EP3663474B1 - Device for decoupling heat between a concrete wall of a building and a floor and production method - Google Patents

Device for decoupling heat between a concrete wall of a building and a floor and production method Download PDF

Info

Publication number
EP3663474B1
EP3663474B1 EP19210081.6A EP19210081A EP3663474B1 EP 3663474 B1 EP3663474 B1 EP 3663474B1 EP 19210081 A EP19210081 A EP 19210081A EP 3663474 B1 EP3663474 B1 EP 3663474B1
Authority
EP
European Patent Office
Prior art keywords
thermal insulation
building
insulation element
base body
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19210081.6A
Other languages
German (de)
French (fr)
Other versions
EP3663474A1 (en
EP3663474C0 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeck Bauteile GmbH
Original Assignee
Schoeck Bauteile GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoeck Bauteile GmbH filed Critical Schoeck Bauteile GmbH
Priority to EP23177243.5A priority Critical patent/EP4234828A3/en
Publication of EP3663474A1 publication Critical patent/EP3663474A1/en
Application granted granted Critical
Publication of EP3663474B1 publication Critical patent/EP3663474B1/en
Publication of EP3663474C0 publication Critical patent/EP3663474C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor

Definitions

  • the present invention relates to a thermal insulation element for thermal decoupling between load-bearing building parts to be made of concrete, namely a vertical building wall and a floor above or below, the thermal insulation element having a linear base body to be laid between the building parts, which at least partially consists of a compressive force-transmitting and thermally insulating Material, namely lightweight concrete, and has an upper and a lower contact surface for vertical connection to the building parts.
  • load-bearing building parts are often made of concrete structures provided with reinforcement.
  • such parts of the building are usually provided with thermal insulation applied from the outside.
  • the ceiling between the basement, such as the basement or underground car park, and the ground floor is often equipped with thermal insulation on the basement side.
  • the difficulty here is that the load-bearing parts of the building on which the building rests, such as columns and outer walls, must be connected in a load-bearing manner to the parts of the building above them, in particular the ceiling.
  • This is usually achieved by monolithically connecting the floor slab to the load-bearing columns and external walls with continuous reinforcement.
  • this creates thermal bridges that are difficult to eliminate by thermal insulation that is subsequently applied from the outside.
  • a shaped building block is known, on the surface of which profile elements are designed or arranged.
  • the profile elements represent a connection between a wall, floor or ceiling panel placed on the shaped building block.
  • a floor or ceiling panel brought into contact with the shaped building block is fixed relative to the shaped building block.
  • EP 3 112 542 A1 describes a thermal insulation element with a base body made of lightweight concrete and reinforcing rods made of a fiber composite material penetrating this.
  • the thermal insulation element shown there is used for thermal decoupling between a column and a floor, but is less suitable for load-bearing building walls.
  • the thermal insulation element has a pressure-resistant supporting structure with insulating elements arranged in the intermediate spaces.
  • the support structure can consist of lightweight concrete, for example.
  • Such a thermal insulation element is used for thermal insulation of brick exterior walls, for example by being used like a conventional brick as the first stone layer of the load-bearing exterior wall above the basement ceiling.
  • a compression force-transmitting and isolating connection element which is used for the vertical, load-bearing connection of building parts to be made of concrete. It consists of an insulating body with one or more pressure elements embedded in it. Shear force reinforcement elements run through the pressure elements and extend essentially vertically over the top and bottom of the insulating body for connection to the building parts to be made of concrete.
  • the insulation body can be made, for example, from foam glass or expanded polystyrene foam and the pressure elements from concrete, fiber concrete or fiber plastic.
  • a vertical heat decoupling is achieved here by reducing the contact area between the building parts. Due to the thermal decoupling, large temperature jumps occur between the building parts. In the case of large building parts such as a building wall and a floor slab, the associated different thermal expansion can lead to stresses and relative movements between the building parts, which can lead to static problems due to the reduced support points.
  • One object of the invention is therefore to specify a thermal insulation element which is better suited for use in heat decoupling between a building wall and a ceiling above or below it.
  • the thermal insulation element on its upper and lower contact surface has a plurality of projections that run at least partially perpendicularly to the laying direction—seen in plan view of the contact surface.
  • the invention is based on the basic idea of a linear laying of the thermal insulation elements in combination, i.e. the thermal insulation elements are laid end to end with their short front side without leaving a gap between them.
  • the force transmission between the building wall and the floor slab is therefore distributed linearly over the entire length of the building wall instead of at individual support points.
  • the base body of the thermal insulation elements is preferably essentially cuboid, with its longitudinal axis defining the laying direction.
  • the thermal insulation element consists at least partially of lightweight concrete as a compressive force-transmitting and thermally insulating material.
  • lightweight concrete is concrete with a dry bulk density of a maximum of 2000 kg/m 3 - typically around 1600 kg/m 3 - is defined.
  • the low density compared to normal concrete is achieved through appropriate manufacturing processes and different lightweight concrete grain sizes, preferably grain sizes with grain porosity such as expanded clay.
  • lightweight concrete in the composition used here has a thermal conductivity of between about 0.4 and 0.6 W/(m ⁇ K).
  • the thermal conductivity ⁇ 10,tr is usually measured at a mean temperature of 10° and after drying to constant weight.
  • High-pressure-resistant molded elements with low specific thermal conductivity can be produced from lightweight concrete.
  • a lightweight concrete part can also include hollow chambers or enclosed, non-load-bearing insulating bodies.
  • the height of the thermal insulation element preferably corresponds approximately to the thickness of a typical thermal insulation layer, ie approximately 5 to 20 cm, preferably 10 to 15 cm.
  • a solid or hollow-block thermal insulation element made of lightweight concrete means that a significantly larger contact surface is available with the same or less heat loss than would be the case with the use of high-pressure resistant pressure elements.
  • Additional compressive force-transmitting elements such as pressure bearings or pressure bodies made of high-performance concrete or the like are not required and are also not desired or provided within the scope of the invention, since the higher deformability or lower shear stiffness of lightweight concrete means that the loading forces would otherwise not be dissipated via the lightweight concrete base body could become.
  • the typical modulus of elasticity of normal concrete, as used for a building wall, is about E cm ⁇ 30,000 to 40,000 N/mm 2 .
  • the modulus of elasticity of the lightweight concrete used within the scope of the invention is between approximately 6,000 and 22,000 N/mm 2 , preferably between 8,000 and 16,000 N/mm 2 , most preferably approximately 14,000 N/mm 2 . Due to their lower shear stiffness compared to the adjacent parts of the building, the thermal insulation elements can better compensate for the larger differences in thermal expansion behavior that occur due to the abrupt jump in temperature in the thermal insulation zone.
  • the transition area formed by the thermal insulation elements between the wall of the building and the ceiling not only acts as a thermal insulation zone in terms of building physics and as a load-bearing component from a structural point of view, but also as a stress-damping element to compensate for different thermal expansion.
  • rod-shaped reinforcement means in particular reinforcement rods
  • the thermal insulation element penetrating the base body and extending essentially vertically beyond the upper and lower contact surfaces.
  • the reinforcement is firmly anchored in the base body of the thermal insulation element.
  • the rod-shaped reinforcement means penetrate the projections. It has been found that the shear force transmission between the building parts is improved via the reinforcement means integrated in the thermal insulation element if they run through the projections instead of through the area between the projections.
  • the rod-shaped reinforcement means consist of a fiber composite material. While in conventional vertically arranged reinforced concrete components with a reinforcement content of 1-2%, the steel reinforcement contributes about half to the overall thermal conductivity of the building part, the combination of lightweight concrete with reinforcement made of a fiber composite material in the area of the thermal insulation element reduces the heat transfer by about 90%.
  • the projections are designed as transverse ribs arranged transversely to the laying direction. These enable a particularly effective interlocking with the adjacent concrete parts of the building.
  • the height of the projections or ribs is between 10 mm and 30 mm, in particular between 15 mm and 20 mm.
  • At least one longitudinal rib arranged in the laying direction can also be provided. This enables additional interlocking parallel to the wall and is therefore suitable for transferring loads acting perpendicularly on the wall, such as wind, into the building ceiling.
