werden scheibenweise in der gewĂ¼nschten Dicke von Dämmplatten abgetrennt, die zuvor aus einer vielfach miteinander verfalteten Mineralfaserbahn gewonnen worden sind.For the production of sandwich elements so-called mineral wool lamella plates or mineral wool lamellae are often used. These in turn are separated slice by slice in the desired thickness of insulation boards, which have previously been obtained from a multi-folded mineral fiber web.

Bei der weitaus am häufigsten angewendeten Verfahrenstechnik wird zur Herstellung dieser Mineralwolle-Lamellenplatten eine dĂ¼nne, mit noch nicht verfestigten Binde- und Zusatzmitteln imprägnierten, handfeuchten primären Mineralfaserbahn mit Hilfe einer pendelnd bewegten Fördereinrichtung quer auf eine zweite langsam laufende Fördereinrichtung abgelegt. Die einzelnen Lagen der Mineralfaserbahn werden dabei leicht versetzt bis zum Erreichen einer gewĂ¼nschten Höhe einer sekundären Mineralfaserbahn Ă¼bereinander gestapelt. Die primäre Mineralfaserbahn zeichnet sich dabei durch flockenartige Agglomerationen aus, in denen die Mineralfasern bevorzugt parallel zu der Strömungsrichtung der Transportluft in den Sammelkammern ausgerichtet werden und in denen die Mineralfasern offensichtlich stärker mit Bindemitteln und Wasser imprägniert sind. Auf dieser primären Mineralfaserbahn liegen die weniger oder nicht gebundenen Mineralfasern bzw. Flocken, die eine abweichende Flugbahn aufweisen. Bei der direkten Aufsammlung von Mineralfasern werden diese ohne weitere Zwischenschritte auf einer, auf die Leistung der Zerfaserungsmaschine abgestimmten Fördereinrichtung in der gewĂ¼nschten Höhe abgelegt. Die Mineralfasern lagern hier locker Ă¼ber- und nebeneinander. Eine ausgeprägte Ausrichtung in den Horizontalebenen erfolgt gewöhnlich nicht. Auch hier finden sich unterschiedlich mit Bindemitteln imprägnierte Mineralfasern bzw. -flocken.By far the most commonly used process technology for producing these mineral wool lamellae plates, a thin, impregnated with not yet consolidated binders and additives, humid primary mineral fiber web by means of a pendulum moving conveyor placed transversely on a second slow-speed conveyor. The individual layers of mineral fiber web are slightly offset until reaching a desired level of secondary Mineral fiber web stacked on top of each other. The primary mineral fiber web is characterized by flake-like agglomerations, in which the mineral fibers are preferably aligned parallel to the flow direction of the transport air in the collecting chambers and in which the mineral fibers are obviously more strongly impregnated with binders and water. On this primary mineral fiber web are the less or unbound mineral fibers or flakes, which have a different trajectory. In the direct collection of mineral fibers they are stored without further intermediate steps on a, matched to the performance of the fiberizing conveyor at the desired height. The mineral fibers store here easily over and next to each other. A pronounced alignment in the horizontal planes usually does not take place. Again, there are different mineral fibers or flakes impregnated with binders.

Die zu maximalen Höhen aufgesammelten Mineralfaserbahnen werden anschlieĂŸend durch schräg zueinander angeordnete Fördereinrichtungen vertikal verdichtet, um von auĂŸen her Schubkräfte Ă¼bertragen und durch eine Verzögerung der Fördergeschwindigkeit eine horizontal gerichtete Stauchung induzieren zu können. Durch die sich Ă¼berlagernden Stauchungsbewegungen kommt es zu intensiven Verfaltungen der Mineralfasern. Dabei lassen sich die Kernbereiche der ursprĂ¼nglichen primären Mineralfaserbahn als schmale stegartige Strukturen erkennen, zwischen denen sich Mineralfasern in gerollter, zumindest aber geringerer Verdichtung befinden. Diese stegartigen Verdichtungen ziehen sich in scheinbar horizontaler Lage quer durch die verfaltete Mineralfaserbahn. Nach der Verfestigung der zumeist verwendeten duroplastisch aushärtenden Harzgemische mit Hilfe von HeiĂŸluft ist die aufgefaltete Struktur fixiert. Bei dem hier in Frage kommenden Rohdichtebereich von ca. 90 bis ca. 160 kg/m3 beträgt zur Zeit die maximale Dicke von Dämmplatten, die auf diese Weise herstellbar sind, etwa 200 mm.The collected to maximum heights mineral fiber webs are then vertically compressed by obliquely arranged conveyors vertically to transmit shear forces from the outside and to induce a horizontally directed compression by delaying the conveying speed can. Due to the superimposed upsetting movements, there is an intense unfolding of the mineral fibers. Here, the core areas of the original primary mineral fiber web can be seen as narrow web-like structures between which mineral fibers are in rolled, but at least lesser density. These ridge-like densities extend in a seemingly horizontal position across the folded mineral fiber web. After solidification of the mostly used thermosetting resin mixtures with the aid of hot air, the unfolded structure is fixed. At the crude density range in question of about 90 to about 160 kg / m 3 is currently the maximum thickness of insulation boards that can be produced in this way, about 200 mm.

