EP1395719B2 - Flat or flat inclined roof construction and associated insulating element - Google Patents

Flat or flat inclined roof construction and associated insulating element Download PDF

Info

Publication number
EP1395719B2
EP1395719B2 EP02743074.3A EP02743074A EP1395719B2 EP 1395719 B2 EP1395719 B2 EP 1395719B2 EP 02743074 A EP02743074 A EP 02743074A EP 1395719 B2 EP1395719 B2 EP 1395719B2
Authority
EP
European Patent Office
Prior art keywords
tension
layer
roof construction
resistant layer
insulating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02743074.3A
Other languages
German (de)
French (fr)
Other versions
EP1395719A1 (en
EP1395719B1 (en
Inventor
Gerd-Rüdiger Klose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Rockwool Mineralwoll GmbH and Co OHG
Original Assignee
Deutsche Rockwool Mineralwoll GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26009466&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1395719(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10208602A external-priority patent/DE10208602A1/en
Application filed by Deutsche Rockwool Mineralwoll GmbH and Co OHG filed Critical Deutsche Rockwool Mineralwoll GmbH and Co OHG
Publication of EP1395719A1 publication Critical patent/EP1395719A1/en
Application granted granted Critical
Publication of EP1395719B1 publication Critical patent/EP1395719B1/en
Publication of EP1395719B2 publication Critical patent/EP1395719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • E04D13/1606Insulation of the roof covering characterised by its integration in the roof structure
    • E04D13/1643Insulation of the roof covering characterised by its integration in the roof structure the roof structure being formed by load bearing corrugated sheets, e.g. profiled sheet metal roofs
    • E04D13/165Double skin roofs

Definitions

  • the invention relates to a roof construction in a flat and / or flat inclined configuration, consisting of a substructure on which a thermal and / or acoustic insulation, in particular of insulating panels of mineral fiber insulation, preferably of glass and / or stone fibers, part of the surface on top chords of the substructure forming trays and a superstructure, with lower and / or top construction as trays made of individual profiled sheets.
  • the invention further relates to an insulating element for a roof construction in a flat and / or flat inclined configuration, in the form of an insulating panel of mineral fibers, preferably of glass and / or stone fibers, the part of the surface rests in the installed state on upper chords of a substructure, wherein the insulation board two parallel to each other extending and spaced apart large surfaces, two connecting the large surfaces, formed at right angles to the large surfaces and parallel to each other extending longitudinal sides and to the longitudinal sides and the large surfaces arranged at right angles narrow sides.
  • Flat or flat inclined roof structures of hall-like buildings very often consist of a support shell of profiled steel sheets from which the substructure, but often also the roofing is formed.
  • steel sheets are used with relatively high height and average width. In doing so, certain deflections resulting from the dead loads and when walking or driving, that is to say from dynamic loads, are accepted.
  • the clearances between the upper belts formed by the profiling vary between about 130 mm and about 175 mm.
  • the widths of the upper straps are significantly lower at approx. 108 mm to approx. 145 mm.
  • the insulating materials are preferably delivered and installed on site as large-format insulating panels, for example with dimensions of approximately 2 m ⁇ 1.2 m.
  • a conventional roof construction in a flat and / or flat inclined configuration thus consists of a profiled sheet metal tray, a loosely laid polyethylene film as a vapor barrier air barrier, between about 50 - 160 mm thick thermal barrier coating and a cover made of plastic films, synthetic rubber or bituminous membranes , which are fixed point by point by screws screwed into the tray.
  • sheet metal plates are used, which press the seals against the insulating material.
  • Roof constructions constructed in this way constitute "unused roofs" in the sense of the specialist rules of the roofing trade, whereas terraces or parking areas are to be regarded as used roof constructions. Under use is therefore an unlimited walking and driving as well as the parking of containers, goods, etc. or the setting up of scaffolding, ladders to understand.
  • the structure of the insulating materials has been significantly changed in recent years in such a way that the individual fibers are arranged in a relatively steep storage to the large surfaces of the insulating materials, in particular the insulation boards or insulating material webs.
  • this is done in the production of Insulation materials by longitudinal and vertical compression of the fiber mass impregnated with binders and subsequent fixation of the inherently highly deformed fiber mass by the curing of the thermosetting resins or resin mixtures used mostly.
  • the longitudinal / vertical compression is usually in the direction of production, so that the fibers are steep in the direction of production and strongly deformed and stored transversely to the production direction flat.
  • the bending tensile strength of an insulating board produced from such insulation sheet is therefore about 3 to 6 times higher than in the production direction, depending on the density in the examination transverse to the production direction.
  • the insulation boards must always be designed so that the insulation board axis is arranged with the higher bending tensile strength transverse to the upper chords. As a result, the fundamental problems are not eliminated, but only mitigated.
  • the compressive stress increases very clearly, so that regularly the average density of the insulating materials, in particular the insulation boards can be reduced.
  • This density is in insulating boards with this structure in the range of about 130 to 180 kg / m 3 .
  • the commercial insulation boards are offered with average compressive stresses of about 55 to 70 kPa, with a ten percent compression of the insulation board is permitted. This information applies only to unused samples. The values represent a maximum value that can be achieved once, because structural changes already occur below this limit. Therefore, even with a gentle treatment of the insulating layer during the construction period regularly loss of strength in the order of about 20 to 35 kPa on.
  • the resulting compressive strength is then the relatively stable output level for the actual use phase of the building or the life of the flat roof construction again.
  • a disadvantage is the heat insulation in such a structured insulation boards by about 2 to 3 mW / mK increased thermal conductivity, so that these insulation boards often fall into the heat conductivity group 045 according to DIN 4108.
  • insulation boards are very sensitive to shearing loads by walking or driving. This disadvantage is due to the in the DE 37 01 592 C1 and the EP 0 277 500 B1 described insulation panels avoided.
  • These insulation boards have an integrated, highly compressed zone in which the individual fibers are pressed together to densities of about 160 to 220 kg / m 3 and thereby brought into a horizontal position.
  • the roof insulation panels as well as the sloping roof elements are protected by loosely laid insulation boards with thicknesses of approx. 20 - 50 mm.
  • the invention has for its object to provide a roof structure and an insulating element with which or to which the foregoing disadvantages are avoided and with the or the one better at least during the preparation and safe walk-insulation at low overall weight and high insulation performance is created.
  • the insulation consists of at least two layers, of which at least one layer, namely at least the layer resting on the substructure is formed tensile such that bending cracks, as well as shear stresses due to punctual loads due to committing be avoided on the insulation.
  • the insulation board consists of at least two layers, of which at least one layer, namely the resting on the substructure or another edition layer is formed tensile such that bending cracks, as well as shear stresses by punctual Stress due to walking on the insulation can be avoided and that the mineral fibers in the narrow sides have a flat orientation relative to the large surfaces and in the region of the longitudinal sides a steep orientation relative to or large surfaces.
  • the roof construction according to the invention thus provides for the installation of an insulating material, which does not tend by the tensile structure facing the substructure, under load by walking and / or storage of objects, in particular punctual loads are in the foreground to bend between the upper straps.
  • an insulating material which does not tend by the tensile structure facing the substructure, under load by walking and / or storage of objects, in particular punctual loads are in the foreground to bend between the upper straps.
  • both bending cracks, as well as shear stresses are avoided.
  • the material thickness of the insulating material must be significantly increased. Such an approach is precluded by economic reasons. Furthermore, often determines the desire to form the insulation of more, at least two layers laid with offset joints insulation boards, the material thickness of the individual insulation boards or layers of insulation, as far as, for example, sheet-like insulation material is laid. Since, however, does not arise in the superimposition of the individual, in the surfaces also profiled insulation boards a non-positive bond between the layers of insulation, the individual insulation board reacts individually with deformations to the loads occurring in each case.
  • the supporting behavior of the insulation, in particular the insulating elements, preferably the insulation boards is significantly improved by at least one tensile layer in the region of the substructure facing large surface of the insulation, in particular of the insulating element ,
  • the insulation boards is provided.
  • the design of the insulation may be limited with a tensile layer on the resting on the substructure layer of insulation.
  • the tensile layer may be formed integrally with the one or more layers of the insulating element. Alternatively or additionally, a tensile layer may also be formed as a separately manageable element, which is adhered in a further process step to the other layers of the insulating element.
  • the tensile layer preferably consists of at least one tear-resistant fabric, in particular a mesh fabric made of glass, plastic and / or textile fibers.
  • a tear-resistant fabric in particular a mesh fabric made of glass, plastic and / or textile fibers.
  • glass fleeces are suitable, preferably glass fleeces with a thread reinforcement.
  • the individual mineral fibers are bonded in an area near the surface of a few millimeters up to 5 cm of the insulation elements forming the insulation with an additional binder. This is therefore an increase in the binder content in the near-surface region, wherein the additional binder in this area with the binder of the insulation, namely the insulating element match or may deviate therefrom.
  • the binder may have an adhesive effect both with respect to the mineral fibers of the insulating element and with respect to the additionally applied tensile layer.
  • the mesh fabric is pressed before curing of the binder in an impregnated with preferably additional binder endless mineral fiber web from which then the insulating elements, in particular insulating panels are formed.
  • the mineral fiber web is subjected to compression in the longitudinal and / or height direction in order to achieve a higher rigidity of the insulating material elements produced therefrom. If this compression is carried out after the application of the tension-resistant layer, in particular of the mesh fabric, an almost complete embedding of this mesh fabric is achieved. For this purpose, a part of the mineral fiber web can be separated and the mesh fabric between these partial webs are inserted before re-merging the part webs formed parallel to the large surfaces. After joining the partial webs, the mineral fiber web is compacted together with the mesh fabric and fixed the structure created the mineral fiber web by curing the binder.
  • An improved and in particular more intensive embedding of the fabric intended as a reinforcement in the insulating element and a good bond with the endless mineral fiber web is achieved by introducing short to very short, e.g. obtained by chopping or grinding mineral fibers prepared, in particular glass fibers in the region of the separating surfaces between the partial webs or the large surface and the adhered mesh fabric.
  • a development of the invention provides that the additionally introduced short mineral fibers are introduced as a fiber mass with a bulk density of 200 to 800 kg / m 3 .
  • small forces can act on the mineral fiber web for compression, which do not lead to any undesired compression of the non-tensile regions of the mineral fiber web, but lead to a bulk density of the fiber mass of 400-800 kg / m 3 .
  • the short fibers are bonded with about 6 to 14% by weight of binders, in particular with conventional thermosetting resins and / or resin mixtures.
  • binders inorganic binders in particular nanoscale silica sol (Ormocere ® ), silica sol, water glasses alone, in combinations with each other or in combination with organic binders or binder mixtures or adhesive binders.
  • At least the tensile layers have additional water-repellent substances.
  • the tensile layers described above and / or in particular the introduced reinforcing means are designed to be open to diffusion, so that a provided in the roof construction according to the invention vapor barrier air dam or on the substructure existing moisture, does not lead to an inclusion of water in the insulation.
  • the trapped in the roof waterproofing can be quickly removed in this embodiment by the diffusion-open insulation and discharged through the roof seal to the outside air.
  • At least one film preferably made of metal, a bituminous sheet and / or another, with mineral fiber laminating usual over the entire surface or part of the surface, in particular glued strip-wise on the insulating element and / or mechanically fixed, for example, sewn ,
  • FIG. 1 shows a section of a roof construction in a flat configuration.
  • the roof construction consists of a substructure 1, on which an insulation 2 is placed.
  • the substructure consists of trays 3, which are formed from profiled sheets, which have meandering U-shaped profiles.
  • Each tray 3 thus consists of upper straps 4 and lower straps 5, each upper flange 4 is connected via a web 6 with a lower flange 5.
  • the insulation 2 is arranged, which consists of individual insulation boards 8.
  • the insulating panels 8 have two mutually parallel and spaced large surfaces 9, two the large surfaces 9 connecting, aligned at right angles to the large surfaces 9 and parallel longitudinal sides 10 and to the long sides 10 and the large surfaces arranged at right angles narrow sides 11th on.
  • the narrow sides 11 are aligned transversely to the production direction in a conventional, known per se continuous production of such insulation boards.
  • the insulating panels 8 are usually made of an endless mineral fiber web and consist of stone fibers, each having a length in the micrometer range and are bound with binders.
  • the individual mineral fibers in the region of the narrow sides 11 have a flat orientation relative to the large surfaces.
  • the mineral fibers 12 are oriented steeply in the region of the longitudinal sides 10 of the insulating board 8 to the large surfaces 9. This orientation of the mineral fibers 12 is achieved by compression of the aforementioned continuous mineral fiber web in the longitudinal direction of the production line, i. in the direction of the surface normal of the narrow sides 11 and / or a compression in the direction of the surface normal of the large surfaces 9 achieved.
  • the insulation board which in more detail in FIG. 2 is shown, in the region of the large surface 9, which is arranged facing away from the substructure 1, a layer 13 with higher fiber density or binder density.
  • the insulation board 8 has a tensile layer 14, which will be described below with reference to FIG. 2 is described.
  • the tensile layer 14 consists of a highly compressed cover layer 15, in which a mesh fabric 16 is embedded.
  • the cover layer 15 is glued to the large surface 9 of the insulation board 8, which faces the substructure 1.
  • a glass fleece 17 is additionally glued as a final lamination.
  • the glass fleece 17 has a thread reinforcement in order to further increase its tensile strength.
  • the cover layer 15 consists of short to very short mineral fibers, which in the form of a pulp having a bulk density of 300 kg / m 3 and a binder content of 14% by mass, with an inorganic binder is selected as the binder.
  • the cover layer 15 is designed to be open to diffusion, so that diffusion of moisture contained in the roof structure through the insulation 2 is possible despite the high density.

