EP0219792B1 - Heat-insulating load-bearing construction element - Google Patents

Heat-insulating load-bearing construction element Download PDF

Info

Publication number
EP0219792B1
EP0219792B1 EP86114165A EP86114165A EP0219792B1 EP 0219792 B1 EP0219792 B1 EP 0219792B1 EP 86114165 A EP86114165 A EP 86114165A EP 86114165 A EP86114165 A EP 86114165A EP 0219792 B1 EP0219792 B1 EP 0219792B1
Authority
EP
European Patent Office
Prior art keywords
construction element
cover
element according
webs
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86114165A
Other languages
German (de)
French (fr)
Other versions
EP0219792B2 (en
EP0219792A2 (en
EP0219792A3 (en
Inventor
Reto Martinelli
Karl Menti
Samuel Hardmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stahlton AG
Original Assignee
Stahlton AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4277423&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0219792(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Stahlton AG filed Critical Stahlton AG
Priority to AT86114165T priority Critical patent/ATE63591T1/en
Publication of EP0219792A2 publication Critical patent/EP0219792A2/en
Publication of EP0219792A3 publication Critical patent/EP0219792A3/en
Application granted granted Critical
Publication of EP0219792B1 publication Critical patent/EP0219792B1/en
Publication of EP0219792B2 publication Critical patent/EP0219792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor

Definitions

  • the present invention relates to a heat-insulating, load-bearing component with an elongated expansion and with an essentially rectangular cross-section, each having a load-bearing base and top surface and two side surfaces and intended for installation in walls to reduce the heat flow, the component comprising a core Thermal insulation and supporting elements penetrating this core.
  • a thermal bridge is a local area through which increased heat can flow away within a structure that is well insulated per se.
  • Such weak points have to be avoided by constructive measures.
  • existing standards e.g. Recommendation SIA 180/1, it is accordingly required that thermal bridges be avoided or that these may have to be compensated for by special measures, such as increased thermal insulation and careful connection details (see Art. 4.5 of recommendation SIA 180/1).
  • the mean vertical stresses acting in the base of the wall can be up to 1.2 N / mm 2 from the weight of the possibly multi-storey structure. It must also be ensured that horizontally acting forces, for example due to ground vibrations, wind, etc., can be reliably transmitted.
  • DE-A-30 35 931 discloses a non-load-bearing, thermally insulated component that can be installed as a wall element. However, this could only be loaded centrically and is therefore not suitable for absorbing the wall forces that occur in load-bearing masonry.
  • the purpose of the present invention is now to provide a component for preventing thermal bridges which can be used without having to accept the constructional and financial disadvantages described above.
  • the component is characterized in that the support members have webs between the base and top surfaces which are continuous over the entire length or are arranged with interruptions, the webs Have areas which are arranged on both sides close to the side surfaces, and areas which run transversely to the longitudinal direction of the element, the webs being part of a skeleton which partially covers the core and which is provided for transmitting wall forces between the deck and the base area.
  • the support members are designed in such a way that only a minimal amount of heat, which is no longer significant in relation to the volume of the component, can flow away through their mechanically highly stressable but poorly heat-insulating material.
  • the thermal insulation material which is protected from stress by the skeleton, can thus form an effective barrier to the heat flow.
  • the preferred exemplary embodiment has a band-shaped web that runs back and forth through the core in a zigzag fashion between opposite longitudinal sides of the element.
  • an upper and a lower flange are also provided, which run perpendicular to the web and together with the latter in cross-section the profile of a double-T beam exhibit.
  • Upper and lower chords cover the core surfaces in some areas. This means that it is largely protected against mechanical damage during storage and transport.
  • the skeleton can also have several ribbon-shaped, e.g. have webs which are interlaced or formed only in sections and pass through the core. In this case, at least one or webs and / or web sections is then provided with an upper and / or a lower flange, the upper and lower flange covering regions of mutually opposite surfaces of the core.
  • the skeleton is made of a non-brittle mineral-based material.
  • a mineral fiber composite material is preferably used.
  • such a skeleton has a comparatively large heat transfer rate, the improved load-bearing behavior will be decisive in the case of highly stressed components such as supports or balcony connections.
  • the component according to the invention enables a flawless technical solution with simple means and low costs. It can be used as a load-bearing and heat-insulating component e.g. be bricked up on the basement ceiling as the first layer of the rising masonry. As a result, it lies within the structural strength of the underlay, so that there is no change of material when the interior walls are plastered.
  • the use of the component is by no means limited to the base of the wall, although its advantages are particularly effective there. It can be used wherever excessive heat flow should not only be prevented across the wall, but mainly in the plane of the wall or the component itself.
  • the elements can be bricked in lengths that correspond to the multiple of the brick format as the first layer.
  • recesses are arranged in the cover layers, into which the masonry mortar can penetrate, so that a full contact is guaranteed over the entire length of the element.
  • the same recesses also form an interlocking with the ceiling and masonry.
  • the cross-section and length of the element are matched to the usual brick formats. This enables economical production as standard elements. Furthermore, the elements can easily be cut to the desired length on site. When using a closed-cell thermal insulation material, the absorption of moisture is prevented.
  • Figure 1 shows a cross section through part of a building, 1 the component according to the invention, 2 a basement ceiling, 3 a basement wall, 4 the surrounding soil, 5 the thermal insulation layer on the ceiling, 6 the bottom shell, 7 the outer shell and 8 the inscribed inner shell of the rising masonry.
  • a heat insulation layer 9 is located between the outer and inner shells 7, 8.
  • the component according to the invention is used to interrupt the otherwise existing thermal bridge.
  • the dashed section of the arrows makes it clear at which point the heat flow from the room 10 would be significantly increased without the use of the component 1.
  • FIGS. 2 and 3 show a view of the component 1 according to the invention (FIG. 2) or a view of the same component in which the core 11 has been removed from preferably closed-cell thermal insulation material (FIG. 3).
  • Upper and lower chords 16, 17 serve to ensure that no excessive pressures occur on the connecting surfaces of the masonry that are adjacent to the component.
  • the web is of course designed according to the masonry loads to be removed, but as narrow as possible so that the amount of heat flowing through it can be kept to a minimum.
  • the strips are located on the surfaces of the core covered by the upper and lower chord and are formed in one piece with the upper and lower chord. This creates areas on all sides of the skeleton (apart from the ends of the component) in which the surfaces of the core are not covered. These areas should not be unnecessarily reduced by over-wide top and bottom belts.
  • the web 13 running back and forth between the longitudinal sides of the component has sections 18 which run parallel to the latter in the region near these longitudinal sides. This makes it possible that the upper and lower chord can always protrude from both sides of the web and thus the connection between the upper and lower chord is essentially only under pressure and thus no impermissible bending moments are generated in the web itself. Since the resultant of the wall load often runs eccentrically in the wall, the zigzag-shaped web ensures that the wall load is properly absorbed.
  • Figures 2 and 3 has only one web, it is easily conceivable that for special applications several webs, e.g. are intertwined in a regular sequence. It is also possible to provide webs formed only in sections. It may make sense not to provide all the webs or sections with an upper and / or lower flange, since the same conditions do not exist in the various connecting surfaces or the free areas should not become too small for the interlocking with the masonry.
  • the core of thermal insulation material is kept uncovered by the skeleton over the entire area of a long side of the element.
  • This can also be achieved retrospectively in the case of an existing component in that the longitudinal side mentioned is covered with a strip of thermal insulation material, the corresponding strips 17 (FIG. 2) then also having to be covered by the upper and lower chord.
  • the thickness of the strip is preferably 1 cm.