Im Längsschnitt sind die stegartigen Strukturen rechtwinklig zu Trennflächen benachbarter Lagen der Mineralfaserbahn angeordnet, während die Mineralfasern in diesen Strukturen flach oder in flachen Winkeln dazu orientiert sind. Zwischen den stegartigen Strukturen befinden sich Mineralfasern in einem lockeren Verband, was die Schubfestigkeit in horizontaler Richtung verringert. Als Bestandteil von Sandwich-Elementen werden die Mineralwolle-Lamellen entweder zu groĂŸen Mineralwolle-Lamellenplatten zusammengefĂ¼gt oder nacheinander auf eine Trägerschicht aufgeklebt.In longitudinal section, the web-like structures are arranged at right angles to separating surfaces of adjacent layers of the mineral fiber web, while the mineral fibers in these structures are oriented flat or at shallow angles thereto. Between the web-like structures mineral fibers are in a loose bandage, which reduces the shear strength in the horizontal direction. As part of sandwich elements, the mineral wool slats are either joined together to form large mineral wool lamella plates or successively glued to a carrier layer.

Die Dämmstoffelemente werden mit glatten Oberflächen oder mit weitgehend entsprechend einer Profilierung der Bleche ausgebildeten Oberflächenkonturen hergestellt. Zwischen den Dämmstoffelementen und den Blechen ist eine Kleberschicht, vorzugsweise aus einem Polyurethankleber angeordnet, mit der die Dämmstoffelemente als auch die mit Korrosionsschutzschichten ausgerĂ¼steten Bleche ausreichend beschichtet sind, so dass die Kleberschicht unter anderem auch durch Abmessungstoleranzen bedingte Hohlräume zwischen den Dämmstoffelementen und den Blechen nahezu vollständig ausfĂ¼llen. Letztendlich fĂ¼hrt die Verklebung der Dämmstoffelemente mit den Blechen zu festen zähplastischen Verbindungen. Um die beiden voranstehend genannten Aufgaben der Kleberschicht zu erfĂ¼llen, werden diese Kleberschichten mit einer Materialstärke zwischen 0,5 und 5 mm auf die Dämmstoffelemente bzw. die Bleche aufgetragen, wobei im Bereich der Scheitelpunkte von KrĂ¼mmungen der Bleche grĂ¶ĂŸere Materialstärken der Kleberschicht aufgetragen werden.The insulating elements are produced with smooth surfaces or with surface contours formed largely according to a profiling of the sheets. Between the insulating elements and the sheets an adhesive layer, preferably made of a polyurethane adhesive, with which the insulating elements and the corrosion protection coated sheets are sufficiently coated, so that the adhesive layer, inter alia, by dimensional tolerances caused cavities between the insulating elements and the sheets almost completely fill out. Finally, the bonding of the insulating elements with the sheets leads to solid tough plastic connections. In order to fulfill the two aforementioned tasks of the adhesive layer, these adhesive layers are applied with a material thickness between 0.5 and 5 mm on the insulating elements or the sheets, wherein in the region of the vertices of curvatures of the sheets greater thicknesses of the adhesive layer are applied.

Die Bleche bilden metallische Deckschichten aus, die zur Erhöhung ihrer Widerstandsmomente in Längsrichtung durch Profilierungen und zumeist ergänzend durch flachere Sicken verstärkt oder gewellt sind. Die im Gebäude auĂŸenliegenden Deckschichten sind unter anderem wegen des Witterungsschutzes, der Wasserableitung wie auch aus architektonischen GrĂ¼nden stärker profiliert als die im Gebäude innen liegenden Deckschichten, die meistens flache Konturierungen und entsprechende Sicken erhalten und damit eine paneelartige Anmutung ergeben.The sheets form metallic cover layers, which are reinforced or corrugated to increase their moments of resistance in the longitudinal direction by profiling and mostly complemented by flatter beads. The outer layers in the building are more profiled, among other things because of the weather protection, the drainage as well as architectural reasons than the inside of the building cover layers, which usually get flat contouring and corresponding beads and thus give a panel-like appearance.

Die Deckschichten weisen Kanten auf, die so geformt sind, dass benachbart angeordnete Sandwich-Elemente formschlĂ¼ssig ineinandergreifen und nach der Befestigung der Sandwich-Elemente mit den tragenden Konstruktionselementen oder -schichten einen ausreichenden Kraftschluss bewirken. Die Verbindungen liegen zum Beispiel bei Dachelementen gewöhnlich auĂŸerhalb der wasserfĂ¼hrenden Ebenen oder werden zusätzlich durch Dichtstreifen gesichert.The cover layers have edges that are shaped so that adjacently arranged sandwich elements intermesh positively and cause a sufficient adhesion after attachment of the sandwich elements with the supporting structural elements or layers. The connections are For example, in roof elements usually outside the water-bearing levels or are additionally secured by sealing strips.

Auch die Seitenflächen der Dämmstoffelemente sind gewöhnlich auf beiden Seiten profiliert. Bekannt sind Nut- und Feder-Verbindungen, die durch mehrere symmetrisch oder asymmetrisch Ă¼ber die Mittelebene angeordnete Falze ergänzt sind und damit den Verbindungen zusätzlich die Charakteristik einer Labyrinthdichtung geben. Die Profilierungen weisen enge Abmessungstoleranzen auf, damit nur ganz enge Fugen zwischen den Dämmstoffelementen gebildet werden. Damit sollen Konvektionsströmungen Ă¼ber die Fugen und das Eintragen von Feuchte in den Dämmstoff verhindert oder zumindest deutlich vermindert werden. Im gleichen Sinn wird die WärmebrĂ¼ckenwirkung der Fugen gemindert. Die Herstellung der Profilierungen der Dämmstoffelemente ist ein aufwendiger Vorgang.The side surfaces of the insulating elements are usually profiled on both sides. Are known tongue and groove joints, which are supplemented by a plurality of symmetrically or asymmetrically arranged over the median plane folds and thus give the compounds additionally the characteristic of a labyrinth seal. The profilings have tight dimensional tolerances, so that only very narrow joints between the insulating elements are formed. This should prevent convection currents over the joints and the entry of moisture into the insulation or at least significantly reduced. In the same sense, the thermal bridge effect of the joints is reduced. The production of the profiles of the insulating elements is a complex process.