  • the present invention also relates to a method for creating load-bearing parts of a building, namely a vertical building wall and a floor above or below.
  • a plurality of thermal insulation elements are laid in a line between the parts of the building, each of which has a base body that consists at least partially of lightweight concrete as a compressive force-transmitting and heat-insulating material and has an upper and a lower contact surface for vertical connection to the parts of the building.
  • the thermal insulation elements On their upper and lower contact surfaces, the thermal insulation elements each have a plurality of projections that run at least partially perpendicularly to the laying direction.
  • the thermal insulation elements are laid in combination, i.e. the short front side of the thermal insulation elements is laid end to end without a gap.
  • the force transmission between the building wall and the floor slab is therefore distributed linearly over the entire length of the building wall instead of at individual support points.
  • reinforcement for the lower part of the building which is to be made of concrete, and formwork arranged around the reinforcement are first created.
  • the thermal insulation elements are inserted into this formwork so that they form a connection in one line for the part of the building to be constructed above.
  • Fresh concrete is then poured into the formwork up to the height of the lower contact surface of the thermal insulation elements used in the formwork and, if necessary, the fresh concrete is compacted using a vibrating tool.
  • thermal insulation element 10 with a base body 11 designed as a lightweight concrete molded part is shown. It is used for the monolithic connection and load-bearing connection of a building wall 21, for example in the basement of a building, to the basement ceiling 22 above it. It is also possible to use the thermal insulation element 10 for thermal insulation between a "cold" floor ceiling and a building wall located above it.
  • the thermal insulation element 10 comprises an essentially cuboid base body 11 with an upper side 12 and an underside 13, which each serve as contact surfaces for the basement ceiling or the end of the building wall 21 that supports it.
  • a total of six reinforcing rods 15 arranged in two rows protrude through the base body 11 - without the invention being restricted thereto.
  • the base body 11 of the thermal insulation element 10 consists of a lightweight concrete, which on the one hand has high pressure stability and on the other hand has good thermal insulation properties. Compared to concrete with a thermal conductivity of around 1.6 W/(m ⁇ K), the thermal conductivity when using a suitable lightweight concrete material is in the range of around 0.5 W/(m ⁇ K), which corresponds to an improvement of around 70%.
  • the lightweight concrete used essentially consists of expanded clay, fine sand, preferably light sand, superplasticizers and stabilizers, which prevent the grain from separating from floating and improve workability.
  • the compressive strength of the thermal insulation element is selected to be sufficiently high to allow the structurally planned utilization of the underlying building wall 21 made of in-situ concrete, for example corresponding to compressive strength class C25/30.
  • the reinforcing rods 15 are concreted into the lightweight concrete material of the base body 11 during the manufacture of the thermal insulation element 10 .
  • the reinforcing rods 15 themselves are made of a fiber composite material, which consists of glass fibers aligned in the direction of the force and a synthetic resin matrix.
  • a fiber composite material which consists of glass fibers aligned in the direction of the force and a synthetic resin matrix.
  • Such fiberglass rebar has an extremely low thermal conductivity, up to 70 times lower than rebar, and is thus ideally suited for use in the thermal insulation element 10.
  • the use of reinforcing bars made of stainless steel is also possible and included within the scope of the present invention.
  • the thermal insulation element 10 has three transverse ribs 12a, 13a, which run in the direction perpendicular to its longitudinal extension.
  • the transverse ribs 12a, 13a ensure interlocking with the adjoining parts of the building, ie the building wall 21 and the floor slab 22, and carry transverse forces due to different thermal expansions to the adjoining part of the building.
  • the arrangement of the reinforcing bars 15 based on the base of the base body 11 is in two parallel rows of three bars. It has proven particularly advantageous here if the reinforcing rods 15, as shown in the exemplary embodiment, are arranged in such a way that they run through the ribs 12a, 13a instead of through the incisions between the ribs 12a, 13a. For this reason, it is also advantageous that the ribs 12a, 13a on the top 12 and bottom 13, or in general arbitrarily shaped projections with areas running transversely to the longitudinal direction, correspond to one another and are arranged as mirror images or in vertical alignment with one another. Of course, base bodies with four or more ribs and a correspondingly larger number of reinforcement bars can also be used.
  • the base body 11 of the thermal insulation element 10 has a length of approximately 300 mm, without the invention being restricted thereto.
  • the height without ribs is 100 mm and thus corresponds to the usual thickness of a subsequently applied thermal insulation layer.
  • the height of the individual ribs 12a, 13a is 15 mm in each case.
  • the width of the base body corresponds to the planned wall thickness of the building wall, e.g. 180 mm.
  • FIG 4 a connection situation between a building wall 21, for example in the basement of a building, and the upper floor 22, for example the basement ceiling, is shown.
  • the uppermost end of the building wall 21 is formed by a layer of thermal insulation elements 10 placed linearly in combination, ie without a gap.
  • Their reinforcing rods 15 are concreted into the building wall 21 made of in-situ concrete.
  • the building wall 21 was concreted from below up to the thermal insulation elements 10 here.
  • the floor slab 22 also made of in-situ concrete, is located above the layer of thermal insulation elements 15 .
  • the ribs 12a, 13a create a toothing between the building wall 21, the layer of thermal insulation elements 10 and the ceiling 22 in the manner of a toothed joint, which is effective in the direction of the course of the wall.
  • a reinforcement for the building wall 21 is first created in a conventional manner and provided with formwork.
  • the thermal insulation elements are inserted into the formwork as the topmost finish and attached to the formwork with tools.
  • the formwork is then filled with fresh concrete up to the lower edge of the thermal insulation elements and this is then compacted.
  • individual thermal insulation elements 15 can be removed and reinserted after compacting. It would also be possible to provide filling openings in the thermal insulation elements, which can be closed after filling. Another possibility would be to first fill the formwork with fresh concrete and to compact it and then to use the layer of thermal insulation elements on top of the still liquid in-situ concrete.
  • the floor slab 22 can be created in a manner that is also known per se, with its reinforcement is cast with the over the upper contact surface 13 of the thermal insulation elements 10 protruding reinforcement rods 15 made of fiber composite material in the in-situ concrete of the floor slab.
  • formwork is installed above or adjacent to the thermal insulation elements 10 and reinforcement is laid for the floor slab.
  • the ceiling is then concreted in a conventional manner.
  • a thermal insulation layer made of a highly insulating material can be applied below the floor slab 22 , the thickness of which essentially corresponds at least to the height of the thermal insulation elements 10 .
  • mineral insulation panels or wood wool multi-layer panels can be installed as a thermal insulation layer.
  • the thermal insulation elements are arranged as the lowest layer between a building wall and an underlying floor or floor slab - which is also referred to as floor in the generalized sense within the scope of the present invention.
  • This embodiment is used with a "cold" ceiling, in which a thermal insulation layer is installed above the ceiling.
  • a formwork together with reinforcement for the lower floor slab 22 is first created.
  • the thermal insulation elements 10 are fastened to the upper edge of the formwork or to the reinforcement at a corresponding height.
  • the floor slab 22 is then poured from fresh concrete and compacted in a conventional manner.
  • the downward-pointing reinforcing rods 15 of the thermal insulation elements 10 are concreted in as well.
  • a reinforcement for the building wall 21 is created above the thermal insulation elements 10 and a formwork for the building wall is erected around this and including the thermal insulation elements 10 protruding from the concrete floor slab 22 . This is then concreted in the conventional way.

Description

Die vorliegende Erfindung betrifft ein Wärmedämmelement zur Wärmeentkopplung zwischen aus Beton zu erstellenden, tragenden Gebäudeteilen, nämlich einer vertikalen Gebäudewand und einer darüber- oder darunterliegenden Geschossdecke, wobei das Wärmedämmelement einen linienförmig zwischen den Gebäudeteilen zu verlegenden Grundkörper aufweist, der zumindest teilweise aus einem druckkraftübertragenden und wärmedämmenden Werkstoff, nämlich Leichtbeton, besteht und eine obere und eine untere Anlagefläche zum vertikalen Anschluss an die Gebäudeteile aufweist.The present invention relates to a thermal insulation element for thermal decoupling between load-bearing building parts to be made of concrete, namely a vertical building wall and a floor above or below, the thermal insulation element having a linear base body to be laid between the building parts, which at least partially consists of a compressive force-transmitting and thermally insulating Material, namely lightweight concrete, and has an upper and a lower contact surface for vertical connection to the building parts.

