EP3663474A1 - Device for decoupling heat between a concrete wall of a building and a floor and production method - Google Patents
Device for decoupling heat between a concrete wall of a building and a floor and production method Download PDFInfo
- Publication number
- EP3663474A1 EP3663474A1 EP19210081.6A EP19210081A EP3663474A1 EP 3663474 A1 EP3663474 A1 EP 3663474A1 EP 19210081 A EP19210081 A EP 19210081A EP 3663474 A1 EP3663474 A1 EP 3663474A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thermal insulation
- building
- insulation element
- concrete
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004567 concrete Substances 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title description 5
- 238000009413 insulation Methods 0.000 claims abstract description 97
- 239000011810 insulating material Substances 0.000 claims abstract description 7
- 230000002787 reinforcement Effects 0.000 claims description 29
- 238000009415 formwork Methods 0.000 claims description 17
- 239000002131 composite material Substances 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 238000009434 installation Methods 0.000 claims description 5
- 230000003014 reinforcing effect Effects 0.000 description 11
- 238000011065 in-situ storage Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000011449 brick Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011494 foam glass Substances 0.000 description 1
- 239000004574 high-performance concrete Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B2001/7679—Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
Definitions
- the present invention relates to a thermal insulation element for heat decoupling between load-bearing building parts to be made of concrete, namely a vertical building wall and a floor or ceiling above or below, the thermal insulation element having a basic body to be laid linearly between the building parts, which at least partially consists of a pressure-transmitting and heat-insulating Material, namely lightweight concrete, and has an upper and a lower contact surface for vertical connection to the building parts.
- load-bearing parts of buildings are often created from reinforced concrete structures.
- such parts of the building are usually provided with external thermal insulation.
- the floor ceiling between the basement, such as a basement or underground garage, and the ground floor is often equipped with thermal insulation on the basement side.
- This is usually achieved by monolithically connecting the floor slab to the load-bearing columns and external walls with continuous reinforcement.
- this creates thermal bridges that are difficult to remove by means of thermal insulation that has been attached from the outside.
- EP 3 112 542 A1 describes a thermal insulation element with a base made of lightweight concrete and reinforcing bars made of a fiber composite material and penetrating these.
- the thermal insulation element shown there is used for heat decoupling between a column and a floor slab, but is less suitable for load-bearing building walls.
- the thermal insulation element has a pressure-resistant support structure with insulating elements arranged in the spaces.
- the supporting structure can consist of a lightweight concrete, for example.
- Such a thermal insulation element is used for thermal insulation of brick outer walls, for example, as a conventional brick, it is used as the first stone layer of the load-bearing outer wall above the basement ceiling.
- a pressure-transmitting and insulating connecting element which is used for the vertical, load-bearing connection of building parts to be made of concrete. It consists of an insulation body with one or more pressure elements embedded in it. Shear force reinforcement elements run through the pressure elements and, for connection to the parts of the building to be made of concrete, extend essentially vertically beyond the top and the bottom of the insulation body.
- the insulation body can for example be made of foam glass or expanded polystyrene rigid foam and the pressure elements made of concrete, fiber concrete or fiber plastic.
- the thermal insulation element in each case has a plurality of protrusions on its upper and lower contact surface, at least — viewed in plan view of the contact surface — partially perpendicular to the laying direction.
- the invention is based on the basic idea of a linear laying of the thermal insulation elements in the composite, i.e.
- the thermal insulation elements are laid with their short end faces butt-to-butt without leaving a space between them.
- the power transmission between the building wall and the floor ceiling is therefore distributed linearly over the entire length of the building wall instead of on individual support points.
- the base body of the thermal insulation elements is preferably essentially cuboid, with its longitudinal axis specifying the direction of installation.
- the thermal insulation element consists at least partially of lightweight concrete as a pressure-transmitting and heat-insulating material.
- lightweight concrete according to the applicable regulations, there is a concrete with a dry bulk density of a maximum of 2000 kg / m 3 - typically about 1600 kg / m 3 - defined.
- the low density compared to normal concrete is achieved by appropriate manufacturing processes and different lightweight concrete grains, preferably grains with grain porosity such as expanded clay.
- lightweight concrete in the composition used here has a thermal conductivity between approximately 0.4 and 0.6 W / (m ⁇ K).
- the thermal conductivity ⁇ 10, tr is usually measured at a mean temperature of 10 ° and after drying to constant weight.
- High-pressure-resistant molded elements with low specific thermal conductivity can be made from lightweight concrete.
- a lightweight concrete part can additionally include hollow chambers or enclosed, non-load-bearing insulating bodies.
- the height of the thermal insulation element preferably corresponds approximately to the thickness of a typical thermal insulation layer, that is to say approximately 5 to 20 cm, preferably 10 to 15 cm.
- the typical modulus of elasticity of normal concrete, as used for a building wall, is approximately E cm ⁇ 30,000 to 40,000 N / mm 2 .
- the modulus of elasticity of the lightweight concrete used in the context of the invention is between approximately 6,000 and 22,000 N / mm 2 , preferably between 8,000 and 16,000 N / mm 2 , most preferably approximately 14,000 N / mm 2 . Due to their lower shear stiffness compared to the adjacent parts of the building, the thermal insulation elements can better compensate for the larger differences in thermal expansion behavior that occur due to the abrupt temperature jump at the thermal insulation zone.
- the transition area formed by the thermal insulation elements between the building wall and the floor ceiling not only acts as a thermal insulation zone in terms of building physics and as a load-bearing component in structural terms, but also as a stress-damping element to compensate for different thermal expansion.
- a plurality of rod-shaped reinforcement means are provided in the thermal insulation element, which penetrate the base body and extend essentially vertically beyond the upper and the lower contact surface. These enable a monolithic connection of the building parts, especially in the direction of the transverse force.
- the reinforcement means are firmly anchored in the base body of the thermal insulation element. It is particularly provided that the rod-shaped reinforcement means penetrate the projections. It has been found that the shear force transmission between the building parts is improved via the reinforcement means integrated in the thermal insulation element if these run through the projections instead of through the area between the projections.
- the rod-shaped reinforcement means consist of a fiber composite material. While with conventional vertically arranged reinforced concrete components with a reinforcement content of 1-2%, the steel reinforcement contributes about half to the overall thermal conductivity of the building part, the combination of lightweight concrete with a reinforcement made of a fiber composite material in the area of the thermal insulation element reduces the heat transfer by approx. 90%.
- the projections are designed as transverse ribs arranged transversely to the laying direction. These enable particularly effective interlocking with the adjacent concrete parts of the building.
- the height of the projections or ribs is between 10 mm and 30 mm, in particular between 15 mm and 20 mm, in order to achieve the best effect.