Durch dampfbremsende Beschichtungen oder Imprägnierungen können die diesbezĂ¼glichen negativen Auswirkungen der Fugenausbildungen gemindert oder ausgeschlossen werden. Die Profilierungen lassen sich wegen der Ă¼berwiegenden Anordnung der Mineralfasern rechtwinklig zu den groĂŸen Oberflächen der Dämmstoffelemente und der Schichtung der einzelnen Mineralfaserlagen parallel dazu leicht zusammendrĂ¼cken. Nachteilig ist, dass regelmĂ¤ĂŸig vorhandene bindemittelfreie oder-arme Bereiche der Dämmstoffelemente die Festigkeit der Profilierungen schwächen und leicht deformieren, so dass diese bereits bei der Herstellung, insbesondere aber bei der Lagerung, dem Transport oder dem ZusammenfĂ¼gen der Sandwich-Elemente beschädigt oder gar ganz abgeschert werden. Wechselnde AuĂŸentemperaturen bzw. Solareinstrahlungen fĂ¼hren ferner zu starken Ausdehnungen der äuĂŸeren Deckschichten. Die Dämmstoffelemente aus Mineralfasern unterliegen in diesem Temperaturbereich keinen thermisch bedingten Formveränderungen. Bei einem Brandangriff klaffen die Deckschichten sehr schnell auf, so dass die Dämmstoffelemente der direkten Einwirkung von heiĂŸen Brandgasen und der damit verbundenen Strahlung direkt ausgesetzt sind. Bei Dachelementen und im oberen Teil von Wandelementen von Gebäuden kommt noch ein thermisch bedingter Auftrieb hinzu, der die Brandgase in die Dämmstoffelemente drĂ¼ckt. Insbesondere bei filigranen Profilierungen können auch in tieferen Fugenbereichen Schwindungen auftreten, die bevorzugt rechtwinklig zu der Orientierung der Mineralfasern auftreten und dadurch die Fugen aufweiten können. Mit jeder Aufweitung der Fugenbereiche verstärkt sich die Einwirkung des Brandangriffs bis die Dichtung der Fugenbereiche versagt.Vapor-retarding coatings or impregnations may reduce or eliminate the negative effects of joint designs. The profiles can be due to the predominant arrangement of mineral fibers at right angles to the large surfaces of the insulating elements and the stratification of the individual mineral fiber layers collapse in parallel easily. The disadvantage is that regularly present binder-free or poor areas of the insulating elements weaken the strength of the profiles and easily deform, so that they already damaged during the production, but especially during storage, transport or assembly of the sandwich elements or even sheared off completely become. Changing outside temperatures or solar radiation also lead to strong expansions of the outer layers. The insulating elements made of mineral fibers are not subject to thermally induced changes in shape in this temperature range. In a fire attack, the outer layers gape very quickly, so that the insulating elements are directly exposed to the direct action of hot combustion gases and the associated radiation. For roof elements and in the upper part of wall elements of buildings is still a thermally induced buoyancy added, which presses the combustion gases in the insulation elements. Especially with filigree profiles can also in deeper joint areas Shrinkage occur, which preferably occur at right angles to the orientation of the mineral fibers and thereby can widen the joints. With each expansion of the joint areas, the effect of the fire attack increases until the seal of the joint areas fails.

Der Vorteil dieser Sandwich-Elemente im Vergleich zu Bauelementen aus zueinander im Abstand angeordneten Blechschalen und einem zwischen den Blechschalen angeordneten Ortschaum aus Polyurethan oder Polyisocyanurat liegt dennoch insbesondere darin, dass die Brandlast der Sandwich-Elemente mit den zwischen den Blechschalen angeordneten Dämmstoffelementen aus Mineralfasern deutlich verringert und die Feuerwiderstandsdauer derartiger Bauteile beträchtlich erhöht ist. Somit können derartige Sandwich-Elemente nicht nur als Gebäudebauteile fĂ¼r Wände und Dächer, sondern auch als Brandschutzpaneele eingesetzt werden.The advantage of these sandwich elements compared to components of mutually spaced sheet metal shells and arranged between the metal shells Ortschaum polyurethane or polyisocyanurate is still in particular that the fire load of the sandwich elements with the disposed between the metal shells insulating elements made of mineral fibers significantly reduced and the fire resistance period of such components is considerably increased. Thus, such sandwich elements can be used not only as building components for walls and roofs, but also as fire protection panels.

Die voranstehend beschriebenen Sandwich-Elemente werden nach ihrer Verlegung im Wand- oder Deckenbereich mit einer Tragkonstruktion verbunden. Hierzu werden Befestigungsmittel, wie beispielsweise Schrauben verwendet, mit denen die Sandwich-Elemente an der Tragkonstruktion verankert und die Bleche kraftschlĂ¼ssig miteinander verbunden werden.The sandwich elements described above are connected after their installation in the wall or ceiling area with a support structure. For this purpose, fastening means, such as screws are used, with which the sandwich elements anchored to the support structure and the sheets are positively connected to each other.