Abstract

With the construction element (1), the heat-insulating layers (5, 9) in the floor (2) and the wall (8) can be closed together. In this arrangement, the construction element equipped with a load-bearing skeleton and a heat-insulating layer can absorb the loads taking effect in walls up to 1.2 N/mm<2>. The skeleton runs in a zigzag-like manner through the heat-insulating material and possesses upper and lower booms covering the latter in places. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein wärmedämmendes, tragendes Bauelement mit länglicher Ausdehnung und mit im wesentlichen rechteckigem Querschnitt, das je eine lastaufnehmende Grund-und Deckfläche sowie zwei Seitenflächen aufweist und für den Einbau in Wände zur Reduktion des Wärmeflusses bestimmt ist, wobei das Bauelement einen Kern aus Wärmedämmstoff und diesen Kern durchsetzende Stützorgane aufweist.The present invention relates to a heat-insulating, load-bearing component with an elongated expansion and with an essentially rectangular cross-section, each having a load-bearing base and top surface and two side surfaces and intended for installation in walls to reduce the heat flow, the component comprising a core Thermal insulation and supporting elements penetrating this core.

Mit Wärmebrücke wird ein lokaler Bereich bezeichnet, durch welchen vermehrt Wärme innerhalb einer an sich gut wärmegedämmten Konstruktion abfliessen kann. Je besser die Wärmedämmung des entsprechenden Bauteils ist, umso problematischer sind solche Wärmebrücken, weil diese nicht nur den guten mittleren k-Wert des Bauteils reduzieren, den Energieverlust erhöhen und die Gefahr besteht, dass sich auf der warmen Seite durch die lokale Reduktion der Oberflächentemperatur am Ort der Wärmebrücke Oberflächenkondensat ausscheidet und nachfolgend Verfärbung und Schimmelpilzbildung auftritt. Solche Schwachstellen müssen durch konstruktive Massnahmen vermieden werden. Durch bestehende Normen, so z.B. Empfehlung SIA 180/1, wird entsprechend gefordert, dass Wärmebrücken zu vermeiden oder dass solche gegebenenfalls durch besondere Massnahmen, wie erhöhte Wärmedämmung und sorgfältige Anschlussdetails, zu kompensieren sind (so Art. 4.5 von Empfehlung SIA 180/1).A thermal bridge is a local area through which increased heat can flow away within a structure that is well insulated per se. The better the thermal insulation of the corresponding component, the more problematic such thermal bridges are, because they not only reduce the good average k-value of the component, increase energy loss and there is a risk that the local surface temperature will decrease on the warm side Location of the thermal bridge separates surface condensate and subsequently discoloration and mold formation occurs. Such weak points have to be avoided by constructive measures. Through existing standards, e.g. Recommendation SIA 180/1, it is accordingly required that thermal bridges be avoided or that these may have to be compensated for by special measures, such as increased thermal insulation and careful connection details (see Art. 4.5 of recommendation SIA 180/1).

In den letzten Jahren wurden die Anforderungen an die Wärmedämmung von Aussenbauteilen wesentlich erhöht. Heute werden Wärmedurchgangszahlen von K i5 0,40 W/m2 K angestrebt, was beim heutigen Stand der Technik im Idealquerschnitt innerhalb der Wand möglich ist.In recent years, the requirements for the thermal insulation of external components have increased significantly. Today heat transfer coefficients of K i5 0.40 W / m 2 K are aimed for, which is possible with the current state of the art in the ideal cross section within the wall.

In diesem Zusammenhang stellen sich z.B. beim Mauerfuss im Uebergangsbereich von unbeheizten zu beheizten Geschossen, wie z.B. vom Keller zum Erdgeschoss verschärfte Probleme, weil hier der Wärmeschutz besonders wichtig ist. Die herkömmlichen Lösungen, bei denen das aufgehende. Mauerwerk auf die ungedämmte Betondekke bzw. die Betonaussenwand abgestellt wird, führen zwangsläufig zu einer Wärmebrücke auf der ganzen Länge des Mauerfusses, weil der Zusammenschluss der Wärmedämmschichten in Boden und Wand nicht gewährleistet ist.In this context, e.g. at the foot of the wall in the transition area from unheated to heated floors, e.g. problems from the basement to the ground floor, because heat protection is particularly important here. The conventional solutions where the rising. Masonry placed on the uninsulated concrete cover or the concrete outer wall inevitably lead to a thermal bridge along the entire length of the base of the wall, because the connection of the thermal insulation layers in the floor and wall is not guaranteed.