- At least one longitudinal rib arranged in the laying direction can also be provided. This enables additional toothing parallel to the wall and is therefore suitable for transmitting loads acting vertically on the wall, such as wind, into the building ceiling.
- the present invention also relates to a method for creating load-bearing building parts, namely a vertical building wall and a floor or ceiling above or below.
- a number of thermal insulation elements are laid in a line, each of which has a base body that is at least partially made of lightweight concrete as a pressure-transmitting and heat-insulating material and has an upper and a lower contact surface for vertical connection to the building parts.
- the thermal insulation elements each have a plurality of projections at least partially perpendicular to the direction of installation on their upper and lower contact surfaces.
- the thermal insulation elements are laid together, i.e. the thermal insulation elements are laid with their short end faces butt-to-butt with no space between them.
- the power transmission between the building wall and the floor ceiling is therefore distributed linearly over the entire length of the building wall instead of on individual support points.
- a reinforcement for the lower part of the building to be made of concrete and a formwork arranged around the reinforcement are first created.
- the thermal insulation elements are inserted into this formwork so that they form a connection in a line for the part of the building to be constructed above.
- fresh concrete is poured into the formwork up to the height of the lower contact surface of the thermal insulation elements used in the formwork and, if necessary, the fresh concrete is compacted using a vibrating tool.
- thermal insulation element 10 is shown with a base body 11 designed as a lightweight concrete molded part. It is used for the monolithic connection and for the load-bearing connection of a building wall 21, for example in the basement of a building, to the basement ceiling 22 above. It is also possible to use the thermal insulation element 10 for thermal insulation between a "cold" floor ceiling and a building wall located above it.
- the thermal insulation element 10 comprises a substantially cuboid base body 11 with an upper side 12 and a lower side 13, each of which serves as contact surfaces for the basement ceiling or the end of the building wall 21 supporting it.
- a total of six reinforcing bars 15 protrude through the base body 11, without the invention being restricted to this, arranged in two rows.
- the base body 11 of the thermal insulation element 10 consists of a lightweight concrete, which on the one hand has high pressure stability and on the other hand has good thermal insulation properties. Compared to concrete with a thermal conductivity of approximately 1.6 W / (m ⁇ K), the thermal conductivity when using a suitable lightweight concrete material is in the range of approximately 0.5 W / (m ⁇ K), which corresponds to an improvement of approximately 70%.
- the light concrete used essentially consists of expanded clay, fine sand, preferably light sand, flow agents and stabilizers, which prevent segregation by floating the grain and improve the workability.
- the compressive strength of the thermal insulation element is chosen to be sufficiently high to enable the structurally planned utilization of the underlying building wall 21 made of in-situ concrete, for example in accordance with the compressive strength class C25 / 30.
- the reinforcing bars 15 are concreted into the lightweight concrete material of the base body 11 during the manufacture of the thermal insulation element 10.
- the reinforcing bars 15 themselves are in the exemplary embodiment made of a fiber composite material which consists of glass fibers aligned in the direction of the force and a synthetic resin matrix.
- a glass fiber reinforcement bar has an extremely low thermal conductivity, which is up to 70 times lower than that of reinforcing steel, and is therefore ideally suited for use in the thermal insulation element 10.
- the use of reinforcing bars made of stainless steel is also possible and is included in the scope of the present invention.
- the thermal insulation element 10 has three transverse ribs 12a, 13a, which run in the direction perpendicular to its longitudinal extent.
- the transverse ribs 12a, 13a ensure interlocking with the adjoining parts of the building, that is to say the building wall 21 and the floor ceiling 22, and transfer lateral forces to the adjacent part of the building due to different thermal expansion.
- the arrangement of the reinforcement bars 15 with respect to the base area of the base body 11 takes place in two parallel rows of three bars each. It has proven to be particularly advantageous here if the reinforcing bars 15, as shown in the exemplary embodiment, are arranged such that they run through the ribs 12a, 13a instead of through the incisions between the ribs 12a, 13a. For this reason, it is also advantageous that the ribs 12a, 13a on the top 12 and bottom 13, or in the general case projections of any shape with areas extending transversely to the longitudinal direction, correspond to one another and are arranged in mirror image or in vertical alignment with one another. Of course, base bodies with four or more ribs and a correspondingly larger number of test bars can also be used.
- the base body 11 of the thermal insulation element 10 has a length of approximately 300 mm in the exemplary embodiment, without the invention being restricted to this.
- the height without ribs is 100 mm and thus corresponds to the usual thickness of a subsequently installed thermal insulation layer.
- the height of the individual ribs 12a, 13a is 15 mm in each case.
- the width of the base body corresponds to the planned wall thickness of the building wall, e.g. 180 mm.
- FIG 4 shows a connection situation between a building wall 21, for example in the basement of a building, and the ceiling 22 above it, for example the basement ceiling.
- the uppermost end of the building wall 21 is formed by a line of thermal insulation elements 10 set in a line in the composite, that is to say without a space in between.
- Their reinforcing bars 15 are concreted into the building wall 21 made of in-situ concrete.
- the building wall 21 was concreted from below to the thermal insulation elements 10.
- the floor slab 22, which is also made of in-situ concrete, is located above the location of the heat insulation elements 15.
- the reinforcing bars projecting beyond the heat insulation element 10 are concreted into the floor slab 22.
- the ribs 12a, 13a create an effective toothing in the direction of the wall profile between the building wall 21, the position of thermal insulation elements 10 and the floor ceiling 22 in the manner of a toothed joint.
- a reinforcement for the building wall 21 is first created in a conventional manner and provided with a formwork.
- the thermal insulation elements are inserted into the formwork as the top end and attached to the formwork with aids.
- the formwork is filled with fresh concrete up to the lower edge of the thermal insulation elements and this is compacted.
- individual thermal insulation elements 15 can be removed and reinserted after compaction.
- Another possibility would be to first fill the formwork with fresh concrete and compact it and then insert the position of the thermal insulation elements on top of it in the still liquid in-situ concrete.
- the process of creating the floor ceiling 22 can be continued in a manner known per se, the reinforcement of which with the reinforcing bars 15 made of fiber composite material projecting beyond the upper contact surface 13 of the thermal insulation elements 10 in the in-situ concrete of the floor slab.
- formwork is installed above or adjacent to the thermal insulation elements 10 and reinforcement is laid for the floor slab.
- the floor slab is concreted in the usual way.
- a thermal insulation layer made of a highly insulating material can be applied below the floor ceiling 22, the thickness of which essentially corresponds to the height of the thermal insulation elements 10.
- Mineral insulation boards or wood-wool multi-layer boards can be installed as thermal insulation layers.