Durch die Ausgestaltung der Randbereiche der Bleche werden Längsfugen derart abgedeckt, dass sie keinen WitterungseinflĂ¼ssen ausgesetzt sind. Die Seitenflächen der Sandwich-Elemente bleiben jedoch offen, wobei es im Bereich der Ausgestaltung eines Daches aus derartigen Sandwich-Elementen Ă¼blich ist, diese Seitenflächen durch obere und untere Firstbleche nach auĂŸen und zum Innenraum hin abzudecken. Entlang von Traufen werden die Seitenflächen durch ein abgekantetes Blech abgedeckt, das zwischen der Tragkonstruktion bzw. der Dachunterkonstruktion, einem Rinneneinlaufblech und dem unteren Blech des Sandwich-Elementes eingeschoben und zusammen mit den beiden Blechen des Sandwich-Elementes befestigt wird.Due to the design of the edge regions of the sheets longitudinal joints are covered so that they are not exposed to the weather. However, the side surfaces of the sandwich elements remain open, and it is common in the field of the design of a roof of such sandwich elements to cover these side surfaces by upper and lower ridge plates to the outside and the interior. Along eaves, the side surfaces are covered by a folded sheet metal, which is inserted between the supporting structure or the roof substructure, a gutter plate and the lower plate of the sandwich element and fastened together with the two sheets of the sandwich element.

Die unterschiedlichen Ausgestaltungen derartiger Sandwich-Elemente macht es aber erforderlich, dass entsprechende Bleche auf die Sandwich-Elemente exakt abgestimmt sind, so dass die erforderlichen Deckbleche entsprechend den zu verwendenden Sandwich-Elementen vorgehalten und verarbeitet werden mĂ¼ssen. Ergänzend wird ein Windleitblech im Dachbereich vorgesehen, das einen Teil des Witterungsschutzes Ă¼bernimmt und auf dem im Gebäude auĂŸenliegenden Blech des Sandwich-Elementes befestigt wird.However, the different configurations of such sandwich elements make it necessary that corresponding sheets are exactly matched to the sandwich elements, so that the required cover sheets must be held and processed according to the sandwich elements to be used. In addition, a wind deflector is provided in the roof area, which takes over a part of the weather protection and is mounted on the outside in the building sheet metal of the sandwich element.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Bauelement derart weiterzubilden, dass seine Herstellung ohne einen Ă¼bermĂ¤ĂŸigen Verschnitt wirtschaftlich möglich ist, wobei eine hohe Druckfestigkeit im Bereich des Dämmstoffelementes in einfacher Weise erzielt wird.Based on this prior art, the invention has the object, a component such that its production is economically possible without excessive waste, with a high compressive strength in the region of the insulating element is achieved in a simple manner.

Zur Lösung dieser Aufgabenstellung ist seitens eines Bauelementes gemĂ¤ĂŸ einer ersten AusfĂ¼hrungsform vorgesehen, dass die Deckschicht profiliert ausgebildet ist.To solve this problem is provided by a component according to a first embodiment, that the cover layer is formed profiled.

Das erfindungsgemĂ¤ĂŸe Bauelement besteht somit aus einer Deckschicht und einem Dämmstoffelement, wobei das Dämmstoffelement aus einer mäandrierend abgelegten Mineralfaserbahn ausgebildet ist. Die Mineralfaserbahn hat somit parallel zueinander ausgerichtete Stege mit einem Faserverlauf parallel zu den groĂŸen Oberflächen der Stege bzw. rechtwinklig zu den groĂŸen Oberflächen des Dämmstoffelementes. Jeweils zwei benachbart angeordnete Stege sind durch einen Umlenkungsbereich miteinander verbunden, indem die Mineralfasern schräg oder parallel zu einer in diesem Bereich angeordneten groĂŸen Oberflächen des Dämmstoffelementes verlaufend ausgerichtet sind. Zwei nebeneinander angeordnete und Ă¼ber einen Umlenkungsbereich miteinander verbundenen Stege bilden somit ein im Wesentlichen U-förmiges Element aus. Die einzelnen Stege der mäandrierend abgelegten Mineralfaserbahn sind miteinander verbunden, wobei die Verbindung insbesondere durch Bindemittel ausgebildet wird, welches in einem Härteofen aushärtet.The component according to the invention thus consists of a cover layer and an insulating element, wherein the insulating element is formed of a meandering deposited mineral fiber web. The mineral fiber web thus has parallel webs with a fiber profile parallel to the large surfaces of the webs or at right angles to the large surfaces of the insulating element. In each case two adjacently arranged webs are connected to one another by a deflection region in that the mineral fibers are oriented obliquely or parallel to a large surface of the insulating element arranged in this region. Two juxtaposed and interconnected via a deflection region webs thus form a substantially U-shaped element. The individual webs of the meandering mineral fiber web deposited are connected to each other, wherein the compound is formed in particular by binder, which cures in a hardening furnace.

Die Umlenkungsbereiche benachbart angeordneter Stege liegen insgesamt im Bereich einer groĂŸen Oberfläche des Dämmstoffelementes, während die freien Enden der Stege, bei denen die zuvor bestehenden Umlenkungsbereiche entfernt wurden, mit den Mineralfasern im Wesentlichen rechtwinklig in die Deckschicht einlaufen. Hierbei ist zu erkennen, dass das Dämmstoffelement insbesondere in einem Bereich unterhalb der Deckschicht ausreichend drucksteif ausgebildet ist.The deflection regions of adjacently arranged webs lie overall in the region of a large surface of the insulating element, while the free ends of the webs, in which the previously existing deflection regions have been removed, run into the cover layer with the mineral fibers substantially at right angles. It can be seen that the insulating element is formed sufficiently rigid in particular in an area below the cover layer.

Bei dem erfindungsgemĂ¤ĂŸen Bauelement wird somit ein Dämmstoffelement verwendet, welches eine stegförmige oder bänderartige Struktur aufweist, wobei die einzelnen Stege parallel zueinander verlaufen. Jeweils zwei benachbarte Stege sind Ă¼ber Umlenkungsbereiche miteinander verbunden, wobei diese Umlenkungsbereiche entfernt von der Deckschicht angeordnet sind und somit der Bereich des Dämmstoffelementes, welcher hohe Querzugkräfte aufzunehmen hat, entfernt von der Deckschicht liegt.In the device according to the invention thus an insulating element is used, which has a web-like or band-like structure, wherein the individual webs extend parallel to each other. In each case two adjacent webs are connected to one another via deflection regions, wherein these deflection regions are arranged away from the cover layer and thus the region of the insulation element which has to absorb high transverse tensile forces lies remote from the cover layer.