Im Hochbau werden tragende Gebäudeteile häufig aus mit einer Bewehrung versehenen Betonkonstruktionen erstellt. Aus energetischen Gründen werden solche Gebäudeteile in der Regel mit einer von außen angebrachten Wärmedämmung versehen. Insbesondere die Geschossdecke zwischen Tiefgeschoss, wie beispielsweise Keller oder Tiefgarage, und Erdgeschoss wird häufig auf der Tiefgeschossseite mit einer deckenseitig angebrachten Wärmedämmung ausgerüstet. Hierbei ergibt sich die Schwierigkeit, dass die tragenden Gebäudeteile, auf denen das Gebäude ruht, wie etwa Stützen und Außenwände, in lastabtragender Weise mit den darüber befindlichen Gebäudeteilen, insbesondere der Geschossdecke, verbunden sein müssen. Dies wird in der Regel dadurch erreicht, dass die Geschossdecke bei durchgehender Bewehrung monolithisch mit den tragenden Stützen und Außenwänden verbunden wird. Hierbei entstehen jedoch Wärmebrücken, die sich nur schlecht durch eine nachträglich von außen angebrachte Wärmedämmung beseitigen lassen.In building construction, load-bearing building parts are often made of concrete structures provided with reinforcement. For energy reasons, such parts of the building are usually provided with thermal insulation applied from the outside. In particular, the ceiling between the basement, such as the basement or underground car park, and the ground floor is often equipped with thermal insulation on the basement side. The difficulty here is that the load-bearing parts of the building on which the building rests, such as columns and outer walls, must be connected in a load-bearing manner to the parts of the building above them, in particular the ceiling. This is usually achieved by monolithically connecting the floor slab to the load-bearing columns and external walls with continuous reinforcement. However, this creates thermal bridges that are difficult to eliminate by thermal insulation that is subsequently applied from the outside.

Aus der Schrift EP 3 296 478 A1 ist ein Formbaustein bekannt, auf dessen Oberfläche Profilelementen ausgestaltet oder angeordnet sind. Die Profilelemente stellen eine Verbindung zwischen einer auf den Formbaustein aufgesetzten Wand, Boden- oder Deckenplatte dar. Dadurch wird eine mit dem Formbaustein in Kontakt gebrachte Boden- oder Deckenplatte relativ zum Formbaustein fixiert.From Scripture EP 3 296 478 A1 a shaped building block is known, on the surface of which profile elements are designed or arranged. The profile elements represent a connection between a wall, floor or ceiling panel placed on the shaped building block. As a result, a floor or ceiling panel brought into contact with the shaped building block is fixed relative to the shaped building block.

In der Schrift EP 3 112 542 A1 ist ein Wärmedämmelement mit einem Grundkörper aus Leichtbeton und diesen durchdringenden Bewehrungsstäben aus einem Faserverbundwerkstoff beschrieben. Das dort gezeigte Wärmedämmelement dient zur Wärmeentkopplung zwischen einer Stütze und einer Geschossdecke, ist jedoch für tragende Gebäudewände weniger geeignet.In Scripture EP 3 112 542 A1 describes a thermal insulation element with a base body made of lightweight concrete and reinforcing rods made of a fiber composite material penetrating this. The thermal insulation element shown there is used for thermal decoupling between a column and a floor, but is less suitable for load-bearing building walls.

Aus der Schrift DE 101 06 222 ist ein mauersteinförmiges Wandelement zur Wärmeentkopplung zwischen Wandteilen und Boden- oder Deckenteilen beschrieben. Das Wärmedämmelement besitzt eine druckfeste Tragstruktur mit in den Zwischenräumen angeordneten Isolierelementen. Die Tragstruktur kann beispielsweise aus einem Leichtbeton bestehen. Ein solches Wärmedämmelement dient zur Wärmedämmung gemauerter Außenwände, indem es beispielsweise wie ein herkömmlicher Mauerstein als erste Steinschicht der tragenden Außenwand oberhalb der Kellerdecke eingesetzt wird.From Scripture DE 101 06 222 describes a brick-shaped wall element for heat decoupling between wall parts and floor or ceiling parts. The thermal insulation element has a pressure-resistant supporting structure with insulating elements arranged in the intermediate spaces. The support structure can consist of lightweight concrete, for example. Such a thermal insulation element is used for thermal insulation of brick exterior walls, for example by being used like a conventional brick as the first stone layer of the load-bearing exterior wall above the basement ceiling.

Aus der Schrift EP 2 405 065 ist ein druckkraftübertragendes und isolierendes Anschlusselement bekannt, welches zur vertikalen, lastabtragenden Verbindung von aus Beton zu erstellenden Gebäudeteilen zum Einsatz kommt. Es besteht aus einem Isolationskörper mit einem oder mehreren darin eingebetteten Druckelementen. Durch die Druckelemente verlaufen Querkraftbewehrungselemente, die sich zum Anschluss an die aus Beton zu erstellenden Gebäudeteile im Wesentlichen vertikal über die Oberseite und die Unterseite des Isolationskörpers hinaus erstrecken. Der Isolationskörper kann beispielsweise aus Schaumglas oder expandiertem Polystyrol-Hartschaum und die Druckelemente aus Beton, Faserbeton oder Faserkunststoff hergestellt werden.From Scripture EP 2 405 065 a compression force-transmitting and isolating connection element is known, which is used for the vertical, load-bearing connection of building parts to be made of concrete. It consists of an insulating body with one or more pressure elements embedded in it. Shear force reinforcement elements run through the pressure elements and extend essentially vertically over the top and bottom of the insulating body for connection to the building parts to be made of concrete. The insulation body can be made, for example, from foam glass or expanded polystyrene foam and the pressure elements from concrete, fiber concrete or fiber plastic.

Eine vertikale Wärmeentkopplung wird hier also durch eine Verringerung der Anlagefläche zwischen den Gebäudeteilen erzielt. Durch die Wärmeentkopplung treten zwischen den Gebäudeteilen große Temperatursprünge auf. Bei großflächigen Gebäudeteilen wie etwa einer Gebäudewand und einer Geschossdecke kann es aufgrund der damit einhergehenden unterschiedlichen Wärmeausdehnung zu Spannungen und Relativbewegungen zwischen den Gebäudeteilen kommen, welche aufgrund der reduzierten Auflagepunkte zu statischen Problemen führen können.A vertical heat decoupling is achieved here by reducing the contact area between the building parts. Due to the thermal decoupling, large temperature jumps occur between the building parts. In the case of large building parts such as a building wall and a floor slab, the associated different thermal expansion can lead to stresses and relative movements between the building parts, which can lead to static problems due to the reduced support points.

Eine Aufgabe der Erfindung besteht deshalb darin, ein Wärmedämmelement anzugeben, welches für den Einsatz zur Wärmeentkopplung zwischen einer Gebäudewand und einer darüber- oder darunterliegenden Geschossdecke besser geeignet ist.One object of the invention is therefore to specify a thermal insulation element which is better suited for use in heat decoupling between a building wall and a ceiling above or below it.

Die Aufgabe wird gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Ausgestaltungen sind den abhängigen Ansprüchen zu entnehmen.The object is achieved by the features of claim 1. Advantageous configurations can be found in the dependent claims.

Bei einem Wärmedämmelement der eingangs genannten Art ist erfindungsgemäß vorgesehen, dass das Wärmedämmelement an seiner oberen und unteren Anlagefläche jeweils mehrere, zumindest - in der Draufsicht auf die Anlagefläche gesehen - teilweise senkrecht zur Verlegerichtung verlaufende Vorsprünge aufweist.In a thermal insulation element of the type mentioned, it is provided according to the invention that the thermal insulation element on its upper and lower contact surface has a plurality of projections that run at least partially perpendicularly to the laying direction—seen in plan view of the contact surface.