- the thermal insulation elements are arranged as the lowest layer between a building wall and an underlying floor or floor slab - which is also referred to in the general sense in the context of the present invention as a floor ceiling.
- This embodiment is used for a "cold" floor ceiling, in which a thermal insulation layer is installed above the floor ceiling.
- formwork and reinforcement are first created for the lower floor ceiling 22.
- the thermal insulation elements 10 are fastened to the upper edge of the formwork or at a corresponding height on the reinforcement.
- the floor ceiling 22 is poured from fresh concrete and compacted in a conventional manner.
- the downward-facing reinforcing bars 15 of the thermal insulation elements 10 are also concreted in.
- a reinforcement for the building wall 21 is created above the thermal insulation elements 10 and a formwork for the building wall is erected around it and including the thermal insulation elements 10 protruding from the concrete floor ceiling 22. Then it is concreted in a conventional manner.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
Abstract
Angegeben wird ein Wärmedämmelement zur Wärmeentkopplung zwischen aus Beton zu erstellenden, tragenden Gebäudeteilen, nämlich einer vertikalen Gebäudewand und einer darüber- oder darunterliegenden Geschossdecke, wobei das Wärmedämmelement einen linienförmig zwischen den Gebäudeteilen zu verlegenden Grundkörper aufweist, der zumindest teilweise aus einem drucckraftübertragenden und wärmedämmenden Werkstoff, nämlich Leichtbeton, besteht und eine obere und eine untere Anlagefläche zum vertikalen Anschluss an die Gebäudeteile aufweist. Das Wärmedämmelement weist an seiner oberen und unteren Anlagefläche jeweils mehrere, zumindest teilweise senkrecht zur Verlegerichtung verlaufende Vorsprünge aufweist.A thermal insulation element for heat decoupling between structural parts of the building to be made of concrete, namely a vertical building wall and a floor or ceiling above or below, is specified, the thermal insulation element having a basic body to be laid linearly between the building parts and which is at least partially made of a pressure-transmitting and heat-insulating material, namely lightweight concrete, and has an upper and a lower contact surface for vertical connection to the building parts. The thermal insulation element has on its upper and lower contact surface in each case a plurality of projections which run at least partially perpendicular to the laying direction.
Description
Die vorliegende Erfindung betrifft ein Wärmedämmelement zur Wärmeentkopplung zwischen aus Beton zu erstellenden, tragenden Gebäudeteilen, nämlich einer vertikalen Gebäudewand und einer darüber- oder darunterliegenden Geschossdecke, wobei das Wärmedämmelement einen linienförmig zwischen den Gebäudeteilen zu verlegenden Grundkörper aufweist, der zumindest teilweise aus einem druckkraftübertragenden und wärmedämmenden Werkstoff, nämlich Leichtbeton, besteht und eine obere und eine untere Anlagefläche zum vertikalen Anschluss an die Gebäudeteile aufweist.The present invention relates to a thermal insulation element for heat decoupling between load-bearing building parts to be made of concrete, namely a vertical building wall and a floor or ceiling above or below, the thermal insulation element having a basic body to be laid linearly between the building parts, which at least partially consists of a pressure-transmitting and heat-insulating Material, namely lightweight concrete, and has an upper and a lower contact surface for vertical connection to the building parts.
Im Hochbau werden tragende Gebäudeteile häufig aus mit einer Bewehrung versehenen Betonkonstruktionen erstellt. Aus energetischen Gründen werden solche Gebäudeteile in der Regel mit einer von außen angebrachten Wärmedämmung versehen. Insbesondere die Geschossdecke zwischen Tiefgeschoss, wie beispielsweise Keller oder Tiefgarage, und Erdgeschoss wird häufig auf der Tiefgeschossseite mit einer deckenseitig angebrachten Wärmedämmung ausgerüstet. Hierbei ergibt sich die Schwierigkeit, dass die tragenden Gebäudeteile, auf denen das Gebäude ruht, wie etwa Stützen und Außenwände, in lastabtragender Weise mit den darüber befindlichen Gebäudeteilen, insbesondere der Geschossdecke, verbunden sein müssen. Dies wird in der Regel dadurch erreicht, dass die Geschossdecke bei durchgehender Bewehrung monolithisch mit den tragenden Stützen und Außenwänden verbunden wird. Hierbei entstehen jedoch Wärmebrücken, die sich nur schlecht durch eine nachträglich von außen angebrachte Wärmedämmung beseitigen lassen.In building construction, load-bearing parts of buildings are often created from reinforced concrete structures. For energy reasons, such parts of the building are usually provided with external thermal insulation. In particular, the floor ceiling between the basement, such as a basement or underground garage, and the ground floor is often equipped with thermal insulation on the basement side. The difficulty arises here that the load-bearing parts of the building on which the building rests, such as columns and outer walls, have to be connected in a load-bearing manner to the parts of the building above, in particular the floor ceiling. This is usually achieved by monolithically connecting the floor slab to the load-bearing columns and external walls with continuous reinforcement. However, this creates thermal bridges that are difficult to remove by means of thermal insulation that has been attached from the outside.
In der Schrift
Aus der Schrift
Aus der Schrift
Eine vertikale Wärmeentkopplung wird hier also durch eine Verringerung der Anlagefläche zwischen den Gebäudeteilen erzielt. Durch die Wärmeentkopplung treten zwischen den Gebäudeteilen große Temperatursprünge auf. Bei großflächigen Gebäudeteilen wie etwa einer Gebäudewand und einer Geschossdecke kann es aufgrund der damit einhergehenden unterschiedlichen Wärmeausdehnung zu Spannungen und Relativbewegungen zwischen den Gebäudeteilen kommen, welche aufgrund der reduzierten Auflagepunkte zu statischen Problemen führen können.Vertical heat decoupling is achieved here by reducing the contact area between the parts of the building. Due to the heat decoupling, large temperature jumps occur between the parts of the building. In the case of large building parts such as a building wall and a floor ceiling, the resulting different thermal expansion can lead to tensions and relative movements between the building parts, which can lead to static problems due to the reduced support points.
Eine Aufgabe der Erfindung besteht deshalb darin, ein Wärmedämmelement anzugeben, welches für den Einsatz zur Wärmeentkopplung zwischen einer Gebäudewand und einer darüber- oder darunterliegenden Geschossdecke besser geeignet ist.It is therefore an object of the invention to provide a thermal insulation element which is more suitable for use for heat decoupling between a building wall and a floor or ceiling above or below.
Die Aufgabe wird gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Ausgestaltungen sind den abhängigen Ansprüchen zu entnehmen.The object is achieved by the features of claim 1. Advantageous refinements can be found in the dependent claims.