Abstract

The invention relates to a flat and/or flatly inclined roof construction, consisting of a lower structure carrying a heat insulating element and/or sound insulating element, especially consisting of mineral fibre insulating boards, said insulating element being partly arranged on upper chords of the carrier elements forming the lower structure. Said roof construction also comprises an upper structure, the lower structure and/or the upper structure forming carrier elements consisting of individual profiled sheets. The aim of the invention is to create a roof construction without the cited disadvantages, providing insulation which is more easily and more reliably accessible, at least during the construction phase, and which has a low total weight and high insulating power. To this end, the insulation (2) consists of at least two layers, at least one (14) of said layers, i.e. at least the layer (14) on the lower structure (1), being embodied in a tension-resistant manner.

Description

Die Erfindung betrifft eine Dachkonstruktion in flacher und/oder flach geneigter Ausgestaltung, bestehend aus einer Unterkonstruktion, auf der eine Wärme- und/oder Schalldämmung, insbesondere aus Dämmplatten aus Mineralfaserdämmstoffen, vorzugsweise aus Glas- und/oder Steinfasern, teilflächig auf Obergurten von die Unterkonstruktion bildenden Tragschalen aufliegt und einer Oberkonstruktion, wobei Unter- und/oder Oberkonstruktion als Tragschalen aus einzelnen profilierten Blechen bestehen. Die Erfindung betrifft ferner ein Dämmstoffelement für eine Dachkonstruktion in flacher und/oder flach geneigter Ausgestaltung, in Form einer Dämmplatte aus Mineralfasern, vorzugsweise aus Glas- und/oder Steinfasern, die im Einbauzustand auf Obergurten einer Unterkonstruktion teilflächig aufliegt, wobei die Dämmplatte zwei parallel zueinander verlaufende und im Abstand zueinander angeordnete große Oberflächen, zwei die großen Oberflächen verbindende, rechtwinklig zu den großen Oberflächen ausgebildete und parallel zueinander verlaufende Längsseiten sowie zu dem Längsseiten und den großen Oberflächen rechtwinklig angeordnete Schmalseiten aufweist.The invention relates to a roof construction in a flat and / or flat inclined configuration, consisting of a substructure on which a thermal and / or acoustic insulation, in particular of insulating panels of mineral fiber insulation, preferably of glass and / or stone fibers, part of the surface on top chords of the substructure forming trays and a superstructure, with lower and / or top construction as trays made of individual profiled sheets. The invention further relates to an insulating element for a roof construction in a flat and / or flat inclined configuration, in the form of an insulating panel of mineral fibers, preferably of glass and / or stone fibers, the part of the surface rests in the installed state on upper chords of a substructure, wherein the insulation board two parallel to each other extending and spaced apart large surfaces, two connecting the large surfaces, formed at right angles to the large surfaces and parallel to each other extending longitudinal sides and to the longitudinal sides and the large surfaces arranged at right angles narrow sides.

Flach oder flach geneigte Dachkonstruktionen von hallenartigen Gebäuden bestehen sehr häufig aus einer Tragschale aus profilierten Stahlblechen, aus denen die Unterkonstruktion, oftmals aber auch die Dacheindeckung gebildet ist. Um möglichst große Spannweiten bei geringen Blechdicken zu erreichen, werden die als Profile ausgebildeten Stahlbleche mit relativ großer Höhe und mittlerer Breite verwendet. Dabei werden gewisse, aus den Eigenlasten und bei dem Begehen oder Befahren, also aus dynamischen Belastungen resultierende Durchbiegungen in Kauf genommen. Die lichten Abstände zwischen den durch die Profilierung gebildeten Obergurten variieren zwischen ca. 130 mm und ca. 175 mm. Die Breiten der Obergurte sind demgegenüber mit ca. 108 mm bis ca. 145 mm deutlich geringer.Flat or flat inclined roof structures of hall-like buildings very often consist of a support shell of profiled steel sheets from which the substructure, but often also the roofing is formed. In order to achieve the largest possible spans at low sheet thicknesses designed as profiles steel sheets are used with relatively high height and average width. In doing so, certain deflections resulting from the dead loads and when walking or driving, that is to say from dynamic loads, are accepted. The clearances between the upper belts formed by the profiling vary between about 130 mm and about 175 mm. In contrast, the widths of the upper straps are significantly lower at approx. 108 mm to approx. 145 mm.