Die Erfindung basiert auf dem Grundgedanken einer linienförmigen Verlegung der Wärmedämmelemente im Verbund, d.h. die Wärmedämmelemente werden jeweils mit ihrer kurzen Stirnseite Stoß an Stoß verlegt, ohne dass zwischen diesen ein Zwischenraum verbliebe. Die Kraftübertragung zwischen Gebäudewand und Geschossdecke verteilt sich daher statt auf einzelne Auflagepunkte linienförmig über die ganze Länge der Gebäudewand. Der Grundkörper der Wärmedämmelemente ist hierbei vorzugsweise im Wesentlichen quaderförmig ausgebildet, wobei dessen Längsachse die Verlegerichtung vorgibt.The invention is based on the basic idea of a linear laying of the thermal insulation elements in combination, i.e. the thermal insulation elements are laid end to end with their short front side without leaving a gap between them. The force transmission between the building wall and the floor slab is therefore distributed linearly over the entire length of the building wall instead of at individual support points. The base body of the thermal insulation elements is preferably essentially cuboid, with its longitudinal axis defining the laying direction.

Nach Untersuchungen der Erfinder treten aufgrund der temperaturbedingt unterschiedlichen Wärmeausdehnung der angrenzenden Gebäudeteile längs der Gebäudewand gerichtete Kraftkomponenten auf, die durch entgegengesetzt gerichtete Kräfte am Übergang zur Geschossdecke kompensiert werden müssen. Diese Kräfte bewirken ein gewisses Drehmoment auf die Wärmedämmelemente, welches bei der genannten Stoß-an-Stoß Verlegung im Verbund über die angrenzenden Wärmedämmelemente aufgenommen wird. Die erfindungsgemäßen Vorsprünge an den Anschlussflächen der Wärmedämmelemente bewirken hierbei eine Verzahnung zwischen den Wärmedämmelementen und den angrenzenden Gebäudeteilen quer zur Kraftrichtung, durch die eine wirksame Einleitung der seitlich gerichteten Kraftkomponenten in die angrenzenden Gebäudeteile gewährleistet wird.According to investigations by the inventors, due to the temperature-related different thermal expansion of the adjoining parts of the building, directed force components occur along the building wall, which must be compensated for by opposing forces at the transition to the storey ceiling. These forces cause a certain torque on the thermal insulation elements, which is absorbed by the adjoining thermal insulation elements in the aforesaid butt-to-butt installation. The projections according to the invention on the connection surfaces of the thermal insulation elements here bring about an interlocking between the thermal insulation elements and the adjacent parts of the building transverse to the direction of the force, through which an effective introduction of the laterally directed force components is ensured in the adjacent parts of the building.

Das Wärmedämmelement besteht erfindungsgemäß zumindest teilweise aus Leichtbeton als einem druckkraftübertragenden und wärmedämmenden Werkstoff. Unter Leichtbeton ist nach dem geltenden Regelwerk ein Beton mit einer trockenen Rohdichte von maximal 2000 kg/m3 - typischerweise etwa 1600 kg/m3 - definiert. Die geringe Dichte im Vergleich zu Normalbeton wird durch entsprechende Herstellverfahren und unterschiedliche Leichtbetonkörnungen, vorzugsweise Körnungen mit Kornporosität wie etwa Blähton erreicht. Leichtbeton in der hier zum Einsatz kommenden Zusammensetzung besitzt im trockenen Zustand eine Wärmeleitfähigkeit zwischen etwa 0,4 und 0,6 W/(m · K). Die Wärmeleitfähigkeit λ10,tr wird üblicherweise bei 10° Mitteltemperatur und nach Trocknung bis zur Gewichtskonstanz gemessen.According to the invention, the thermal insulation element consists at least partially of lightweight concrete as a compressive force-transmitting and thermally insulating material. According to the applicable regulations, lightweight concrete is concrete with a dry bulk density of a maximum of 2000 kg/m 3 - typically around 1600 kg/m 3 - is defined. The low density compared to normal concrete is achieved through appropriate manufacturing processes and different lightweight concrete grain sizes, preferably grain sizes with grain porosity such as expanded clay. In the dry state, lightweight concrete in the composition used here has a thermal conductivity of between about 0.4 and 0.6 W/(m · K). The thermal conductivity λ 10,tr is usually measured at a mean temperature of 10° and after drying to constant weight.

Aus Leichtbeton lassen sich hochdruckfeste Formelemente mit niedriger spezifischer Wärmeleitfähigkeit herstellen. Je nach statischer Anforderung kann ein solches Leichtbetonteil zusätzlich Hohlkammern oder eingeschlossene, nichtlasttragende Isolierkörper umfassen. Die Höhe des Wärmedämmelements entspricht vorzugsweise in etwa der Stärke einer typischen Wärmedämmschicht, also etwa 5 bis 20 cm, bevorzugt 10 bis 15 cm.High-pressure-resistant molded elements with low specific thermal conductivity can be produced from lightweight concrete. Depending on the structural requirements, such a lightweight concrete part can also include hollow chambers or enclosed, non-load-bearing insulating bodies. The height of the thermal insulation element preferably corresponds approximately to the thickness of a typical thermal insulation layer, ie approximately 5 to 20 cm, preferably 10 to 15 cm.

Durch den Einsatz eines massiven oder in Hohlblockbauweise gefertigten Wärmedämmelements aus Leichtbeton steht bei gleichem oder geringerem Wärmeverlust eine wesentlich größere Anlagefläche zur Verfügung, als dies bei der Verwendung von hochdruckfesten Druckelementen der Fall wäre. Zusätzliche druckkraftübertragende Elemente wie Drucklager bzw. Druckkörper aus Hochleistungsbeton oder dergleichen werden nicht benötigt und sind im Rahmen der Erfindung auch nicht erwünscht bzw. vorgesehen, da aufgrund der höheren Verformbarkeit bzw. niedrigeren Schubsteifigkeit von Leichtbeton die auflastenden Kräfte anderenfalls nicht über den Leichtbeton-Grundkörper abgetragen werden könnten.The use of a solid or hollow-block thermal insulation element made of lightweight concrete means that a significantly larger contact surface is available with the same or less heat loss than would be the case with the use of high-pressure resistant pressure elements. Additional compressive force-transmitting elements such as pressure bearings or pressure bodies made of high-performance concrete or the like are not required and are also not desired or provided within the scope of the invention, since the higher deformability or lower shear stiffness of lightweight concrete means that the loading forces would otherwise not be dissipated via the lightweight concrete base body could become.

Der typische E-Modul von Normalbeton, wie er für eine Gebäudewand verwendet wird, beträgt etwa Ecm≈30.000 bis 40.000 N/mm2. Der E-Modul des im Rahmen der Erfindung eigesetzten Leichtbetons beträgt dem gegenüber zwischen etwa 6.000 und 22.000 N/mm2, vorzugsweise zwischen 8.000 und 16.000 N/mm2, höchstvorzugsweise etwa 14.000 N/mm2. Aufgrund ihrer gegenüber den angrenzenden Gebäudeteilen niedrigeren Schubsteifigkeit können die Wärmedämmelemente die aufgrund des abrupten Temperatursprungs an der Wärmedämmzone auftretenden größeren Unterschiede im Wärmeausdehnungsverhalten besser kompensieren. Der von den Wärmedämmelementen gebildete Übergangsbereich zwischen Gebäudewand und Geschossdecke wirkt also nicht nur in bauphysikalischer Hinsicht als Wärmedämmzone und in statischer Hinsicht als lastabtragendes Bauteil, sondern darüber hinaus auch noch als Spannungs-Dämpfungselement zum Ausgleich unterschiedlicher thermischer Ausdehnung.The typical modulus of elasticity of normal concrete, as used for a building wall, is about E cm ≈30,000 to 40,000 N/mm 2 . In contrast, the modulus of elasticity of the lightweight concrete used within the scope of the invention is between approximately 6,000 and 22,000 N/mm 2 , preferably between 8,000 and 16,000 N/mm 2 , most preferably approximately 14,000 N/mm 2 . Due to their lower shear stiffness compared to the adjacent parts of the building, the thermal insulation elements can better compensate for the larger differences in thermal expansion behavior that occur due to the abrupt jump in temperature in the thermal insulation zone. The transition area formed by the thermal insulation elements between the wall of the building and the ceiling not only acts as a thermal insulation zone in terms of building physics and as a load-bearing component from a structural point of view, but also as a stress-damping element to compensate for different thermal expansion.