Es muss beachtet werden, dass die im Mauerfuss wirkenden mittleren vertikalen Spannungen aus dem Gewicht der zu tragenden, eventuell mehrgeschossigen Konstruktion bis 1,2 N/mm2 betragen können. Weiter muss sichergestellt werden, dass auch horizontal wirkende Kräfte, etwa aufgrund von Bodenerschütterungen, Wind usw., zuverlässig übertragen werden können.It must be noted that the mean vertical stresses acting in the base of the wall can be up to 1.2 N / mm 2 from the weight of the possibly multi-storey structure. It must also be ensured that horizontally acting forces, for example due to ground vibrations, wind, etc., can be reliably transmitted.

Verschiedene konstruktive Massnahmen sind vorgeschlagen worden, um die oben beschriebenen Probleme zu überwinden. Dazu gehört z.B. eine Verlängerung der Wärmedämmschicht der Aussenwand bis in den Bereich unter Terrain. Dies bedingt meist eine zweischalige Ausbildung im oberen Bereich der Wand (vgl. R. Martinelli + K. Menti: "Verbesserte Ausführung von zweischaligem Mauerwerk im Bereich des Mauerwerkfusses" im Schweizer Ingenieur und Architekt 41/80). Solch eine Lösung ist mit einem hohen konstruktiven Mehraufwand verbunden, welcher zu einer markanten Kostensteigerung führt. Weiter ist es möglich, die Kellerdecke von den Aussenwänden zu trennen (vgl. SIA Dokumentation 80: Energie im Hochbau, April 1985). Diese Lösung führt jedoch zu einem unwirtschaftlichen Deckensystem. Der weiche Dekkenrand ist ungeeignet zurVarious design measures have been proposed to overcome the problems described above. This includes e.g. an extension of the thermal insulation layer of the outer wall to the area under the terrain. This usually requires a double-shell formation in the upper area of the wall (cf. R. Martinelli + K. Menti: "Improved execution of double-shell masonry in the area of the masonry foot" in the Swiss engineer and architect 41/80). Such a solution is associated with a high level of additional construction work, which leads to a marked increase in costs. It is also possible to separate the basement ceiling from the outer walls (see SIA Documentation 80: Energy in Building Construction, April 1985). However, this solution leads to an inefficient ceiling system. The soft cover edge is unsuitable for

Aufnahme von vertikallasten aus äusseren Tragwänden. Bei unbeheizten Kellerräumen ist die Kellerdecke zusätzlich unten mit einer Wärmedämmung zu versehen.Absorption of vertical loads from outer walls. In the case of unheated basements, the basement ceiling must also be provided with thermal insulation at the bottom.

Ferner wurde auch vorgeschlagen, zwischen Kellerdecke und aufgehendem Mauerwerk eine horizontale Wärmedämmschicht einzubauen, welche z.B. aus Schaumglas besteht. Diese Lösung befriedigt nicht, weil die Wärmedämmschicht weit weniger belastet werden darf, als die darauf ruhenden Tragwände. Schaumglas, welches als Wärmedämmstoff zwar eine verhältnismässig hohe Druckfestigkeit aufweist, ist zudem ein sehr spröder Werkstoff und muss mit grosser Sorgfalt verarbeitet werden.It was also proposed to install a horizontal thermal insulation layer between the basement ceiling and the rising masonry, which e.g. consists of foam glass. This solution is not satisfactory because the thermal insulation layer may be subjected to far less stress than the supporting walls resting on it. Foam glass, which as a thermal insulation material has a relatively high compressive strength, is also a very brittle material and must be processed with great care.

Schliesslich ist aus der DE-A-30 35 931 ein als Wandelement einbaubares, nicht tragendes, wärmegedämmtes Bauelement bekannt. Dieses könnte allerdings nur zentrisch belastet werden und eignet sich damit nicht zur Aufnahme von Mauerkräften, wie sie in tragendem Mauerwerk auftreten.Finally, DE-A-30 35 931 discloses a non-load-bearing, thermally insulated component that can be installed as a wall element. However, this could only be loaded centrically and is therefore not suitable for absorbing the wall forces that occur in load-bearing masonry.

Trotz der an sich zahlreichen Vorschläge zur Verhinderung von Wärmebrücken wurde auf deren Beseitigung im Bereich des Mauerwerkfusses und an anderen Stellen bisher in der Regel verzichtet, weil der grosse technische und finanzielle Mehraufwand nicht erbracht werden konnte, bzw. die oben vorgeschlagene Lösung aus weiteren Gründen nicht realisierbar ist.Despite the numerous suggestions for preventing thermal bridges, the removal of them in the area of the masonry base and elsewhere has generally not been carried out until now because the great technical and financial additional expense could not be achieved, or the solution proposed above could not be achieved for other reasons is feasible.

Zweck der vorliegenden Erfindung ist es nun, ein Bauelement zur Verhinderung von Wärmebrükken zu schaffen, welches verwendet werden kann, ohne dass die oben geschilderten konstruktiven und finanziellen Nachteile in Kauf genommen werden müssen.The purpose of the present invention is now to provide a component for preventing thermal bridges which can be used without having to accept the constructional and financial disadvantages described above.