Um die Kosten für die Unterkonstruktion niedrig zu halten, werden die Profile mit großen Spannweiten verlegt. Da die Verbindung der einzelnen Profile untereinander ebenfalls nur punktweise erfolgt, ergibt sich eine schwingungsfähige Membran, die bereits durch geringe Kräfte angeregt werden kann.In order to keep the costs for the substructure low, the profiles are laid with large spans. Since the connection of the individual profiles with each other also takes place only pointwise, there is a vibratory membrane that can already be excited by small forces.

Für die Wärmedämmung und als Brandschutzauflage auf dieser relativ labilen Unterkonstruktion haben sich insbesondere elastisch-federnde Dämmstoffe aus Mineralfasern, insbesondere aus Steinwolle bewährt. Diese Dämmstoffe können einerseits Bewegungen der Unterkonstruktion folgen, andererseits auch dann noch dämpfend wirken, wenn sie nur lose auf der Unterkonstruktion aufliegen. Weitere Vorteile dieser Dämmstoffe sind die Nichtbrennbarkeit in Sinne der DIN 4102, das hohe Schallabsorptionsvermögen sowie die Wirtschaftlichkeit ihrer Herstellung und Verarbeitung. Um das Tragverhalten der Dämmstoffe zu verbessern und gleichzeitig auch die Verlegegeschwindigkeit zu steigern, werden die Dämmstoffe vorzugsweise als großformatige Dämmplatten, beispielsweise mit den Abmessungen ca. 2 m x 1,2 m baustellenseitig angeliefert und verlegt. Es sind aber auch noch Einsatzbereiche für übliche, demgegenüber kleinformatige Dämmplatte bekannt. Da die Abmessungen der Dämmstoffe, insbesondere der Dämmplatten regelmäßig nicht auf die Maße der Tragschalen, nämlich den Abstand der Obergurte abgestimmt sind, verringert sich dadurch auch die spezifische Zahl der frei auskragenden und somit besonders leicht zu beschädigenden Dämmplatten bzw. Abschnitte von Dämmstoffen, die bahnenförmig ausgebildet und verlegt werden.For thermal insulation and as a fire protection overlay on this relatively unstable substructure in particular elastic-resilient insulating materials made of mineral fibers, especially rock wool have proven. On the one hand, these insulating materials can follow the movements of the substructure, on the other hand they can still have a damping effect if they only rest loosely on the substructure. Further advantages of these insulating materials are the non-combustibility in terms of DIN 4102, the high sound absorption capacity and the economic efficiency of their production and processing. In order to improve the load-bearing behavior of the insulating materials and at the same time to increase the laying speed, the insulating materials are preferably delivered and installed on site as large-format insulating panels, for example with dimensions of approximately 2 m × 1.2 m. But there are also areas of application for conventional, contrast, small-sized insulation board known. Since the dimensions of the insulating materials, especially the insulation boards are not regularly matched to the dimensions of the trays, namely the distance of the upper straps, thereby reducing the specific number of cantilevered and thus particularly easy to damage insulation boards or sections of insulation, the web-shaped be trained and relocated.

Eine übliche Dachkonstruktion in flacher und/oder flach geneigter Ausgestaltung besteht somit aus einer profilierten Blech-Tragschale, einer lose verlegten Polyethylenfolie als dampfbremsende Luftsperre, der zwischen ca. 50 - 160 mm dicken Wärmedämmschicht und einer Abdeckung aus Kunststoff-Folien, Synthesekautschuk- oder Bitumenbahnen, die durch in die Tragschale eingedrehte Schrauben punktweise fixiert werden. Um die Zugkraft der Schrauben materialgerecht zu verteilen, werden Blechteller verwendet, welche die Abdichtungen gegen den Dämmstoff pressen.A conventional roof construction in a flat and / or flat inclined configuration thus consists of a profiled sheet metal tray, a loosely laid polyethylene film as a vapor barrier air barrier, between about 50 - 160 mm thick thermal barrier coating and a cover made of plastic films, synthetic rubber or bituminous membranes , which are fixed point by point by screws screwed into the tray. In order to distribute the tensile force of the screws in accordance with the material, sheet metal plates are used, which press the seals against the insulating material.

Derart aufgebaute Dachkonstruktionen stellen im Sinne der Fachregeln des Dachdeckerhandwerks "nicht genutzte Dächer" dar, wohingegen Terrassen oder Parkflächen als genutzte Dachkonstruktionen anzusehen sind. Unter Nutzung ist demzufolge ein unbegrenztes Begehen und Befahren sowie das Abstellen von Behältern, Gütern usw. oder das Aufstellen von Arbeitsgerüsten, Leitern, zu verstehen.Roof constructions constructed in this way constitute "unused roofs" in the sense of the specialist rules of the roofing trade, whereas terraces or parking areas are to be regarded as used roof constructions. Under use is therefore an unlimited walking and driving as well as the parking of containers, goods, etc. or the setting up of scaffolding, ladders to understand.

Selbst bei nicht genutzten Dachkonstruktionen im Sinne der voranstehenden Definition kommt es aber bereits bei der Erstellung der Dachkonstruktion zu einer punktuellen und/oder großflächige Belastung der Dachkonstruktion durch während der Erstellung auf dem Dach arbeitenden Personen und/oder dort aufgestellten Maschinen und Gerätschaften. Durch ein schlechtes Management bei der Abfolge der im Dachbereich oder auf den Dachflächen tätigen Gewerke und ein fahrlässiger Umgang mit dem eigenen Werk, werden die fertiggestellten Dachflächen als ebene, leicht zu begehende und zu befahrende Flächen, Verkehrs- und Lagerflächen genutzt, wobei die Dämmstoffe an bevorzugten Stellen wiederholt sehr hohen mechanischen Belastungen unterworfen werden, die zu einer Beschädigung der Struktur und demzufolge zu einem mangelhaften Werk führen.Even with unused roof structures in the sense of the above definition, however, it already comes in the preparation of the roof construction to a punctual and / or large-scale load on the roof construction during the preparation of working on the roof and / or machines and equipment set up there. Due to a poor management of the succession of activities in the roof area or on the roof surfaces and a negligent handling of their own work, the finished roofs are used as flat, easy to walk on and to be traveled surfaces, traffic and storage areas, the insulation materials repeatedly subjected to very high mechanical stresses that lead to damage to the structure and consequently to a defective work.

Um eine höhere Druckbelastbarkeit und eine höhere Widerstandsfähigkeit gegen ein Begehen und Befahren mit Transportkarren oder -wagen während der Bauphase des Gebäudes bzw. der Dachkonstruktion mitsamt irgendwelchen Aufbauten zu erreichen, wurde die Struktur der Dämmstoffe in den letzten Jahren deutlich in der Weise verändert, dass die einzelnen Fasern in einer relativ steilen Lagerung zu den großen Oberflächen der Dämmstoffe, insbesondere der Dämmplatten oder Dämmstoffbahnen angeordnet werden. Verfahrenstechnisch geschieht dies bei der Herstellung der Dämmstoffe durch eine Längs- und eine Höhenkompression der mit Bindemitteln imprägnierten Fasermasse und eine anschließende Fixierung der in sich stark verformten Fasermasse durch die Aushärtung der zumeist verwendeten duroplastisch aushärtenden Harze bzw. Harzgemische. Die Längs/Höhenkompression erfolgt in der Regel in Produktionsrichtung, so dass die Fasern in Produktionsrichtung steil aufgestellt und stark verformt und quer zur Produktionsrichtung flach gelagert sind.In order to achieve a higher compressive strength and a higher resistance to walking and driving with trolleys or trolleys during the construction phase of the building or the roof construction, including any structures, the structure of the insulating materials has been significantly changed in recent years in such a way that the individual fibers are arranged in a relatively steep storage to the large surfaces of the insulating materials, in particular the insulation boards or insulating material webs. Technically, this is done in the production of Insulation materials by longitudinal and vertical compression of the fiber mass impregnated with binders and subsequent fixation of the inherently highly deformed fiber mass by the curing of the thermosetting resins or resin mixtures used mostly. The longitudinal / vertical compression is usually in the direction of production, so that the fibers are steep in the direction of production and strongly deformed and stored transversely to the production direction flat.

Die Biegezugfestigkeit einer aus einer solche Dämmstoffbahn hergestellten Dämmplatte ist deshalb in Abhängigkeit von der Rohdichte bei der Prüfung quer zur Produktionsrichtung ca. 3 bis 6 mal höher als in Produktionsrichtung. Zur Vermeidung eines allzu frühen Zusammenbruchs der Struktur müssen die Dämmplatten immer so ausgelegt werden, dass die Dämmplattenachse mit der höheren Biegezugfestigkeit quer zu den Obergurten angeordnet ist. Dadurch werden aber die prinzipielle Probleme nicht beseitigt, sondern nur abgemindert.The bending tensile strength of an insulating board produced from such insulation sheet is therefore about 3 to 6 times higher than in the production direction, depending on the density in the examination transverse to the production direction. To avoid a too early collapse of the structure, the insulation boards must always be designed so that the insulation board axis is arranged with the higher bending tensile strength transverse to the upper chords. As a result, the fundamental problems are not eliminated, but only mitigated.