Erfindungsgemäß sind bei dem Wärmedämmelement mehreren den Grundkörper durchdringende und sich im Wesentlichen vertikal über die obere und die untere Anlagefläche hinaus erstreckende, stabförmige Bewehrungsmittel, insbesondere Bewehrungsstäbe vorgesehen. Diese ermöglichen eine monolithische Anbindung der Gebäudeteile vor allem in Querkraftrichtung. Die Bewehrungsmittel sind fest in dem Grundkörper des Wärmedämmelements verankert. Hierbei ist erfindungsgemäß vorgesehen, dass die stabförmigen Bewehrungsmittel die Vorsprünge durchdringen. Es hat sich nämlich herausgestellt, dass die Querkraftübertragung zwischen den Gebäudeteilen über die im Wärmedämmelement integrierten Bewehrungsmittel verbessert ist, wenn diese durch die Vorsprünge verlaufen, anstatt durch den Bereich zwischen den Vorsprüngen.According to the invention, several rod-shaped reinforcement means, in particular reinforcement rods, are provided in the thermal insulation element, penetrating the base body and extending essentially vertically beyond the upper and lower contact surfaces. These enable a monolithic connection of the building parts, especially in the direction of shear forces. The reinforcement is firmly anchored in the base body of the thermal insulation element. Here, according to the invention, it is provided that the rod-shaped reinforcement means penetrate the projections. It has been found that the shear force transmission between the building parts is improved via the reinforcement means integrated in the thermal insulation element if they run through the projections instead of through the area between the projections.

Außerdem kann im Rahmen der Erfindung vorgesehen sein, dass die stabförmigen Bewehrungsmittel aus einem Faserverbundwerkstoff bestehen. Während bei herkömmlichen vertikal angeordneten Stahlbetonbauteilen mit einem Bewehrungsgehalt von 1-2 % die Stahlbewehrung etwa die Hälfte zur Gesamtwärmeleitfähigkeit des Gebäudeteils beiträgt, wird durch die Kombination aus Leichtbeton mit einer Bewehrung aus einem Faserverbundwerkstoff im Bereich des Wärmedämmelements der Wärmeübertrag um ca. 90% gesenkt.In addition, it can be provided within the scope of the invention that the rod-shaped reinforcement means consist of a fiber composite material. While in conventional vertically arranged reinforced concrete components with a reinforcement content of 1-2%, the steel reinforcement contributes about half to the overall thermal conductivity of the building part, the combination of lightweight concrete with reinforcement made of a fiber composite material in the area of the thermal insulation element reduces the heat transfer by about 90%.

Bei einer bevorzugten Ausführung sind die Vorsprünge als quer zur Verlegerichtung angeordnete Querrippen ausgebildet. Diese ermöglichen eine besonders wirksame Verzahnung mit den angrenzenden betonierten Gebäudeteilen. Die Höhe der Vorsprünge bzw. Rippen beträgt um die beste Wirkung zu erzielen zwischen 10 mm und 30 mm, insbesondere zwischen 15 mm und 20 mm.In a preferred embodiment, the projections are designed as transverse ribs arranged transversely to the laying direction. These enable a particularly effective interlocking with the adjacent concrete parts of the building. In order to achieve the best effect, the height of the projections or ribs is between 10 mm and 30 mm, in particular between 15 mm and 20 mm.

Zusätzlich zu den Querrippen kann außerdem zumindest eine in Verlegerichtung angeordnete Längsrippe vorgesehen sein. Diese ermöglicht eine zusätzliche Verzahnung parallel zur Wand und ist somit geeignet, senkrecht auf die Wand einwirkende Lasten wie z.B. Wind in die Gebäudedecke zu übertragen.In addition to the transverse ribs, at least one longitudinal rib arranged in the laying direction can also be provided. This enables additional interlocking parallel to the wall and is therefore suitable for transferring loads acting perpendicularly on the wall, such as wind, into the building ceiling.

Die vorliegende Erfindung betrifft außerdem ein Verfahren zum Erstellen tragender Gebäudeteile, nämlich einer vertikalen Gebäudewand und einer darüber- oder darunterliegenden Geschossdecke. Zwischen den Gebäudeteilen wird hierbei linienförmig eine Mehrzahl von Wärmedämmelementen verlegt, die jeweils einen Grundkörper aufweisen, der zumindest teilweise aus Leichtbeton als einem druckkraftübertragenden und wärmedämmenden Werkstoff besteht und eine obere und eine untere Anlagefläche zum vertikalen Anschluss an die Gebäudeteile aufweist. Die Wärmedämmelemente besitzen an ihren oberen und unteren Anlageflächen jeweils mehrere, zumindest teilweise senkrecht zur Verlegerichtung verlaufende Vorsprünge. Die Verlegung der Wärmedämmelemente erfolgt im Verbund, d.h. die Wärmedämmelemente werden jeweils mit ihrer kurzen Stirnseite Stoß an Stoß ohne Zwischenraum verlegt. Die Kraftübertragung zwischen Gebäudewand und Geschossdecke verteilt sich daher statt auf einzelne Auflagepunkte linienförmig über die ganze Länge der Gebäudewand.The present invention also relates to a method for creating load-bearing parts of a building, namely a vertical building wall and a floor above or below. A plurality of thermal insulation elements are laid in a line between the parts of the building, each of which has a base body that consists at least partially of lightweight concrete as a compressive force-transmitting and heat-insulating material and has an upper and a lower contact surface for vertical connection to the parts of the building. On their upper and lower contact surfaces, the thermal insulation elements each have a plurality of projections that run at least partially perpendicularly to the laying direction. The thermal insulation elements are laid in combination, i.e. the short front side of the thermal insulation elements is laid end to end without a gap. The force transmission between the building wall and the floor slab is therefore distributed linearly over the entire length of the building wall instead of at individual support points.

Im Rahmen des Bauverfahrens wird zunächst eine Armierung für das untere, aus Beton zu erstellende Gebäudeteil sowie eine um die Armierung angeordnete Schalung erstellt. In diese Schalung werden die Wärmedämmelemente eingesetzt, so dass diese in einer Linie einen Anschluss für das darüber zu erstellende Gebäudeteil bilden. Anschließend wird bis zur Höhe der unteren Anlagefläche der in die Schalung eingesetzten Wärmedämmelemente Frischbeton in die Schalung eingefüllt und gegebenenfalls der Frischbeton mittels eines Rüttelwerkzeuges verdichtet.As part of the construction process, reinforcement for the lower part of the building, which is to be made of concrete, and formwork arranged around the reinforcement are first created. The thermal insulation elements are inserted into this formwork so that they form a connection in one line for the part of the building to be constructed above. Fresh concrete is then poured into the formwork up to the height of the lower contact surface of the thermal insulation elements used in the formwork and, if necessary, the fresh concrete is compacted using a vibrating tool.

Weitere Merkmale, Vorteile und Eigenschaften der vorliegenden Erfindung werden im Folgenden anhand der Figuren und anhand von Ausführungsbeispielen erläutert. Dabei zeigt:

Fig. 1
eine isometrische Ansicht eines erfindungsgemäßen Wärmedämmelements
Fig. 2
eine Seitenansicht des Wärmedämmelements aus Fig. 1,
Fig. 3
eine Draufsicht auf das Wärmedämmelement aus Fig. 1,
Fig. 4
ein erstes Ausführungsbeispiel für einen wärmedämmenden Anschluss zwischen einer aus Beton erstellten, tragenden Gebäudewand und einer darüberliegenden, betonierten Geschossdecke, und
Fig. 5
ein zweites Ausführungsbeispiel für einen wärmedämmenden Anschluss zwischen einer aus Beton erstellten Gebäudewand und einer darunterliegenden, betonierten Geschossdecke.
Further features, advantages and properties of the present invention are explained below using the figures and using exemplary embodiments. It shows:
1
an isometric view of a thermal insulation element according to the invention
2
a side view of the thermal insulation element 1 ,
3
a plan view of the thermal insulation element 1 ,
4
a first exemplary embodiment for a heat-insulating connection between a concrete, load-bearing building wall and an overlying, concrete floor slab, and
figure 5
a second embodiment of a heat-insulating connection between a building wall made of concrete and an underlying concrete floor slab.