Bei einem Wärmedämmelement der eingangs genannten Art ist erfindungsgemäß vorgesehen, dass das Wärmedämmelement an seiner oberen und unteren Anlagefläche jeweils mehrere, zumindest - in der Draufsicht auf die Anlagefläche gesehen - teilweise senkrecht zur Verlegerichtung verlaufende Vorsprünge aufweist.In the case of a thermal insulation element of the type mentioned at the outset, it is provided according to the invention that the thermal insulation element in each case has a plurality of protrusions on its upper and lower contact surface, at least — viewed in plan view of the contact surface — partially perpendicular to the laying direction.
Die Erfindung basiert auf dem Grundgedanken einer linienförmigen Verlegung der Wärmedämmelemente im Verbund, d.h. die Wärmedämmelemente werden jeweils mit ihrer kurzen Stirnseite Stoß an Stoß verlegt, ohne dass zwischen diesen ein Zwischenraum verbliebe. Die Kraftübertragung zwischen Gebäudewand und Geschossdecke verteilt sich daher statt auf einzelne Auflagepunkte linienförmig über die ganze Länge der Gebäudewand. Der Grundkörper der Wärmedämmelemente ist hierbei vorzugsweise im Wesentlichen quaderförmig ausgebildet, wobei dessen Längsachse die Verlegerichtung vorgibt.The invention is based on the basic idea of a linear laying of the thermal insulation elements in the composite, i.e. The thermal insulation elements are laid with their short end faces butt-to-butt without leaving a space between them. The power transmission between the building wall and the floor ceiling is therefore distributed linearly over the entire length of the building wall instead of on individual support points. The base body of the thermal insulation elements is preferably essentially cuboid, with its longitudinal axis specifying the direction of installation.
Nach Untersuchungen der Erfinder treten aufgrund der temperaturbedingt unterschiedlichen Wärmeausdehnung der angrenzenden Gebäudeteile längs der Gebäudewand gerichtete Kraftkomponenten auf, die durch entgegengesetzt gerichtete Kräfte am Übergang zur Geschossdecke kompensiert werden müssen. Diese Kräfte bewirken ein gewisses Drehmoment auf die Wärmedämmelemente, welches bei der genannten Stoß-an-Stoß Verlegung im Verbund über die angrenzenden Wärmedämmelemente aufgenommen wird. Die erfindungsgemäßen Vorsprünge an den Anschlussflächen der Wärmedämmelemente bewirken hierbei eine Verzahnung zwischen den Wärmedämmelementen und den angrenzenden Gebäudeteilen quer zur Kraftrichtung, durch die eine wirksame Einleitung der seitlich gerichteten Kraftkomponenten in die angrenzenden Gebäudeteile gewährleistet wird.According to investigations by the inventors, due to the temperature-related different thermal expansion of the adjacent parts of the building, force components directed along the building wall occur which have to be compensated for by opposing forces at the transition to the floor ceiling. These forces cause a certain torque on the thermal insulation elements, which is absorbed during the abovementioned joint-to-joint installation via the adjacent thermal insulation elements. The projections according to the invention on the connection surfaces of the thermal insulation elements bring about a toothing between the thermal insulation elements and the adjacent building parts transversely to the direction of force, by means of which an effective introduction of the laterally directed force components into the adjacent building parts is ensured.
Das Wärmedämmelement besteht erfindungsgemäß zumindest teilweise aus Leichtbeton als einem druckkraftübertragenden und wärmedämmenden Werkstoff. Unter Leichtbeton ist nach dem geltenden Regelwerk ein Beton mit einer trockenen Rohdichte von maximal 2000 kg/m3 - typischerweise etwa 1600 kg/m3 - definiert. Die geringe Dichte im Vergleich zu Normalbeton wird durch entsprechende Herstellverfahren und unterschiedliche Leichtbetonkörnungen, vorzugsweise Körnungen mit Kornporosität wie etwa Blähton erreicht. Leichtbeton in der hier zum Einsatz kommenden Zusammensetzung besitzt im trockenen Zustand eine Wärmeleitfähigkeit zwischen etwa 0,4 und 0,6 W/(m · K). Die Wärmeleitfähigkeit λ10,tr wird üblicherweise bei 10° Mitteltemperatur und nach Trocknung bis zur Gewichtskonstanz gemessen.According to the invention, the thermal insulation element consists at least partially of lightweight concrete as a pressure-transmitting and heat-insulating material. Under lightweight concrete, according to the applicable regulations, there is a concrete with a dry bulk density of a maximum of 2000 kg / m 3 - typically about 1600 kg / m 3 - defined. The low density compared to normal concrete is achieved by appropriate manufacturing processes and different lightweight concrete grains, preferably grains with grain porosity such as expanded clay. In the dry state, lightweight concrete in the composition used here has a thermal conductivity between approximately 0.4 and 0.6 W / (m · K). The thermal conductivity λ 10, tr is usually measured at a mean temperature of 10 ° and after drying to constant weight.
Aus Leichtbeton lassen sich hochdruckfeste Formelemente mit niedriger spezifischer Wärmeleitfähigkeit herstellen. Je nach statischer Anforderung kann ein solches Leichtbetonteil zusätzlich Hohlkammern oder eingeschlossene, nichtlasttragende Isolierkörper umfassen. Die Höhe des Wärmedämmelements entspricht vorzugsweise in etwa der Stärke einer typischen Wärmedämmschicht, also etwa 5 bis 20 cm, bevorzugt 10 bis 15 cm.High-pressure-resistant molded elements with low specific thermal conductivity can be made from lightweight concrete. Depending on the structural requirements, such a lightweight concrete part can additionally include hollow chambers or enclosed, non-load-bearing insulating bodies. The height of the thermal insulation element preferably corresponds approximately to the thickness of a typical thermal insulation layer, that is to say approximately 5 to 20 cm, preferably 10 to 15 cm.
Durch den Einsatz eines massiven oder in Hohlblockbauweise gefertigten Wärmedämmelements aus Leichtbeton steht bei gleichem oder geringerem Wärmeverlust eine wesentlich größere Anlagefläche zur Verfügung, als dies bei der Verwendung von hochdruckfesten Druckelementen der Fall wäre. Zusätzliche druckkraftübertragende Elemente wie Drucklager bzw. Druckkörper aus Hochleistungsbeton oder dergleichen werden nicht benötigt und sind im Rahmen der Erfindung auch nicht erwünscht bzw. vorgesehen, da aufgrund der höheren Verformbarkeit bzw. niedrigeren Schubsteifigkeit von Leichtbeton die auflastenden Kräfte anderenfalls nicht über den Leichtbeton-Grundkörper abgetragen werden könnten.By using a solid or hollow block construction made of lightweight concrete, a much larger contact surface is available with the same or less heat loss than would be the case when using high-pressure-resistant pressure elements. Additional pressure-transmitting elements such as thrust bearings or pressure bodies made of high-performance concrete or the like are not required and are also not desired or provided in the context of the invention, since, due to the higher deformability or lower shear rigidity of lightweight concrete, the load-bearing forces would otherwise not be dissipated via the lightweight concrete base body could become.