Gegenüber der Biegezugfestigkeit steigt die Druckspannung sehr deutlich an, so dass regelmäßig die mittlere Rohdichte der Dämmstoffe, insbesondere der Dämmplatten reduziert werden kann. Diese Rohdichte liegt bei Dämmplatten mit dieser Struktur im Bereich von ca. 130 bis 180 kg/m3. Die handelsübliche Dämmplatten werden mit mittleren Druckspannungen von ca. 55 bis 70 kPa angeboten, wobei eine zehnprozentige Stauchung der Dämmplatte zulässig ist. Diese Angaben gelten nur für nicht genutzte Proben. Die Werte stellen einen einmalig erreichbaren Maximalwert dar, weil es bereits unterhalb dieser Grenze zu strukturellen Veränderungen kommt. Deshalb treten auch bei einer schonenden Behandlung der Dämmschicht während der Bauphase regelmäßig Festigkeitsverluste in der Größenordnung von ca. 20 bis 35 kPa auf. Die resultierende Druckfestigkeit gibt dann das relativ stabile Ausgangsniveau für die eigentliche Nutzungsphase des Gebäudes bzw. die Lebensdauer der Flachdach-Konstruktion wieder.Compared to the bending tensile strength, the compressive stress increases very clearly, so that regularly the average density of the insulating materials, in particular the insulation boards can be reduced. This density is in insulating boards with this structure in the range of about 130 to 180 kg / m 3 . The commercial insulation boards are offered with average compressive stresses of about 55 to 70 kPa, with a ten percent compression of the insulation board is permitted. This information applies only to unused samples. The values represent a maximum value that can be achieved once, because structural changes already occur below this limit. Therefore, even with a gentle treatment of the insulating layer during the construction period regularly loss of strength in the order of about 20 to 35 kPa on. The resulting compressive strength is then the relatively stable output level for the actual use phase of the building or the life of the flat roof construction again.

Nachteilig ist die bei derart strukturierten Dämmplatten um ca. 2 bis 3 mW/mK erhöhte Wärmeleitfähigkeit, so dass diese Dämmplatten häufig in die Wärmeleitfähigkeitsgruppe 045 nach DIN 4108 fallen.A disadvantage is the heat insulation in such a structured insulation boards by about 2 to 3 mW / mK increased thermal conductivity, so that these insulation boards often fall into the heat conductivity group 045 according to DIN 4108.

Die Oberfläche derartiger Dämmplatten ist sehr empfindlich gegenüber scherenden Belastungen durch Begehen oder Befahren. Dieser Nachteil wird durch die in der DE 37 01 592 C1 und der EP 0 277 500 B1 beschriebenen Dämmplatten vermieden. Diese Dämmplatten besitzen eine integrierte, hoch verdichtete Zone, in welcher die Einzelfasern auf Rohdichten von ca. 160 bis 220kg/m3 zusammengepresst und dabei in eine horizontale Lage gebracht werden.The surface of such insulation boards is very sensitive to shearing loads by walking or driving. This disadvantage is due to the in the DE 37 01 592 C1 and the EP 0 277 500 B1 described insulation panels avoided. These insulation boards have an integrated, highly compressed zone in which the individual fibers are pressed together to densities of about 160 to 220 kg / m 3 and thereby brought into a horizontal position.

Die Dachdämmplatten werden ebenso wie auch die Gefälledach-Elemente durch lose aufgelegte Dämmplatten mit Dicken von ca. 20 - 50 mm geschützt.The roof insulation panels as well as the sloping roof elements are protected by loosely laid insulation boards with thicknesses of approx. 20 - 50 mm.

Die Widerstandsfähigkeit der Oberfläche derartig ausgebildeter Dämmplatten wird durch das Aufkleben von Geweben aus Glas-, Kunststoff- oder Naturfasern oder von Glasvliesen mit Hilfe rel. dicker Schichten zähplastischer Kleber, wie Bitumen oder dergleichen erreicht. Derartige Deckschichten führen jedoch zur Einstufung der Dämmplatte als brennbarer Baustoff, was erhebliche wirtschaftliche Nachteile nach sich zieht, soweit der Einsatzbereich der Dämmplatten dadurch nachhaltig beeinflusst wird.The resistance of the surface of such trained insulation boards is by gluing of woven glass, plastic or natural fibers or glass webs using rel. thick layers of tough plastic adhesive, such as bitumen or the like achieved. However, such cover layers lead to the classification of the insulating board as a combustible building material, which entails considerable economic disadvantages, as far as the application of the insulation boards is influenced by sustainable.

Den besten Schutz der Dämmung bieten beispielsweise biegesteife Betonplatten von ca. 20 bis 50 mm Dicke oder großformatige Lichtgitter-Roste, verlegt auf Gummischrotmatten, welche auf der Dachabdichtung ausgelegt werden. Diese Vorgehensweisen führen aber zu hohen Dachgewichten und damit aufwendigen Wandkonstruktionen, wodurch die Kosten insbesondere im Industriebaubereich erhöht werden.For example, rigid concrete slabs of approx. 20 to 50 mm in thickness or large-format light grids laid on rubber mats, which are laid on the roof seal, offer the best protection for the insulation. However, these procedures lead to high roof weights and thus expensive wall constructions, whereby the costs are increased, especially in the industrial construction sector.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Dachkonstruktion und ein Dämmstoffelement zu schaffen, mit der bzw. dem die voranstehenden Nachteile vermieden werden und mit der bzw. dem eine zumindest während der Erstellung besser und sicherer begehbare Dämmung bei geringem Gesamtgewicht und hoher Dämmleistung geschaffen wird.Starting from this prior art, the invention has for its object to provide a roof structure and an insulating element with which or to which the foregoing disadvantages are avoided and with the or the one better at least during the preparation and safe walk-insulation at low overall weight and high insulation performance is created.

Die Lösung dieser Aufgabenstellung sieht bei einer gattungsgemäßen Dachkonstruktion vor, dass die Dämmung zumindest aus zwei Schichten besteht, von denen zumindest eine Schicht, nämlich zumindest die auf der Unterkonstruktion aufliegende Schicht derart zugfest ausgebildet ist, dass Biegerisse, wie auch Scherbeanspruchungen durch punktuelle Belastungen aufgrund Begehen auf der Dämmung vermieden werden.The solution of this problem provides for a generic roof construction, that the insulation consists of at least two layers, of which at least one layer, namely at least the layer resting on the substructure is formed tensile such that bending cracks, as well as shear stresses due to punctual loads due to committing be avoided on the insulation.

Zur Lösung der Aufgabenstellung ist bei einem erfindungsgemäßen Dämmstoffelement vorgesehen, dass die Dämmplatte zumindest aus zwei Schichten besteht, von denen zumindest eine Schicht, nämlich die auf der Unterkonstruktion oder einer anderen Auflage aufliegende Schicht derart zugfest ausgebildet ist, dass Biegerisse, wie auch Scherbeanspruchungen durch punktuelle Belastungen aufgrund Begehen auf der Dämmung vermieden werden und dass die Mineralfasern im Bereich der Schmalseiten eine flache Orientierung relativ zu den großen Oberflächen und im Bereich der Längsseiten eine steile Orientierung relativ zu oder großen Oberflächen aufweisen.To solve the task is provided in an insulating element according to the invention that the insulation board consists of at least two layers, of which at least one layer, namely the resting on the substructure or another edition layer is formed tensile such that bending cracks, as well as shear stresses by punctual Stress due to walking on the insulation can be avoided and that the mineral fibers in the narrow sides have a flat orientation relative to the large surfaces and in the region of the longitudinal sides a steep orientation relative to or large surfaces.

Die erfindungsgemäße Dachkonstruktion sieht somit den Einbau eines Dämmmaterials vor, welches durch die der Unterkonstruktion zugewandten zugfeste Schicht nicht dazu neigt, bei Belastung durch Begehen und/oder Lagerung von Gegenständen, wobei insbesondere punktuelle Belastungen im Vordergrund stehen, zwischen den Obergurten durchzubiegen. Bei derartigen Belastungen werden mit der der erfindungsgemäßen Dachkonstruktion sowohl Biegerisse, wie auch Scherbeanspruchungen vermieden.The roof construction according to the invention thus provides for the installation of an insulating material, which does not tend by the tensile structure facing the substructure, under load by walking and / or storage of objects, in particular punctual loads are in the foreground to bend between the upper straps. In such loads with the roof construction according to the invention both bending cracks, as well as shear stresses are avoided.