Das Bauelement ist erfindungsgemäss dadurch gekennzeichnet, dass die Stützorgane im wesentlichen über die gesamte Länge durchgehende oder mit Unterbrüchen angeordnete Stege zwischen Grund- und Deckfläche aufweisen, wobei die Stege Bereiche aufweisen, die beidseitig nahe bei den Seitenflächen angeordnet sind, sowie Bereiche, die quer zur Längrsrichtung des Elements gerichtet verlaufen, wobei die Stege Teil eines den Kern Bereichsweise abdeckenden Skeletts sind, welches zur Übertragung von Wandkräften zwischen Deck und Grundfläche vorgesehen ist. Die Stützorgane sind konstruktiv derart ausgebildet, dass durch ihr mechanisch zwar hochbeanspruchbares, aber schlecht wärmedämmendes Material nur eine minimale Wärmemenge abfliessen kann, welche im Verhältnis zum Volumen des Bauelementes nicht mehr ins Gewicht fällt. Der Wärmedämmstoff, welcher durch das Skelett vor Beanspruchung geschützt ist, kann somit eine wirksame Barriere für den Wärmeabfluss bilden.According to the invention, the component is characterized in that the support members have webs between the base and top surfaces which are continuous over the entire length or are arranged with interruptions, the webs Have areas which are arranged on both sides close to the side surfaces, and areas which run transversely to the longitudinal direction of the element, the webs being part of a skeleton which partially covers the core and which is provided for transmitting wall forces between the deck and the base area. The support members are designed in such a way that only a minimal amount of heat, which is no longer significant in relation to the volume of the component, can flow away through their mechanically highly stressable but poorly heat-insulating material. The thermal insulation material, which is protected from stress by the skeleton, can thus form an effective barrier to the heat flow.

Zur Aufnahme der in der Wand herrschenden Druckkräfte weist bevorzugtes Ausführungsbeispiel einen bandförmigen, zwischen gegenüberliegenden Längsseiten des Elementes durch den Kern zickzackartig hin- und herlaufenden Steg auf.In order to absorb the compressive forces prevailing in the wall, the preferred exemplary embodiment has a band-shaped web that runs back and forth through the core in a zigzag fashion between opposite longitudinal sides of the element.

Damit jedoch in den Anschlusselementen durch den wegen des zu vermeidenden Wärmetransports schmal ausgebildeten Steg keine unzulässig hohen Kantenpressungen entstehen, sind weiter ein Ober- und ein Untergurt vorgesehen, welche senkrecht zum Steg verlaufen und mit letzterem zusammen im Querschnitt das Profil eines Doppel-T-Trägers aufweisen. Ober- und Untergurt decken dabei Oberflächen des Kernes bereichsweise ab. Damit ist dieser während Lagerung und Transport zusätzlich vor mechanischer Beschädigung weitgehend geschützt.However, in order to prevent inadmissibly high edge pressures in the connection elements due to the narrow web due to the heat transport to be avoided, an upper and a lower flange are also provided, which run perpendicular to the web and together with the latter in cross-section the profile of a double-T beam exhibit. Upper and lower chords cover the core surfaces in some areas. This means that it is largely protected against mechanical damage during storage and transport.

Das Skelett kann auch mehrere bandförmige, in regelmässiger Folge z.B. ineinander verschränkte oder nur abschnittsweise ausgebildete, durch den Kern hindurchlaufende Stege aufweisen. Dabei ist dann mindestens einer oder Stege und/oder Stegabschnitte mit einem Ober- und/oder einem Untergurt versehen, wobei Ober- und Untergurt Bereiche von einander gegenüberliegenden Oberflächen des Kernes abdecken.The skeleton can also have several ribbon-shaped, e.g. have webs which are interlaced or formed only in sections and pass through the core. In this case, at least one or webs and / or web sections is then provided with an upper and / or a lower flange, the upper and lower flange covering regions of mutually opposite surfaces of the core.

Das Skelett besteht aus einem nicht spröden Werkstoff auf mineralischer Basis. Vorzugsweise wird ein mineralischer Faserverbundwerkstoff eingesetzt. Für gewisse Spezialanwendungen kann es vorteilhaft sein, ein Ausführungsbeispiel des Bauelements mit einem Skelett aus Stahl zu versehen. Obwohl solch ein Skelett einen vergleichsweise grossen Wärmedurchgang aufweist, wird das verbesserte Tragverhalten bei hochbeanspruchten Bauteilen wie Stützen oder Balkonanschlüssen ausschlaggebend sein.The skeleton is made of a non-brittle mineral-based material. A mineral fiber composite material is preferably used. For certain special applications it can be advantageous to provide an embodiment of the component with a steel skeleton. Although such a skeleton has a comparatively large heat transfer rate, the improved load-bearing behavior will be decisive in the case of highly stressed components such as supports or balcony connections.

Das erfindungsgemässe Bauelement ermöglicht eine einwandfreie technische Lösung mit einfachen Mitteln und geringen Kosten. Es kann als tragendes und wärmedämmendes Bauelement z.B. auf der Kellerdecke als erste Schicht des aufgehenden Mauerwerkes vermauert werden. Es liegt dadurch innerhalb der Konstruktionsstärke des Unterlagsbodens, so dass sich beim Verputzen der Innenwände kein Materialwechsel ergibt.The component according to the invention enables a flawless technical solution with simple means and low costs. It can be used as a load-bearing and heat-insulating component e.g. be bricked up on the basement ceiling as the first layer of the rising masonry. As a result, it lies within the structural strength of the underlay, so that there is no change of material when the interior walls are plastered.

Die Anwendung des Bauelementes ist jedoch keineswegs auf den Mauerfuss beschränkt, obschon dort seine Vorteile besonders' wirksam zu Tragen kommen. Es kann überall dort angewendet werden, wo ein übermässiger Wärmeabfluss nicht nur quer durch die Wand hindurch, sondern hauptsächlich in der Ebene der Wand bzw. des Bauteils selbst verhindert werden soll.However, the use of the component is by no means limited to the base of the wall, although its advantages are particularly effective there. It can be used wherever excessive heat flow should not only be prevented across the wall, but mainly in the plane of the wall or the component itself.