Der typische E-Modul von Normalbeton, wie er für eine Gebäudewand verwendet wird, beträgt etwa Ecm≈30.000 bis 40.000 N/mm2. Der E-Modul des im Rahmen der Erfindung eigesetzten Leichtbetons beträgt dem gegenüber zwischen etwa 6.000 und 22.000 N/mm2, vorzugsweise zwischen 8.000 und 16.000 N/mm2, höchstvorzugsweise etwa 14.000 N/mm2. Aufgrund ihrer gegenüber den angrenzenden Gebäudeteilen niedrigeren Schubsteifigkeit können die Wärmedämmelemente die aufgrund des abrupten Temperatursprungs an der Wärmedämmzone auftretenden größeren Unterschiede im Wärmeausdehnungsverhalten besser kompensieren. Der von den Wärmedämmelementen gebildete Übergangsbereich zwischen Gebäudewand und Geschossdecke wirkt also nicht nur in bauphysikalischer Hinsicht als Wärmedämmzone und in statischer Hinsicht als lastabtragendes Bauteil, sondern darüber hinaus auch noch als Spannungs-Dämpfungselement zum Ausgleich unterschiedlicher thermischer Ausdehnung.The typical modulus of elasticity of normal concrete, as used for a building wall, is approximately E cm ≈30,000 to 40,000 N / mm 2 . In contrast, the modulus of elasticity of the lightweight concrete used in the context of the invention is between approximately 6,000 and 22,000 N / mm 2 , preferably between 8,000 and 16,000 N / mm 2 , most preferably approximately 14,000 N / mm 2 . Due to their lower shear stiffness compared to the adjacent parts of the building, the thermal insulation elements can better compensate for the larger differences in thermal expansion behavior that occur due to the abrupt temperature jump at the thermal insulation zone. The transition area formed by the thermal insulation elements between the building wall and the floor ceiling not only acts as a thermal insulation zone in terms of building physics and as a load-bearing component in structural terms, but also as a stress-damping element to compensate for different thermal expansion.
Bei einer bevorzugten Ausführungsform sind bei dem Wärmedämmelement mehreren den Grundkörper durchdringende und sich im Wesentlichen vertikal über die obere und die untere Anlagefläche hinaus erstreckende, stabförmige Bewehrungsmittel, insbesondere Bewehrungsstäbe vorgesehen. Diese ermöglichen eine monolithische Anbindung der Gebäudeteile vor allem in Querkraftrichtung. Die Bewehrungsmittel sind fest in dem Grundkörper des Wärmedämmelements verankert. Hierbei ist insbesondere vorgesehen, dass die stabförmigen Bewehrungsmittel die Vorsprünge durchdringen. Es hat sich nämlich herausgestellt, dass die Querkraftübertragung zwischen den Gebäudeteilen über die im Wärmedämmelement integrierten Bewehrungsmittel verbessert ist, wenn diese durch die Vorsprünge verlaufen, anstatt durch den Bereich zwischen den Vorsprüngen.In a preferred embodiment, a plurality of rod-shaped reinforcement means, in particular reinforcement rods, are provided in the thermal insulation element, which penetrate the base body and extend essentially vertically beyond the upper and the lower contact surface. These enable a monolithic connection of the building parts, especially in the direction of the transverse force. The reinforcement means are firmly anchored in the base body of the thermal insulation element. It is particularly provided that the rod-shaped reinforcement means penetrate the projections. It has been found that the shear force transmission between the building parts is improved via the reinforcement means integrated in the thermal insulation element if these run through the projections instead of through the area between the projections.
Außerdem kann im Rahmen der Erfindung vorgesehen sein, dass die stabförmigen Bewehrungsmittel aus einem Faserverbundwerkstoff bestehen. Während bei herkömmlichen vertikal angeordneten Stahlbetonbauteilen mit einem Bewehrungsgehalt von 1-2 % die Stahlbewehrung etwa die Hälfte zur Gesamtwärmeleitfähigkeit des Gebäudeteils beiträgt, wird durch die Kombination aus Leichtbeton mit einer Bewehrung aus einem Faserverbundwerkstoff im Bereich des Wärmedämmelements der Wärmeübertrag um ca. 90% gesenkt.It can also be provided in the context of the invention that the rod-shaped reinforcement means consist of a fiber composite material. While with conventional vertically arranged reinforced concrete components with a reinforcement content of 1-2%, the steel reinforcement contributes about half to the overall thermal conductivity of the building part, the combination of lightweight concrete with a reinforcement made of a fiber composite material in the area of the thermal insulation element reduces the heat transfer by approx. 90%.
Bei einer bevorzugten Ausführung sind die Vorsprünge als quer zur Verlegerichtung angeordnete Querrippen ausgebildet. Diese ermöglichen eine besonders wirksame Verzahnung mit den angrenzenden betonierten Gebäudeteilen. Die Höhe der Vorsprünge bzw. Rippen beträgt um die beste Wirkung zu erzielen zwischen 10 mm und 30 mm, insbesondere zwischen 15 mm und 20 mm.In a preferred embodiment, the projections are designed as transverse ribs arranged transversely to the laying direction. These enable particularly effective interlocking with the adjacent concrete parts of the building. The height of the projections or ribs is between 10 mm and 30 mm, in particular between 15 mm and 20 mm, in order to achieve the best effect.
Zusätzlich zu den Querrippen kann außerdem zumindest eine in Verlegerichtung angeordnete Längsrippe vorgesehen sein. Diese ermöglicht eine zusätzliche Verzahnung parallel zur Wand und ist somit geeignet, senkrecht auf die Wand einwirkende Lasten wie z.B. Wind in die Gebäudedecke zu übertragen.In addition to the transverse ribs, at least one longitudinal rib arranged in the laying direction can also be provided. This enables additional toothing parallel to the wall and is therefore suitable for transmitting loads acting vertically on the wall, such as wind, into the building ceiling.