Eine alternative Lösung der Aufgabenstellung sieht vor, dass die Deckschicht Wellentäler und Wellenberge aufweist, wobei die Umlenkungsbereiche mit schräg bis parallel zu der groĂŸen Oberfläche verlaufenden Mineralfasern an die Deckschicht im Bereich der Wellenberge anschlieĂŸt, während das Dämmstoffelement im Bereich der Wellentäler frei von Umlenkungsbereichen und somit schräg bis parallel zu der groĂŸen Oberfläche verlaufenden Mineralfasern ausgebildet ist.An alternative solution to the problem provides that the cover layer has wave troughs and wave peaks, wherein the deflection regions adjoins the cover layer in the region of the wave peaks with mineral fibers running obliquely to parallel to the large surface, while the insulation element is free of deflection regions and thus in the region of the wave troughs is formed obliquely to parallel to the large surface extending mineral fibers.

Bei der zweiten AusfĂ¼hrungsform des erfindungsgemĂ¤ĂŸen Bauelementes ist somit vorgesehen, dass die Deckschicht Wellentäler und Wellenberge aufweist und somit wellenförmig ausgebildet ist. Selbstverständlich kann diese Profilierung auch durch eine trapezförmige Querschnittsgestaltung ersetzt werden. Wesentlich ist hierbei, dass die Umlenkungsbereiche mit schräg bis parallel zu der groĂŸen Oberfläche verlaufende Mineralfasern an die Deckschicht im Bereich der Wellenberge anschlieĂŸt, während das Dämmstoffelement im Bereich der Wellentäler frei von Umlenkungsbereichen und somit schräg bis parallel zu der groĂŸen Oberfläche verlaufenden Mineralfasern ausgebildet ist. In diesem Fall liegen die Umlenkungsbereiche somit unmittelbar unterhalb der Deckschicht im Bereich ihrer Wellenberge, während unterhalb der Deckschicht im Bereich der Wellentäler die Mineralfasern im Wesentlichen rechtwinklig zur Deckschicht verlaufen. Diese Ausgestaltung des erfindungsgemĂ¤ĂŸen Bauelementes eignet sich insbesondere fĂ¼r kleinformatige oder in Längsrichtung gut ausgesteifte Bauelemente, deren Dämmstoffelemente durch einen mittigen Horizontalschnitt einer Dämmstoffbahn hergestellt werden.In the second embodiment of the device according to the invention is thus provided that the cover layer wave troughs and peaks has and thus is wave-shaped. Of course, this profiling can also be replaced by a trapezoidal cross-sectional design. It is essential here that the deflection regions with mineral fibers running obliquely to parallel to the large surface adjoins the cover layer in the region of the wave crests, while the insulation element is formed in the region of the wave troughs free of deflection regions and thus obliquely parallel to the large surface running mineral fibers. In this case, the deflection regions are thus immediately below the cover layer in the region of their wave peaks, while below the cover layer in the region of the wave troughs, the mineral fibers extend substantially perpendicular to the cover layer. This embodiment of the component according to the invention is particularly suitable for small-sized or in the longitudinal direction well stiffened components whose insulating elements are produced by a central horizontal section of an insulating material web.

Eine Ausgestaltung der ersten AusfĂ¼hrungsform des erfindungsgemĂ¤ĂŸen Bauelementes sieht vor, dass die Deckschicht profiliert, insbesondere wellenförmig ausgebildet ist. Alternativ kann die Deckschicht natĂ¼rlich auch als Trapezblech mit Ober- und Untergurten ausgebildet sein.An embodiment of the first embodiment of the device according to the invention provides that the cover layer is profiled, in particular wave-shaped. Alternatively, the cover layer can of course also be designed as a trapezoidal sheet with upper and lower chords.

Eine weitere Ausgestaltung der ersten AusfĂ¼hrungsform sieht vor, dass die groĂŸe Oberfläche des Dämmstoffelementes unterhalb der Deckschicht zumindest in Teilbereichen gewalkt ausgebildet ist. Durch ein Walken der Oberfläche wird die Verbindung der Mineralfasern untereinander aufgelöst und eine elastifizierte Oberflächenschicht ausgebildet, wodurch die Verbindung der Deckschicht mit dem Dämmstoffelement auf der Basis einer Kleberschicht verbessert wird.A further embodiment of the first embodiment provides that the large surface of the insulating element below the cover layer is formed gewalkt at least in partial areas. By swaging the surface, the compound of the mineral fibers is dissolved among each other and an elasticized surface layer is formed, whereby the compound of the cover layer is improved with the insulating element based on an adhesive layer.