Weitere Vorteile des erfindungsgemässen Bauelementes bestehen z.B. darin, dass es einfach verarbeitet werden kann. Die Elemente können in Längen, welche dem vielfachen des Mauersteinformates entsprechen, als erste Schicht vermauert werden. In den Deckschichten sind durch den Verlauf von Ober- und Untergurt Vertiefungen angeordnet, in welche der Mauermörtel eindringen kann, so dass ein sattes Aufliegen auf die ganze Elementlänge gewährleistet ist. Die gleichen Vertiefungen bilden zudem eine Verzahnung mit Decke und Mauerwerk.Further advantages of the component according to the invention are e.g. in that it can be easily processed. The elements can be bricked in lengths that correspond to the multiple of the brick format as the first layer. Through the course of the upper and lower chord, recesses are arranged in the cover layers, into which the masonry mortar can penetrate, so that a full contact is guaranteed over the entire length of the element. The same recesses also form an interlocking with the ceiling and masonry.

Weiter sind Querschnitt und Länge des Elementes auf die üblichen Mauersteinformate abgestimmt. Dies ermöglicht eine wirtschaftliche Fertigung als Normelemente. Ferner können die Elemente problemlos am Bau auf die gewünschte Länge zugeschnitten werden. Bei Verwendung eines geschlossenzelligen Wärmedämmstoffes wird die Aufnahme von Feuchtigkeit verhindert.Furthermore, the cross-section and length of the element are matched to the usual brick formats. This enables economical production as standard elements. Furthermore, the elements can easily be cut to the desired length on site. When using a closed-cell thermal insulation material, the absorption of moisture is prevented.

Die Erfindung wird nachstehend anhand der in den Zeichnungen dargestellten Ausführungsbeispiele noch etwas näher erläutert.The invention is explained in more detail below on the basis of the exemplary embodiments illustrated in the drawings.

Es zeigen:

  • Fig. 1 schematisch einen Querschnitt durch einen Gebäudeteil, bei welchem eine Wärmebrükke im Bereich des Mauerfusses durch das erfindungsgemässe Bauelement unterbrochen ist,
  • Fig. 2 eine Ansicht eines bevorzugten Ausführungsbeispiels des erfindungsgemässen Bauelements,und
  • Fig. 3 schematisch das Skelett des Bauelementes von Figur 2.
Show it:
  • 1 schematically shows a cross section through a part of a building in which a thermal bridge in the area of the base of the wall is interrupted by the component according to the invention,
  • 2 shows a view of a preferred exemplary embodiment of the component according to the invention, and
  • 3 schematically shows the skeleton of the component from FIG. 2.

Figur 1 zeigt einen Querschnitt durch einen Teil eines Gebäudes, wobei 1 das erfindungsgemässe Bauelement, 2 eine Kellerdecke, 3 eine Kellerwand, 4 das umgebende Erdreich, 5 die Wärmedämmschicht auf der Decke, 6 die Bodenscha- _le, 7 die äussere Schale sowie 8 die innere Schale des aufgehenden Mauerwerks bezeichnet. Zwischen äusserer und innerer Schale 7, 8 befindet sich eine Wärmedämmschicht 9.Figure 1 shows a cross section through part of a building, 1 the component according to the invention, 2 a basement ceiling, 3 a basement wall, 4 the surrounding soil, 5 the thermal insulation layer on the ceiling, 6 the bottom shell, 7 the outer shell and 8 the inscribed inner shell of the rising masonry. A heat insulation layer 9 is located between the outer and inner shells 7, 8.

Damit nun zwischen die Wärmedämmschichten 9 und 5 keine Lücke besteht, durch welche Wärme aus einem Raum 10 durch die innere Schale 8 und die Kellerdecke 2 in den Keller oder die Kellerwand 3 nach aussen abfliesst, wird das erfindungsgemässe Bauelement, wie in der Figur angedeutet, zur Unterbrechung der sonst vorhandenen Wärmebrücke eingesetzt. Dabei ist durch den gestrichelten Abschnitt der Pfeile verdeutlicht, an welcher Stelle der Wärmeabfluss aus dem Raum 10 ohne Einsatz des Bauelementes 1 wesentlich verstärkt wäre.So that there is now no gap between the heat insulation layers 9 and 5, through which heat from a room 10 through the inner Shell 8 and the basement ceiling 2 flows into the basement or the basement wall 3 to the outside, the component according to the invention, as indicated in the figure, is used to interrupt the otherwise existing thermal bridge. The dashed section of the arrows makes it clear at which point the heat flow from the room 10 would be significantly increased without the use of the component 1.

Die Figuren 2 und 3 zeigen eine Ansicht des erfindungsgemässen Bauelementes 1 (Fig. 2) bzw. eine Ansicht desselben Bauelementes, bei welchem der Kern 11 aus vorzugsweise geschlossenzelligem Wärmedämmstoff entfernt worden ist (Fig. 3).FIGS. 2 and 3 show a view of the component 1 according to the invention (FIG. 2) or a view of the same component in which the core 11 has been removed from preferably closed-cell thermal insulation material (FIG. 3).

Dabei bezeichnen 12 das eine Ende des den Kern 11 durchsetzenden Steges 13, und 14 das eine Ende des dem Steg 13 zugeordneten Obergurts 16 sowie 15 das eine Ende des dem Steg 13 zugeordneten Untergurts 17.12 denote the one end of the web 13 passing through the core 11, and 14 the one end of the upper flange 16 assigned to the web 13 and 15 the one end of the lower flange 17 assigned to the web 13.

Ober- bzw. Untergurt 16, 17 dienen dazu, dass an den an das Bauelement anliegenden Anschlussflächen des Mauerwerks keine übermässigen Pressungen entstehen. Der Steg wird natürlich entsprechend den abzutragenden Mauerwerkslasten, aber so schmal wie möglich ausgebildet, damit die durch ihn abfliessende Wärmemenge auf einem Minimum gehalten werden kann.Upper and lower chords 16, 17 serve to ensure that no excessive pressures occur on the connecting surfaces of the masonry that are adjacent to the component. The web is of course designed according to the masonry loads to be removed, but as narrow as possible so that the amount of heat flowing through it can be kept to a minimum.