Die vorliegende Erfindung betrifft außerdem ein Verfahren zum Erstellen tragender Gebäudeteile, nämlich einer vertikalen Gebäudewand und einer darüber- oder darunterliegenden Geschossdecke. Zwischen den Gebäudeteilen wird hierbei linienförmig eine Mehrzahl von Wärmedämmelementen verlegt, die jeweils einen Grundkörper aufweisen, der zumindest teilweise aus Leichtbeton als einem druckkraftübertragenden und wärmedämmenden Werkstoff besteht und eine obere und eine untere Anlagefläche zum vertikalen Anschluss an die Gebäudeteile aufweist. Die Wärmedämmelemente besitzen an ihren oberen und unteren Anlageflächen jeweils mehrere, zumindest teilweise senkrecht zur Verlegerichtung verlaufende Vorsprünge. Die Verlegung der Wärmedämmelemente erfolgt im Verbund, d.h. die Wärmedämmelemente werden jeweils mit ihrer kurzen Stirnseite Stoß an Stoß ohne Zwischenraum verlegt. Die Kraftübertragung zwischen Gebäudewand und Geschossdecke verteilt sich daher statt auf einzelne Auflagepunkte linienförmig über die ganze Länge der Gebäudewand.The present invention also relates to a method for creating load-bearing building parts, namely a vertical building wall and a floor or ceiling above or below. Between the parts of the building, a number of thermal insulation elements are laid in a line, each of which has a base body that is at least partially made of lightweight concrete as a pressure-transmitting and heat-insulating material and has an upper and a lower contact surface for vertical connection to the building parts. The thermal insulation elements each have a plurality of projections at least partially perpendicular to the direction of installation on their upper and lower contact surfaces. The thermal insulation elements are laid together, i.e. the thermal insulation elements are laid with their short end faces butt-to-butt with no space between them. The power transmission between the building wall and the floor ceiling is therefore distributed linearly over the entire length of the building wall instead of on individual support points.
Im Rahmen des Bauverfahrens wird zunächst eine Armierung für das untere, aus Beton zu erstellende Gebäudeteil sowie eine um die Armierung angeordnete Schalung erstellt. In diese Schalung werden die Wärmedämmelemente eingesetzt, so dass diese in einer Linie einen Anschluss für das darüber zu erstellende Gebäudeteil bilden. Anschließend wird bis zur Höhe der unteren Anlagefläche der in die Schalung eingesetzten Wärmedämmelemente Frischbeton in die Schalung eingefüllt und gegebenenfalls der Frischbeton mittels eines Rüttelwerkzeuges verdichtet.As part of the construction process, a reinforcement for the lower part of the building to be made of concrete and a formwork arranged around the reinforcement are first created. The thermal insulation elements are inserted into this formwork so that they form a connection in a line for the part of the building to be constructed above. Subsequently, fresh concrete is poured into the formwork up to the height of the lower contact surface of the thermal insulation elements used in the formwork and, if necessary, the fresh concrete is compacted using a vibrating tool.
Weitere Merkmale, Vorteile und Eigenschaften der vorliegenden Erfindung werden im Folgenden anhand der Figuren und anhand von Ausführungsbeispielen erläutert. Dabei zeigt:
- Fig. 1
- eine isometrische Ansicht eines erfindungsgemäßen Wärmedämmelements
- Fig. 2
- eine Seitenansicht des Wärmedämmelements aus
Fig. 1 , - Fig. 3
- eine Draufsicht auf das Wärmedämmelement aus
Fig. 1 , - Fig. 4
- ein erstes Ausführungsbeispiel für einen wärmedämmenden Anschluss zwischen einer aus Beton erstellten, tragenden Gebäudewand und einer darüberliegenden, betonierten Geschossdecke, und
- Fig. 5
- ein zweites Ausführungsbeispiel für einen wärmedämmenden Anschluss zwischen einer aus Beton erstellten Gebäudewand und einer darunterliegenden, betonierten Geschossdecke.
- Fig. 1
- an isometric view of a thermal insulation element according to the invention
- Fig. 2
- a side view of the thermal insulation element
Fig. 1 , - Fig. 3
- a plan view of the thermal insulation element
Fig. 1 , - Fig. 4
- a first embodiment for a heat-insulating connection between a load-bearing building wall made of concrete and an overlying, concrete floor ceiling, and
- Fig. 5
- a second embodiment for a heat-insulating connection between a building wall made of concrete and an underlying concrete floor.
In den
Das Wärmedämmelement 10 umfasst einen im Wesentlichen quaderförmigen Grundkörper 11 mit einer Oberseite 12 und einer Unterseite 13, die jeweils als Anlageflächen für die Kellerdecke bzw. den Abschluss der diese tragenden Gebäudewand 21 dienen. Durch den Grundkörper 11 ragen - ohne dass die Erfindung hierauf beschränkt wäre - in zwei Reihen angeordnet insgesamt sechs Bewehrungsstäbe 15.The
Der Grundkörper 11 des Wärmedämmelements 10 besteht aus einem Leichtbeton, welcher einerseits eine hohe Druckstabilität, andererseits eine gute Wärmedämmeigenschaft aufweist. Gegenüber Beton mit einer Wärmeleitfähigkeit von etwa 1,6 W/(m · K) liegt die Wärmeleitfähigkeit bei Verwendung eines geeigneten Leichtbetonwerkstoffs im Bereich von etwa 0,5 W/(m · K), was einer Verbesserung um etwa 70 % entspricht. Der verwendete Leichtbeton besteht im Wesentlichen aus Blähton, Feinsanden, vorzugsweise Leichtsand, Fließmitteln sowie Stabilisatoren, die ein Entmischen durch Aufschwimmen der Körnung verhindern und die Verarbeitbarkeit verbessern. Die Druckfestigkeit des Wärmedämmelements ist dabei ausreichend hoch gewählt, um die statisch geplante Ausnutzung der darunterliegenden Gebäudewand 21 aus Ortbeton zu ermöglichen, beispielsweise entsprechend der Druckfestigkeitsklasse C25/30.The
Die Bewehrungsstäbe 15, die den Grundkörper 11 des Wärmedämmelements 10 in vertikaler Richtung durchqueren, dienen als Querkraftbewehrung zur Übertragung längs der Gebäudewand 21 sowie senkrecht zu dieser auftretender Querkräfte. Die Bewehrungsstäbe 15 werden bei der Herstellung des Wärmedämmelements 10 in den Leichtbetonwerkstoff des Grundkörpers 11 einbetoniert.The reinforcing bars 15, which cross the
Die Bewehrungsstäbe 15 selbst sind im Ausführungsbeispiel aus einem Faserverbundwerkstoff, der aus in Kraftrichtung ausgerichteten Glasfasern und einer Kunstharz-Matrix besteht. Ein solcher Glasfaserbewehrungsstab weist eine extrem niedrige Wärmeleitfähigkeit auf, die bis zu 70-mal geringer ist als bei Betonstahl, und ist somit ideal für die Anwendung in dem Wärmedämmelement 10 geeignet. Alternativ ist jedoch auch der Einsatz von Bewehrungsstäben aus nichtrostendem Stahl möglich und im Rahmen der vorliegenden Erfindung mit umfasst.The reinforcing bars 15 themselves are in the exemplary embodiment made of a fiber composite material which consists of glass fibers aligned in the direction of the force and a synthetic resin matrix. Such a glass fiber reinforcement bar has an extremely low thermal conductivity, which is up to 70 times lower than that of reinforcing steel, and is therefore ideally suited for use in the