Zu berücksichtigen sind hierbei die auftretenden statischen und dynamischen Belastungen der Dachkonstruktion, bei der die Dämmung, insbesondere die einzelnen Dämmplatten nur teilflächig auf den Obergurten der Tragschalen aufliegen. Dämmplatten mit geringer Materialdicke werden vor allem auf Biegung und Zug belastet. Bei größeren Materialdicken steht vor allem die Scherbeanspruchung im Vordergrund, d.h. das belastete Volumenelement oberhalb des Bereichs zwischen zwei benachbarten Obergurten der Tragschale wird bei Belastung durchgedrückt. Bei üblichen Dämmplatten mit einer zu den Oberflächen steilen Ausrichtung der Mineralfasern vermindern die in üblicher Weise in Kombination auftretenden Beanspruchungsarten auch die Richtungsabhängigkeit der Biegezugfestigkeit. Um aber die grundsätzlich geringe Biegezugfestigkeit in Produktionsrichtung des Dämmmaterials weniger wirksam werden zu lassen, muss die Materialdicke des Dämmmaterials deutlich erhöht werden. Einer derartigen Vorgehensweise stehen wirtschaftliche Gründe entgegen. Weiterhin bestimmt häufig der Wunsch, die Dämmung aus mehr-, zumindest zweilagig mit versetzten Fugen verlegten Dämmplatten auszubilden, die Materialdicke der einzelnen Dämmplatten bzw. Schichten der Dämmung, soweit beispielsweise bahnenförmiges Dämmmaterial verlegt wird. Da aber bei dem Übereinanderlegen der einzelnen, in den Oberflächen zudem noch profilierten Dämmplatten ein kraftschlüssiger Verbund zwischen den Schichten der Dämmung nicht entsteht, reagiert die einzelne Dämmplatte individuell mit Verformungen auf die jeweils auftretenden Belastungen.To take into account here are the static and dynamic loads of the roof construction, in which the insulation, in particular the individual insulation boards only partially rest on the upper chords of the trays. Insulating boards with a small material thickness are mainly loaded on bending and tension. For larger material thicknesses, especially the shear stress is in the foreground, ie the loaded volume element above the area between two adjacent upper chords of the tray is at Pressed load. In conventional insulation boards with a steep orientation of the mineral fibers to the surfaces, the types of stress occurring in a conventional manner in combination also reduce the directional dependence of the bending tensile strength. But in order to make the generally low bending tensile strength in the direction of production of the insulating material less effective, the material thickness of the insulating material must be significantly increased. Such an approach is precluded by economic reasons. Furthermore, often determines the desire to form the insulation of more, at least two layers laid with offset joints insulation boards, the material thickness of the individual insulation boards or layers of insulation, as far as, for example, sheet-like insulation material is laid. Since, however, does not arise in the superimposition of the individual, in the surfaces also profiled insulation boards a non-positive bond between the layers of insulation, the individual insulation board reacts individually with deformations to the loads occurring in each case.

Diese Nachteile werden bei der erfindungsgemäßen Dachkonstruktion und dem erfindungsgemäßen Dämmstoffelement dadurch vermieden, dass das Tragverhalten der Dämmung, insbesondere der Dämmstoffelemente, vorzugsweise der Dämmplatten deutlich verbessert wird, indem zumindest eine zugfeste Schicht im Bereich der der Unterkonstruktion zugewandten großen Oberfläche der Dämmung, insbesondere des Dämmstoffelementes, vorzugsweise der Dämmplatten vorgesehen ist. Bei einer mehrlagigen Dämmung kann die Ausgestaltung der Dämmung mit einer zugfesten Schicht auf die auf der Unterkonstruktion aufliegenden Lage der Dämmung beschränkt sein. Als vorteilhaft hat sich hierbei aber erwiesen auch weitere Lagen mit einer Dämmstoffelementen auszubilden, die eine zugfeste Schicht in erfindungsgemäßer Weise aufweisen.These disadvantages are avoided in the roof construction according to the invention and the insulation element according to the invention, that the supporting behavior of the insulation, in particular the insulating elements, preferably the insulation boards is significantly improved by at least one tensile layer in the region of the substructure facing large surface of the insulation, in particular of the insulating element , Preferably, the insulation boards is provided. In a multi-layer insulation, the design of the insulation may be limited with a tensile layer on the resting on the substructure layer of insulation. However, it has proven to be advantageous to also form further layers with an insulating element which has a tensile layer in accordance with the invention.

Die zugfeste Schicht kann einstückig mit der oder den weiteren Schichten des Dämmstoffelementes ausgebildet sein. Alternativ oder ergänzend kann eine zugfeste Schicht aber auch als separat handhabbares Element ausgebildet sein, welches in einem weiteren Verfahrensschritt auf die weiteren Schichten des Dämmstoffelementes aufgeklebt wird.The tensile layer may be formed integrally with the one or more layers of the insulating element. Alternatively or additionally, a tensile layer may also be formed as a separately manageable element, which is adhered in a further process step to the other layers of the insulating element.

Die zugfeste Schicht besteht vorzugsweise aus zumindest einem reißfesten Gewebe, insbesondere einem Gittergewebe aus Glas-, Kunststoff- und/oder Textilfasern. In gleicher Weise als Alternative oder als zusätzliche Verstärkung sind Glasvliese geeignet, vorzugsweise Glasvliese mit einer Fadenverstärkung.The tensile layer preferably consists of at least one tear-resistant fabric, in particular a mesh fabric made of glass, plastic and / or textile fibers. In the same way as an alternative or as an additional reinforcement glass fleeces are suitable, preferably glass fleeces with a thread reinforcement.

In einer verbesserten und bevorzugten Ausführungsform sind die einzelnen Mineralfasern in einem oberflächennahen Bereich von einigen Millimetern bis zu 5 cm der die Dämmung bildenden Dämmstoffelemente mit einem zusätzlichen Bindemittel gebunden. Hierbei handelt es sich also um eine Erhöhung des Bindemittelgehaltes im oberflächennahen Bereich, wobei das zusätzliche Bindemittel in diesem Bereich mit dem Bindemittel der Dämmung, nämlich des Dämmstoffelementes übereinstimmen oder hiervon abweichen kann. Das Bindemittel kann sowohl hinsichtlich der Mineralfasern des Dämmstoffelementes als auch in bezug auf die zusätzlich aufzubringende zugfeste Schicht eine klebende Wirkung haben.In an improved and preferred embodiment, the individual mineral fibers are bonded in an area near the surface of a few millimeters up to 5 cm of the insulation elements forming the insulation with an additional binder. This is therefore an increase in the binder content in the near-surface region, wherein the additional binder in this area with the binder of the insulation, namely the insulating element match or may deviate therefrom. The binder may have an adhesive effect both with respect to the mineral fibers of the insulating element and with respect to the additionally applied tensile layer.

Nach weiteren Merkmal der Erfindung ist vorgesehen, dass das Gittergewebe vor dem Aushärten des Bindemittels in eine mit vorzugsweise zusätzlichem Bindemittel imprägnierte endlose Mineralfaserbahn eingedrückt ist, aus der dann die Dämmstoffelemente, insbesondere Dämmplatten gebildet werden.According to a further feature of the invention, it is provided that the mesh fabric is pressed before curing of the binder in an impregnated with preferably additional binder endless mineral fiber web from which then the insulating elements, in particular insulating panels are formed.

Ist es ferner vorgesehen, dass die Mineralfaserbahn in Längs- und/oder Höhenrichtung einer Kompression unterworfen wird, um eine höhere Steifigkeit der daraus hergestellten Dämmstoffelemente zu erzielen. Wird diese Kompression nach dem Aufbringen der zugfesten Schicht, insbesondere des Gittergewebes durchgeführt, wird ein nahezu vollständiges Einbetten dieses Gittergewebes erzielt. Zu diesem Zweck kann auch ein Teil der Mineralfaserbahn abgetrennt und das Gittergewebe vor einem erneuten Zusammenführen der parallel zu den großen Oberflächen gebildeten Teilbahnen zwischen diese Teilbahnen eingelegt werden. Nach dem Zusammenfügen die Teilbahnen wird die Mineralfaserbahn zusammen mit dem Gittergewebe verdichtet und die geschaffenen Struktur der Mineralfaserbahn durch Aushärten des Bindemittels fixiert.It is further provided that the mineral fiber web is subjected to compression in the longitudinal and / or height direction in order to achieve a higher rigidity of the insulating material elements produced therefrom. If this compression is carried out after the application of the tension-resistant layer, in particular of the mesh fabric, an almost complete embedding of this mesh fabric is achieved. For this purpose, a part of the mineral fiber web can be separated and the mesh fabric between these partial webs are inserted before re-merging the part webs formed parallel to the large surfaces. After joining the partial webs, the mineral fiber web is compacted together with the mesh fabric and fixed the structure created the mineral fiber web by curing the binder.

Nach einem weiteren Merkmal der Erfindung ist vorgesehen, dass auf den großen Oberflächen der Teilbahnen und/oder dem Gittergewebe zusätzliches Bindemittel angeordnet istAccording to a further feature of the invention it is provided that additional binder is arranged on the large surfaces of the partial webs and / or the mesh fabric

Bevorzugt sind organische und/oder anorganische Bindemitteln, bzw. Mischungen beider vorgesehen.Preference is given to organic and / or inorganic binders, or mixtures of both.

Eine verbesserte und insbesondere intensivere Einbettung des im Dämmstoffelement als Bewehrung vorgesehenen Gewebes und ein guter Verbund mit der endlosen Mineralfaserbahn wird durch ein Einbringen von kurzen bis sehr kurzen, z.B. durch Häckseln oder Mahlen aufbereiteten Mineralfasern, insbesondere Glasfasern im Bereich der Trennflächen zwischen den Teilbahnen oder der großen Oberfläche und dem aufzuklebenden Gittergewebes erzielt.An improved and in particular more intensive embedding of the fabric intended as a reinforcement in the insulating element and a good bond with the endless mineral fiber web is achieved by introducing short to very short, e.g. obtained by chopping or grinding mineral fibers prepared, in particular glass fibers in the region of the separating surfaces between the partial webs or the large surface and the adhered mesh fabric.