In den Figuren 1 bis 3 ist ein Wärmedämmelement 10 mit einem als Leichtbeton-Formteil ausgeführten Grundkörper 11 gezeigt. Es dient zum monolithischen Anschluss und zur lastabtragenden Verbindung einer Gebäudewand 21, beispielsweise im Untergeschoss eines Gebäudes, an die darüber liegende Kellerdecke 22. Möglich ist auch, das Wärmedämmelement 10 zur Wärmedämmung zwischen einer "kalten" Geschossdecke und einer darüber befindlichen Gebäudewand einzusetzen.In the Figures 1 to 3 a thermal insulation element 10 with a base body 11 designed as a lightweight concrete molded part is shown. It is used for the monolithic connection and load-bearing connection of a building wall 21, for example in the basement of a building, to the basement ceiling 22 above it. It is also possible to use the thermal insulation element 10 for thermal insulation between a "cold" floor ceiling and a building wall located above it.

Das Wärmedämmelement 10 umfasst einen im Wesentlichen quaderförmigen Grundkörper 11 mit einer Oberseite 12 und einer Unterseite 13, die jeweils als Anlageflächen für die Kellerdecke bzw. den Abschluss der diese tragenden Gebäudewand 21 dienen. Durch den Grundkörper 11 ragen - ohne dass die Erfindung hierauf beschränkt wäre - in zwei Reihen angeordnet insgesamt sechs Bewehrungsstäbe 15.The thermal insulation element 10 comprises an essentially cuboid base body 11 with an upper side 12 and an underside 13, which each serve as contact surfaces for the basement ceiling or the end of the building wall 21 that supports it. A total of six reinforcing rods 15 arranged in two rows protrude through the base body 11 - without the invention being restricted thereto.

Der Grundkörper 11 des Wärmedämmelements 10 besteht aus einem Leichtbeton, welcher einerseits eine hohe Druckstabilität, andererseits eine gute Wärmedämmeigenschaft aufweist. Gegenüber Beton mit einer Wärmeleitfähigkeit von etwa 1,6 W/(m · K) liegt die Wärmeleitfähigkeit bei Verwendung eines geeigneten Leichtbetonwerkstoffs im Bereich von etwa 0,5 W/(m · K), was einer Verbesserung um etwa 70 % entspricht. Der verwendete Leichtbeton besteht im Wesentlichen aus Blähton, Feinsanden, vorzugsweise Leichtsand, Fließmitteln sowie Stabilisatoren, die ein Entmischen durch Aufschwimmen der Körnung verhindern und die Verarbeitbarkeit verbessern. Die Druckfestigkeit des Wärmedämmelements ist dabei ausreichend hoch gewählt, um die statisch geplante Ausnutzung der darunterliegenden Gebäudewand 21 aus Ortbeton zu ermöglichen, beispielsweise entsprechend der Druckfestigkeitsklasse C25/30.The base body 11 of the thermal insulation element 10 consists of a lightweight concrete, which on the one hand has high pressure stability and on the other hand has good thermal insulation properties. Compared to concrete with a thermal conductivity of around 1.6 W/(m · K), the thermal conductivity when using a suitable lightweight concrete material is in the range of around 0.5 W/(m · K), which corresponds to an improvement of around 70%. The lightweight concrete used essentially consists of expanded clay, fine sand, preferably light sand, superplasticizers and stabilizers, which prevent the grain from separating from floating and improve workability. The compressive strength of the thermal insulation element is selected to be sufficiently high to allow the structurally planned utilization of the underlying building wall 21 made of in-situ concrete, for example corresponding to compressive strength class C25/30.

Die Bewehrungsstäbe 15, die den Grundkörper 11 des Wärmedämmelements 10 in vertikaler Richtung durchqueren, dienen als Querkraftbewehrung zur Übertragung längs der Gebäudewand 21 sowie senkrecht zu dieser auftretender Querkräfte. Die Bewehrungsstäbe 15 werden bei der Herstellung des Wärmedämmelements 10 in den Leichtbetonwerkstoff des Grundkörpers 11 einbetoniert.The reinforcing bars 15, which traverse the base body 11 of the thermal insulation element 10 in the vertical direction, serve as shear force reinforcement for transmission along the building wall 21 and perpendicular to this occurring shear forces. The reinforcing rods 15 are concreted into the lightweight concrete material of the base body 11 during the manufacture of the thermal insulation element 10 .

Die Bewehrungsstäbe 15 selbst sind im Ausführungsbeispiel aus einem Faserverbundwerkstoff, der aus in Kraftrichtung ausgerichteten Glasfasern und einer Kunstharz-Matrix besteht. Ein solcher Glasfaserbewehrungsstab weist eine extrem niedrige Wärmeleitfähigkeit auf, die bis zu 70-mal geringer ist als bei Betonstahl, und ist somit ideal für die Anwendung in dem Wärmedämmelement 10 geeignet. Alternativ ist jedoch auch der Einsatz von Bewehrungsstäben aus nichtrostendem Stahl möglich und im Rahmen der vorliegenden Erfindung mit umfasst.In the exemplary embodiment, the reinforcing rods 15 themselves are made of a fiber composite material, which consists of glass fibers aligned in the direction of the force and a synthetic resin matrix. Such fiberglass rebar has an extremely low thermal conductivity, up to 70 times lower than rebar, and is thus ideally suited for use in the thermal insulation element 10. Alternatively, however, the use of reinforcing bars made of stainless steel is also possible and included within the scope of the present invention.

Sowohl an der oberen Anlageflächen 12 als auch an der unteren Anlageflächen 13 besitzt das Wärmedämmelement 10 je drei Querrippen12a, 13a, die in Richtung senkrecht zur dessen Längserstreckung verlaufen. Die Querrippen 12a, 13a sorgen für eine Verzahnung mit den anschließenden Gebäudeteilen, also der Gebäudewand 21 und der Geschossdecke 22 und tragen Querkräfte aufgrund unterschiedlicher Wärmeausdehnung an das angrenzende Gebäudeteil ab.Both on the upper contact surface 12 and on the lower contact surface 13, the thermal insulation element 10 has three transverse ribs 12a, 13a, which run in the direction perpendicular to its longitudinal extension. The transverse ribs 12a, 13a ensure interlocking with the adjoining parts of the building, ie the building wall 21 and the floor slab 22, and carry transverse forces due to different thermal expansions to the adjoining part of the building.

Die Anordnung der Bewehrungsstäbe 15 bezogen auf die Grundfläche des Grundkörpers 11 erfolgt in zwei parallelen Reihen zu je drei Stäben. Hierbei hat es sich als besonders vorteilhaft herausgestellt, wenn die Bewehrungsstäbe 15, wie im Ausführungsbeispiel gezeigt, so angeordnet werden, dass sie durch die Rippen 12a, 13a hindurch verlaufen, anstatt durch die Einschnitte zwischen den Rippen 12a, 13a. Aus diesem Grunde ist es ebenfalls vorteilhaft, dass die Rippen 12a, 13a an Oberseite 12 und Unterseite 13, bzw. im allgemeinen Fall beliebig geformte Vorsprünge mit quer zur Längsrichtung verlaufenden Bereichen, einander entsprechen und spiegelbildlich bzw. in vertikaler Flucht zu einander angeordnet sind. Selbstverständlich können auch Grundkörper mit vier oder mehr Rippen und einer entsprechend größeren Anzahl an Bewährungsstäben zum Einsatz kommen.The arrangement of the reinforcing bars 15 based on the base of the base body 11 is in two parallel rows of three bars. It has proven particularly advantageous here if the reinforcing rods 15, as shown in the exemplary embodiment, are arranged in such a way that they run through the ribs 12a, 13a instead of through the incisions between the ribs 12a, 13a. For this reason, it is also advantageous that the ribs 12a, 13a on the top 12 and bottom 13, or in general arbitrarily shaped projections with areas running transversely to the longitudinal direction, correspond to one another and are arranged as mirror images or in vertical alignment with one another. Of course, base bodies with four or more ribs and a correspondingly larger number of reinforcement bars can also be used.