Sowohl an der oberen Anlageflächen 12 als auch an der unteren Anlageflächen 13 besitzt das Wärmedämmelement 10 je drei Querrippen12a, 13a, die in Richtung senkrecht zur dessen Längserstreckung verlaufen. Die Querrippen 12a, 13a sorgen für eine Verzahnung mit den anschließenden Gebäudeteilen, also der Gebäudewand 21 und der Geschossdecke 22 und tragen Querkräfte aufgrund unterschiedlicher Wärmeausdehnung an das angrenzende Gebäudeteil ab.Both on the upper contact surfaces 12 and on the lower contact surfaces 13, the
Die Anordnung der Bewehrungsstäbe 15 bezogen auf die Grundfläche des Grundkörpers 11 erfolgt in zwei parallelen Reihen zu je drei Stäben. Hierbei hat es sich als besonders vorteilhaft herausgestellt, wenn die Bewehrungsstäbe 15, wie im Ausführungsbeispiel gezeigt, so angeordnet werden, dass sie durch die Rippen 12a, 13a hindurch verlaufen, anstatt durch die Einschnitte zwischen den Rippen 12a, 13a. Aus diesem Grunde ist es ebenfalls vorteilhaft, dass die Rippen 12a, 13a an Oberseite 12 und Unterseite 13, bzw. im allgemeinen Fall beliebig geformte Vorsprünge mit quer zur Längsrichtung verlaufenden Bereichen, einander entsprechen und spiegelbildlich bzw. in vertikaler Flucht zu einander angeordnet sind. Selbstverständlich können auch Grundkörper mit vier oder mehr Rippen und einer entsprechend größeren Anzahl an Bewährungsstäben zum Einsatz kommen.The arrangement of the reinforcement bars 15 with respect to the base area of the
Der Grundkörper 11 des Wärmedämmelements 10 hat im Ausführungsbeispiel, ohne dass die Erfindung hierauf beschränkt wäre, eine Länge von etwa 300 mm. Die Höhe ohne Rippen beträgt 100 mm und entspricht somit der üblichen Stärke einer nachträglich angebrachten Wärmedämmschicht. Die Höhe der einzelnen Rippen 12a, 13a beträgt jeweils 15 mm. Die Breite des Grundkörpers entspricht der geplanten Wandstärke der Gebäudewand, also z.B. 180 mm.The
In
Zur Herstellung wird zunächst in an sich üblicher Weise eine Armierung für die Gebäudewand 21 erstellt und mit einer Schalung versehen. In die Schalung werden als oberster Abschluss die Wärmedämmelemente eingesetzt und mit Hilfsmitteln an der Schalung befestigt. Anschließend wird die Schalung bis an die Unterkante der Wärmedämmelemente heran mit Frischbeton verfüllt und dieser verdichtet. Zum Einfüllen und Verdichten können einzelne Wärmedämmelemente 15 entnommen werden und nach dem Verdichten wieder eingefügt werden. Gleichsam wäre es möglich, in den Wärmedämmelementen Verfüllöffnungen vorzusehen, welche nach dem Verfüllen verschlossen werden können. Eine andere Möglichkeit bestünde darin, die Schalung zunächst mit Frischbeton zu befüllen und diesen zu verdichten und die Lage der Wärmedämmelemente anschließend obenauf in den noch flüssigen Ortbeton einzusetzen.For the production, a reinforcement for the
Sobald dieser abgebunden hat, kann in ebenfalls an sich bekannter Weise mit der Erstellung der Geschossdecke 22 weiterverfahren werden, wobei deren Armierung mit den über die obere Anlagefläche 13 der Wärmedämmelemente 10 hinausragenden Bewehrungsstäben 15 aus Faserverbundwerkstoff im Ortbeton der Geschossdecke vergossen wird. Zum Erstellen der Geschossdecke 22 wird oberhalb der bzw. angrenzend an die Wärmedämmelemente 10 eine Schalung installiert und eine Bewehrung für die Geschossdecke verlegt. Anschließend wird die Geschossdecke in an sich üblicher Weise betoniert. Unterhalb der Geschossdecke 22 kann abschließend eine Wärmedämmschicht aus einem hochdämmenden Werkstoff aufgebracht, deren Stärke im Wesentlichen zumindest der Höhe der Wärmedämmelemente 10 entspricht. Als Wärmedämmschicht können beispielsweise Mineraldämmplatten oder Holzwolle-Mehrschichtplatten verbaut werden.As soon as this has set, the process of creating the
Bei einem alternativen, in
Zur Herstellung wird zunächst eine Schalung nebst Armierung für die untere Geschossdecke 22 erstellt. Am oberen Rand der Schalung oder in entsprechender Höhe an der Armierung werden die Wärmedämmelemente 10 befestigt. Anschließend wird in an sich üblicher Weise die Geschossdecke 22 aus Frischbeton gegossen und verdichtet. Dabei werden die nach unten weisenden Bewehrungsstäbe 15 der Wärmedämmelemente 10 mit einbetoniert. Nach dem Abbinden bzw. Aushärten des Betons wird oberhalb der Wärmedämmelemente 10 eine Armierung für die Gebäudewand 21 erstellt und um diese und unter Einschluss der aus der betonierten Geschossdecke 22 ragenden Wärmedämmelemente 10 eine Schalung für die Gebäudewand aufgestellt. Anschließend wird diese in herkömmlicher Weise betoniert.For the manufacture, formwork and reinforcement are first created for the
Claims (11)
dadurch gekennzeichnet, dass
das Wärmedämmelement an seiner oberen und unteren Anlagefläche (13) jeweils mehrere, zumindest teilweise senkrecht zur Verlegerichtung verlaufende Vorsprünge (12a, 13a) aufweist.Thermal insulation element for heat decoupling between load-bearing parts of the building to be made of concrete, namely a vertical building wall (21) and a floor or ceiling above (22), the thermal insulation element (10) having a basic body (11) to be laid linearly between the building parts consists at least partially of a pressure-transmitting and heat-insulating material, namely lightweight concrete, and has an upper and a lower contact surface (12, 13) for vertical connection to the building parts (21, 22),
characterized in that
the thermal insulation element on its upper and lower contact surface (13) each has a plurality of projections (12a, 13a) running at least partially perpendicular to the laying direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23177243.5A EP4234828A3 (en) | 2018-12-04 | 2019-11-19 | Device for decoupling heat between a concrete wall of a building and a floor and production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018130843.4A DE102018130843A1 (en) | 2018-12-04 | 2018-12-04 | Device for heat decoupling between a concrete building wall and a floor ceiling and manufacturing process |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23177243.5A Division EP4234828A3 (en) | 2018-12-04 | 2019-11-19 | Device for decoupling heat between a concrete wall of a building and a floor and production method |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3663474A1 true EP3663474A1 (en) | 2020-06-10 |
EP3663474C0 EP3663474C0 (en) | 2023-06-07 |
EP3663474B1 EP3663474B1 (en) | 2023-06-07 |
Family
ID=68618053