Eine Weiterbildung der Erfindung sieht vor, dass die ergänzend eingebrachten kurzen Mineralfasern als Fasermasse mit einer Schüttdichte von 200 - 800 kg/m3 eingebracht sind. Zur Erhöhung der Schüttdichte können geringe Kräfte zur Kompression auf die Mineralfaserbahn einwirken, die zu keiner ungewollten Verdichtung der nicht zugfesten Bereiche der Mineralfaserbahn führen, jedoch zu einer Schüttdichte der Fasermasse von 400 - 800 kg/m3 führen.A development of the invention provides that the additionally introduced short mineral fibers are introduced as a fiber mass with a bulk density of 200 to 800 kg / m 3 . In order to increase the bulk density, small forces can act on the mineral fiber web for compression, which do not lead to any undesired compression of the non-tensile regions of the mineral fiber web, but lead to a bulk density of the fiber mass of 400-800 kg / m 3 .

Die kurzen Fasern sind mit ca. 6 bis 14 Masse-% Bindemitteln, insbesondere mit üblichen duroplastischen Harzen und/oder Harz-Gemischen gebunden.The short fibers are bonded with about 6 to 14% by weight of binders, in particular with conventional thermosetting resins and / or resin mixtures.

Um Dämmstoffelemente zu schaffen, die trotz des zusätzlichen Bindemittels die Anforderungen der Nichtbrennbarkeit im Sinne der DIN 4102 aufweisen, ist nach einem weiteren Merkmal der Erfindung vorgesehen, dass als Bindemittel anorganische Bindemittel, insbesondere nanoskaliges Kieselsol (Ormocere®), Kieselsol, Wassergläser allein, in Kombinationen miteinander oder in Verbindung mit organischen Bindemitteln oder Bindemittel-Gemischen respektive klebenden Bindemitteln verwendet werden.In order to create insulation elements which despite the additional binder have the requirements of non-combustibility in the sense of DIN 4102, is according to a further feature of the invention, that are used as binders inorganic binders, in particular nanoscale silica sol (Ormocere ® ), silica sol, water glasses alone, in combinations with each other or in combination with organic binders or binder mixtures or adhesive binders.

Es kann weiterhin in vorteilhafter Weise vorgesehen sein, dass zumindest die zugfesten Schichten ergänzend wasserabweisende Substanzen aufweisen.It can also be advantageously provided that at least the tensile layers have additional water-repellent substances.

Vorzugsweise sind die voranstehend beschriebenen zugfesten Schichten und/oder insbesondere die eingebrachten Verstärkungsmittel diffusionsoffen ausgebildet, so dass eine bei der erfindungsgemäßen Dachkonstruktion vorgesehene dampfbremsenden Luftsperre bzw. auf der Unterkonstruktion vorhandene Feuchte, nicht zu einem Einschluss von Wasser in der Dämmung führt. Die bei der Dachabdichtung eingeschlossene Feuchtigkeit kann bei dieser Ausgestaltung schnell durch die diffusionsoffene Dämmung abgeführt und über die Dachabdichtung an die Außenluft abgegeben werden.Preferably, the tensile layers described above and / or in particular the introduced reinforcing means are designed to be open to diffusion, so that a provided in the roof construction according to the invention vapor barrier air dam or on the substructure existing moisture, does not lead to an inclusion of water in the insulation. The trapped in the roof waterproofing can be quickly removed in this embodiment by the diffusion-open insulation and discharged through the roof seal to the outside air.

Es ist nach einem weiteren Vorteil der Erfindung vorgesehen, dass zumindest eine Folie, vorzugsweise aus Metall, eine Bitumenbahn und/oder eine andere, bei Mineralfaserdämmstoffen übliche Kaschierung vollflächig oder teilflächig, insbesondere streifenweise auf das Dämmstoffelement aufgeklebt und/oder mechanisch befestigt, beispielsweise aufgenäht ist.It is provided according to a further advantage of the invention that at least one film, preferably made of metal, a bituminous sheet and / or another, with mineral fiber laminating usual over the entire surface or part of the surface, in particular glued strip-wise on the insulating element and / or mechanically fixed, for example, sewn ,

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der ein bevorzugtes Ausführungsbeispiel dargestellt ist. In der Zeichnung zeigen:

Figur 1
einen Ausschnitt einer Dachkonstruktion mit einer Dämmung in perspektivisch dargestellter Ansicht und
Figur 2
ein Dämmelement der Dämmung gemäß Figur 1 in perspektivisch und teilweise geschnitten dargestellter Ansicht.
Further features and advantages of the invention will become apparent from the following description of the accompanying drawings, in which a preferred embodiment is shown. In the drawing show:
FIG. 1
a section of a roof construction with an insulation in perspective view and
FIG. 2
an insulating element according to the insulation FIG. 1 in perspective and partially cut view.

Figur 1 zeigt einen Ausschnitt einer Dachkonstruktion in flacher Ausgestaltung. Die Dachkonstruktion besteht aus einer Unterkonstruktion 1, auf der eine Dämmung 2 aufgelegt ist. Die Unterkonstruktion besteht aus Tragschalen 3, die aus Profilblechen gebildet sind, welche mäandrierend U-förmige Profile aufweisen. Jede Tragschale 3 besteht somit aus Obergurten 4 und Untergurten 5, wobei jeder Obergurt 4 über einen Steg 6 mit einem Untergurt 5 verbunden ist. FIG. 1 shows a section of a roof construction in a flat configuration. The roof construction consists of a substructure 1, on which an insulation 2 is placed. The substructure consists of trays 3, which are formed from profiled sheets, which have meandering U-shaped profiles. Each tray 3 thus consists of upper straps 4 and lower straps 5, each upper flange 4 is connected via a web 6 with a lower flange 5.

Auf den Obergurten 4 der Tragschalen 3 ist eine als Folie 7 ausgebildete dampfbremsende Luftsperre aufgelegt. In der Figur 1 ist zu erkennen, dass die Folie 7 im Bereich der Untergurte 5 geringfügig zwischen benachbarten Stegen 6 durchhängt.On the upper straps 4 of the trays 3 a trained as a film 7 vapor-braking air barrier is launched. In the FIG. 1 It can be seen that the film 7 sags slightly in the region of the lower chords 5 between adjacent webs 6.

Oberhalb der Folie 7 ist die Dämmung 2 angeordnet, welche aus einzelnen Dämmplatten 8 besteht. Die Dämmplatten 8 weisen zwei parallel zueinander verlaufende und im Abstand zueinander angeordnete große Oberflächen 9, zwei die großen Oberflächen 9 verbindende, rechtwinklig zu den großen Oberflächen 9 ausgerichtete und parallel zueinander verlaufende Längsseiten 10 sowie zu den Längsseiten 10 und den großen Oberflächen rechtwinklig angeordnete Schmalseiten 11 auf.Above the film 7, the insulation 2 is arranged, which consists of individual insulation boards 8. The insulating panels 8 have two mutually parallel and spaced large surfaces 9, two the large surfaces 9 connecting, aligned at right angles to the large surfaces 9 and parallel longitudinal sides 10 and to the long sides 10 and the large surfaces arranged at right angles narrow sides 11th on.

Hierbei sind die Schmalseiten 11 bei einer üblichen, an sich bekannten kontinuierlichen Herstellung derartiger Dämmplatten 8 quer zur Produktionsrichtung ausgerichtet. Die Dämmplatten 8 werden in der Regel aus einer endlosen Mineralfaserbahn hergestellt und bestehen aus Steinfasern, die jeweils eine Länge im Mikrometerbereich aufweisen und mit Bindemitteln gebunden sind.Here, the narrow sides 11 are aligned transversely to the production direction in a conventional, known per se continuous production of such insulation boards. The insulating panels 8 are usually made of an endless mineral fiber web and consist of stone fibers, each having a length in the micrometer range and are bound with binders.

Es ist zu erkennen, dass die einzelnen Mineralfasern im Bereich der Schmalseiten 11 eine flache Orientierung relativ zu den großen Oberflächen aufweisen. Die Mineralfasern 12 sind demgegenüber im Bereich der Längsseiten 10 der Dämmplatte 8 steil zu den großen Oberflächen 9 orientiert. Diese Orientierung der Mineralfasern 12 wird durch eine Kompression der voranstehend genannten endlosen Mineralfaserbahn in Längsrichtung der Produktionslinie, d.h. in Richtung der Flächennormalen der Schmalseiten 11 und/oder eine Kompression in Richtung der Flächennormalen der großen Oberflächen 9 erzielt.It can be seen that the individual mineral fibers in the region of the narrow sides 11 have a flat orientation relative to the large surfaces. In contrast, the mineral fibers 12 are oriented steeply in the region of the longitudinal sides 10 of the insulating board 8 to the large surfaces 9. This orientation of the mineral fibers 12 is achieved by compression of the aforementioned continuous mineral fiber web in the longitudinal direction of the production line, i. in the direction of the surface normal of the narrow sides 11 and / or a compression in the direction of the surface normal of the large surfaces 9 achieved.