Der Grundkörper 11 des Wärmedämmelements 10 hat im Ausführungsbeispiel, ohne dass die Erfindung hierauf beschränkt wäre, eine Länge von etwa 300 mm. Die Höhe ohne Rippen beträgt 100 mm und entspricht somit der üblichen Stärke einer nachträglich angebrachten Wärmedämmschicht. Die Höhe der einzelnen Rippen 12a, 13a beträgt jeweils 15 mm. Die Breite des Grundkörpers entspricht der geplanten Wandstärke der Gebäudewand, also z.B. 180 mm.In the exemplary embodiment, the base body 11 of the thermal insulation element 10 has a length of approximately 300 mm, without the invention being restricted thereto. The height without ribs is 100 mm and thus corresponds to the usual thickness of a subsequently applied thermal insulation layer. The height of the individual ribs 12a, 13a is 15 mm in each case. The width of the base body corresponds to the planned wall thickness of the building wall, e.g. 180 mm.

In Figur 4 ist eine Anschlusssituation zwischen einer Gebäudewand 21, z.B. im Untergeschoss eines Gebäudes, und der darüberliegenden Geschossdecke 22, z.B. der Kellerdecke, gezeigt. Den obersten Abschluss der Gebäudewand 21 bildet eine linienförmig im Verbund, also ohne Zwischenraum, gesetzte Lage von Wärmedämmelementen 10. Deren Bewehrungsstäbe 15 sind in der aus Ortbeton erstellten Gebäudewand 21 einbetoniert. Die Gebäudewand 21 wurde dabei von unten bis an die Wärmedämmelemente 10 heran betoniert. Über der Lage von Wärmedämmelementen 15 befindet sich die ebenfalls aus Ortbeton erstellte Geschossdecke 22. Die über das Wärmedämmelement 10 hinausragenden Bewehrungsstäbe sind in die Geschossdecke 22 einbetoniert. Durch die Rippen 12a, 13a entsteht eine in Richtung des Wandverlaufs wirksame Verzahnung zwischen der Gebäudewand 21, der Lage aus Wärmedämmelementen 10 und der Geschossdecke 22 in der Art einer verzahnten Fuge.In figure 4 a connection situation between a building wall 21, for example in the basement of a building, and the upper floor 22, for example the basement ceiling, is shown. The uppermost end of the building wall 21 is formed by a layer of thermal insulation elements 10 placed linearly in combination, ie without a gap. Their reinforcing rods 15 are concreted into the building wall 21 made of in-situ concrete. The building wall 21 was concreted from below up to the thermal insulation elements 10 here. The floor slab 22 , also made of in-situ concrete, is located above the layer of thermal insulation elements 15 . The ribs 12a, 13a create a toothing between the building wall 21, the layer of thermal insulation elements 10 and the ceiling 22 in the manner of a toothed joint, which is effective in the direction of the course of the wall.

Zur Herstellung wird zunächst in an sich üblicher Weise eine Armierung für die Gebäudewand 21 erstellt und mit einer Schalung versehen. In die Schalung werden als oberster Abschluss die Wärmedämmelemente eingesetzt und mit Hilfsmitteln an der Schalung befestigt. Anschließend wird die Schalung bis an die Unterkante der Wärmedämmelemente heran mit Frischbeton verfüllt und dieser verdichtet. Zum Einfüllen und Verdichten können einzelne Wärmedämmelemente 15 entnommen werden und nach dem Verdichten wieder eingefügt werden. Gleichsam wäre es möglich, in den Wärmedämmelementen Verfüllöffnungen vorzusehen, welche nach dem Verfüllen verschlossen werden können. Eine andere Möglichkeit bestünde darin, die Schalung zunächst mit Frischbeton zu befüllen und diesen zu verdichten und die Lage der Wärmedämmelemente anschließend obenauf in den noch flüssigen Ortbeton einzusetzen.For the production, a reinforcement for the building wall 21 is first created in a conventional manner and provided with formwork. The thermal insulation elements are inserted into the formwork as the topmost finish and attached to the formwork with tools. The formwork is then filled with fresh concrete up to the lower edge of the thermal insulation elements and this is then compacted. For filling and compacting, individual thermal insulation elements 15 can be removed and reinserted after compacting. It would also be possible to provide filling openings in the thermal insulation elements, which can be closed after filling. Another possibility would be to first fill the formwork with fresh concrete and to compact it and then to use the layer of thermal insulation elements on top of the still liquid in-situ concrete.

Sobald dieser abgebunden hat, kann in ebenfalls an sich bekannter Weise mit der Erstellung der Geschossdecke 22 weiterverfahren werden, wobei deren Armierung mit den über die obere Anlagefläche 13 der Wärmedämmelemente 10 hinausragenden Bewehrungsstäben 15 aus Faserverbundwerkstoff im Ortbeton der Geschossdecke vergossen wird. Zum Erstellen der Geschossdecke 22 wird oberhalb der bzw. angrenzend an die Wärmedämmelemente 10 eine Schalung installiert und eine Bewehrung für die Geschossdecke verlegt. Anschließend wird die Geschossdecke in an sich üblicher Weise betoniert. Unterhalb der Geschossdecke 22 kann abschließend eine Wärmedämmschicht aus einem hochdämmenden Werkstoff aufgebracht, deren Stärke im Wesentlichen zumindest der Höhe der Wärmedämmelemente 10 entspricht. Als Wärmedämmschicht können beispielsweise Mineraldämmplatten oder Holzwolle-Mehrschichtplatten verbaut werden.As soon as this has set, the floor slab 22 can be created in a manner that is also known per se, with its reinforcement is cast with the over the upper contact surface 13 of the thermal insulation elements 10 protruding reinforcement rods 15 made of fiber composite material in the in-situ concrete of the floor slab. To create the floor slab 22, formwork is installed above or adjacent to the thermal insulation elements 10 and reinforcement is laid for the floor slab. The ceiling is then concreted in a conventional manner. Finally, a thermal insulation layer made of a highly insulating material can be applied below the floor slab 22 , the thickness of which essentially corresponds at least to the height of the thermal insulation elements 10 . For example, mineral insulation panels or wood wool multi-layer panels can be installed as a thermal insulation layer.

Bei einem alternativen, in Figur 5 gezeigten Ausführungsbeispiel werden die Wärmedämmelemente als unterste Lage zwischen einer Gebäudewand und einer darunterliegenden Geschossdecke oder Bodenplatte - welche im verallgemeinerten Sinne im Rahmen der vorliegenden Erfindung ebenfalls als Geschossdecke bezeichnet wird - angeordnet. Diese Ausführungsform kommt zum Einsatz bei einer "kalten" Geschossdecke, bei der eine Wärmedämmschicht oberhalb der Geschossdecke verbaut wird.In an alternative, in figure 5 In the exemplary embodiment shown, the thermal insulation elements are arranged as the lowest layer between a building wall and an underlying floor or floor slab - which is also referred to as floor in the generalized sense within the scope of the present invention. This embodiment is used with a "cold" ceiling, in which a thermal insulation layer is installed above the ceiling.

Zur Herstellung wird zunächst eine Schalung nebst Armierung für die untere Geschossdecke 22 erstellt. Am oberen Rand der Schalung oder in entsprechender Höhe an der Armierung werden die Wärmedämmelemente 10 befestigt. Anschließend wird in an sich üblicher Weise die Geschossdecke 22 aus Frischbeton gegossen und verdichtet. Dabei werden die nach unten weisenden Bewehrungsstäbe 15 der Wärmedämmelemente 10 mit einbetoniert. Nach dem Abbinden bzw. Aushärten des Betons wird oberhalb der Wärmedämmelemente 10 eine Armierung für die Gebäudewand 21 erstellt und um diese und unter Einschluss der aus der betonierten Geschossdecke 22 ragenden Wärmedämmelemente 10 eine Schalung für die Gebäudewand aufgestellt. Anschließend wird diese in herkömmlicher Weise betoniert.For the production, a formwork together with reinforcement for the lower floor slab 22 is first created. The thermal insulation elements 10 are fastened to the upper edge of the formwork or to the reinforcement at a corresponding height. The floor slab 22 is then poured from fresh concrete and compacted in a conventional manner. The downward-pointing reinforcing rods 15 of the thermal insulation elements 10 are concreted in as well. After the concrete has set or hardened, a reinforcement for the building wall 21 is created above the thermal insulation elements 10 and a formwork for the building wall is erected around this and including the thermal insulation elements 10 protruding from the concrete floor slab 22 . This is then concreted in the conventional way.