Bei der zweiten AusfĂ¼hrungsform des erfindungsgemĂ¤ĂŸen Bauelementes ist ergänzend vorgesehen, dass die Wellenberge eine Höhe von 1 bis 3 cm gegenĂ¼ber den Wellentälern aufweisen. Ferner hat es sich als vorteilhaft erwiesen, die Wellen mit einer Wellenlänge zwischen 10 und 25 cm, insbesondere zwischen 12 und 20 cm auszubilden. Durch die Amplituden der sinusförmigen Wellen und die voranstehend genannten Wellenlängen kann die wellenförmige Oberfläche des Dämmstoffelementes derart angeordnet werden, dass ihre negativen Halbwellen die Bereiche mit den rechtwinklig zu den groĂŸen Oberflächen ausgerichteten Mineralfasern erreicht, während ein wesentlicher Teil der positiven Halbwellen durch die Umlenkungsbereiche gefĂ¼hrt wird. Hierdurch wird eine Reduzierung des abzutrennenden Volumens der ursprĂ¼nglichen mäandrierend abgelegten Mineralfaserbahn erzielt, ohne dass die erforderliche Druckfestigkeit negativ beeinflusst wird.In the second embodiment of the device according to the invention, it is additionally provided that the wave crests have a height of 1 to 3 cm with respect to the wave troughs. Furthermore, it has proven to be advantageous to form the waves with a wavelength between 10 and 25 cm, in particular between 12 and 20 cm. Due to the amplitudes of the sinusoidal waves and the aforementioned wavelengths, the wavy surface of the insulating element can be arranged such that its negative half-waves reach the regions with the mineral fibers oriented at right angles to the large surfaces, while a substantial part of the positive half-waves is guided through the deflection regions , As a result, a reduction of the volume to be separated from the original meandering mineral fiber web is achieved, without the required compressive strength is adversely affected.

Bei beiden AusfĂ¼hrungsformen des erfindungsgemĂ¤ĂŸen Bauelementes ist es nach einem weiteren Merkmal vorgesehen, dass das Dämmstoffelement im Wesentlichen vollflächig an der Deckschicht anliegt. Durch eine Ă¼bereinstimmende Formgebung des Dämmstoffelementes und der Deckschicht wird beispielsweise die Menge an Klebern reduziert, die fĂ¼r eine Kleberverbindung zwischen der Deckschicht und dem Dämmstoffelement erforderlich ist.In both embodiments of the device according to the invention, it is provided according to a further feature that the insulating element is applied substantially over the entire surface of the cover layer. By a match Shaping the insulating element and the cover layer, for example, reduces the amount of adhesive required for an adhesive bond between the cover layer and the insulating element.

Des Weiteren ist vorgesehen, dass die Mineralfasern in den Umlenkungsbereichen Ă¼berwiegend schräg zu den groĂŸen Oberflächen des Dämmstoffelementes ausgerichtet sind. Hierzu werden die parallel zu den groĂŸen Oberflächen verlaufenden Fasern in den Umlenkungsbereichen entfernt. Die schräg zu den groĂŸen Oberflächen verlaufenden Mineralfasen verbleiben, so dass insgesamt die zu entfernende Menge Mineralfasern um 25 bis 60 % reduziert werden kann.Furthermore, it is provided that the mineral fibers in the deflection areas are oriented predominantly obliquely to the large surfaces of the insulating element. For this purpose, the fibers running parallel to the large surfaces are removed in the deflection regions. The mineral bevels running diagonally to the large surfaces remain, so that the total amount of mineral fibers to be removed can be reduced by 25 to 60%.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der bevorzugte AusfĂ¼hrungsformen eines Bauelementes dargestellt sind. In der Zeichnung zeigen:

Figur 1
ein erste AusfĂ¼hrungsform eines Bauelementes im Längsschnitt und
Figur 2
ein zweite AusfĂ¼hrungsform eines Bauelementes im Längsschnitt.
Further features and advantages of the invention will become apparent from the following description of the accompanying drawings in which preferred embodiments of a component are shown. In the drawing show:
FIG. 1
a first embodiment of a component in longitudinal section and
FIG. 2
a second embodiment of a component in longitudinal section.

In der Figur 1 ist ein Bauelement 1 fĂ¼r eine Gebäudewand oder ein Gebäudedach dargestellt. Das Bauelement 1 besteht aus einer Deckschicht 4 und einem Dämmstoffelement 5. Das Dämmstoffelement 5 weist zwei groĂŸe Oberflächen auf, die im Abstand zueinander angeordnet sind, wobei eine groĂŸe Oberfläche 3 wellenförmig ausgebildet und der Deckschicht 4 zugewandt ist, die als profiliertes Blech ebenfalls wellenförmig ausgebildet ist.In the FIG. 1 a component 1 is shown for a building wall or a building roof. The component 1 consists of a cover layer 4 and an insulating element 5. The insulating element 5 has two large surfaces, which are arranged at a distance to each other, wherein a large surface 3 is wave-shaped and facing the cover layer 4, which also formed as a profiled sheet wavy is.

Das Dämmstoffelement 5 besteht aus einer mäandrierend abgelegten Mineralfaserbahn, die Stege 6 ausbildet, wobei zwei benachbart angeordnete Stege 6 Ă¼ber einen Umlenkungsbereich 7 miteinander verbunden sind. Die einzelnen Stege 6 sind Ă¼ber Bindemittel miteinander verbunden.The insulating element 5 consists of a meandering deposited mineral fiber web forming webs 6, wherein two adjacently arranged webs 6 are connected to each other via a deflection region 7. The individual webs 6 are connected to one another via binders.

Das Dämmstoffelement 5 besteht aus Mineralfasern 2, die in den Stegen 6 rechtwinklig zu den groĂŸen Oberflächen 3 verlaufend ausgerichtet sind. In den Umlenkungsbereichen 7 verlaufen die Mineralfasern 2 schräg und/oder parallel zu den groĂŸen Oberflächen 3.The insulating element 5 consists of mineral fibers 2, which are aligned at right angles to the large surfaces 3 in the webs 6. In the diversion areas 7, the mineral fibers 2 run obliquely and / or parallel to the large surfaces 3.