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19210081.6A Active EP3663474B1 (en) | 2018-12-04 | 2019-11-19 | Device for decoupling heat between a concrete wall of a building and a floor and production method |
EP23177243.5A Pending EP4234828A3 (en) | 2018-12-04 | 2019-11-19 | Device for decoupling heat between a concrete wall of a building and a floor and production method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23177243.5A Pending EP4234828A3 (en) | 2018-12-04 | 2019-11-19 | Device for decoupling heat between a concrete wall of a building and a floor and production method |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP3663474B1 (en) |
DE (1) | DE102018130843A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021111578A1 (en) | 2021-05-05 | 2022-11-10 | Schöck Bauteile GmbH | Heat-insulating toothed component and method for creating a building section |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4040433A1 (en) * | 1990-12-18 | 1992-06-25 | Strabag Bau Ag | Load bearing insulating member for building construction - has fibre reinforced resin rods embedded in resin compound with graduated size spherical filler beads |
DE10106222A1 (en) | 2001-02-10 | 2002-08-14 | Schoeck Entwicklungsgmbh | Brick-shaped thermal insulation element |
EP2405065A1 (en) | 2010-11-19 | 2012-01-11 | Georg Koch | Insulating connection element for bearing compressive loads |
EP3112542A1 (en) | 2015-04-23 | 2017-01-04 | SCHÖCK BAUTEILE GmbH | Device and method for heat decoupling of concreted parts of buildings |
EP3296478A1 (en) * | 2016-09-16 | 2018-03-21 | Tebetec AG | Assembly for connecting a building wall with a floor or ceiling plate and form block for such an assembly |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3467222A1 (en) * | 2017-10-09 | 2019-04-10 | Schöck Bauteile GmbH | Moulded building block to be fitted between a building wall and a floor or ceiling panel, and section of a building with such a moulded building block |
-
2018
- 2018-12-04 DE DE102018130843.4A patent/DE102018130843A1/en not_active Ceased
-
2019
- 2019-11-19 EP EP19210081.6A patent/EP3663474B1/en active Active
- 2019-11-19 EP EP23177243.5A patent/EP4234828A3/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4040433A1 (en) * | 1990-12-18 | 1992-06-25 | Strabag Bau Ag | Load bearing insulating member for building construction - has fibre reinforced resin rods embedded in resin compound with graduated size spherical filler beads |
DE10106222A1 (en) | 2001-02-10 | 2002-08-14 | Schoeck Entwicklungsgmbh | Brick-shaped thermal insulation element |
EP2405065A1 (en) | 2010-11-19 | 2012-01-11 | Georg Koch | Insulating connection element for bearing compressive loads |
EP3112542A1 (en) | 2015-04-23 | 2017-01-04 | SCHÖCK BAUTEILE GmbH | Device and method for heat decoupling of concreted parts of buildings |
EP3296478A1 (en) * | 2016-09-16 | 2018-03-21 | Tebetec AG | Assembly for connecting a building wall with a floor or ceiling plate and form block for such an assembly |
Also Published As
Publication number | Publication date |
---|---|
EP4234828A3 (en) | 2023-09-27 |
EP4234828A2 (en) | 2023-08-30 |
EP3663474C0 (en) | 2023-06-07 |
DE102018130843A1 (en) | 2020-06-04 |
EP3663474B1 (en) | 2023-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2455556B1 (en) | Insulating connection element for transferring compression | |
AT396274B (en) | REINFORCEMENT BODY FOR A CEILING PANEL | |
EP3112542B1 (en) | Device and method for heat decoupling of concreted parts of buildings | |
EP1231329B1 (en) | Building block shaped insulation element | |
DE19711813C2 (en) | Thermally insulating component | |
EP3663474B1 (en) | Device for decoupling heat between a concrete wall of a building and a floor and production method | |
EP1482101A1 (en) | Wall element, method for the production of wall elements and connecting means for a wall element | |
EP2060694A1 (en) | Building wall element | |
EP0121685A2 (en) | Pressure element in a heat insulating structural member for projecting parts of buildings | |
EP3296476B1 (en) | Assembly for connecting a building wall with a floor or ceiling plate and form block for such an assembly | |
DE3432940A1 (en) | Prefabricated masonry structure | |
EP3569788B1 (en) | Segment for a building, method for the production thereof, corner segment for a building, method for the production thereof, building and method for the production thereof | |
EP4086401B1 (en) | Heat-insulating toothed component and method for constructing a building section | |
EP3296478B1 (en) | Assembly for connecting a building wall with a floor or ceiling plate and form block for such an assembly | |
EP3789553B1 (en) | Prefabricated construction element and prefabricated system | |
EP3663475B1 (en) | Device for decoupling heat between a concrete wall of a building and a ceiling and production method | |
DE102007004573A1 (en) | Wall component for use as area closure component in industrial building, has connecting units extending over inner and outer layers and another layer, and anchor component extending from layer into inner and outer layers | |
DE3119623A1 (en) | SUPPORTING, PANEL-SHAPED COMPONENT | |
EP3225759B1 (en) | Connection component for thermal isolation between vertically connected building sections | |
EP4050170B1 (en) | Building with thermally insulating building element | |
DE2051002C3 (en) | Frame construction, consisting of prefabricated reinforced concrete parts | |
DE60127075T2 (en) | wall element | |
DE1276316B (en) | Prefabricated beams for covering openings in the masonry | |
DE2018919A1 (en) | Hollow block with an insulating intermediate layer | |
DE102019108349A1 (en) | Formwork device for the production of concrete supports, in particular for the production of vertical concrete supports forming parts of a wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201204 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E04B 1/76 20060101ALN20221031BHEP Ipc: E04B 1/78 20060101AFI20221031BHEP |
|
INTG | Intention to grant announced |
Effective date: 20221206 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1575445 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019007945 Country of ref document: DE |
|
U01 | Request for unitary effect filed |
Effective date: 20230607 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SCHOECK BAUTEILE GMBH |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20230717 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230907 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 5 Effective date: 20230926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20231201 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019007945 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231119 |