Dabei ist jedoch zu beachten, dass der die Flächenpressung in den Anschlussflächen reduzierende Ober- bzw. Untergurt nicht zu stark ausgebildet werden sollte, denn die Abtragung der Wandlasten auf den Steg des Bauelementes erfolgt ohnehin direkt durch das Mauerwerk und die Lagerfugenmörtel über dem Element; eine steife Ausbildung von Ober- und Untergurt würde, wie Versuche zeigen, nur Anlass zu Abscherbrücken am Stegrand geben.It should be noted, however, that the upper and lower chords that reduce the surface pressure in the connecting surfaces should not be too strong, because the wall loads on the web of the component are transferred directly through the masonry and the bedding mortar above the element; Experiments show that a rigid formation of the upper and lower chord would only give rise to shear bridges at the edge of the web.

Versuche haben gezeigt, dass die erforderliche Breite des Ober- bzw. Untergurtes im allgemeinen ca. 50% der Höhe des zugeordneten Steges beträgt; sie muss jedoch auch den mechanischen Eigenschaften des anschliessenden Elementes angepasst werden.Tests have shown that the required width of the upper and lower chord is generally approximately 50% of the height of the associated web; however, it must also be adapted to the mechanical properties of the adjoining element.

Weiter ist es vorteilhaft, Längskanten des Kernes 11 mit Leisten 19 abzudecken. Damit ist der Kern gegen mechanische Beschädigung geschützt. Bei einem bevorzugten Ausführungsbeispiel befinden sich die Leisten an den durch Ober- und Untergurt abgedeckten Oberflächen des Kernes und sind mit Ober- bzw. Untergurt einstückig ausgebildet. Dadurch entstehen vom Skelett allseitig umschlossene (abgesehen von den Enden des Bauelements) Bereiche, in welchen die Oberflächen des Kernes nicht abgedeckt sind. Diese Bereiche sollten durch überbreite Ober- bzw. Untergurte nicht unnötig verkleinert werden.It is also advantageous to cover the longitudinal edges of the core 11 with strips 19. This protects the core against mechanical damage. In a preferred embodiment, the strips are located on the surfaces of the core covered by the upper and lower chord and are formed in one piece with the upper and lower chord. This creates areas on all sides of the skeleton (apart from the ends of the component) in which the surfaces of the core are not covered. These areas should not be unnecessarily reduced by over-wide top and bottom belts.

Wird nämlich das Bauelement vermauert, soll überflüssiger Mörtel in diese Bereiche eindringen. Nach Aushärtung des Mörtels besteht dann eine Verzahnung des Mauerwerkes mit dem Bauelement, welche sicherstellt, dass zwischen letzteren wirkende Scherkräfte zuverlässig übertragen werden.If the component is bricked up, superfluous mortar should penetrate into these areas. After the mortar has hardened, the masonry is interlocked with the component, which ensures that shear forces acting between the latter are reliably transmitted.

Weiter wird sichergestellt, dass das Bauelement mit seinem aufliegenden oder stützenden Unter- bzw. Obergurt gleichmässig aufliegt. Es folgt damit eine gleichförmige Beanspruchung in den Gurten.It is also ensured that the component lies evenly on its supporting or supporting lower or upper chord. This results in a uniform load in the belts.

Wie Figur 3 zeigt, besitzt der zwischen den Längsseiten des Bauelements zickzackartig hin-und herlaufende Steg 13 Abschnitte 18, welche im Bereich nahe dieser Längsseiten parallel zu letzteren verlaufen. Damit wird ermöglicht, dass Ober- bzw. Untergurt immer von beiden Seiten des Steges abstehen können und somit die Verbindung Ober- bzw. Untergurt im wesentlichen nur druckbelastet ist und somit im Steg selbst keine unzulässigen Biegemomente erzeugt werden. Da die Resultierende der Wandlast oft exzentrisch in der Wand verläuft, wird weiter durch den zickzackförmig verlaufenden Steg einwandfreie Aufnahme der Wandlast sichergestellt.As FIG. 3 shows, the web 13 running back and forth between the longitudinal sides of the component has sections 18 which run parallel to the latter in the region near these longitudinal sides. This makes it possible that the upper and lower chord can always protrude from both sides of the web and thus the connection between the upper and lower chord is essentially only under pressure and thus no impermissible bending moments are generated in the web itself. Since the resultant of the wall load often runs eccentrically in the wall, the zigzag-shaped web ensures that the wall load is properly absorbed.

Das Ausführungsbeispiel der Figuren 2 und 3 besitzt nur einen Steg, es ist ohne weiteres denkbar, dass für spezielle Anwendungen mehrere Stege, welche z.B. in regelmässiger Folge ineinander verschränkt sind, vorgesehen werden. Auch können nur abschnittsweise ausgebildete Stege vorgesehen werden. Dabei kann es sinnvoll sein, nicht alle Stege bzw. Abschnitte mit einem Ober-und/oder Untergurt zu versehen, da in den verschiedenen Anschlussflächen nicht dieselben Bedingungen herrschen oder die freien Bereiche für Ausbildung der Verzahnung mit dem Mauerwerk nicht zu klein werden sollen.The embodiment of Figures 2 and 3 has only one web, it is easily conceivable that for special applications several webs, e.g. are intertwined in a regular sequence. It is also possible to provide webs formed only in sections. It may make sense not to provide all the webs or sections with an upper and / or lower flange, since the same conditions do not exist in the various connecting surfaces or the free areas should not become too small for the interlocking with the masonry.

Bei einem weiteren Ausführungsbeispiel ist der Kern aus Wärmedämmstoff über die gesamte Fläche einer Längsseite des Elements vom Skelett unbedeckt gehalten. Dies kann auch nachträglich bei einem bestehenden Bauelement dadurch erreicht werden, dass die erwähnte Längsseite mit einem Streifen aus Wärmedämmstoff überklebt wird, wobei dann auch die entsprechenden Leisten 17 (Fig. 2) von Ober- bzw. Untergurt bedeckt werden müssen. Die Dicke des Streifens beträgt vorzugsweise 1 cm.In a further exemplary embodiment, the core of thermal insulation material is kept uncovered by the skeleton over the entire area of a long side of the element. This can also be achieved retrospectively in the case of an existing component in that the longitudinal side mentioned is covered with a strip of thermal insulation material, the corresponding strips 17 (FIG. 2) then also having to be covered by the upper and lower chord. The thickness of the strip is preferably 1 cm.