Die den Umlenkungsbereichen 7 gegenĂ¼berliegenden freien Enden der Stege 6 grenzen unmittelbar an die Deckschicht 4 an. In diesem Bereich ist die aus den Stegen 6 gebildete groĂŸe Oberfläche 3 des Dämmstoffelements 5 gewalkt ausgebildet, so dass durch einen gelockerten Faserverbund die Aufnahme eines Klebers fĂ¼r die Verbindung des Dämmstoffelementes 5 mit der Deckschicht 4 verbessert ist.The deflecting regions 7 opposite free ends of the webs 6 directly adjoin the cover layer 4. In this area, the formed from the webs 6 large surface 3 of the insulating element 5 is formed gewalkt, so that the inclusion of an adhesive for the connection of the insulating element 5 with the cover layer 4 is improved by a relaxed fiber composite.

Im Bereich der gegenĂ¼berliegend ausgebildeten groĂŸen Oberfläche 3, nämlich im Bereich der Umlenkungsbereiche 7, sind die parallel zu der groĂŸen Oberfläche 3 verlaufenden Mineralfasern 2 im Wesentlichen durch Abschleifen oder Abschneiden entfernt. Demzufolge sind die Mineralfasern 2 in den Umlenkungsbereichen 7 unmittelbar im Bereich der Oberfläche 3 schräg zu der groĂŸen Oberfläche 3 verlaufend ausgerichtet.In the region of the oppositely formed large surface 3, namely in the region of the deflection regions 7, the mineral fibers 2 extending parallel to the large surface 3 are removed essentially by grinding or cutting off. Accordingly, the mineral fibers 2 are aligned in the deflection areas 7 directly in the region of the surface 3 obliquely to the large surface 3 extending.

Die Deckschicht 4 liegt vollflächig auf der Oberfläche 3 des Dämmstoffelementes 5 auf.The cover layer 4 rests on the entire surface of the surface 3 of the insulating element 5.

In Figur 2 ist eine zweite AusfĂ¼hrungsform des erfindungsgemĂ¤ĂŸen Bauelements 1 dargestellt. Im Unterschied zur AusfĂ¼hrungsform gemĂ¤ĂŸ Figur 1 sind die Umlenkungsbereiche 7 benachbarter Stege 6 unterhalb der Deckschicht 4 im Bereich eines Wellenbergs 8 angeordnet, so dass die Stege 6 mit ihren freien Enden in die gegenĂ¼berliegende groĂŸe Oberfläche 3 mĂ¼nden.In FIG. 2 a second embodiment of the device 1 according to the invention is shown. In contrast to the embodiment according to FIG. 1 the deflection regions 7 of adjacent webs 6 are arranged below the cover layer 4 in the region of a wave crest 8, so that the webs 6 open with their free ends into the opposite large surface 3.

Zwischen zwei Wellenbergen 8 ist ein Wellental 9 angeordnet. Im Bereich des Wellentals 9 sind die Umlenkungsbereiche 7 benachbarter Stege 6 derart entfernt, dass die Mineralfasern 2 der Stege 6 im Bereich des Wellentals 9 im Wesentlichen rechtwinklig zu beiden groĂŸen Oberflächen 3 des Dämmstoffelements 5 ausgerichtet sind.Between two wave crests 8 a wave trough 9 is arranged. In the region of the wave trough 9, the deflection regions 7 of adjacent webs 6 are removed such that the mineral fibers 2 of the webs 6 are aligned substantially perpendicular to both large surfaces 3 of the insulating element 5 in the region of the corrugation 9.

Die aus einem Wellenberg 8 und einem Wellental 9 gebildete Welle 10 hat eine Wellenlänge von 15 cm, während die Höhe der Wellenberge 2 cm gegenĂ¼ber den Wellentälern beträgt.The wave 10 formed from a wave crest 8 and a wave trough 9 has a wavelength of 15 cm, while the height of the wave crests is 2 cm in relation to the wave troughs.

Claims (8)

  1. A construction element for a building wall or a building roof, consisting of at least one top layer (4) and an insulating material element (5) consisting of mineral fibres (2), preferably rock wool, in the form of a board or web which has two large surfaces (3), which are arranged at a distance from each other, wherein the top layer (4) is arranged on one large surface (3) and wherein the insulating material element (5) which is formed from a web of mineral fibres which are deposited in a meandering manner forms links (6) which are aligned essentially at right angles to the large surfaces (3) and are connected to each other by means of deflection regions (7) in the region of a large surface, wherein the mineral fibres (2) in the links (6) run at right angles and in the deflection regions (7) run obliquely to parallel to the large surfaces (3) of the insulating material element (2), wherein the surface (3) of the insulating material element (5) with the mineral fibres (2) running in a predominantly right-angled manner is adjacent to the top layer (4),
    characterised in that
    the top layer (4) has a profiled configuration.
  2. A construction element for a building wall or a building roof, consisting of at least one top layer (4) and an insulating material element (5) consisting of mineral fibres (2), preferably rock wool, in the form of a board or web which has two large surfaces (3), which are arranged at a distance from each other, wherein the top layer (4) is arranged on one large surface (3) and wherein the insulating material element (5) which is formed from a web of mineral fibres which are deposited in a meandering manner forms links (6) which are aligned essentially at right angles to the large surfaces (3) and are connected to each other by means of deflection regions (7) in the region of a large surface, wherein the mineral fibres (2) in the links (6) run at right angles and in the deflection regions (7) run obliquely to parallel to the large surfaces (3) of the insulating material element (2),
    characterised in that
    the top layer (4) has troughs (9) and peaks (8), wherein the deflection regions (7) with mineral fibres (2) running obliquely to parallel to the large surface (3) are adjacent to the top layer (4) in the region of the peaks (8), whereas the insulating material element (5) is free of deflection regions (7) and thus mineral fibres (2) running obliquely to parallel to the large surface (3) in the region of the troughs (9).
  3. The construction element according to Claim 1,
    characterised in that
    the top layer (4) has a wave-like configuration.
  4. The construction element according to Claim 1 or 2,
    characterised in that
    the insulating material element (5) bears essentially areally against the top layer (4).
  5. The construction element according to Claim 1,
    characterised in that
    the large surface (3) of the insulating material element (5) beneath the top layer (4) is fulled at least in some regions.
  6. The construction element according to Claim 2,
    characterised in that
    the peaks (8) have a height of 1 to 3 cm compared to the troughs (9).
  7. The construction element according to Claim 2,
    characterised in that
    the waves (10) have a wavelength between 10 and 25 cm, in particular between 12 and 20 cm.
  8. The construction element according to Claim 1 or 2,
    characterised in that
    the mineral fibres (2) in the deflection regions (7) are aligned predominantly obliquely to the large surfaces (3) of the insulating material element (5).
EP05798038A 2004-10-08 2005-10-05 Insulating building component Active EP1807576B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004049212 2004-10-08
DE200510044052 DE102005044052A1 (en) 2004-10-08 2005-09-15 module
PCT/EP2005/010695 WO2006040045A1 (en) 2004-10-08 2005-10-05 Insulating component