Claims (9)

  1. Thermal insulation element for heat decoupling between load-bearing building parts to be constructed from concrete, namely a vertical building wall (21) and a floor (22) above or below it, the thermal insulation element (10) having a base body (11) which is to be laid in a linear manner between the building parts, consists at least partially of a compressive force-transmitting and heat-insulating material, namely lightweight concrete, and has an upper and a lower contact surface (12, 13) for vertical connection to the building parts (21, 22),
    wherein
    the thermal insulation element has, on its upper and lower contact surface (13), in each case a plurality of projections (12a, 13a) extending at least partially perpendicularly to the laying direction, characterised in that the thermal insulation element has a plurality of rod-shaped reinforcing means, in particular reinforcing rods (15), which penetrate the base body (11) and the projections (12a, 13a) and extend substantially vertically beyond the upper and lower contact surface (12, 13).
  2. Thermal insulation element according to claim 1, in which the rod-shaped reinforcement means (15) consist of a fibre composite material.
  3. Thermal insulation element according to any one of the preceding claims, in which the rod-shaped reinforcement means (15) have a force fit with the base body (11).
  4. Thermal insulation element according to any one of the preceding claims, wherein the base body (11) is substantially cuboidal and the longitudinal axis of the base body (11) determines the laying direction to which the projections (12a, 13a) are aligned in a transverse axis of the base body (11).
  5. Thermal insulation element according to any one of the preceding claims, in which the projections (12a, 13a) are formed as transverse ribs arranged transversely to the laying direction.
  6. Thermal insulation element according to claim 5, in which, in addition to the transverse ribs (12a, 13a), there is provided at least one longitudinal rib arranged in the laying direction.
  7. Method for constructing load-bearing building parts, namely a vertical building wall (21) and a floor (22) lying above or below it, wherein a plurality of thermal insulation elements (10) are laid in a linear manner between the building parts, which elements each have a base body (11) which consists at least partially of a compressive force-transmitting and heat-insulating material, namely lightweight concrete, and has an upper and a lower contact surface (12, 13) for vertical connection to the building parts (21, 22), and wherein the thermal insulation elements each have on their upper and lower contact surface (13) a plurality of projections (12a, 13a) extending at least partially perpendicularly to the laying direction, and the thermal insulation element has a plurality of rod-shaped reinforcing means, in particular reinforcing rods (15), which penetrate the base body (11) and the projections (12a, 13a) and extend substantially vertically beyond the upper and the lower contact surface (12, 13).
  8. Method according to claim 7, in which the base bodies (11) of the thermal insulation elements (10) are substantially cuboidal and the longitudinal axis of the base bodies (11) determines the laying direction, and in which the thermal insulation elements (10) are each laid with their short end faces abutting against each other without a gap.
  9. Method according to claim 7 or 8, in which a reinforcement for the lower building part (21, 22) to be constructed from concrete as well as a formwork arranged around the reinforcement is created, in which the thermal insulation elements (10) are inserted into the formwork, so that in a line these form a connection for the building part (22, 21) to be constructed above it, and in which fresh concrete is filled into the formwork up to the height of the lower contact surface (13) of the thermal insulation elements (10) inserted into the formwork and, if necessary, the fresh concrete is compacted by means of a vibrating tool.
EP19210081.6A 2018-12-04 2019-11-19 Device for decoupling heat between a concrete wall of a building and a floor and production method Active EP3663474B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23177243.5A EP4234828A3 (en) 2018-12-04 2019-11-19 Device for decoupling heat between a concrete wall of a building and a floor and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018130843.4A DE102018130843A1 (en) 2018-12-04 2018-12-04 Device for heat decoupling between a concrete building wall and a floor ceiling and manufacturing process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP23177243.5A Division EP4234828A3 (en) 2018-12-04 2019-11-19 Device for decoupling heat between a concrete wall of a building and a floor and production method

Publications (3)

Publication Number Publication Date
EP3663474A1 EP3663474A1 (en) 2020-06-10
EP3663474B1 true EP3663474B1 (en) 2023-06-07
EP3663474C0 EP3663474C0 (en) 2023-06-07

Family

ID=68618053

Family Applications (2)

Application Number Title Priority Date Filing Date
EP23177243.5A Pending EP4234828A3 (en) 2018-12-04 2019-11-19 Device for decoupling heat between a concrete wall of a building and a floor and production method
EP19210081.6A Active EP3663474B1 (en) 2018-12-04 2019-11-19 Device for decoupling heat between a concrete wall of a building and a floor and production method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP23177243.5A Pending EP4234828A3 (en) 2018-12-04 2019-11-19 Device for decoupling heat between a concrete wall of a building and a floor and production method

Country Status (2)

Country Link
EP (2) EP4234828A3 (en)
DE (1) DE102018130843A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021111578A1 (en) 2021-05-05 2022-11-10 Schöck Bauteile GmbH Heat-insulating toothed component and method for creating a building section

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4040433A1 (en) * 1990-12-18 1992-06-25 Strabag Bau Ag Load bearing insulating member for building construction - has fibre reinforced resin rods embedded in resin compound with graduated size spherical filler beads
DE10106222A1 (en) 2001-02-10 2002-08-14 Schoeck Entwicklungsgmbh Brick-shaped thermal insulation element
SI2405065T1 (en) 2010-11-19 2014-08-29 Georg Koch Insulating connection element for bearing compressive loads
DE102015106294A1 (en) 2015-04-23 2016-10-27 Schöck Bauteile GmbH Device and method for heat decoupling of concrete building parts
EP3296478B1 (en) * 2016-09-16 2023-09-06 Schöck Bauteile GmbH Assembly for connecting a building wall with a floor or ceiling plate and form block for such an assembly
EP3467222A1 (en) * 2017-10-09 2019-04-10 Schöck Bauteile GmbH Moulded building block to be fitted between a building wall and a floor or ceiling panel, and section of a building with such a moulded building block

Also Published As

Publication number Publication date
EP3663474A1 (en) 2020-06-10
EP4234828A3 (en) 2023-09-27
DE102018130843A1 (en) 2020-06-04
EP4234828A2 (en) 2023-08-30
EP3663474C0 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
AT396274B (en) REINFORCEMENT BODY FOR A CEILING PANEL
EP2455556B1 (en) Insulating connection element for transferring compression
EP2281964B1 (en) Cast wall element and manufacturing method thereof
EP3112542B1 (en) Device and method for heat decoupling of concreted parts of buildings
DE2135007A1 (en) Construction element
EP2146017A1 (en) Component for floor or roof slabs and method for manufacturing a component
DE212004000002U1 (en) component composite
EP1231329B1 (en) Building block shaped insulation element
DE19711813C2 (en) Thermally insulating component
EP3663474B1 (en) Device for decoupling heat between a concrete wall of a building and a floor and production method
EP1482101A1 (en) Wall element, method for the production of wall elements and connecting means for a wall element
EP3569788B1 (en) Segment for a building, method for the production thereof, corner segment for a building, method for the production thereof, building and method for the production thereof
DE3432940A1 (en) Prefabricated masonry structure
EP3789553B1 (en) Prefabricated construction element and prefabricated system
EP3225758B1 (en) Connection component for thermal isolation between a vertical and horizontal building part
EP3296476B1 (en) Assembly for connecting a building wall with a floor or ceiling plate and form block for such an assembly
EP3296478B1 (en) Assembly for connecting a building wall with a floor or ceiling plate and form block for such an assembly
DE3119623A1 (en) SUPPORTING, PANEL-SHAPED COMPONENT
EP3663475A2 (en) Device for decoupling heat between a concrete wall of a building and a ceiling and production method
DE202004018655U1 (en) Steel composite beam with fire-protected support for ceiling elements
EP4050170B1 (en) Building with thermally insulating building element
EP3225759B1 (en) Connection component for thermal isolation between vertically connected building sections
EP4086401A1 (en) Heat-insulating toothed component and method for constructing a building section
EP3130718A1 (en) Composite construction material element
DE60127075T2 (en) wall element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201204

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/76 20060101ALN20221031BHEP

Ipc: E04B 1/78 20060101AFI20221031BHEP

INTG Intention to grant announced

Effective date: 20221206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1575445

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007945

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230607

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHOECK BAUTEILE GMBH

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230717

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20230926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231201

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607