Damit wird verhindert, dass über einen fertig erstellten Wand- oder Mauerabschnitt eine Verputzschicht gebracht wird, welche eine Längsseite des Elements im Sinn einer zwar nicht ausgeprägten, aber doch existierenden Wärmebrücke überbrückt. Die Verputzschicht ist dann zwar durch Wärmedämmstoff entsprechend den Abmessungen der verbauten Elemente unterbrochen; aus Fig. 1 ist aber leicht ersichtlich, dass bei entsprechendem Einbau des Elementes z.B. eine Bodenschale 6 das Element 1 weit genug überragt, so dass auf eine Verputzschicht auf der Längsseite des Elements verzichtet werden kann.This prevents a plaster layer from being brought over a finished wall or wall section, which bridges a long side of the element in the sense of a not yet pronounced but nevertheless existing thermal bridge. The plaster layer is then interrupted by thermal insulation material in accordance with the dimensions of the installed elements; 1, however, it is easy to see that with the corresponding Installation of the element, for example, a base shell 6 protrudes far enough beyond element 1 so that a plaster layer on the long side of the element can be dispensed with.

Für erhöhte Tragfähigkeit des Steges 13 wird dessen Querschnitt derart eingeschnürt ausgebildet, dass seine minimale Dicke auf ca der halben Steghöhe vorliegt und der Querschnitt dem Umriss einer X-Form nahekommt. Dadurch werden bei hoher Last und entsprechender Ausbiegung des Steges für das Skelettmaterial kritische Spaltzugspannungen vermieden.For increased load-bearing capacity of the web 13, its cross-section is constricted in such a way that its minimum thickness is approximately half the web height and the cross-section comes close to the outline of an X-shape. As a result, critical tensile stresses at the skeleton material are avoided at high loads and corresponding bending of the web.

Claims (11)

1. Heat insulating, load-bearing construction element with elongate extension and with an essentially rectangular cross-section, each element comprising a load-receiving bottom and cover surface as well as two lateral faces and being destined for integration into masonry to reduce the heat flux, whereby said construction element comprises a core of heat insulating material and supporting members extending through this core, which supporting members comprise webs (13) arranged between said bottom and cover surface and extending continuously or with interruptions substantially over the whole length of the element, characterized in that said webs comprise sections (18) positioned at either side near the lateral faces, as well as sections extending transversely to the longitudinal direction of the element, whereby the webs (13) are part of a skeleton that partly covers the core (11), and which is provided to transmit wall forces between cover and bottom surface.
2. Construction element according to claim 1, characterized in that a continuous, band- shaped web (13) zigzagging between two opposite lateral faces is provided.
3. Construction element according to claim 2, characterized in that the zigzagged web (13) in the sections (18) near the lateral faces extends parallel to the latter.
4. Construction element according to one of the preceding claims, characterized in that the skeleton is provided with an upper chord and a lower chord (16, 17) extending at the cover and the bottom surface of the element.
5. Construction element according to claim 1, characterized in that the skeleton comprises two lateral strips (19) each extending on both sides of the cover and the bottom surface to cover their lateral zones.
6. Construction element according to claims 4 and 5, characterized in that the upper or the lower chord (16, 17), respectively, are formed as one piece with the lateral strips (19).
7. Construction element according to one of the preceding claims, characterized in that recesses (20) are provided at the bottom and the cover surface to interconnect the element with layers of mortar adjacent to the cover and bottom surface.
8. Construction element according to claim 7, characterized in that the recesses (20) are formed by openings between the chords or the strips, respectively, (16,17,19) extending at the cover and bottom surface of the supporting members.
9. Construction element according to one of the preceding claims, characterized in that towards the lateral faces of the element the webs (13) are covered by heat insulating material.
10. Construction element according to claim 9, characterized in that towards one of the lateral faces of the element all parts (13, 16, 17, 19) of the supporting members are covered by heat insulating material.
11. Construction element according to one of the preceding claims, characterized in that the webs (13) have a cross-section which is constricted such that the minimal web thickness is at about half the web height and increasing towards the bottom and the cover surface.
EP86114165A 1985-10-17 1986-10-11 Heat-insulating load-bearing construction element Expired - Lifetime EP0219792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86114165T ATE63591T1 (en) 1985-10-17 1986-10-11 HEAT-INSULATING, LOADING COMPONENT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4509/85 1985-10-17
CH4509/85A CH670853A5 (en) 1985-10-17 1985-10-17

Publications (4)

Publication Number Publication Date
EP0219792A2 EP0219792A2 (en) 1987-04-29
EP0219792A3 EP0219792A3 (en) 1987-08-26
EP0219792B1 true EP0219792B1 (en) 1991-05-15
EP0219792B2 EP0219792B2 (en) 1995-12-27

Family

ID=4277423

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86114165A Expired - Lifetime EP0219792B2 (en) 1985-10-17 1986-10-11 Heat-insulating load-bearing construction element

Country Status (4)

Country Link
EP (1) EP0219792B2 (en)
AT (1) ATE63591T1 (en)
CH (1) CH670853A5 (en)
DE (1) DE3679275D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29509131U1 (en) * 1995-02-18 1995-09-21 Frank Gmbh & Co Kg Max Insulating stone and wall made using such stones

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008010803U1 (en) 2008-08-05 2008-10-09 Mostafa, Kamal, Dr. Heat-insulating brick
FR2949129B1 (en) * 2009-08-14 2014-05-09 Gerard Sekrane PREFABRICATED ELEMENT FOR THE CONSTRUCTION OF BUILDINGS, ALLOWING THE REMOVAL OF THERMAL BRIDGES
SI2405065T1 (en) 2010-11-19 2014-08-29 Georg Koch Insulating connection element for bearing compressive loads