Publications (2)

Publication Number Publication Date
EP1807576A1 EP1807576A1 (en) 2007-07-18
EP1807576B1 true EP1807576B1 (en) 2012-06-13

Family

ID=35466417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05798038A Active EP1807576B1 (en) 2004-10-08 2005-10-05 Insulating building component

Country Status (4)

Country Link
EP (1) EP1807576B1 (en)
DE (1) DE102005044052A1 (en)
RU (1) RU2358069C2 (en)
WO (1) WO2006040045A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044954A1 (en) * 2007-09-19 2009-04-09 Roscha Ag Non-combustible heat insulating board for roof structure of building e.g. house, has opposite surfaces, where one of surfaces with even wave shape is placed on corrugated board of roof sheathing
DE102011007654B4 (en) 2011-04-19 2012-12-06 Hilti Aktiengesellschaft Compressible soft seal, process for its preparation and its use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK155163B (en) * 1986-06-30 1989-02-20 Rockwool Int PROCEDURE FOR CONTINUOUS PRODUCTION OF MINERAL WOOLS
DE3701592A1 (en) * 1987-01-21 1988-08-04 Rockwool Mineralwolle METHOD FOR CONTINUOUSLY PRODUCING A FIBER INSULATION SHEET AND DEVICE FOR IMPLEMENTING THE METHOD
DE4319340C1 (en) * 1993-06-11 1995-03-09 Rockwool Mineralwolle Process for producing mineral fibre insulation boards and an apparatus for carrying out the process
DE10257977A1 (en) * 2002-12-12 2004-07-01 Rheinhold & Mahla Ag Space limiting panel
US20070264465A1 (en) * 2004-01-31 2007-11-15 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Method for the Production of a Web of Insulating Material Made of Mineral Fibres and Web of Insulating Material

Also Published As

Publication number Publication date
EP1807576A1 (en) 2007-07-18
WO2006040045A8 (en) 2007-09-13
DE102005044052A1 (en) 2006-05-04
WO2006040045B1 (en) 2007-01-25
WO2006040045A1 (en) 2006-04-20
RU2358069C2 (en) 2009-06-10
RU2007117143A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
EP0581269B1 (en) External insulating and surface treatment system
EP2126243B1 (en) Sloping roof system and insulating board for sloping roof systems
DE2647100C2 (en) Heat and sound insulating sub-roof
WO2003029576A1 (en) Building element
DD280988A5 (en) WATER REPELLENT EXTERNAL CLOTHING FOR BUILDINGS
EP1799927B1 (en) Insulating element
EP1807576B1 (en) Insulating building component
EP1799926B1 (en) Building roof, insulating layer structure, and mineral fibre insulating element for a building roof
DE102006041560A1 (en) insulating element
EP0795659A1 (en) Roof construction
DE202012100418U1 (en) Building facade with locking element and locking element
DE102005032557B4 (en) Component, in particular for building structures
EP1559844B1 (en) Insulating element and composite thermal compound system
EP1395719B2 (en) Flat or flat inclined roof construction and associated insulating element
DE3425011A1 (en) Facade insulating panel
DE2729232A1 (en) Light fireproof insulated composite load-bearing sandwich panel - has mineral fibre strip layer covering frame and holding one covering layer
EP1335080B1 (en) Insulation board for heat and/or sound insulation, and insulation layer
EP1792023B1 (en) Insulating element made of mineral fibers and method for the production thereof
DE102020105958B3 (en) Sound absorbing panel device
EP1295998B1 (en) Heat and sound insulation; Insulating element and mineral fibre lamella
EP1074670A2 (en) Building construction
DE10228002A1 (en) Building element and insulation element for a building element
DE3328092A1 (en) Panel for insulating roofs, floors, wall surfaces or the like
DE202015000358U1 (en) Glass wool insulation panel for the insulation of pitched roofs and buildings
WO2002006602A1 (en) Structural element for sealing flat roofs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

RAX Requested extension states of the european patent have changed

Extension state: HR

Payment date: 20070425

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: INSULATING BUILDING COMPONENT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 562095

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005012836

Country of ref document: DE

Effective date: 20120809

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120914

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: DEUTSCHE ROCKWOOL MINERALWOLL G.M.B.H. & CO. OHG

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120924

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

26N No opposition filed

Effective date: 20130314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005012836

Country of ref document: DE

Effective date: 20130314

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121005

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120913

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121005

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005012836

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 562095

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005