Es ist aus der Figur 1 ferner zu erkennen, dass die Dämmplatte, welche detaillierter in Figur 2 dargestellt ist, im Bereich der großen Oberfläche 9, welche der Unterkonstruktion 1 abgewandt angeordnet ist, eine Schicht 13 mit höherer Faserdichte bzw. Bindemitteldichte aufweist. Im Bereich der gegenüberliegend angeordneten großen Oberfläche 9 weist die Dämmplatte 8 eine zugfeste Schicht 14 auf, die nachfolgend anhand der Figur 2 beschrieben wird.It is from the FIG. 1 Furthermore, to recognize that the insulation board, which in more detail in FIG. 2 is shown, in the region of the large surface 9, which is arranged facing away from the substructure 1, a layer 13 with higher fiber density or binder density. In the area of the oppositely arranged large surface 9, the insulation board 8 has a tensile layer 14, which will be described below with reference to FIG. 2 is described.

Die zugfeste Schicht 14 besteht aus einer hochverdichteten Deckschicht 15, in die ein Gittergewebe 16 eingebettet ist. Die Deckschicht 15 ist auf die große Oberfläche 9 der Dämmplatte 8 aufgeklebt, welche der Unterkonstruktion 1 zugewandt ist. Auf die Deckschicht 15 ist ergänzend ein Glasvlies 17 als abschließende Kaschierung aufgeklebt.The tensile layer 14 consists of a highly compressed cover layer 15, in which a mesh fabric 16 is embedded. The cover layer 15 is glued to the large surface 9 of the insulation board 8, which faces the substructure 1. On the cover layer 15, a glass fleece 17 is additionally glued as a final lamination.

Das Glasvlies 17 weist eine Fadenverstärkung auf, um seine Zugfestigkeit weiter zu vergrößern. Die Deckschicht 15 besteht aus kurzen bis sehr kurzen Mineralfasern, die in Form einer Fasermasse mit einer Schüttdichte von 300 kg/m3 und einem Bindemittelgehalt von 14 Masse-% aufweist, wobei als Bindemittel ein anorganisches Bindemittel gewählt ist. Die Deckschicht 15 ist diffusionsoffen ausgebildet, so dass trotz der hohen Rohdichte eine Diffusion von in der Dachkonstruktion enthaltener Feuchtigkeit durch die Dämmung 2 hindurch möglich ist.The glass fleece 17 has a thread reinforcement in order to further increase its tensile strength. The cover layer 15 consists of short to very short mineral fibers, which in the form of a pulp having a bulk density of 300 kg / m 3 and a binder content of 14% by mass, with an inorganic binder is selected as the binder. The cover layer 15 is designed to be open to diffusion, so that diffusion of moisture contained in the roof structure through the insulation 2 is possible despite the high density.

Claims (32)

  1. Roof construction in a flat and/or flat inclined form, consisting of a lower structure (1) carrying a heat and/or sound insulation (2), especially consisting of insulating boards from mineral fibre insulating materials, preferably from glass and/or rock fibres, said heat and/or sound insulation partially resting on upper chords (4) of the carrier elements (3) forming said lower structure, and an upper structure, said lower structure and/or upper structure being carrier elements that consist of individual profiled sheets (3),
    characterized in
    that said insulation (2) consists of two layers at least, of which at least one layer (14), namely at least the layer (14) that rests on the lower structure (1) is formed in such a tension-resistant manner that bending cracks as well as shear stresses due to punctual loads due to travelling on the insulation.
  2. Roof construction according to claim 1,
    characterized in
    that said tension-resistant layer (14) is glued together with said at least one further layer.
  3. Roof construction according to claim 1,
    characterized in
    that said tension-resistant layer (14) consists of a glass fibre mat (17), in particular reinforced by threads and/or a non-tearing fabric (16), especially a grid-like fabric made of glass, plastic and/or textile fibres.
  4. Roof construction according to claim 1,
    characterized in
    that said tension-resistant layer (14) has an increased bulk density compared to that of said further layer.
  5. Roof construction according to claim 1,
    characterized in
    that said further layer includes an increased binder content in the region close to the surface and facing said tension-resistant layer (14), which increased binder content serves both for a better connection of the mineral fibres there arranged and for a connection of said two layers (8; 14).
  6. Roof construction according to claim 3,
    characterized in
    that said glass fibre mat (17) and/or the non-tearing fabric (16) are embedded in said tension-resistant layer (14), especially before the height and length compression of a fibre web forming said tension-resistant layer (14).
  7. Roof construction according to claim 3,
    characterized in
    that said glass fibre mat (17) and/or the non-tearing fabric (16) are arranged between said tension-resistant layer (14) and said further layer.
  8. Roof construction according to claim 1,
    characterized in
    that said tension-resistant layer (14) is formed as a partial length of said further layer and, after compression, is supplied to said further layer, especially under interposition of said non-tearing fabric (16) and/or said glass fibre mat (17).
  9. Roof construction according to claim 1,
    characterized in
    that said tension-resistant layer (14) is glued together with said further layer by organic and/or inorganic binders.
  10. Roof construction according to claim 1,
    characterized in
    that said tension-resistant layer (14) includes short to very short glass fibres especially in the region of the non-tearing fabric (16) and/or the glass fibre mat (17).
  11. Roof construction according to claim 10,
    characterized in
    that said glass fibres are contained in a fibre mass with a settled apparent density of between 200 and 300 kg/m3 at an additional compression of between 400 and 800 kg/m3.
  12. Roof construction according to claim 10,
    characterized in
    that said glass fibres are bound with 5 to 20 % by mass, in particular 6 to 14% by mass of duroplastic resins and/or resin mixtures and inorganic binders like especially nano-scale silica sol, silica sol, water glass or mixtures thereof with or without organic binders or binder mixtures or adhesive binders.
  13. Roof construction according to claim 1,
    characterized in
    that said tension-resistant layer (14) and/or said further layer include water-repellent substances.
  14. Roof construction according to claim 1,
    characterized in
    that said tension-resistant layer (14) and/or said further layer are formed diffusion open.
  15. Roof construction according to claim 1,
    characterized in
    that a tension-resistant film, especially of metal, a length of bitumen or the like is glued to the said tension-resistant layer (14) and/or said further layer, over the full surface thereof or partially and especially strip-like.
  16. Roof construction according to claim 1,
    characterized in
    that between the insulation (2) and the lower structure (1) a vapour sealing air barrier, especially a polyethylene film is arranged.
  17. Insulating element for a roof construction in a flat and/or flat inclined form, said insulating element being in the form of an insulating board (8) made from mineral fibres, preferably glass and/or rock fibres, and comprising two mutually parallel extending major surfaces (9) that are arranged at distance to each other, two mutually parallel extending longitudinal sides (10) oriented at right angles to said major surfaces (9), and narrow sides (11) arranged at right angles to the longitudinal sides and to the major surfaces, wherein said insulating board in its condition for installation rests by a partial area thereof on upper chords of a lower structure,
    characterized in
    that said insulating board (8) consists of at least two layers (14), of which at least one layer (14), namely that layer which in its condition for installation rests on said lower structure or on any other support, is formed to be tension-resistant so that bending cracks as well as shear stresses due to punctual loads due to travelling on the insulation and that the mineral fibres show a flat orientation relative to the major surfaces (9) in the region of the narrow sides (11) and a steep orientation relative to the major surfaces (9) in the region of the longitudinal sides (10).
  18. Insulating element according to claim 17,
    characterized in
    that said tension-resistant layer (14) is glued to said at least one further layer.
  19. Insulating element according to claim 17,
    characterized in
    that said tension-resistant layer (14) consists of a glass fibre mat (17), in particular reinforced by threads and/or a non-tearing fabric (16), especially a grid-like fabric made of glass, plastic and/or textile fibres.
  20. Insulating element according to claim 17,
    characterized in
    that said tension-resistant layer (14) has an increased bulk density compared to that of said further layer.
  21. Insulating element according to claim 17,
    characterized in
    that said further layer includes an increased binder content in the region close to the surface and facing said tension-resistant layer (14), which increased binder content serves both for a better connection of the mineral fibres there arranged and for a connection of said two layers (14).
  22. Insulating element according to claim 19,
    characterized in
    that said glass fibre mat (17) and/or the non-tearing fabric (16) are embedded in said tension-resistant layer (14), especially before the height and length compression of a fibre web forming said tension-resistant layer (14).
  23. Insulating element according to claim 19,
    characterized in
    that said glass fibre mat (17) and/or the non-tearing fabric (16) are arranged between said tension-resistant layer (14) and said further layer.
  24. Insulating element according to claim 17,
    characterized in
    that said tension-resistant layer (14) is formed as a partial length of said further layer and, after compression, is supplied to said further layer, especially under the interposition of said non-tearing fabric (16) and/or said glass fibre mat (17).
  25. Insulating element according to claim 17,
    characterized in
    that said tension-resistant layer (14) is glued together with said further layer by organic and/or inorganic binders.
  26. Insulating element according to claim 17,
    characterized in
    that said tension-resistant layer (14) includes short to very short glass fibres especially in the region of the non-tearing fabric (16) and/or the glass fibre mat (17).
  27. Insulating element according to claim 26,
    characterized in
    that said glass fibres are contained in a fibre mass with a settled apparent density of between 200 and 300 kg/m3 at an additional compression of between 400 and 800 kg/m3.
  28. Insulating element according to claim 26,
    characterized in
    that said glass fibres are bound with 5 to 20 % by mass, in particular 6 to 14% by mass of duroplastic resins and/or resin mixtures and inorganic binders like especially nano-scale silica sol, silica sol, water glass or mixtures thereof with or without organic binders or binder mixtures or adhesive binders.
  29. Insulating element according to claim 17,
    characterized in
    that said tension-resistant layer (14) and/or said further layer include water-repellent substances.
  30. Insulating element according to claim 17,
    characterized in
    that said tension-resistant layer (14) and/or said further layer are formed diffusion open.
  31. Insulating element according to claim 17,
    characterized in
    that a tension-resistant film, especially of metal, a length of bitumen or the like is glued to the said tension-resistant layer (14) and/or said further layer, over the full surface thereof or partially and especially strip-like.
  32. Insulating element according to claim 17,
    characterized in
    that between the insulation (2) and the lower structure (1) a vapour sealing air barrier, especially a polyethylene film is arranged.
EP02743074.3A 2001-06-02 2002-05-23 Flat or flat inclined roof construction and associated insulating element Expired - Lifetime EP1395719B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10127031 2001-06-02
DE10127031 2001-06-02
DE10208602A DE10208602A1 (en) 2001-06-02 2002-02-27 Roof construction in a flat and / or flat inclined configuration and insulation element therefor
DE10208602 2002-02-27
PCT/EP2002/005644 WO2002099220A1 (en) 2001-06-02 2002-05-23 Flat or flat inclined roof construction and associated insulating element

Publications (3)

Publication Number Publication Date
EP1395719A1 EP1395719A1 (en) 2004-03-10
EP1395719B1 EP1395719B1 (en) 2007-06-27
EP1395719B2 true EP1395719B2 (en) 2013-04-17

Family

ID=26009466

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02743074.3A Expired - Lifetime EP1395719B2 (en) 2001-06-02 2002-05-23 Flat or flat inclined roof construction and associated insulating element

Country Status (5)

Country Link
EP (1) EP1395719B2 (en)
AT (1) ATE365843T1 (en)
DE (1) DE50210386D1 (en)
PL (1) PL204114B1 (en)
WO (1) WO2002099220A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY151877A (en) * 2007-01-12 2014-07-14 Rockwool Mineralwolle Sloping roof system and insulating board for sloping roof system
GB2449696B (en) * 2007-06-01 2009-05-27 Charles Stamper Ralph Roof noise reducer
DE102008005536A1 (en) 2008-01-22 2009-07-30 Saint-Gobain Isover G+H Ag Insulation element for heat protection, fire protection and noise protection insulation of slanted roof, has upper lining layer arranged on upper side of insulation plate
ITRM20080251A1 (en) * 2008-05-09 2009-11-10 Walter Tasser PANEL FOR BUILDING USE AND METHOD FOR ITS REALIZATION.
DE202015100914U1 (en) * 2015-02-12 2016-05-13 Uponor Innovation Ab Insulation mat and heat exchanger arrangement
DK181178B1 (en) 2020-09-30 2023-03-28 Saint Gobain Denmark As A vapour controlling insulation structure for a flat or low slope warm roof and method for installing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1057183A (en) 1976-05-06 1979-06-26 Malcolm J. Stagg Method and apparatus for producing multiple density fibrous product
WO1994016164A1 (en) 1993-01-14 1994-07-21 Rockwool International A/S A method of producing a mineral fiber-insulating web, a plant for producing a mineral fiber web, and a mineral fiber-insulated plate
DE29808924U1 (en) 1998-05-16 1998-09-03 Rockwool Mineralwolle Thermal insulation element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE277500C (en)
DE3701592A1 (en) 1987-01-21 1988-08-04 Rockwool Mineralwolle METHOD FOR CONTINUOUSLY PRODUCING A FIBER INSULATION SHEET AND DEVICE FOR IMPLEMENTING THE METHOD
DE9110169U1 (en) * 1991-04-10 1991-10-10 G + H Montage Gmbh, 6700 Ludwigshafen, De
AT404749B (en) * 1997-01-10 1999-02-25 Thomas Dipl Ing Eichenauer WATERPROOF ROOT BRAKE MAT
CZ292801B6 (en) * 1997-08-07 2003-12-17 Saint-Gobain Isover Wall panel for a building fa ade, screw for use in the wall panel and an insulation material plate for insertion into the wall panel
DE19923545A1 (en) * 1999-05-21 2000-12-07 Dirk Meiner Sub-construction assembly for roof or wall involves arranging heat insulation layers on corrugated sheet and arranging seal or metal plate on top of second layer, using connecting Z-profile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1057183A (en) 1976-05-06 1979-06-26 Malcolm J. Stagg Method and apparatus for producing multiple density fibrous product
WO1994016164A1 (en) 1993-01-14 1994-07-21 Rockwool International A/S A method of producing a mineral fiber-insulating web, a plant for producing a mineral fiber web, and a mineral fiber-insulated plate
DE29808924U1 (en) 1998-05-16 1998-09-03 Rockwool Mineralwolle Thermal insulation element

Also Published As

Publication number Publication date
EP1395719A1 (en) 2004-03-10
DE50210386D1 (en) 2007-08-09
ATE365843T1 (en) 2007-07-15
PL366718A1 (en) 2005-02-07
WO2002099220A1 (en) 2002-12-12
EP1395719B1 (en) 2007-06-27
PL204114B1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
AT411372B (en) COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
EP2126243B1 (en) Sloping roof system and insulating board for sloping roof systems
DE4319340C1 (en) Process for producing mineral fibre insulation boards and an apparatus for carrying out the process
EP1395719B2 (en) Flat or flat inclined roof construction and associated insulating element
DE3337268A1 (en) TIE BELT MADE OF HYDRAULIC SETTING MEASURES
WO2007042232A1 (en) Insulating element
EP1799926B1 (en) Building roof, insulating layer structure, and mineral fibre insulating element for a building roof
DE4421839C1 (en) Formwork panel made of concrete
DE102019213577B4 (en) Prefabricated element
DE102006028841B4 (en) Insulating arrangement and method for producing an insulating strip
EP1038662B1 (en) Insulation element for floors
EP1335080B1 (en) Insulation board for heat and/or sound insulation, and insulation layer
DE4217934A1 (en) Lightweight reinforced high strength foam filled component - contains grid pattern of flat e.g. steel or plastic strips embedded in the foam close to the surface exposed to tension stresses
EP0219792B1 (en) Heat-insulating load-bearing construction element
DE10208602A1 (en) Roof construction in a flat and / or flat inclined configuration and insulation element therefor
EP3663474A1 (en) Device for decoupling heat between a concrete wall of a building and a floor and production method
DE1509588A1 (en) Panel for cladding and fastening to facade walls
DE2836456A1 (en) Large hard foam roofing or ceiling panels - are reinforced against sagging by polyester or glass fibre fabric or steel wire embedded in resinous cement
DE60121182T2 (en) SELF-SUPPORTING LUMINAIRE ELEMENT
WO2023021210A1 (en) Composite foam-glass elements and use thereof
DE10101929A1 (en) Insulated roof spar system for covered roofs uses individual strips of insulation held tight and gap-free at side by purlin beam mounted and fixed crosswise to spar direction
DE911906C (en) Process for the production of weight-saving intermediate components for solid floors
AT504834B1 (en) stiffening construction
DE102018130844A1 (en) Device for heat decoupling between a concrete building wall and a floor ceiling and manufacturing process
WO2009112409A2 (en) Prefinished structural element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: SI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50210386

Country of ref document: DE

Date of ref document: 20070809

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070927

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070912

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071008

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071127

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070928

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

26 Opposition filed

Opponent name: SAINT-GOBAIN ISOVER G+H AG

Effective date: 20080327

NLR1 Nl: opposition has been filed with the epo

Opponent name: SAINT-GOBAIN ISOVER G+H AG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070627

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20130417

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: SI

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50210386

Country of ref document: DE

Effective date: 20130417

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210386

Country of ref document: DE

Representative=s name: STENGER WATZKE RING INTELLECTUAL PROPERTY, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50210386

Country of ref document: DE

Owner name: ROCKWOOL INTERNATIONAL A/S, DK

Free format text: FORMER OWNER: DEUTSCHE ROCKWOOL MINERALWOLL GMBH + CO OHG, 45966 GLADBECK, DE

Effective date: 20140801

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210386

Country of ref document: DE

Representative=s name: STENGER WATZKE RING INTELLECTUAL PROPERTY, DE

Effective date: 20140801

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210386

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

Effective date: 20140801

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150122 AND 20150128

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20150424

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160425

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 365843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210386

Country of ref document: DE

Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210386

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210527

Year of fee payment: 20

Ref country code: FR

Payment date: 20210525

Year of fee payment: 20

Ref country code: NL

Payment date: 20210526

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210527

Year of fee payment: 20

Ref country code: GB

Payment date: 20210527

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50210386

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20220522

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20220523

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220522