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH435183A (en) 1963-06-05 1967-05-15 Wuppermann Gmbh Theodor Method and device for the production of profiled, welded longitudinal beams, as well as lightweight steel beams produced according to the method
FR2108984A1 (en) 1970-10-27 1972-05-26 Boutard Claude
DE2432010B2 (en) 1973-07-04 1977-11-03 Kitson's Byalex Ltd., Barking, Essex (Grossbritannien) HEAT-INSULATED BEAM-LIKE BEAM
DE3005571B1 (en) 1980-02-14 1981-06-04 Eberhard 7570 Baden-Baden Schöck Component for heat insulation in buildings
DE3035931A1 (en) 1980-09-24 1982-04-08 Karl Heinz Vahlbrauk Load-bearing wall slab providing heating and cooling - has ducts in cement panel on ceramic insulating panel in U=sectioned cement support
DE3247039A1 (en) 1982-12-18 1984-06-20 Günther Dipl.-Ing. 6901 Wiesenbach Koch Interconnection system for forming structural elements
EP0133875A1 (en) 1983-08-03 1985-03-13 Eberhard Schöck Insulated construction element for buildings

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2501723A1 (en) * 1975-01-17 1976-07-22 Georg Haubner Shaped insulating building-block above cellar walls - L-sectioned to accommodate concrete ceiling checking cold flow

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH435183A (en) 1963-06-05 1967-05-15 Wuppermann Gmbh Theodor Method and device for the production of profiled, welded longitudinal beams, as well as lightweight steel beams produced according to the method
FR2108984A1 (en) 1970-10-27 1972-05-26 Boutard Claude
DE2432010B2 (en) 1973-07-04 1977-11-03 Kitson's Byalex Ltd., Barking, Essex (Grossbritannien) HEAT-INSULATED BEAM-LIKE BEAM
DE3005571B1 (en) 1980-02-14 1981-06-04 Eberhard 7570 Baden-Baden Schöck Component for heat insulation in buildings
DE3035931A1 (en) 1980-09-24 1982-04-08 Karl Heinz Vahlbrauk Load-bearing wall slab providing heating and cooling - has ducts in cement panel on ceramic insulating panel in U=sectioned cement support
DE3247039A1 (en) 1982-12-18 1984-06-20 Günther Dipl.-Ing. 6901 Wiesenbach Koch Interconnection system for forming structural elements
EP0133875A1 (en) 1983-08-03 1985-03-13 Eberhard Schöck Insulated construction element for buildings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. HOHWILLER: "Wärmedämmung von Aussenwänden, Steinsysteme mit integrierter Dämmschicht", BETONWERK + FERTIGTEIL- TECHNIK, January 1980 (1980-01-01), pages 43ff, XP055287564

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29509131U1 (en) * 1995-02-18 1995-09-21 Frank Gmbh & Co Kg Max Insulating stone and wall made using such stones

Also Published As

Publication number Publication date
ATE63591T1 (en) 1991-06-15
CH670853A5 (en) 1989-07-14
EP0219792B2 (en) 1995-12-27
EP0219792A2 (en) 1987-04-29
DE3679275D1 (en) 1991-06-20
EP0219792A3 (en) 1987-08-26

Similar Documents

Publication Publication Date Title
DE3005571C2 (en) Component for thermal insulation in buildings
EP0581269B1 (en) External insulating and surface treatment system
DE60127504T2 (en) BASIC ELEMENT FOR THE ESTABLISHMENT OF A THERMAL INTERRUPTER BETWEEN A WALL AND A CONCRETE PLATE AND BUILDING STRUCTURE WITH APPROPRIATE APPLICATION
EP2486196B1 (en) Method and device for subsequently attaching a protruding outer part to an existing load-bearing building part
DE7717322U1 (en) FALL TO SUPPORT THE OUTER WALL LAYER FROM MASONRY OVER WALL OPENINGS
DE19652165C2 (en) Prefabricated component for a cantilevered balcony slab
EP2181227B1 (en) Prefabricated transportable composite wall element composed of shuttering blocks
EP0866185B1 (en) Thermal insulation system
CH678204A5 (en)
DE3700295A1 (en) Structural element for insulation in buildings
DE3124686A1 (en) Façade-cladding system for the exterior façade of buildings
EP0219792B1 (en) Heat-insulating load-bearing construction element
DE19501277C2 (en) Precast balcony
DE3432940A1 (en) Prefabricated masonry structure
DE2020607A1 (en) Prefabricated components for the production of multi-storey buildings
EP1154086A2 (en) Building block shaped insulating element
DE4421170C2 (en) Wall plaque
DE102007004573B4 (en) Wall component and method for producing a wall component
CH671060A5 (en)
CH690966A5 (en) Connecting component for collar plates on buildings comprises thermic insulating body and at least one metal reinforcement component arranged crossways to insulating body
EP0933482A2 (en) Prefabricated element for cantilevered balcony slab
CH680600A5 (en) Wooden building of composite box section parts - has plywood outside walls with flat connectors in central layer
EP1754840B1 (en) Building element for heat insulation
DE1911445A1 (en) Prefabricated building element for concrete ceilings and concrete walls
DE19823657B4 (en) Method for filling wall panels made of shuttering stones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR LI NL

17P Request for examination filed

Effective date: 19870807

17Q First examination report despatched

Effective date: 19890124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910515

REF Corresponds to:

Ref document number: 63591

Country of ref document: AT

Date of ref document: 19910615

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3679275

Country of ref document: DE

Date of ref document: 19910620

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BELETTO AG,

Effective date: 19920204

NLR1 Nl: opposition has been filed with the epo

Opponent name: BELETTO AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941021

Year of fee payment: 9

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19951227

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT CH DE FR LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
EN Fr: translation not filed
APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19981023

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981031

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991008

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991228

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO