EP3112542B1 - Device and method for heat decoupling of concreted parts of buildings - Google Patents

Device and method for heat decoupling of concreted parts of buildings Download PDF

Info

Publication number
EP3112542B1
EP3112542B1 EP16164249.1A EP16164249A EP3112542B1 EP 3112542 B1 EP3112542 B1 EP 3112542B1 EP 16164249 A EP16164249 A EP 16164249A EP 3112542 B1 EP3112542 B1 EP 3112542B1
Authority
EP
European Patent Office
Prior art keywords
thermal insulation
insulation element
concrete
region
building part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16164249.1A
Other languages
German (de)
French (fr)
Other versions
EP3112542A1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeck Bauteile GmbH
Original Assignee
Schoeck Bauteile GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoeck Bauteile GmbH filed Critical Schoeck Bauteile GmbH
Priority to EP20164907.6A priority Critical patent/EP3690159A1/en
Priority to SI201630754T priority patent/SI3112542T1/en
Priority to PL16164249T priority patent/PL3112542T3/en
Publication of EP3112542A1 publication Critical patent/EP3112542A1/en
Application granted granted Critical
Publication of EP3112542B1 publication Critical patent/EP3112542B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/165Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with elongated load-supporting parts, cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/34Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0604Prismatic or cylindrical reinforcement cages composed of longitudinal bars and open or closed stirrup rods

Definitions

  • the present invention relates to a load-bearing, vertical building part made of concrete, in particular a support, with a first bearing surface for load-bearing connection to a horizontal building part to be made above or below it of concrete, in particular a floor or a floor slab, and a method for producing such Part of the building.
  • the invention relates to a thermal insulation element for heat decoupling between load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a support, and a horizontal part of the building above or below it, in particular a floor or a floor slab.
  • load-bearing parts of buildings are often created from reinforced concrete structures.
  • such parts of the building are usually provided with external thermal insulation.
  • the floor ceiling between the basement, such as a basement or underground car park, and the ground floor is often equipped with thermal insulation on the basement side.
  • the difficulty arises here that the load-bearing parts of the building on which the building rests, such as columns and outer walls, have to be connected in a load-bearing manner to the parts of the building above it, in particular the floor ceiling.
  • This is usually achieved by monolithically connecting the floor slab to the load-bearing columns and external walls with continuous reinforcement.
  • this creates thermal bridges that can only be removed with difficulty from external thermal insulation.
  • the upper section of the load-bearing concrete columns facing the floor ceiling is also covered with thermal insulation. This is not only complex and visually unappealing, but also leads to unsatisfactory building physics results and also reduces the parking space available in the underground car park.
  • the thermal insulation element has a pressure-resistant supporting structure with insulating elements arranged in the spaces.
  • the supporting structure can consist of a lightweight concrete, for example.
  • Such a thermal insulation element is used for thermal insulation of brick outer walls, for example, as a conventional brick, it is used as the first stone layer of the load-bearing outer wall above the basement ceiling.
  • a pressure-transmitting and insulating connecting element which is used for the vertical, load-bearing connection of building parts to be made of concrete. It consists of an insulation body with one or more pressure elements embedded in it. Shear force reinforcement elements run through the pressure elements and, for connection to the parts of the building to be made of concrete, extend essentially vertically beyond the top and the bottom of the insulation body.
  • the insulation body can be made of foam glass or expanded polystyrene hard foam, for example, and the pressure elements can be made of concrete, fiber concrete or fiber plastic.
  • Another object of the invention is to provide a thermal insulation element for heat decoupling between load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a column, and a horizontal part of the building, in particular a floor slab, above or below, in which the Risk of local overload at the support points is reduced.
  • the rod-shaped reinforcement means in particular reinforcement bars, extend essentially vertically beyond the first support surface in that an area of the vertical part of the building adjacent to the first support surface serves as a thermal insulation element for heat decoupling between the vertical part of the building and the horizontal to be created above or below it
  • Part of the building is designed so that the area forming the thermal insulation element consists at least partially of a pressure-transmitting and heat-insulating material, namely lightweight concrete, and that the reinforcing bars extending beyond the upper contact surface consist of a fiber composite material and through the first area of the vertical area forming the thermal insulation element Part of the building extends substantially vertically into an adjoining second area of the vertical part of the
  • the thermal insulation element thus consists, at least in part, of a pressure-transmitting and heat-insulating lightweight concrete.
  • High-pressure-resistant molded elements with low specific thermal conductivity can be made from lightweight concrete.
  • a lightweight concrete part can additionally include hollow chambers or enclosed insulating bodies.
  • the height of the thermal insulation element preferably corresponds approximately to the thickness of a typical thermal insulation layer, that is to say approximately 5 to 20 cm, preferably 10 to 15 cm.
  • a concrete with a dry bulk density of maximum 2000 kg / m 3 is defined under lightweight concrete according to the applicable regulations.
  • the low density in comparison to normal concrete is achieved by appropriate manufacturing processes and different lightweight concrete grains, preferably grains with grain porosity such as expanded clay.
  • lightweight concrete has a thermal conductivity between 0.2 and 1.6 W / (m ⁇ K).
  • the improved and more secure connection of the building parts made of concrete is achieved above all by the fact that, with the same strength class, the elastic modulus of light concrete is only about 30 to 70% of the values of normal concrete. Therefore, the elastic deformations with the same stress (tension) are on average 1.5 to 3 times as large. For this reason, the thermal insulation element made of lightweight concrete also acts as a stress-damping element and is able to compensate for smaller settlements and elastic deformations of the part of the building above and to ensure a more even distribution and force transmission from eccentric contact forces to or into the part of the building below.
  • the much lower modulus of elasticity of the lightweight concrete used has a particularly favorable effect on load centers and bearing twists, which result in increased edge pressures. Due to its elastic properties, the thermal insulation element acts as a "centering element", so to speak. In contrast to this, the compression with a central load is of minor importance.
  • the typical modulus of elasticity of normal concrete, as used for a column, is approximately E cm ⁇ 30,000 to 40,000 N / mm 2 .
  • the modulus of elasticity of the lightweight concrete in the context of the invention is between approximately 9,000 and 22,000 N / mm 2 , preferably between 12,000 and 16,000 N / mm 2 , most preferably approximately 14,000 N / mm 2 .
  • the combination of lightweight concrete with reinforcement made of a fiber composite material according to the invention reduces the heat transfer in the area of the thermal insulation element by approx. 90% .
  • the above-mentioned upper area of the vertical part of the building thus acts not only as a thermal insulation element in terms of building physics and as a load-bearing component in structural terms, but also as a stress-damping element to compensate for mechanical deformations. It does not matter whether the thermal insulation element is sent to the construction site as a lightweight precast element delivered, installed there in the formwork for the vertical part of the building and the latter is concreted from below against the lower contact surface of the thermal insulation element, or whether the thermal insulation element in the formwork of the vertical part of the building is made on site from special, lightweight in-situ concrete.
  • the thermal insulation element is designed as a prefabricated molded part.
  • the invention therefore also relates to a thermal insulation element for heat decoupling between load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a pillar, and a horizontal part of the building above or below it, in particular a floor slab.
  • the thermal insulation element has a base body with an upper and a lower contact surface for vertical connection to the parts of the building.
  • the base body of the thermal insulation element consists at least partially of a compressive force-transmitting and heat-insulating material, namely lightweight concrete, and has one or more rod-shaped reinforcement means, in particular reinforcement bars, which penetrate the base body and extend substantially vertically beyond the upper and the lower contact surface, in particular reinforcement bars on.
  • Lightweight concrete can be manufactured and processed better under factory conditions than on the construction site, so that factory-made thermal insulation elements can achieve higher compressive strength classes than those made from in-situ concrete.
  • the reinforcing bars are inserted in sleeves which are embedded in the material transmitting the pressure force.
  • the sleeves serve as lost formwork for the subsequent insertion of the reinforcement bars.
  • Reinforcing bars made of fiber composite material can transmit very high tensile forces, but in contrast, significantly lower pressure forces can lead to the destruction of such reinforcing bars.
  • the use of sleeves prevents form-fitting embedding of the reinforcing bars in the surrounding concrete, which is normally intended for concrete reinforcement and is almost essential.
  • the reinforcement bars can deform elastically in their sleeves until the compressive forces are completely absorbed by the surrounding compressive stable lightweight concrete insulation body, so that a damaging compressive force load on the reinforcing bars is avoided.
  • the reinforcing bars in the thermal insulation element are expediently designed as tensile reinforcement, since the connection between the support and the floor slab above it can be considered statically as an articulated connection.
  • tensile reinforcement since the connection between the support and the floor slab above it can be considered statically as an articulated connection.
  • the thermal insulation element has at least one through opening which extends from the upper to the lower contact surface and is designed to carry out a compacting device for fresh concrete.
  • the through opening thus serves as an immersion point for an internal vibrator.
  • the passage opening is preferably arranged approximately centrally in the thermal insulation element.
  • a passage opening is provided in the thermal insulation element, through which a compaction device such as the vibrating bottle of a concrete vibrator can be passed, in order to compact or recompact the in-situ concrete underneath after the thermal insulation element has been installed.
  • a compaction device such as the vibrating bottle of a concrete vibrator
  • the through opening can also be used as a filling opening for in-situ concrete.
  • a further advantage of the present invention results if the lower contact surface of the thermal insulation element has a surface with a three-dimensional profile. Suitable profiling of the surface further reduces defects in the connection between the thermal insulation element and the freshly concreted part of the building underneath.
  • the surface may have elevations and depressions as well as inclined surfaces, furrows, or the like, so that in the event of sedimentation, the surface water that settles out can run or settle in non-critical areas, while one in areas of the thermal insulation element that are critical for the static connection there is an intimate connection to the fresh concrete of the part of the building below.
  • an embodiment is considered to be particularly preferred in which the lower contact surface has a funnel-shaped or curved surface in the direction of the through opening. This ensures that, in the event of sedimentation, the surface water that settles out is displaced in the direction of the passage opening or only forms in this area, which does not contribute to the statics of the construction anyway.
  • a reinforcement bracket is arranged in the interior of the thermal insulation element that transmits pressure.
  • a reinforcement bracket in the form of a self-contained reinforcement ring with, for example, a circular or rounded polygonal base, which is arranged in a plane which is essentially parallel with respect to the bearing surfaces, can further increase the resistance to pressure of the thermal insulation element by minimizing the transverse expansion of the thermal insulation element under pressure.
  • potting openings can be provided in the thermal insulation element, via which additional potting compound, such as potting mortar, can be filled if necessary after the concrete has hardened, in order to fill any cavities that still exist between the part of the building underneath and the thermal insulation element.
  • additional potting compound such as potting mortar
  • the potting openings in question are preferably closed by means of removable blind plugs, so that they cannot be blocked by in-situ concrete when the thermal insulation element is installed.
  • a sealing plug is provided, with which the through opening can be subsequently closed.
  • the sealing plug consists of a heat-insulating but non-load-bearing material, such as extruded polystyrene.
  • a stopper can be conically shaped so that it can be inserted sealingly into the through opening, which preferably also tapers downward. This ensures that after the installation of the thermal insulation element, no thermal bridge remains through the through opening, for example due to in-situ concrete entering the through opening when concreting the floor above.
  • the through opening has an opening dimension that is large enough to enable vibrating bottles customary on the construction site to be carried out, in particular at least 50 mm, preferably between 60 and 80 mm.
  • the object in the case of a thermal insulation element of the type mentioned at the outset, can also be achieved in that instead of rod-shaped reinforcement means in the base body one or more of these vertically from the upper to the lower contact surface penetrating sleeves are used, which are embedded as lost formwork in the pressure-transmitting material and are designed for subsequent use or for the connection-free implementation of rod-shaped reinforcement means, in particular reinforcement bars, which extend essentially vertically beyond the upper and the lower contact surface.
  • the use of sleeves prevents the reinforcing bars from being positively embedded in the surrounding concrete, so that when a fiber composite reinforcement is used, a harmful compressive force load on the reinforcing bars is avoided.
  • a structure has considerable advantages in the production of thermal insulation elements according to the invention. If such a thermal insulation element is manufactured under factory conditions, it is easier to use sleeves in a formwork for the thermal insulation element than reinforcement bars, which are intended to penetrate the thermal insulation element on both sides and which have to be sealed against the formwork.
  • thermal insulation elements are designed without bulky reinforcing bars and the latter are only inserted into the sleeves of the thermal insulation element at the construction site when the thermal insulation element is installed in a support or wall.
  • Such a thermal insulation element also enables the use of reinforcing bars made of stainless steel, for example, if no reinforcing bars made of fiber composite material are at hand or such are not desired for other reasons.
  • the invention further relates to a method for creating a vertical part of a building made of concrete, in particular a support, with a first bearing surface for load-bearing connection to a horizontal part of the building to be created above or below it from concrete, in particular a floor slab.
  • a first area of the vertical part of the building is created from reinforced normal concrete.
  • a second area of the vertical part of the building, located between the first bearing surface and the first area of the vertical part of the building, is at least partially formed from a pressure-transmitting and heat-insulating material, namely lightweight concrete, in order to act as a thermal insulation element for heat decoupling between the vertical part of the building and the horizontal to be created above or below it Part of the building serve.
  • rod-shaped reinforcing means in particular reinforcing bars, made of a fiber composite material are installed in the second area of the vertical part of the building, which extends essentially vertically through the second area of the vertical part of the building into the adjoining first area and beyond the first bearing surface.
  • the thermal insulation element can be a prefabricated lightweight precast element.
  • reinforcement and formwork arranged around the reinforcement are created for the first area of the vertical part of the building.
  • Fresh formwork concrete is poured into the formwork over the full height of the first area of the vertical part of the building.
  • the second area of the vertical part of the building is formed by the prefabricated thermal insulation element, which is inserted into the formwork.
  • the first area can either be concreted before the thermal insulation element is inserted, or the thermal insulation element can also be inserted into the formwork before the first area is concreted.
  • the first, lower area is first concreted by pouring in-situ concrete into the formwork and compacting it. Then, in a second step, the thermal insulation element is inserted into the formwork. The reinforcing bars that protrude downwards beyond the thermal insulation element are pressed into the fresh in-situ concrete of the first area. Subsequently, the concrete is preferably re-compacted by means of a compacting device which is passed through a through opening in the thermal insulation element. The passage opening can then preferably be closed by means of a sealing plug. Then the horizontal part of the building above it, for example a floor ceiling, can be created above the thermal insulation element in a conventional manner.
  • the thermal insulation element can also be installed before the formwork is filled with in-situ concrete.
  • a passage opening provided in the thermal insulation element can initially be used as a filling opening for filling the in-situ concrete.
  • the filled concrete is then compacted by inserting the vibrating tool into the fresh in-situ concrete through the through opening.
  • the thermal insulation element can also be created on site from in-situ concrete.
  • reinforcement and formwork arranged around the reinforcement are first created for the first, lower area of the vertical part of the building.
  • the reinforcement bars made of fiber composite material are used in an upper area of the formwork, which corresponds to the second area of the vertical part of the building.
  • Fresh formwork concrete is poured into the formwork up to the height of the first area of the vertical part of the building.
  • the second area of the vertical part of the building is then created by pouring fresh lightweight concrete into the upper area of the formwork.
  • the reinforcement bars in the upper area can be inserted into the lower area of the formwork before the in-situ concrete is poured in and connected to the reinforcement in the lower area.
  • the reinforcing bars can only be pressed into the still fresh in-situ concrete after the in-situ concrete has been filled and compacted into the lower formwork area.
  • the lightweight concrete can also be installed with fully hardened in-situ concrete.
  • a horizontal part of the building that is to say, for example, a floor ceiling
  • an offset is provided adjacent to the vertical part of the building, for example a support.
  • a column can be created up to just below a floor slab above it.
  • the formwork for the floor slab can then be connected to the formwork still left on the support and this can be made of in-situ concrete, leaving a slight free space above the column inside the formwork is also filled with in-situ concrete of the floor slab and forms an offset.
  • a support 1 is provided, which is monolithically connected to a base plate 2 and a floor 3.
  • the upper area 4 of the prop is made of lightweight concrete while the lower area 1 'consists of normal in-situ concrete (normal concrete).
  • the support 1 can have a clear height of 220 cm, for example.
  • the upper area accounts for 10 cm.
  • a thermal insulation layer 5 made of a highly insulating material is applied below the floor ceiling, the thickness of which essentially corresponds to at least the height of the upper region 4 of the support 1.
  • Mineral insulation boards or wood-wool multilayer boards can be installed as the thermal insulation layer 6, for example.
  • the base plate 2 is first concreted with a reinforcement 2 'in a conventional manner.
  • reinforcement bars 2 protrude vertically upward from the horizontal reinforcement 2 'of the floor slab.
  • a reinforcement 6 made of structural steel arranged inside the support 1 is then connected to this.
  • the reinforcement 6 comprises four vertical reinforcement bars 6 'and a plurality of reinforcement brackets 6 ", spaced apart in the vertical direction, with an approximately square plan.
  • the reinforcement bars 7 surround a reinforcement arranged at right angles thereto, for example a reinforcement bracket 7 'made of stainless steel.
  • the reinforcement bars 7 protrude beyond the upper area 4 of the column in order to enable a monolithic connection to the floor ceiling 3 to be created later.
  • the reinforcing bars 7 also protrude from the upper area 4 of the support, which serves as a thermal insulation element, into the lower area 1 'made of normal concrete.
  • In-situ concrete is then poured into this, namely up to the height of the lower region 1 ', that is to say approximately 210 cm high in the exemplary embodiment.
  • the in-situ concrete a typical construction-ready normal concrete, is then compacted with an internal vibrator.
  • fresh lightweight concrete is poured into the existing formwork in the upper area 4 above and also compacted.
  • the process of creating the floor ceiling 3 can also be carried out in a manner known per se, the reinforcement of which 3 'is cast with the reinforcing bars 7, which project beyond the upper contact surface of the support 1 and are made of fiber composite material in the in-situ concrete of the floor slab.
  • a prefabricated molded part can also be installed as a heat insulation element in the formwork of the support.
  • the formwork of the column is either filled with in-situ concrete through an opening in the molded part, or the formwork is only filled with in-situ concrete up to the height of the lower area 1 'and the molded part is then inserted into the formwork from above and to the other pressed fresh in-situ concrete of the column 1.
  • thermal insulation element 10 comprising such a molded part is shown. It is used for the monolithic connection and for the load-bearing connection of a concrete support 1, for example in the basement of a building, to the basement ceiling 3 above.
  • the thermal insulation element 10 has a cuboid base element 11 with an upper side 12 and an underside 13, each of which serves as a support surface for the basement ceiling or the end of the support 1 supporting it.
  • a central through opening 14 which extends from the upper side 12 to the lower side 13 of the thermal insulation element 11.
  • Four reinforcing bars 15 made of a fiber composite material protrude through the base body 11.
  • the underside 13 of the base body 11 has a three-dimensional profile in the form of a funnel-shaped recess 16 extending in the direction of the through opening 14.
  • a reinforcement bracket 17 is also embedded, which lies around the reinforcement bars 15 and gives the thermal insulation element 10 additional stability.
  • the base body 11 of the thermal insulation element 10 consists of a lightweight concrete, which on the one hand has high pressure stability and on the other hand has good thermal insulation properties. Compared to concrete with a thermal conductivity of about 1.6 W / (m ⁇ K), the thermal conductivity is when using a suitable one Light concrete material in the range of about 0.5 W / (m ⁇ K), which corresponds to an improvement of about 70%.
  • the light concrete used essentially consists of expanded clay, fine sand, preferably light sand, flow agents and stabilizers, which prevent segregation by floating the grain and improve workability.
  • the compressive strength of the thermal insulation element is sufficiently high to allow the statically planned use of the underlying support made of in-situ concrete, for example in accordance with the compressive strength class C25 / 30.
  • the compressive strength of the thermal insulation element preferably corresponds to at least 1.5 times the statically required value. This ensures that there are also safety reserves in the event of any missing surfaces on the connecting surface between the thermal insulation element and the support, so that the thermal insulation element remains statically stable even at points with higher loads.
  • the reinforcing bars 15 can be concreted into the lightweight concrete material of the cuboid base body 11 during the manufacture of the thermal insulation element 10.
  • sleeves during manufacture it is possible to use sleeves during manufacture as a kind of lost circuit through which the reinforcing bars 15 are inserted after the lightweight concrete element 11 has hardened.
  • the reinforcing bars 15 themselves are in the exemplary embodiment made of a fiber composite material which consists of glass fibers aligned in the direction of the force and a synthetic resin matrix.
  • a glass fiber reinforcement bar has an extremely low thermal conductivity, which is up to 100 times lower than that of reinforcing steel, and is therefore ideally suited for use in the thermal insulation element.
  • the use of reinforcing bars made of stainless steel is also possible and is included in the scope of the present invention, in particular when using sleeves as lost formwork.
  • the dimensions of the reinforcement bars 15, without the invention being restricted to this, are 16 mm in diameter and 930 mm in length in the exemplary embodiment.
  • the arrangement of the reinforcing bars 15 with respect to the base area of the base body 11 is chosen slightly outside the main diagonals. The reason for this is that the reinforcement rods 6 ′ of the support 1 are already located in the corners of the support 1, into which the reinforcement bars 15 of the thermal insulation element 10 are installed.
  • the reinforcement bracket 17 consists of a ring bent, stainless steel, which is welded at the connection point.
  • the reinforcement bracket 17 has a diameter of approximately 200 mm with a material thickness of 8 to 10 mm.
  • the base body 11 of the thermal insulation element 10 has an edge length of 250 x 250 mm in the exemplary embodiment.
  • the height is 100 mm and therefore corresponds to the usual thickness of a subsequently installed thermal insulation layer.
  • the through opening runs, especially in Fig. 4 can be seen, slightly conical in that the through opening 14 tapers from an upper dimension of 70 mm to a lower dimension of 65 mm.
  • the passage opening can be closed by means of a corresponding, likewise slightly conical plug (not shown).
  • Fig. 5 shows the thermal insulation element in a side view, wherein additional peripheral seals 18 are attached to the base body 11.
  • the seals 18 can be designed, for example, as rubber lips or conventional sealing tapes. They serve to seal the base body 11 of the thermal insulation element 10 so that it is edge-tight against a formwork for the support to be created underneath, in order to prevent concrete from rising or air from penetrating.
  • Fig. 6 shows the installation situation of the thermal insulation element in relation to a support 1.
  • the cross section shown runs below the base body 11 of the thermal insulation element 10.
  • the support 1 made of in-situ concrete has reinforcement with four vertical reinforcement bars 6 'arranged in the corners of the support 1 and a large number Reinforcement stirrups 6 "running approximately square around the reinforcement bars 6 '.
  • the reinforcement bars 15 of the thermal insulation element 10 are each slightly offset next to one of the reinforcing bars 6 'of the support 1.
  • the in Fig. 6 drawn line BB corresponds to the cut of the in Fig. 7 shown longitudinal section through the column reinforcement.
  • Fig. 7 the reinforcement of the support 1 together with the thermal insulation element 10 is shown in a longitudinal section.
  • the cut corresponds to the cut line BB Fig. 6 .
  • the reinforcement of the support 1 consists of four vertical reinforcement bars 6 'arranged in the corners of the support, which can be made, for example, of structural steel with a bar diameter of 28 mm and a length of 2000 mm, and a plurality of reinforcement brackets running horizontally around the reinforcement bars 6' 6 "with an approximately square plan.
  • Above the column reinforcement is the thermal insulation element 10, the reinforcement bars 15 of which project downward into the column reinforcement.
  • the reinforcement content of column 1 is approximately 3-4%. With a typical thermal conductivity of the structural steel of approx. 50 W / (m ⁇ K) compared to concrete with 1.6 W / (m ⁇ K), it contributes roughly half to the total thermal conductivity of the column. By using the combination of lightweight concrete and glass fiber reinforcement in the area of the thermal insulation element 10, the heat transfer between the column 1 and the floor ceiling 3 can thus be reduced by approximately 90% compared to a direct monolithic connection.
  • a formwork 19 is built around the column reinforcement 6 ', 6 "and the lower area 1' is filled with in-situ concrete. This is compacted in a conventional manner with an internal vibrator.
  • the thermal insulation element 10 is then inserted into the formwork 19 from above and its reinforcing bars 15 pressed into the still liquid in-situ concrete
  • the base body 11 is pressed against the fresh in-situ concrete until the liquid concrete rises slightly upwards in the through opening 14, so that it is ensured that the column 1 and the base body are between the concrete 11 of the thermal insulation element 10 is no longer present, then the vibrating bottle of a concrete vibrator is passed through the passage opening 14 into the fresh in-situ concrete located below, in order to compact it again the thermal insulation element 10 can be slightly raised by the volume of the concrete displaced by the vibrating bottle.
  • the post-compression of the still liquid fresh concrete through the through opening 14 of the heat insulation element 10 leads to an intimate connection of the heat insulation element 10 with the in-situ concrete located underneath.
  • hollow places due to the formation of voids or sedimentation in the fresh concrete between the thermal insulation element 10 and the support 1 are prevented.
  • the conical profile on the underside of the base body 11, in particular, contributes to this, due to the rising air bubbles or cement water separated on the surface, collecting mainly in the central region of the passage opening 14.
  • the passage opening 14 is then closed by means of a conical stopper (not shown).
  • the sealing plug can be made of an insulating material such as polystyrene or the like. exist and serves to prevent the penetration of in-situ concrete into the through opening 14 when the floor 3 is subsequently created. In this way, any thermal bridges due to a concrete filling in the through opening 14 are avoided. Subsequently, the storey ceiling 3 above is created above the thermal insulation element 10 in a conventional manner.
  • the passage opening 14 can also be used as a filling opening for filling the formwork for the support 1 with in-situ concrete.
  • the thermal insulation element is inserted into the still empty formwork of the column 1 and, if necessary, the reinforcement bars 15 are connected to the column reinforcement.
  • Fresh concrete is poured into the formwork through the passage opening 14 of the thermal insulation element and then compacted by inserting a vibrating bottle of an internal vibrator through the passage opening 14.
  • the fresh concrete is compacted against the underside of the thermal insulation element from above through the passage opening 14.
  • the support 1 can also be made from self-compacting concrete, or the support 1 can be compacted by an external vibrator. In the latter two cases, the through opening 14 thus serves only as a filling opening.
  • FIG. 10 In addition to installation in the upper area of a support, installation in the foot area of a support is also conceivable. Such an arrangement is shown in an alternative embodiment in Figure 10 shown.
  • the support 1 is arranged here between the base plate 2 and the upper floor 3.
  • a thermal insulation element 10 according to the invention is installed in the foot region of the support 1, the reinforcing bars 15 of which protrude from the base plate 2 into the upper region of the support 1 and are connected there to the reinforcement 6 of the support 1.
  • a heat insulation layer 5 made of insulation boards of a known type is attached to the top of the floor panel 2.
  • the production can take place in such a way that the thermal insulation element 10 is connected to the reinforcement 2 'before the base plate 2 is concreted.
  • the base plate 2 is then poured from in-situ concrete, so that the concrete rises against the thermal insulation element 10 from below.
  • the in-situ concrete can in turn be compacted through the central through opening with a vibrating tool.
  • the reinforcement 6 of the support is created and connected to the reinforcement bars 15 of the thermal insulation element.
  • the formwork for the support 1 is then built up around the thermal insulation element 10 and then the support 1 is poured and compacted from in-situ concrete in a conventional manner.
  • thermal insulation element itself can be adapted to the component located below and / or above it.
  • thermal insulation elements can be adapted to the typical cross sections of supports with a round, square or rectangular outline.
  • Typical dimensions of round supports are diameters of 24 and 30 cm, or of supports with a rectangular layout of 25 x 25 cm and 30 x 30 cm. Thermal insulation elements with such a geometry can also be combined as desired to form larger supports or retaining walls.
  • thermal insulation elements described here are particularly suitable for use with pendulum supports and wall supports with low clamping moments.
  • use with load-bearing outer walls is also possible, in that the heat insulation elements are installed at a suitable distance from one another and any remaining gaps between the individual heat insulation elements are filled with non-load-bearing insulation material.
  • the geometrical design of the profiled underside of the thermal insulation element can also be realized in a variety of other ways, for example in a step shape, a radial toothing, an annular bead and much more.
  • openings can additionally or alternatively be provided for subsequent grouting of any remaining cavities between the thermal insulation element and the concrete surface located underneath.
  • Such openings can be closed with blind plugs and opened if necessary in order to subsequently fill any remaining cavity with a potting compound such as a potting mortar or a synthetic resin compound and thus establish a secure static connection, even if in individual cases a faulty execution when creating the support or the installation of the thermal insulation element had led to a poor connection.
  • indicators can be provided on the thermal insulation element, which can be pushed up in the manner of a float and thereby indicate that the thermal insulation element has contact with the in-situ concrete underneath on its underside.
  • thermal insulation element When installing the thermal insulation element in the already compacted, fresh concrete of the support underneath, during subsequent compacting and when pulling out the compacting tool from the through opening of the thermal insulation element, it may be advantageous if a defined pressure force is exerted on the thermal insulation element.
  • rod-shaped reinforcement means for connecting the thermal insulation element to the building parts above and below can be used within the scope of the present invention, for example threaded rods, dowels or the like, since, as explained above, the connection between a support and a floor slab above it statically as a joint connection can be considered and the reinforcement at this point must therefore preferably have a constructive function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Building Environments (AREA)

Description

Die vorliegende Erfindung betrifft ein tragendes, aus Beton erstelltes vertikales Gebäudeteil, insbesondere eine Stütze, mit einer ersten Auflagefläche zur lastabtragenden Anbindung an ein darüber oder darunter aus Beton zu erstellendes, horizontales Gebäudeteil, insbesondere eine Geschossdecke oder eine Bodenplatte sowie ein Verfahren zur Erstellung eines solchen Gebäudeteils. Daneben betrifft die Erfindung ein Wärmedämmelement zur Wärmeentkopplung zwischen aus Beton zu erstellenden, tragenden Gebäudeteilen, vorzugsweise zwischen einem vertikalen Gebäudeteil, insbesondere einer Stütze, und einem darüber oder darunter liegenden, horizontalen Gebäudeteil, insbesondere einer Geschossdecke oder einer Bodenplatte.The present invention relates to a load-bearing, vertical building part made of concrete, in particular a support, with a first bearing surface for load-bearing connection to a horizontal building part to be made above or below it of concrete, in particular a floor or a floor slab, and a method for producing such Part of the building. In addition, the invention relates to a thermal insulation element for heat decoupling between load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a support, and a horizontal part of the building above or below it, in particular a floor or a floor slab.

Im Hochbau werden tragende Gebäudeteile häufig aus mit einer Bewehrung versehenen Betonkonstruktionen erstellt. Aus energetischen Gründen werden solche Gebäudeteile in der Regel mit einer von außen angebrachten Wärmedämmung versehen. Insbesondere die Geschossdecke zwischen Tiefgeschoss, wie beispielsweise Keller oder Tiefgarage, und Erdgeschoss wird häufig auf der Tiefgeschossseite mit einer deckenseitig angebrachten Wärmedämmung ausgerüstet. Hierbei ergibt sich die Schwierigkeit, dass die tragenden Gebäudeteile, auf denen das Gebäude ruht, wie etwa Stützen und Außenwände, in lastabtragender Weise mit den darüber befindlichen Gebäudeteilen, insbesondere der Geschossdecke, verbunden sein müssen. Dies wird in der Regel dadurch erreicht, dass die Geschossdecke bei durchgehender Bewehrung monolithisch mit den tragenden Stützen und Außenwänden verbunden wird. Hierbei entstehen jedoch Wärmebrücken, die sich nur schlecht durch eine nachträglich von außen angebrachte Wärmedämmung beseitigen lassen. In Tiefgaragen wird beispielsweise häufig der obere, zur Geschossdecke weisende Abschnitt der tragenden Betonstützen ebenfalls mit einer Wärmedämmung ummantelt. Dies ist nicht nur aufwendig und optisch wenig ansprechend, sondern führt auch zu unbefriedigenden bauphysikalischen Ergebnissen und vermindert zudem den in der Tiefgarage verfügbaren Parkraum.In building construction, load-bearing parts of buildings are often created from reinforced concrete structures. For energy reasons, such parts of the building are usually provided with external thermal insulation. In particular, the floor ceiling between the basement, such as a basement or underground car park, and the ground floor is often equipped with thermal insulation on the basement side. The difficulty arises here that the load-bearing parts of the building on which the building rests, such as columns and outer walls, have to be connected in a load-bearing manner to the parts of the building above it, in particular the floor ceiling. This is usually achieved by monolithically connecting the floor slab to the load-bearing columns and external walls with continuous reinforcement. However, this creates thermal bridges that can only be removed with difficulty from external thermal insulation. In underground car parks, for example, the upper section of the load-bearing concrete columns facing the floor ceiling is also covered with thermal insulation. This is not only complex and visually unappealing, but also leads to unsatisfactory building physics results and also reduces the parking space available in the underground car park.

Aus der Schrift DE 101 06 222 ist ein mauersteinförmiges Wandelement zur Wärmeentkopplung zwischen Wandteilen und Boden- oder Deckenteilen beschrieben. Das Wärmedämmelement besitzt eine druckfeste Tragstruktur mit in den Zwischenräumen angeordneten Isolierelementen. Die Tragstruktur kann beispielsweise aus einem Leichtbeton bestehen. Ein solches Wärmedämmelement dient zur Wärmedämmung gemauerter Außenwände, indem es beispielsweise wie ein herkömmlicher Mauerstein als erste Steinschicht der tragenden Außenwand oberhalb der Kellerdecke eingesetzt wird.From Scripture DE 101 06 222 describes a brick-shaped wall element for heat decoupling between wall parts and floor or ceiling parts. The thermal insulation element has a pressure-resistant supporting structure with insulating elements arranged in the spaces. The supporting structure can consist of a lightweight concrete, for example. Such a thermal insulation element is used for thermal insulation of brick outer walls, for example, as a conventional brick, it is used as the first stone layer of the load-bearing outer wall above the basement ceiling.

Aus der Schrift EP 2 405 065 ist ein druckkraftübertragendes und isolierendes Anschlusselement bekannt, welches zur vertikalen, lastabtragenden Verbindung von aus Beton zu erstellenden Gebäudeteilen zum Einsatz kommt. Es besteht aus einem Isolationskörper mit einem oder mehreren darin eingebetteten Druckelementen. Durch die Druckelemente verlaufen Querkraftbewehrungselemente, die sich zum Anschluss an die aus Beton zu erstellenden Gebäudeteile im Wesentlichen vertikal über die Oberseite und die Unterseite des Isolationskörpers hinaus erstrecken. Der Isolationskörper kann beispielsweise aus Schaumglas oder expandiertem Polystyrol-Hartschaum und die Druckelemente aus Beton, Faserbeton oder Faserkunststoff hergestellt werden. Dieses Dokument offenbart die Merkmale der Oberbegriffe der unabhängigen Ansprüchen 1 und 8.From Scripture EP 2 405 065 a pressure-transmitting and insulating connecting element is known, which is used for the vertical, load-bearing connection of building parts to be made of concrete. It consists of an insulation body with one or more pressure elements embedded in it. Shear force reinforcement elements run through the pressure elements and, for connection to the parts of the building to be made of concrete, extend essentially vertically beyond the top and the bottom of the insulation body. The insulation body can be made of foam glass or expanded polystyrene hard foam, for example, and the pressure elements can be made of concrete, fiber concrete or fiber plastic. This document discloses the features of the preambles of independent claims 1 and 8.

Der hier propagierte Ansatz zur vertikalen Wärmeentkopplung von aus Beton zu erstellenden Gebäudeteilen besteht somit darin, die Auflagefläche zwischen den Gebäudeteilen zu verringern, um einen Wärmeübertrag zu reduzieren. Erfolgt jedoch eine Krafteinleitung in Plattentragwerke wie etwa eine Geschossdecke auf eine reduzierte Fläche konzentriert, so wird die Gefahr, dass es an einer Krafteinleitungsstelle zu einem Durchbrechen des Plattentragwerks, dem sogenannten Durchstanzen kommen kann, erhöht.The approach propagated here for vertical heat decoupling of building parts to be made of concrete thus consists in reducing the contact area between the building parts in order to reduce heat transfer. However, if force is introduced into plate structures, such as a floor slab, concentrated on a reduced area, the risk that the plate structure may break through, known as punching, may increase at a force introduction point.

An einer betonierten Geschossdecke kann es außerdem durch die auf ihr ruhende Last zu geringfügigen Setzungen und/oder einer elastischen Verformung kommen. Dies führt an den Auflagepunkten, an denen die Geschossdecke von den darunterliegenden vertikalen Gebäudeteilen getragen wird, zu einer Kräfteumverteilung. Durch eine solche Auflagerverdrehung kann es zu einer Überlastung des Druckelementes kommen. Werden in einer einzelnen Stütze mehrere Druckelemente eingesetzt und versagt eines davon und bricht, so verteilt sich die Auflast auf die benachbarten Druckelemente, welche dann ebenfalls überlastet würden. Dies kann zu einer Kettenreaktion mit fatalen Folgen für die Statik des Gebäudes führen.On a concrete floor slab, there may also be slight subsidence and / or elastic deformation due to the load on it. This leads to a redistribution of forces at the support points at which the floor ceiling is supported by the vertical parts of the building below. Such a rotation of the support can lead to an overload of the pressure element. If several pressure elements are used in a single column and one of them fails and breaks, it is distributed the load on the neighboring pressure elements, which would then also be overloaded. This can lead to a chain reaction with fatal consequences for the statics of the building.

Eine Aufgabe der Erfindung besteht deshalb darin, ein tragendes, aus Beton erstelltes vertikales Gebäudeteil, insbesondere eine Stütze, mit einer ersten Auflagefläche zur lastabtragenden Anbindung an ein darüber oder darunter aus Beton zu erstellendes, horizontales Gebäudeteil, insbesondere eine Geschossdecke, sowie ein entsprechendes Verfahren zur Erstellung eines solchen Gebäudeteils anzugeben, welches einerseits den Wärmeübertrag zwischen den Gebäudeteilen vermindert, anderseits die Gefahr einer lokalen Überlastung an den Auflagepunkten vermindert.It is therefore an object of the invention to provide a load-bearing, vertical part of the building, in particular a support, with a first bearing surface for load-bearing connection to a horizontal part of the building, in particular a floor slab, to be made of concrete, and a corresponding method for Specify the creation of such a part of the building, which on the one hand reduces the heat transfer between the parts of the building, and on the other hand reduces the risk of local overload at the support points.

Eine weitere Aufgabe der Erfindung besteht darin, ein Wärmedämmelement zur Wärmeentkopplung zwischen aus Beton zu erstellenden, tragenden Gebäudeteilen, vorzugsweise zwischen einem vertikalen Gebäudeteil, insbesondere einer Stütze, und einem darüber oder darunter liegenden, horizontalen Gebäudeteil, insbesondere eine Geschossdecke, anzugeben, bei dem die Gefahr einer lokalen Überlastung an den Auflagepunkten vermindert ist.Another object of the invention is to provide a thermal insulation element for heat decoupling between load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a column, and a horizontal part of the building, in particular a floor slab, above or below, in which the Risk of local overload at the support points is reduced.

Die Aufgabe wird hinsichtlich des Wärmedämmelements gelöst durch die Merkmale des Anspruchs 1, beziehungsweise des Anspruchs 8, hinsichtlich des Gebäudeteils durch die Merkmale des Anspruchs 9 und hinsichtlich des Verfahrens durch die Merkmale des Anspruchs 10. Vorteilhafte Ausgestaltungen sind den abhängigen Ansprüchen zu entnehmen.The object is achieved with regard to the thermal insulation element by the features of claim 1 or claim 8, with regard to the building part by the features of claim 9 and with regard to the method by the features of claim 10. Advantageous configurations can be found in the dependent claims.

Bei einem tragenden, aus Beton erstellten vertikalen Gebäudeteil, insbesondere einer Stütze, mit einer ersten Auflagefläche zur lastabtragenden Anbindung an ein darüber oder darunter aus Beton zu erstellendes, horizontales Gebäudeteil, insbesondere einer Geschossdecke, bei der das vertikale Gebäudeteil eine Bewehrung aufweist mit einem oder mehreren sich im Wesentlichen vertikal über die erste Auflagefläche hinaus erstreckenden stabförmigen Bewehrungsmitteln, insbesondere Bewehrungsstäben, wird die Aufgabe erfindungsgemäß dadurch gelöst, dass ein an die erste Auflagefläche angrenzender Bereich des vertikalen Gebäudeteils als Wärmedämmelement zur Wärmeentkopplung zwischen dem vertikalen Gebäudeteil und dem darüber oder darunter zu erstellenden horizontalen Gebäudeteil ausgebildet ist, dass der das Wärmedämmelement bildende Bereich zumindest teilweise aus einem druckkraftübertragenden und wärmedämmenden Werkstoff, nämlich Leichtbeton, besteht, und dass die sich über die obere Auflagefläche hinaus erstreckenden Bewehrungsstäbe aus einem Faserverbundwerkstoff bestehen und sich durch den das Wärmedämmelement bildenden ersten Bereich des vertikalen Gebäudeteils im Wesentlichen vertikal bis in einen daran anschließenden zweiten Bereich des vertikalen Gebäudeteils erstrecken, in welchem dieses aus bewehrtem Normalbeton erstellt ist.In the case of a load-bearing, vertical part of a building made of concrete, in particular a column, with a first bearing surface for load-bearing connection to a horizontal part of the building to be created above or below it, in particular a floor slab, in which the vertical part of the building has reinforcement with one or more The object is achieved according to the invention in that the rod-shaped reinforcement means, in particular reinforcement bars, extend essentially vertically beyond the first support surface in that an area of the vertical part of the building adjacent to the first support surface serves as a thermal insulation element for heat decoupling between the vertical part of the building and the horizontal to be created above or below it Part of the building is designed so that the area forming the thermal insulation element consists at least partially of a pressure-transmitting and heat-insulating material, namely lightweight concrete, and that the reinforcing bars extending beyond the upper contact surface consist of a fiber composite material and through the first area of the vertical area forming the thermal insulation element Part of the building extends substantially vertically into an adjoining second area of the vertical part of the building, in which it is made of reinforced normal concrete.

Das Wärmedämmelement besteht somit zumindest teilweise aus einem drucckraftübertragenden und wärmedämmenden Leichtbeton. Aus Leichtbeton lassen sich hochdruckfeste Formelemente mit niedriger spezifischer Wärmeleitfähigkeit herstellen. Je nach statischer Anforderung kann ein solches Leichtbetonteil zusätzlich Hohlkammern oder eingeschlossene Isolierkörper umfassen. Die Höhe des Wärmedämmelements entspricht dabei vorzugsweise in etwa der Stärke einer typischen Wärmedämmschicht, also etwa 5 bis 20 cm, bevorzugt 10 bis 15 cm.The thermal insulation element thus consists, at least in part, of a pressure-transmitting and heat-insulating lightweight concrete. High-pressure-resistant molded elements with low specific thermal conductivity can be made from lightweight concrete. Depending on the structural requirements, such a lightweight concrete part can additionally include hollow chambers or enclosed insulating bodies. The height of the thermal insulation element preferably corresponds approximately to the thickness of a typical thermal insulation layer, that is to say approximately 5 to 20 cm, preferably 10 to 15 cm.

Unter Leichtbeton ist nach dem geltenden Regelwerk ein Beton mit einer trockenen Rohdichte von maximal 2000 kg/m3 definiert. Die geringe Dichte im Vergleich zu Normalbeton wird durch entsprechende Herstellverfahren und unterschiedliche Leichtbetonkörnungen, vorzugsweise Körnungen mit Kornporosität wie etwa Blähton erreicht. Leichtbeton besitzt je nach Zusammensetzung eine Wärmeleitfähigkeit zwischen 0,2 und 1,6 W/(m · K).A concrete with a dry bulk density of maximum 2000 kg / m 3 is defined under lightweight concrete according to the applicable regulations. The low density in comparison to normal concrete is achieved by appropriate manufacturing processes and different lightweight concrete grains, preferably grains with grain porosity such as expanded clay. Depending on its composition, lightweight concrete has a thermal conductivity between 0.2 and 1.6 W / (m · K).

Durch den Einsatz eines massiven oder in Hohlblockbauweise gefertigten Wärmedämmelements aus Leichtbeton steht bei gleichem oder geringerem Wärmeverlust eine wesentlich größere Auflagefläche zur Verfügung, als dies bei der Verwendung von hochdruckfesten Druckelementen der Fall wäre. Durch den großflächigeren Lastabtrag wird im Gegensatz zu den bekannten Druckelementen die Gefahr vermieden, dass Setzungen oder elastische Verformungen am darüber liegenden Gebäudeteil oder kleinere Schwachstellen in der Anbindung an das darunter liegende Gebäudeteil, beispielsweise aufgrund von Lunkerbildung oder Sedimentation, zu einer lokalen Überlastung und damit einem Versagen des Wärmedämmelements führen.Through the use of a solid or hollow-block heat insulation element made of lightweight concrete, with the same or less heat loss, a much larger contact surface is available than would be the case if high-pressure-resistant pressure elements were used. In contrast to the known pressure elements, the larger load transfer avoids the risk of settlement or elastic deformation on the part of the building above or smaller weak points in the connection to the part of the building below, for example due to the formation of voids or sedimentation, resulting in local overloading and thus one Failure of the thermal insulation element.

Die verbesserte und sicherere Anbindung der aus Beton erstellten Gebäudeteile wird vor allem auch dadurch erreicht, dass bei gleicher Festigkeitsklasse der Elastizitätsmodul von Leichtbeton nur etwa 30 bis 70 % der Werte von Normalbeton beträgt. Daher sind die elastischen Verformungen bei gleicher Beanspruchung (Spannung) im Mittel 1,5- bis 3-mal so groß. Aus diesem Grund wirkt das Wärmedämmelement aus Leichtbeton gleichzeitig als Spannungs-Dämpfungselement und ist in der Lage, kleinere Setzungen und elastische Verformungen des darüber liegenden Gebäudeteils auszugleichen und eine gleichmäßigere Verteilung und Krafteinleitung von außerzentrischen Auflagekräften auf bzw. in das darunter liegende Gebäudeteil sicherzustellen.The improved and more secure connection of the building parts made of concrete is achieved above all by the fact that, with the same strength class, the elastic modulus of light concrete is only about 30 to 70% of the values of normal concrete. Therefore, the elastic deformations with the same stress (tension) are on average 1.5 to 3 times as large. For this reason, the thermal insulation element made of lightweight concrete also acts as a stress-damping element and is able to compensate for smaller settlements and elastic deformations of the part of the building above and to ensure a more even distribution and force transmission from eccentric contact forces to or into the part of the building below.

Der wesentlich geringere E-Modul des verwendeten Leichtbetons wirkt sich hierbei besonders günstig bei Last-Ausmitten und Auflagerverdrehungen aus, die erhöhte Kantenpressungen zur Folge haben. Das Wärmedämmelement wirkt aufgrund seiner elastischen Eigenschaften sozusagen als "Zentrierelement". Im Gegensatz dazu ist die Stauchung bei zentrischer Belastung von untergeordneter Bedeutung.The much lower modulus of elasticity of the lightweight concrete used has a particularly favorable effect on load centers and bearing twists, which result in increased edge pressures. Due to its elastic properties, the thermal insulation element acts as a "centering element", so to speak. In contrast to this, the compression with a central load is of minor importance.

Der typische E-Modul von Normalbeton, wie er für eine Stütze verwendet wird, beträgt etwa Ecm≈30.000 bis 40.000 N/mm2. Der E-Modul des im Rahmen der Erfindung Leichtbetons beträgt dem gegenüber zwischen etwa 9.000 und 22.000 N/mm2, vorzugsweise zwischen 12.000 und 16.000 N/mm2, höchstvorzugsweise etwa 14.000 N/mm2.The typical modulus of elasticity of normal concrete, as used for a column, is approximately E cm ≈30,000 to 40,000 N / mm 2 . In contrast, the modulus of elasticity of the lightweight concrete in the context of the invention is between approximately 9,000 and 22,000 N / mm 2 , preferably between 12,000 and 16,000 N / mm 2 , most preferably approximately 14,000 N / mm 2 .

Während bei herkömmlichen vertikal angeordneten Stahlbetonbauteilen mit einem Bewehrungsgehalt von 3-4 % die Stahlbewehrung etwa die Hälfte zur Gesamtwärmeleitfähigkeit des Gebäudeteils beiträgt, wird durch die erfindungsgemäße Kombination aus Leichtbeton mit einer Bewehrung aus einem Faserverbundwerkstoff im Bereich des Wärmedämmelements der Wärmeübertrag um ca. 90% gesenkt.While in conventional vertically arranged reinforced concrete components with a reinforcement content of 3-4%, the steel reinforcement contributes about half to the overall thermal conductivity of the building part, the combination of lightweight concrete with reinforcement made of a fiber composite material according to the invention reduces the heat transfer in the area of the thermal insulation element by approx. 90% .

Der genannte obere Bereich des vertikalen Gebäudeteils wirkt also nicht nur in bauphysikalischer Hinsicht als Wärmedämmelement und in statischer Hinsicht als lastabtragendes Bauteil sondern darüber hinaus auch noch als Spannungs-Dämpfungselement zum Ausgleich mechanischer Verformungen. Hierbei spielt es keine Rolle, ob das Wärmedämmelement als Leichtbetonfertigteil an die Baustelle angeliefert, dort in die Schalung für das vertikale Gebäudeteil eingebaut und letztgenanntes von unten gegen die untere Anlagefläche des Wärmedämmelements betoniert wird, oder ob das Wärmedämmelement in der Schalung des vertikalen Gebäudeteils vor Ort aus speziellem, leichtem Ortbeton erstellt wird.The above-mentioned upper area of the vertical part of the building thus acts not only as a thermal insulation element in terms of building physics and as a load-bearing component in structural terms, but also as a stress-damping element to compensate for mechanical deformations. It does not matter whether the thermal insulation element is sent to the construction site as a lightweight precast element delivered, installed there in the formwork for the vertical part of the building and the latter is concreted from below against the lower contact surface of the thermal insulation element, or whether the thermal insulation element in the formwork of the vertical part of the building is made on site from special, lightweight in-situ concrete.

Bei einer bevorzugten Ausführung ist das Wärmedämmelement jedoch als vorgefertigtes Formteil ausgebildet. Die Erfindung betrifft daher auch ein Wärmedämmelement zur Wärmeentkopplung zwischen aus Beton zu erstellenden, tragenden Gebäudeteilen, vorzugsweise zwischen einem vertikalen Gebäudeteil, insbesondere einer Stütze, und einem darüber oder darunter liegenden horizontalen Gebäudeteil, insbesondere einer Geschossdecke. Das Wärmedämmelement weist einen Grundkörper mit einer oberen und einer unteren Auflagefläche zum vertikalen Anschluss an die Gebäudeteile auf. Erfindungsgemäß besteht der Grundkörper des Wärmedämmelements dabei zumindest teilweise aus einem druckkraftübertragenden und wärmedämmenden Werkstoff, nämlich Leichtbeton, und weist einen oder mehrere den Grundkörper durchdringende und sich im Wesentlichen vertikal über die obere und die untere Auflagefläche hinaus erstreckende stabförmige Bewehrungsmittel, insbesondere Bewehrungsstäbe, aus einem Faserverbundwerkstoff auf.In a preferred embodiment, however, the thermal insulation element is designed as a prefabricated molded part. The invention therefore also relates to a thermal insulation element for heat decoupling between load-bearing parts of the building to be made of concrete, preferably between a vertical part of the building, in particular a pillar, and a horizontal part of the building above or below it, in particular a floor slab. The thermal insulation element has a base body with an upper and a lower contact surface for vertical connection to the parts of the building. According to the invention, the base body of the thermal insulation element consists at least partially of a compressive force-transmitting and heat-insulating material, namely lightweight concrete, and has one or more rod-shaped reinforcement means, in particular reinforcement bars, which penetrate the base body and extend substantially vertically beyond the upper and the lower contact surface, in particular reinforcement bars on.

Leichtbeton lässt sich unter Fabrikbedingungen besser herstellen und verarbeiten als auf der Baustelle, so dass fabrikmäßig vorgefertigte Wärmedämmelemente höhere Druckfestigkeitsklassen erreichen können, als aus Ortbeton erstellte.Lightweight concrete can be manufactured and processed better under factory conditions than on the construction site, so that factory-made thermal insulation elements can achieve higher compressive strength classes than those made from in-situ concrete.

Bei einer bevorzugten Ausführungsform eines solchen vorgefertigten Wärmedämmelements sind die Bewehrungsstäbe in Hülsen eingesetzt, die in den druckkraftübertragenden Werkstoff eingebettet sind. Die Hülsen dienen als verlorene Schalung zum nachträglichen Einstecken der Bewehrungsstäbe. Bewehrungsstäbe aus Faserverbundwerkstoff können zwar sehr hohe Zugkräfte übertragen, im Gegensatz dazu können aber schon deutlich geringere Drucckräfte zur Zerstörung solcher Bewehrungsstäbe führen. Durch den Einsatz von Hülsen wird eine formschlüssige Einbettung der Bewehrungsstäbe in den umgebenden Beton, die normalerweise bei Betonbewehrungen beabsichtigt und nahezu unerlässlich ist, vermieden. Kommt es zu einer Druckkraftbelastung, beispielsweise durch Setzungen im Gebäude, so können sich die Bewehrungsstäbe in ihren Hülsen elastisch verformen, bis die Druckkräfte vollständig durch den umgebenden druckkraftstabilen Leichtbeton-Dämmkörper abgetragen werden, so dass eine schädliche Druckkraftbelastung auf die Bewehrungsstäbe vermieden wird.In a preferred embodiment of such a prefabricated thermal insulation element, the reinforcing bars are inserted in sleeves which are embedded in the material transmitting the pressure force. The sleeves serve as lost formwork for the subsequent insertion of the reinforcement bars. Reinforcing bars made of fiber composite material can transmit very high tensile forces, but in contrast, significantly lower pressure forces can lead to the destruction of such reinforcing bars. The use of sleeves prevents form-fitting embedding of the reinforcing bars in the surrounding concrete, which is normally intended for concrete reinforcement and is almost essential. If there is a compressive load, for example due to subsidence in the building, the reinforcement bars can deform elastically in their sleeves until the compressive forces are completely absorbed by the surrounding compressive stable lightweight concrete insulation body, so that a damaging compressive force load on the reinforcing bars is avoided.

Die Bewehrungsstäbe in dem Wärmedämmelement sind zweckmäßigerweise als Zugkraftbewehrung ausgelegt, da die Anbindung zwischen Stütze und darüber befindlicher Geschossdecke statisch als Gelenkverbindung betrachtet werden kann. Somit wird durch den Einsatz der Hülsen zur verbindungsfreien Durchführung einer Faserverbundwerkstoffbewehrung eine den statischen Anforderungen entsprechende, stabile und dauerhafte Verbindung bzw. monolithische Anbindung zwischen Stütze und Geschossdecke bei durchgehender Bewehrung erreicht.The reinforcing bars in the thermal insulation element are expediently designed as tensile reinforcement, since the connection between the support and the floor slab above it can be considered statically as an articulated connection. Thus, by using the sleeves for the connection-free implementation of a fiber composite reinforcement, a stable and permanent connection or monolithic connection between the column and the floor slab in accordance with the structural requirements is achieved with continuous reinforcement.

Bei einer vorteilhaften Weiterbildung des Wärmedämmelement weist dieses zumindest eine sich von der oberen bis zur unteren Auflagefläche erstreckende Durchgangsöffnung auf, welche zum Durchführen eines Verdichtungsgerätes für Frischbeton ausgebildet ist. Die Durchgangsöffnung dient somit als Eintauchstelle für einen Innenrüttler. Vorzugsweise ist die Durchgangsöffnung in dem Wärmedämmelement in etwa mittig angeordnet.In an advantageous development of the thermal insulation element, it has at least one through opening which extends from the upper to the lower contact surface and is designed to carry out a compacting device for fresh concrete. The through opening thus serves as an immersion point for an internal vibrator. The passage opening is preferably arranged approximately centrally in the thermal insulation element.

Dem liegt die Erkenntnis zugrunde, dass beim Einbau und anschließendem Betonieren gegen die Unterseite des Wärmedämmelements eine unzureichende und undefinierte Verdichtung des Ortbetons unterhalb des Wärmedämmelements auftreten kann, die zudem stark von der Zusammensetzung des verwendeten Ortbetons abhängt. Nach Erkenntnis der Erfindung können an der Unterseite des Wärmedämmelements beim Abbinden des Ortbetons zwei Prozesse dazu führen, dass die lastabtragende Anbindung des Wärmedämmelements an das darunter liegende Gebäudeteil mangelhaft ist. Einerseits können aufsteigende Luftblasen, sogenannte Verdichtungsporen, an der Unterseite des Wärmedämmelements zu Lunkerbildung führen und so für eine statisch unzureichende Anbindung sorgen. Ein noch kritischerer Prozess stellt eine Sedimentation im noch nicht abgebundenen Ortbeton dar, bei dem schwerere Zuschlagstoffe langsam absinken und an der Betonoberfläche Wasser bzw. Zementleim abgesondert wird. Nach dem Abbinden und Austrocknen des Betonteils können in diesem Fall großflächige Hohlstellen zwischen dem Wärmedämmelement und dem darunter befindlichen Betonteil verbleiben, die von außen nicht sichtbar sind.This is based on the knowledge that when installing and then concreting against the underside of the thermal insulation element, inadequate and undefined compression of the in-situ concrete below the thermal insulation element can occur, which also depends heavily on the composition of the in-situ concrete used. According to the knowledge of the invention, two processes on the underside of the thermal insulation element when the in-situ concrete sets can result in the load-bearing connection of the thermal insulation element to the underlying building part being defective. On the one hand, rising air bubbles, so-called compression pores, can lead to the formation of voids on the underside of the thermal insulation element and thus ensure a structurally inadequate connection. An even more critical process is sedimentation in in-situ concrete that has not yet set, in which heavier aggregates slowly sink and water or cement paste is separated on the concrete surface. In this case, after the concrete part has set and dried out Large hollow spaces remain between the thermal insulation element and the concrete part underneath, which are not visible from the outside.

Um dies zu vermeiden wird in dem Wärmedämmelement eine Durchgangsöffnung vorgesehen, durch welche ein Verdichtungsgerät wie etwa die Rüttelflasche eines Betonrüttlers hindurchgeführt werden kann, um nach dem Einbau des Wärmedämmelementes den darunter befindlichen Ortbeton zu verdichten bzw. nachzuverdichten. Durch diese Verdichtung bzw. Nachverdichtung können die beschriebenen Probleme vermieden und eine zuverlässige Anbindung des Wärmedämmelementes an das darunter befindliche Gebäudeteil erreicht werden. Die Durchgangsöffnung kann zusätzlich auch als Einfüllöffnung für den Ortbeton verwendet werden.In order to avoid this, a passage opening is provided in the thermal insulation element, through which a compaction device such as the vibrating bottle of a concrete vibrator can be passed, in order to compact or recompact the in-situ concrete underneath after the thermal insulation element has been installed. By means of this compression or post-compression, the problems described can be avoided and a reliable connection of the thermal insulation element to the part of the building located below can be achieved. The through opening can also be used as a filling opening for in-situ concrete.

Ein weiterer Vorteil der vorliegenden Erfindung ergibt sich, wenn die untere Auflagefläche des Wärmedämmelements eine Oberfläche mit dreidimensionalem Profil aufweist. Durch geeignete Profilierung der Oberfläche lassen sich Defekte in der Verbindung zwischen Wärmedämmelement und dem darunterliegenden frisch betonierten Gebäudeteil weiter vermindern. So kann die Oberfläche beispielsweise Erhöhungen und Vertiefungen aufweisen sowie geneigte Flächen, Furchen, oder ähnliches, so dass im Falle auftretender Sedimentation das sich absetzende Oberflächenwasser in unkritische Bereiche ablaufen bzw. sich dort absetzen kann, während in für die statische Anbindung kritischen Bereichen des Wärmedämmelements eine innige Verbindung zum Frischbeton des darunterliegenden Gebäudeteils entsteht.A further advantage of the present invention results if the lower contact surface of the thermal insulation element has a surface with a three-dimensional profile. Suitable profiling of the surface further reduces defects in the connection between the thermal insulation element and the freshly concreted part of the building underneath. For example, the surface may have elevations and depressions as well as inclined surfaces, furrows, or the like, so that in the event of sedimentation, the surface water that settles out can run or settle in non-critical areas, while one in areas of the thermal insulation element that are critical for the static connection there is an intimate connection to the fresh concrete of the part of the building below.

Als besonders bevorzugt wird in diesem Zusammenhang eine Ausführungsform angesehen, bei der die untere Auflagefläche eine trichterförmig in Richtung der Durchgangsöffnung geneigte oder gewölbte Oberfläche aufweist. Hierdurch wird erreicht, dass im Falle auftretender Sedimentation das sich absetzende Oberflächenwasser in Richtung der Durchgangsöffnung verdrängt wird bzw. sich nur in diesem Bereich bildet, der zur Statik der Konstruktion ohnehin nicht beiträgt.In this context, an embodiment is considered to be particularly preferred in which the lower contact surface has a funnel-shaped or curved surface in the direction of the through opening. This ensures that, in the event of sedimentation, the surface water that settles out is displaced in the direction of the passage opening or only forms in this area, which does not contribute to the statics of the construction anyway.

Des Weiteren erweist es sich als vorteilhaft, wenn im Inneren des druckkraftübertragenden Wärmedämmelements ein Bewehrungsbügel angeordnet wird. Ein solcher Bewehrungsbügel in Form eines in sich geschlossenen Bewehrungsringes mit beispielsweise kreisrunder oder abgerundet mehreckiger Grundfläche, der in einer bezüglich der Auflageflächen im Wesentlichen parallelen Ebene angeordnet wird, kann die Druckkraftbeständigkeit des Wärmedämmelements weiter steigern, indem dieser die Querdehnung des Wärmedämmelements unter Druck minimiert.Furthermore, it proves to be advantageous if a reinforcement bracket is arranged in the interior of the thermal insulation element that transmits pressure. Such a reinforcement bracket in the form of a self-contained reinforcement ring with, for example, a circular or rounded polygonal base, which is arranged in a plane which is essentially parallel with respect to the bearing surfaces, can further increase the resistance to pressure of the thermal insulation element by minimizing the transverse expansion of the thermal insulation element under pressure.

Neben der Durchgangsöffnung für das Rüttelwerkzeug können in dem Wärmedämmelement weitere Vergussöffnungen vorgesehen sein, über die erforderlichenfalls nach Aushärten des Betons zusätzlich Vergussmasse, wie etwa Vergussmörtel eingefüllt werden kann, um etwaige noch bestehende Hohlräume zwischen dem darunterliegenden Gebäudeteil und dem Wärmedämmelement auszufüllen. Vorzugsweise sind die betreffenden Vergussöffnungen mittels herausnehmbarer Blindstopfen verschlossen, so dass diese beim Einbau des Wärmedämmelementes nicht von Ortbeton verstopft werden können.In addition to the through opening for the vibrating tool, further potting openings can be provided in the thermal insulation element, via which additional potting compound, such as potting mortar, can be filled if necessary after the concrete has hardened, in order to fill any cavities that still exist between the part of the building underneath and the thermal insulation element. The potting openings in question are preferably closed by means of removable blind plugs, so that they cannot be blocked by in-situ concrete when the thermal insulation element is installed.

Weiterhin ist im Rahmen der vorliegenden Erfindung bevorzugt, dass ein Verschlussstopfen vorgesehen wird, mit dem die Durchgangsöffnung nachträglich verschlossen werden kann. Hierbei ist weiter bevorzugt, dass der Verschlussstopfen aus einem wärmedämmenden, aber nichttragenden Material besteht, wie beispielsweise extrudiertem Polystyrol. Außerdem kann ein solcher Verschlussstopfen konisch geformt sein, so dass er dichtend in die, vorzugsweise ebenfalls konisch nach unten hin zulaufende Durchgangsöffnung eingesetzt werden kann. Somit ist sichergestellt, dass nach dem Einbau des Wärmedämmelementes keine Wärmebrücke durch die Durchgangsöffnung bestehen bleibt, beispielsweise aufgrund in die Durchgangsöffnung eintretenden Ortbetons beim Betonieren der darüber liegenden Geschossdecke.Furthermore, it is preferred within the scope of the present invention that a sealing plug is provided, with which the through opening can be subsequently closed. It is further preferred here that the sealing plug consists of a heat-insulating but non-load-bearing material, such as extruded polystyrene. In addition, such a stopper can be conically shaped so that it can be inserted sealingly into the through opening, which preferably also tapers downward. This ensures that after the installation of the thermal insulation element, no thermal bridge remains through the through opening, for example due to in-situ concrete entering the through opening when concreting the floor above.

Um ein Durchführen eines Rüttelwerkzeuges, beispielsweise der Rüttelflasche eines Betonrüttlers, zu ermöglichen, besitzt die Durchgangsöffnung ein Öffnungsmaß, dass groß genug ist, um das Durchführen baustellenüblicher Rüttelflaschen zu ermöglichen, insbesondere von mindestens 50 mm, vorzugsweise zwischen 60 und 80 mm.In order to enable a vibrating tool to be carried out, for example the vibrating bottle of a concrete vibrator, the through opening has an opening dimension that is large enough to enable vibrating bottles customary on the construction site to be carried out, in particular at least 50 mm, preferably between 60 and 80 mm.

Bei einer alternativen Ausführungsform der Erfindung kann bei einem Wärmedämmelement der eingangs genannten Art die Aufgabe auch dadurch gelöst werden, dass anstelle von stabförmigen Bewehrungsmitteln in den Grundkörper eine oder mehrere diesen vertikal von der oberen bis zur unteren Auflagefläche durchdringende Hülsen eingesetzt sind, die als verlorene Schalung in den druckkraftübertragenden Werkstoff eingebettet sind und zum nachträglichen Einsatz bzw. zur verbindungsfreien Durchführung von sich im Wesentlichen vertikal über die obere und die untere Auflagefläche hinaus erstreckende, stabförmige Bewehrungsmitteln, insbesondere Bewehrungsstäben ausgebildet sind.In an alternative embodiment of the invention, in the case of a thermal insulation element of the type mentioned at the outset, the object can also be achieved in that instead of rod-shaped reinforcement means in the base body one or more of these vertically from the upper to the lower contact surface penetrating sleeves are used, which are embedded as lost formwork in the pressure-transmitting material and are designed for subsequent use or for the connection-free implementation of rod-shaped reinforcement means, in particular reinforcement bars, which extend essentially vertically beyond the upper and the lower contact surface.

Einerseits wird, wie bereits ausgeführt, durch den Einsatz von Hülsen eine formschlüssige Einbettung der Bewehrungsstäbe in den umgebenden Beton vermieden, so dass im Falle einer Verwendung einer Faserverbundbewehrung eine schädliche Druckkraftbelastung auf die Bewehrungsstäbe vermieden wird. Anderseits weist ein solcher Aufbau erhebliche Vorteile bei der Herstellung erfindungsgemäßer Wärmedämmelemente auf. Wird ein solches Wärmedämmelement nämlich unter Fabrikbedingungen hergestellt, so ist es einfacher, in eine Schalung für das Wärmedämmelement Hülsen einzusetzen, als Bewehrungsstäbe, die das Wärmedämmelement auf beiden Seiten durchdringen sollen und die gegenüber der Schalung abgedichtet werden müssen. Auch die Lagerung vereinfacht sich wesentlich, wenn vorgefertigte Wärmedämmelemente ohne sperrige Bewehrungsstäbe ausgeführt sind und letztere erst auf der Baustelle beim Einbau des Wärmedämmelements in eine Stütze oder Wand in die Hülsen des Wärmedämmelements eingesteckt werden. Ein solches Wärmedämmelement ermöglicht darüber hinaus auch den Einsatz von Bewehrungsstäben etwa aus nichtrostendem Stahl, sollten gerade keine Bewehrungsstäbe aus Faserverbundwerkstoff zur Hand sein oder solche aus anderweitigen Gründen nicht gewünscht sein.On the one hand, as already stated, the use of sleeves prevents the reinforcing bars from being positively embedded in the surrounding concrete, so that when a fiber composite reinforcement is used, a harmful compressive force load on the reinforcing bars is avoided. On the other hand, such a structure has considerable advantages in the production of thermal insulation elements according to the invention. If such a thermal insulation element is manufactured under factory conditions, it is easier to use sleeves in a formwork for the thermal insulation element than reinforcement bars, which are intended to penetrate the thermal insulation element on both sides and which have to be sealed against the formwork. Storage is also significantly simplified if prefabricated thermal insulation elements are designed without bulky reinforcing bars and the latter are only inserted into the sleeves of the thermal insulation element at the construction site when the thermal insulation element is installed in a support or wall. Such a thermal insulation element also enables the use of reinforcing bars made of stainless steel, for example, if no reinforcing bars made of fiber composite material are at hand or such are not desired for other reasons.

Die Erfindung betrifft darüber hinaus ein Verfahren zum Erstellen eines vertikalen Gebäudeteils aus Beton, insbesondere einer Stütze, mit einer ersten Auflagefläche zur lastabtragenden Anbindung an ein darüber oder darunter aus Beton zu erstellendes, horizontales Gebäudeteil, insbesondere einer Geschossdecke. Hierbei wird ein erster Bereich des vertikalen Gebäudeteils aus bewehrtem Normalbeton erstellt. Ein zwischen der ersten Auflagefläche und dem ersten Bereich des vertikalen Gebäudeteils liegender zweiter Bereich des vertikalen Gebäudeteils wird zumindest teilweise aus einem druckkraftübertragenden und wärmedämmenden Werkstoff, nämlich Leichtbeton, ausgebildet, um als Wärmedämmelement zur Wärmeentkopplung zwischen dem vertikalen Gebäudeteil und dem darüber oder darunter zu erstellenden horizontalen Gebäudeteil zu dienen. Außerdem werden in dem das Wärmedämmelement bildenden zweiten Bereich des vertikalen Gebäudeteils stabförmige Bewehrungsmittel, insbesondere Bewehrungsstäbe, aus einem Faserverbundwerkstoff eingebaut, die sich durch den zweiten Bereich des vertikalen Gebäudeteils im Wesentlichen vertikal bis in den daran angrenzenden ersten Bereich und über die erste Auflagefläche hinaus erstecken.The invention further relates to a method for creating a vertical part of a building made of concrete, in particular a support, with a first bearing surface for load-bearing connection to a horizontal part of the building to be created above or below it from concrete, in particular a floor slab. Here, a first area of the vertical part of the building is created from reinforced normal concrete. A second area of the vertical part of the building, located between the first bearing surface and the first area of the vertical part of the building, is at least partially formed from a pressure-transmitting and heat-insulating material, namely lightweight concrete, in order to act as a thermal insulation element for heat decoupling between the vertical part of the building and the horizontal to be created above or below it Part of the building serve. In addition, rod-shaped reinforcing means, in particular reinforcing bars, made of a fiber composite material are installed in the second area of the vertical part of the building, which extends essentially vertically through the second area of the vertical part of the building into the adjoining first area and beyond the first bearing surface.

Bei dem Wärmedämmelement kann es sich um ein vorgefertigtes Leichtbetonfertigteil handeln. In diesem Fall werden für den ersten Bereich des vertikalen Gebäudeteils eine Armierung und eine um die Armierung angeordnete Schalung erstellt. In die Schalung wird über die volle Höhe des ersten Bereichs des vertikalen Gebäudeteils frischer Normalbeton eingefüllt. Der zweite Bereich des vertikalen Gebäudeteils wird durch das vorgefertigte Wärmedämmelement gebildet, welches in die Schalung eingesetzt wird.The thermal insulation element can be a prefabricated lightweight precast element. In this case, reinforcement and formwork arranged around the reinforcement are created for the first area of the vertical part of the building. Fresh formwork concrete is poured into the formwork over the full height of the first area of the vertical part of the building. The second area of the vertical part of the building is formed by the prefabricated thermal insulation element, which is inserted into the formwork.

Hierbei kann der erste Bereich entweder vor dem Einsetzen des Wärmedämmelements betoniert werden, oder das Wärmedämmelement kann auch vor dem Betonieren des ersten Bereichs in die Schalung eingesetzt werden.The first area can either be concreted before the thermal insulation element is inserted, or the thermal insulation element can also be inserted into the formwork before the first area is concreted.

Im ersten Fall wird zuerst der erste, untere Bereich betoniert, indem Ortbeton in die Schalung eingefüllt und verdichtet wird. Dann wird in einem zweiten Schritt das Wärmedämmelement in die Schalung eingesetzt. Hierbei werden die nach unten über das Wärmedämmelement hinausragenden Bewehrungsstäbe in den frischen Ortbeton des ersten Bereichs eingedrückt. Anschließend erfolgt vorzugsweise ein Nachverdichten des Betons mittels eines Verdichtungsgerätes, welches durch eine Durchgangsöffnung in dem Wärmedämmelement hindurch geführt wird. Vorzugsweise kann die Durchgangsöffnung anschließend mittels eines Verschlussstopfens verschlossen werden. Danach kann oberhalb des Wärmedämmelements in an sich üblicher Weise das darüber liegende horizontale Gebäudeteil, zum Beispiel eine Geschossdecke, erstellt werden.In the first case, the first, lower area is first concreted by pouring in-situ concrete into the formwork and compacting it. Then, in a second step, the thermal insulation element is inserted into the formwork. The reinforcing bars that protrude downwards beyond the thermal insulation element are pressed into the fresh in-situ concrete of the first area. Subsequently, the concrete is preferably re-compacted by means of a compacting device which is passed through a through opening in the thermal insulation element. The passage opening can then preferably be closed by means of a sealing plug. Then the horizontal part of the building above it, for example a floor ceiling, can be created above the thermal insulation element in a conventional manner.

Durch das Nachverdichten des noch frischen Ortbetons des vertikalen Gebäudeteils nach Einsetzen des Wärmedämmelements wird sichergestellt, dass zu dessen unterer Anlagefläche inniger Kontakt besteht und Hohlräume aufgrund von Lunkerbildung und Sedimentation zwischen Wärmedämmelement und dem darunter befindlichen Gebäudeteil vermieden werden.By re-compacting the still fresh in-situ concrete of the vertical part of the building after inserting the thermal insulation element, it is ensured that there is intimate contact with its lower contact surface and cavities due to the formation of voids and sedimentation between the thermal insulation element and the part of the building below it are avoided.

Im zweiten Fall kann das Wärmedämmelement auch vor dem Verfüllen der Schalung mit Ortbeton eingebaut werden. In diesem Fall kann eine im Wärmedämmelement vorgesehene Durchgangsöffnung zunächst als Einfüllöffnung zum Einfüllen des Ortbetons verwendet werden. Anschließend erfolgt eine Verdichtung des eingefüllten Betons, indem durch die Durchgangsöffnung das Rüttelwerkzeug in den frischen Ortbeton eingeführt wird.In the second case, the thermal insulation element can also be installed before the formwork is filled with in-situ concrete. In this case, a passage opening provided in the thermal insulation element can initially be used as a filling opening for filling the in-situ concrete. The filled concrete is then compacted by inserting the vibrating tool into the fresh in-situ concrete through the through opening.

Alternativ kann das Wärmedämmelement auch vor Ort aus Ortbeton erstellt werden. Hierzu werden zunächst für den ersten, unteren Bereich des vertikalen Gebäudeteils eine Armierung und eine um die Armierung angeordnete Schalung erstellt. In einem oberen Bereich der Schalung, der dem zweiten Bereich des vertikalen Gebäudeteils entspricht, werden die Bewehrungsstäbe aus Faserverbundwerkstoff eingesetzt. In die Schalung wird bis zur Höhe des ersten Bereichs des vertikalen Gebäudeteils frischer Normalbeton eingefüllt. Anschließend wird der zweite Bereich des vertikalen Gebäudeteils erstellt, indem frischer Leichtbeton in den oberen Bereich der Schalung eingefüllt wird.Alternatively, the thermal insulation element can also be created on site from in-situ concrete. For this purpose, reinforcement and formwork arranged around the reinforcement are first created for the first, lower area of the vertical part of the building. The reinforcement bars made of fiber composite material are used in an upper area of the formwork, which corresponds to the second area of the vertical part of the building. Fresh formwork concrete is poured into the formwork up to the height of the first area of the vertical part of the building. The second area of the vertical part of the building is then created by pouring fresh lightweight concrete into the upper area of the formwork.

Die Bewehrungsstäbe im oberen Bereich können bereits vor dem Einfüllen des Ortbetons in den unteren Bereich der Schalung eingesetzt und mit der Armierung des unteren Bereichs verbunden werden. Alternativ können die Bewehrungsstäbe aber auch erst nach dem Einfüllen und Verdichten des Ortbetons in den unteren Schalungsbereich in den noch frischen Ortbeton eingedrückt werden. Mit Einfüllen des frischen Leichtbetons kann bis zum Abbinden des Ortbetons im unteren Schalungsbereich gewartet werden. Bei fachgerechter Oberflächenbehandlung kann der Leichtbeton auch noch bei einem vollständig ausgehärteten Ortbeton eingebaut werden.The reinforcement bars in the upper area can be inserted into the lower area of the formwork before the in-situ concrete is poured in and connected to the reinforcement in the lower area. Alternatively, the reinforcing bars can only be pressed into the still fresh in-situ concrete after the in-situ concrete has been filled and compacted into the lower formwork area. When filling in the fresh lightweight concrete, you can wait until the in-situ concrete has set in the lower formwork area. With proper surface treatment, the lightweight concrete can also be installed with fully hardened in-situ concrete.

Als horizontales Gebäudeteil, also z.B. als eine Geschossdecke, soll im Rahmen der vorliegenden Erfindung auch ein solches verstanden werden, bei dem angrenzend an das vertikale Gebäudeteil, also z.B. eine Stütze, ein Versatz vorgesehen ist. So kann z.B. eine Stütze bis kurz unterhalb einer darüber liegenden Geschossdecke erstellt werden. An die noch an der Stütze belassene Schalung kann dann die Schalung für die Geschossdecke angeschlossen und diese aus Ortbeton erstellt werden, so dass ein verbliebener geringfügiger Freiraum oberhalb der Stütze innerhalb deren Schalung ebenfalls mit Ortbeton der Geschossdecke verfüllt wird und einen Versatz bildet.In the context of the present invention, a horizontal part of the building, that is to say, for example, a floor ceiling, is also to be understood as one in which an offset is provided adjacent to the vertical part of the building, for example a support. For example, a column can be created up to just below a floor slab above it. The formwork for the floor slab can then be connected to the formwork still left on the support and this can be made of in-situ concrete, leaving a slight free space above the column inside the formwork is also filled with in-situ concrete of the floor slab and forms an offset.

Weitere Merkmale, Vorteile und Eigenschaften der vorliegenden Erfindung werden im Folgenden anhand der Figuren und anhand von Ausführungsbeispielen erläutert. Dabei zeigt:

Fig. 1
einen Schnitt durch eine aus Beton erstellte Stütze und der darüber und darunter befindlichen Gebäudeteile,
Fig. 2
eine isometrische Ansicht eines erfindungsgemäßen Wärmedämmelements aus einem druckkraftübertragenden Werkstoff, nämlich Leichtbeton,
Fig. 3
eine Draufsicht auf das Wärmedämmelement aus Fig. 2,
Fig. 4
einen vertikalen Schnitt durch das Wärmedämmelement entlang der Schnittlinie C-C aus Fig. 3,
Fig. 5
eine Weiterbildung des Wärmedämmelements aus Fig. 2 in einer Seitenansicht,
Fig. 6
einen Querschnitt durch die Stütze aus Figur 1,
Fig. 7
die Armierung der Stütze aus Figur 1 mit dem Wärmedämmelement vor dem Verfüllen der Schalung der Stütze mit Ortbeton,
Fig. 8
die mit einer Schalung versehene Stütze nach dem Verfüllen mit Beton,
Fig. 9
ein vergrößerter Ausschnitt aus Figur 8 und
Fig. 10
ein alternatives Ausführungsbeispiel mit im Fußbereich einer Stütze angeordnetem Wärmedämmelement.
Further features, advantages and properties of the present invention are explained below on the basis of the figures and on the basis of exemplary embodiments. It shows:
Fig. 1
a section through a column made of concrete and the parts of the building above and below it,
Fig. 2
2 shows an isometric view of a thermal insulation element according to the invention made of a material that transmits pressure, namely lightweight concrete,
Fig. 3
a plan view of the thermal insulation element Fig. 2 ,
Fig. 4
a vertical section through the thermal insulation element along the section line CC Fig. 3 ,
Fig. 5
advanced training in thermal insulation Fig. 2 in a side view,
Fig. 6
a cross section through the support Figure 1 ,
Fig. 7
the reinforcement of the support Figure 1 with the thermal insulation element before filling the formwork of the column with in-situ concrete,
Fig. 8
the column with formwork after filling with concrete,
Fig. 9
an enlarged section from Figure 8 and
Fig. 10
an alternative embodiment with a thermal insulation element arranged in the foot region of a support.

Bei einem ersten, in Figur 1 gezeigten Ausführungsbeispiel ist eine Stütze 1 vorgesehen, die mit einer Bodenplatte 2 und einer Geschossdecke 3 monolithisch verbunden ist. Der obere Bereich 4 der Stütze besteht aus Leichtbeton, während der untere Bereich 1' aus normalem Ortbeton (Normalbeton) besteht. Die Stütze 1 kann beispielsweise eine lichte Höhe von 220 cm haben. Auf den oberen Bereich entfallen davon 10 cm. Unterhalb der Geschossdecke ist eine Wärmedämmschicht 5 aus einem hochdämmenden Werkstoff aufgebracht, deren Stärke im Wesentlichen zumindest der Höhe des oberen Bereichs 4 der Stütze 1 entspricht. Als Wärmedämmschicht 6 können beispielsweise Mineraldämmplatten oder Holzwolle-Mehrschichtplatten eingebaut werden.At a first, in Figure 1 shown embodiment, a support 1 is provided, which is monolithically connected to a base plate 2 and a floor 3. The upper area 4 of the prop is made of lightweight concrete while the lower area 1 'consists of normal in-situ concrete (normal concrete). The support 1 can have a clear height of 220 cm, for example. The upper area accounts for 10 cm. A thermal insulation layer 5 made of a highly insulating material is applied below the floor ceiling, the thickness of which essentially corresponds to at least the height of the upper region 4 of the support 1. Mineral insulation boards or wood-wool multilayer boards can be installed as the thermal insulation layer 6, for example.

Um die in Figur 1 gezeigten Gebäudeteile zu erstellen, wird zunächst in an sich bekannter Weise die Bodenplatte 2 mit einer Armierung 2' betoniert. Zum Anschluss der Stütze 1 an die Bodenplatte ragen von der horizontalen Armierung 2' der Bodenplatte 2 Bewehrungsstäbe 2" senkrecht nach oben. Mit diesen wird dann eine im Inneren der Stütze 1 angeordnete Armierung 6 aus Baustahl verbunden. Die Armierung 6 umfasst vier senkrechte Bewehrungsstäbe 6' und eine Vielzahl in vertikaler Richtung beabstandet angeordneter Bewehrungsbügel 6" mit in etwa quadratischem Grundriss. Im oberen Bereich 4 werden anstelle von Bewehrungsstäben 6' aus Baustahl vier Bewehrungsstäbe 7 aus einem Faserverbundwerkstoff, wie etwa dem von der Anmelderin unter der Bezeichnung ComBAR(R) vertriebenen Faserverbundwerkstoff. Im oberen Bereich 4 umgibt die Bewehrungsstäbe 7 eine rechtwinkelig dazu angeordnete Bewehrung, beispielsweise ein Bewehrungsbügel 7' aus nichtrostendem Stahl. Die Bewehrungsstäbe 7 ragen über den oberen Bereich 4 der Stütze hinaus, um eine monolithische Anbindung an die später darüber zu erstellende Geschossdecke 3 zu ermöglichen. Außerdem ragen die Bewehrungsstäbe 7 auch von dem oberen, als Wärmedämmelement dienenden Bereich 4 der Stütze in den unteren Bereich 1' aus Normalbeton.To the in Figure 1 To create shown building parts, the base plate 2 is first concreted with a reinforcement 2 'in a conventional manner. To connect the support 1 to the floor slab, reinforcement bars 2 "protrude vertically upward from the horizontal reinforcement 2 'of the floor slab. A reinforcement 6 made of structural steel arranged inside the support 1 is then connected to this. The reinforcement 6 comprises four vertical reinforcement bars 6 'and a plurality of reinforcement brackets 6 ", spaced apart in the vertical direction, with an approximately square plan. In the upper area 4, instead of reinforcing bars 6 'made of structural steel, four reinforcing bars 7 made of a fiber composite material, such as the fiber composite material sold by the applicant under the name ComBAR (R). In the upper area 4, the reinforcement bars 7 surround a reinforcement arranged at right angles thereto, for example a reinforcement bracket 7 'made of stainless steel. The reinforcement bars 7 protrude beyond the upper area 4 of the column in order to enable a monolithic connection to the floor ceiling 3 to be created later. In addition, the reinforcing bars 7 also protrude from the upper area 4 of the support, which serves as a thermal insulation element, into the lower area 1 'made of normal concrete.

Um die Bewehrung 6 wird dann eine zu allen Seiten geschlossene Schalung (vergl. Fig. 8) für die Stütze 1 aufgestellt. In diese wird anschließend Ortbeton eingefüllt, und zwar bis zur Höhe des unteren Bereichs 1', also im Ausführungsbeispiel etwa 210 cm hoch. Der Ortbeton, ein typischer baustellenfertiger Normalbeton, wird anschließend mit einem Innenrüttler verdichtet. Wenn der Ortbeton abgebunden hat, wird in dem darüber liegenden oberen Bereich 4 in die vorhandene Schalung frischer Leichtbeton eingefüllt und ebenfalls verdichtet. Sobald dieser abgebunden hat, kann in ebenfalls an sich bekannter Weise mit der Erstellung der Geschossdecke 3 weiterverfahren werden, wobei deren Armierung 3' mit den über die obere Anlagefläche der Stütze 1 hinausragenden Bewehrungsstäben 7 aus Faserverbundwerkstoff im Ortbeton der Geschossdecke vergossen wird.A formwork that is closed on all sides (cf. Fig. 8 ) set up for support 1. In-situ concrete is then poured into this, namely up to the height of the lower region 1 ', that is to say approximately 210 cm high in the exemplary embodiment. The in-situ concrete, a typical construction-ready normal concrete, is then compacted with an internal vibrator. When the in-situ concrete has set, fresh lightweight concrete is poured into the existing formwork in the upper area 4 above and also compacted. As soon as this has set, the process of creating the floor ceiling 3 can also be carried out in a manner known per se, the reinforcement of which 3 'is cast with the reinforcing bars 7, which project beyond the upper contact surface of the support 1 and are made of fiber composite material in the in-situ concrete of the floor slab.

Alternativ dazu, den als Wärmedämmelement dienenden oberen Bereich 4 der Stütze 1 aus einem speziellen, leichten Ortbeton zu erstellen, kann auch ein vorgefertigtes Formteil als Wärmedämmelement in die Schalung der Stütze eingebaut werden. In diesem Falle wird die Schalung der Stütze entweder durch eine Öffnung in dem Formteil mit Ortbeton verfüllt, oder die Schalung wird erst bis zur Höhe des unteren Bereichs 1' mit Ortbeton verfüllt und das Formteil wird anschließend von oben in die Schalung eingesetzt und an den noch frischem Ortbeton der Stütze 1 angedrückt. Hierbei ist es zweckmäßig, durch eine mittige Öffnung in dem Formteil einen Innenrüttler einzuführen um den Ortbeton im Anschlussbereich an das Formteil nachzuverdichten.As an alternative to creating the upper area 4 of the support 1 serving as a heat insulation element from a special, lightweight in-situ concrete, a prefabricated molded part can also be installed as a heat insulation element in the formwork of the support. In this case, the formwork of the column is either filled with in-situ concrete through an opening in the molded part, or the formwork is only filled with in-situ concrete up to the height of the lower area 1 'and the molded part is then inserted into the formwork from above and to the other pressed fresh in-situ concrete of the column 1. Here, it is expedient to introduce an internal vibrator through a central opening in the molded part in order to compact the in-situ concrete in the connection area to the molded part.

In den Figuren 2 bis 4 ist ein entsprechendes, ein solches Formteil umfassendes Wärmedämmelement 10 gezeigt, Es dient zum monolithischen Anschluss und zur lastabtragenden Verbindung einer betonierten Stütze 1, beispielsweise im Untergeschoss eines Gebäudes, an die darüber liegende Kellerdecke 3. Das Wärmedämmelement 10 besitzt ein quaderförmiges Grundelement 11 mit einer Oberseite 12 und einer Unterseite 13, die jeweils als Auflageflächen für die Kellerdecke bzw. den Abschluss der diese tragenden Stütze 1 dient. In der Mitte des quaderförmigen Wärmedämmelements 10 befindet sich eine zentrale Durchgangsöffnung 14, die sich von der Oberseite 12 bis zur Unterseite 13 des Wärmedämmelements 11 erstreckt. Durch den Grundkörper 11 ragen vier Bewehrungsstäbe 15 aus einem Faserverbundwerkstoff. Die Unterseite 13 des Grundkörpers 11 weist eine dreidimensionale Profilierung in Form einer sich trichterförmig in Richtung der Durchgangsöffnung 14 erstreckenden Ausnehmung 16 auf. Im Inneren des Grundkörpers 11 ist außerdem ein Bewehrungsbügel 17 eingebettet, der um die Bewehrungsstäbe 15 herum liegt und dem Wärmedämmelement 10 zusätzliche Stabilität verleiht.In the Figures 2 to 4 A corresponding thermal insulation element 10 comprising such a molded part is shown. It is used for the monolithic connection and for the load-bearing connection of a concrete support 1, for example in the basement of a building, to the basement ceiling 3 above. The thermal insulation element 10 has a cuboid base element 11 with an upper side 12 and an underside 13, each of which serves as a support surface for the basement ceiling or the end of the support 1 supporting it. In the middle of the cuboid thermal insulation element 10 there is a central through opening 14, which extends from the upper side 12 to the lower side 13 of the thermal insulation element 11. Four reinforcing bars 15 made of a fiber composite material protrude through the base body 11. The underside 13 of the base body 11 has a three-dimensional profile in the form of a funnel-shaped recess 16 extending in the direction of the through opening 14. In the interior of the base body 11, a reinforcement bracket 17 is also embedded, which lies around the reinforcement bars 15 and gives the thermal insulation element 10 additional stability.

Der Grundkörper 11 des Wärmedämmelements 10 besteht aus einem Leichtbeton, welcher einerseits eine hohe Druckstabilität, andererseits eine gute Wärmedämmeigenschaft aufweist. Gegenüber Beton mit einer Wärmeleitfähigkeit von etwa 1,6 W/(m · K) liegt die Wärmeleitfähigkeit bei Verwendung eines geeigneten Leichtbetonwerkstoffs im Bereich von etwa 0,5 W/(m · K), was einer Verbesserung um etwa 70 % entspricht. Der verwendete Leichtbeton besteht im Wesentlichen aus Blähton, Feinsanden, vorzugsweise Leichtsand, Fließmitteln sowie Stabilisatoren, die ein Entmischen durch Aufschwimmen der Körnung verhindern und die Verarbeitbarkeit verbessern.The base body 11 of the thermal insulation element 10 consists of a lightweight concrete, which on the one hand has high pressure stability and on the other hand has good thermal insulation properties. Compared to concrete with a thermal conductivity of about 1.6 W / (m · K), the thermal conductivity is when using a suitable one Light concrete material in the range of about 0.5 W / (m · K), which corresponds to an improvement of about 70%. The light concrete used essentially consists of expanded clay, fine sand, preferably light sand, flow agents and stabilizers, which prevent segregation by floating the grain and improve workability.

Die Druckfestigkeit des Wärmedämmelements ist dabei ausreichend hoch, um die statisch geplante Ausnutzung der darunter liegenden Stütze aus Ortbeton zu ermöglichen, beispielsweise entsprechend der Druckfestigkeitsklasse C25/30. Vorzugsweise entspricht die Druckfestigkeit des Wärmedämmelements aber sogar mindestens dem 1,5-fachen des statisch erforderlichen Wertes. Damit wird erreicht, dass auch im Falle von eventuellen Fehlflächen an der Verbindungsfläche zwischen Wärmedämmelement und Stütze Sicherheitsreserven vorhanden sind, so dass das Wärmedämmelement auch bei punktuell höherer Belastung statisch stabil bleibt.The compressive strength of the thermal insulation element is sufficiently high to allow the statically planned use of the underlying support made of in-situ concrete, for example in accordance with the compressive strength class C25 / 30. However, the compressive strength of the thermal insulation element preferably corresponds to at least 1.5 times the statically required value. This ensures that there are also safety reserves in the event of any missing surfaces on the connecting surface between the thermal insulation element and the support, so that the thermal insulation element remains statically stable even at points with higher loads.

Die Bewehrungsstäbe 15, die den Grundkörper 11 des Wärmedämmelements 10 in vertikaler Richtung durchqueren, dienen vor allem als Zugstäbe zur Übertragung gegebenenfalls auftretender Zugkräfte. Die Bewehrungsstäbe 15 können bei der Herstellung des Wärmedämmelements 10 in den Leichtbetonwerkstoff des quaderförmigen Grundkörpers 11 einbetoniert werden. Alternativ ist es zur einfacheren Herstellung des Wärmedämmelementes möglich, bei der Herstellung Hülsen als eine Art verlorene Schaltung zu verbauen, durch die die Bewehrungsstäbe 15 nach dem Aushärten des Leichtbetonelements 11 hindurchgesteckt werden.The reinforcement bars 15, which cross the base body 11 of the thermal insulation element 10 in the vertical direction, serve primarily as tension bars for the transmission of any tensile forces that may occur. The reinforcing bars 15 can be concreted into the lightweight concrete material of the cuboid base body 11 during the manufacture of the thermal insulation element 10. Alternatively, to simplify the manufacture of the thermal insulation element, it is possible to use sleeves during manufacture as a kind of lost circuit through which the reinforcing bars 15 are inserted after the lightweight concrete element 11 has hardened.

Die Bewehrungsstäbe 15 selbst sind im Ausführungsbeispiel aus einem Faserverbundwerkstoff, der aus in Kraftrichtung ausgerichteten Glasfasern und einer Kunstharz-Matrix besteht. Ein solcher Glasfaserbewehrungsstab weist eine extrem niedrige Wärmeleitfähigkeit auf, die bis zu 100 mal geringer ist als bei Betonstahl, und ist somit ideal für die Anwendung in dem Wärmedämmelement geeignet. Alternativ ist jedoch auch der Einsatz von Bewehrungsstäben aus nichtrostendem Stahl möglich und im Rahmen der vorliegenden Erfindung, insbesondere bei der erwähnten Verwendung von Hülsen als verlorener Schalung mit umfasst.The reinforcing bars 15 themselves are in the exemplary embodiment made of a fiber composite material which consists of glass fibers aligned in the direction of the force and a synthetic resin matrix. Such a glass fiber reinforcement bar has an extremely low thermal conductivity, which is up to 100 times lower than that of reinforcing steel, and is therefore ideally suited for use in the thermal insulation element. Alternatively, however, the use of reinforcing bars made of stainless steel is also possible and is included in the scope of the present invention, in particular when using sleeves as lost formwork.

Die Abmessungen der Bewehrungsstäbe 15 betragen, ohne dass die Erfindung hierauf beschränkt wäre, im Ausführungsbeispiel 16 mm Durchmesser bei einer Länge von 930 mm. Die Anordnung der Bewehrungsstäbe 15 bezogen auf die Grundfläche des Grundkörpers 11 ist leicht außerhalb der Hauptdiagonalen gewählt. Grund hierfür ist, dass sich bei der Stütze 1, in die die Bewehrungsstäbe 15 des Wärmedämmelements 10 verbaut werden, in den Ecken bereits die Bewehrungsstäbe 6' der Stütze 1 befinden.The dimensions of the reinforcement bars 15, without the invention being restricted to this, are 16 mm in diameter and 930 mm in length in the exemplary embodiment. The arrangement of the reinforcing bars 15 with respect to the base area of the base body 11 is chosen slightly outside the main diagonals. The reason for this is that the reinforcement rods 6 ′ of the support 1 are already located in the corners of the support 1, into which the reinforcement bars 15 of the thermal insulation element 10 are installed.

Der Bewehrungsbügel 17 besteht aus zu einem Ring gebogenem, nichtrostendem Stahl, der an der Verbindungsstelle verschweißt ist. Der Bewehrungsbügel 17 hat einen Durchmesser von etwa 200 mm bei einer Materialstärke von 8 bis 10 mm.The reinforcement bracket 17 consists of a ring bent, stainless steel, which is welded at the connection point. The reinforcement bracket 17 has a diameter of approximately 200 mm with a material thickness of 8 to 10 mm.

Der Grundkörper 11 des Wärmedämmelements 10 hat im Ausführungsbeispiel eine Kantenlänge von 250 x 250 mm. Die Höhe beträgt 100 mm und entspricht somit der üblichen Stärke einer nachträglich angebrachten Wärmedämmschicht. Die Durchgangsöffnung verläuft, wie vor allem in Fig. 4 ersichtlich, leicht konisch indem sich die Durchgangsöffnung 14 von einem oberen Maß von 70 mm zu einem unteren Maß von 65 mm hin verjüngt. Die Durchgangsöffnung kann mittels eines entsprechenden ebenfalls leicht konischen Stopfens (nicht gezeigt) verschlossen werden.The base body 11 of the thermal insulation element 10 has an edge length of 250 x 250 mm in the exemplary embodiment. The height is 100 mm and therefore corresponds to the usual thickness of a subsequently installed thermal insulation layer. The through opening runs, especially in Fig. 4 can be seen, slightly conical in that the through opening 14 tapers from an upper dimension of 70 mm to a lower dimension of 65 mm. The passage opening can be closed by means of a corresponding, likewise slightly conical plug (not shown).

Fig. 5 zeigt das Wärmedämmelement in einer Seitenansicht, wobei an dem Grundkörper 11 zusätzlich umlaufende Dichtungen 18 angebracht sind. Die Dichtungen 18 können beispielsweise als Gummilippen oder herkömmliche Dichtungsbänder ausgeführt sein. Sie dienen dazu, den Grundkörper 11 des Wärmedämmelementes 10 randdicht gegenüber einer Schalung für die darunter zu erstellende Stütze abzudichten, um ein Aufsteigen von Beton oder Eindringen von Luft zu verhindern. Fig. 5 shows the thermal insulation element in a side view, wherein additional peripheral seals 18 are attached to the base body 11. The seals 18 can be designed, for example, as rubber lips or conventional sealing tapes. They serve to seal the base body 11 of the thermal insulation element 10 so that it is edge-tight against a formwork for the support to be created underneath, in order to prevent concrete from rising or air from penetrating.

Fig. 6 zeigt die Einbausituation des Wärmedämmelementes in Bezug auf eine Stütze 1. Der gezeigt Querschnitt verläuft dabei unterhalb des Grundkörpers 11 des Wärmedämmelements 10. Die aus Ortbeton erstellte Stütze 1 weist eine Bewehrung mit vier in den Ecken der Stütze 1 angeordneten vertikalen Bewehrungsstäben 6' und einer Vielzahl horizontal um die Bewehrungsstäben 6' verlaufender in etwa quadratisch ausgeführter Bewehrungsbügel 6" auf. Die Bewehrungsstäbe 15 des Wärmedämmelements 10 befinden sich jeweils leicht versetzt neben einem der Bewehrungsstäbe 6' der Stütze 1. Die in Fig. 6 eingezeichnete Schnittlinie B-B entspricht der Schnittführung des in Fig. 7 gezeigten Längsschnittes durch die Stützenbewehrung. Fig. 6 shows the installation situation of the thermal insulation element in relation to a support 1. The cross section shown runs below the base body 11 of the thermal insulation element 10. The support 1 made of in-situ concrete has reinforcement with four vertical reinforcement bars 6 'arranged in the corners of the support 1 and a large number Reinforcement stirrups 6 "running approximately square around the reinforcement bars 6 '. The reinforcement bars 15 of the thermal insulation element 10 are each slightly offset next to one of the reinforcing bars 6 'of the support 1. The in Fig. 6 drawn line BB corresponds to the cut of the in Fig. 7 shown longitudinal section through the column reinforcement.

In Fig. 7 ist die Bewehrung der Stütze 1 zusammen mit dem Wärmedämmelement 10 in einem Längsschnitt gezeigt. Die Schnittführung entspricht hierbei der Schnittlinie B-B aus Fig. 6. Die Bewehrung der Stütze 1 besteht aus vier in den Ecken der Stütze angeordneten vertikalen Bewehrungsstäben 6', die beispielsweise aus Baustahl mit einem Stabdurchmesser von 28 mm bei einer Länge von 2000 mm ausgeführt sein können, sowie einer Mehrzahl horizontal um die Bewehrungsstäbe 6' umlaufender Bewehrungsbügel 6" mit in etwa quadratischen Grundriss. Oberhalb der Stützenbewehrung befindet sich das Wärmedämmelement 10, dessen Bewehrungsstäbe 15 nach unten hin in die Stützenbewehrung hineinragen.In Fig. 7 the reinforcement of the support 1 together with the thermal insulation element 10 is shown in a longitudinal section. The cut corresponds to the cut line BB Fig. 6 . The reinforcement of the support 1 consists of four vertical reinforcement bars 6 'arranged in the corners of the support, which can be made, for example, of structural steel with a bar diameter of 28 mm and a length of 2000 mm, and a plurality of reinforcement brackets running horizontally around the reinforcement bars 6' 6 "with an approximately square plan. Above the column reinforcement is the thermal insulation element 10, the reinforcement bars 15 of which project downward into the column reinforcement.

Der Bewehrungsgehalt der Stütze 1 beträgt etwa 3-4 %. Er trägt bei einem typischen Wärmeleitwert des Baustahls von ca. 50 W/(m · K) gegenüber Beton mit 1,6 W/(m · K) in etwa die Hälfte zur Gesamtwärmeleitfähigkeit der Stütze bei. Durch die Verwendung der Kombination aus Leichtbeton und einer Glasfaserbewehrung im Bereich des Wärmedämmelements 10 kann die Wärmeübertragung zwischen Stütze 1 und Geschossdecke 3 somit um ca. 90% gegenüber einem direkten monolithisch Anschluss gesenkt werden.The reinforcement content of column 1 is approximately 3-4%. With a typical thermal conductivity of the structural steel of approx. 50 W / (m · K) compared to concrete with 1.6 W / (m · K), it contributes roughly half to the total thermal conductivity of the column. By using the combination of lightweight concrete and glass fiber reinforcement in the area of the thermal insulation element 10, the heat transfer between the column 1 and the floor ceiling 3 can thus be reduced by approximately 90% compared to a direct monolithic connection.

Zum Erstellen der Stütze 1 wird, wie in Figur 8 in der oberen Hälfte dargestellt, um die Stützenbewehrung 6', 6" eine Schalung 19 aufgebaut und der untere Bereich 1' mit Ortbeton verfüllt. Dieser wird in herkömmlicher Weise mit einem Innenrüttler verdichtet. Anschließend wird das Wärmedämmelement 10 von oben in die Schalung 19 eingesetzt und dessen Bewehrungsstäbe 15 in den noch flüssigen Ortbeton eingedrückt. Der Grundkörper 11 wird an den frischen Ortbeton angedrückt, bis der flüssige Beton in der Durchgangsöffnung 14 leicht nach oben steigt, so dass sichergestellt ist, dass sich zwischen dem Beton der Stütze 1 und dem Grundkörper 11 des Wärmedämmelements 10 kein Luftspalt mehr befindet. Anschließend wird durch die Durchgangsöffnung 14 die Rüttelflasche eines Betonrüttlers in den darunter befindlichen frischen Ortbeton hindurchgeführt, um diesen nochmals nachzuverdichten. Beim Einführen der Rüttelflasche kann das Wärmedämmelement 10 um das Volumen des von der Rüttelflasche verdrängten Betons leicht angehoben werden. Beim Herausziehen der Rüttelflasche wird deshalb darauf geachtet, dass das Wärmedämmelement 10 um dieses Volumen wieder absinkt indem das Wärmedämmelement 10 beim Herausziehen des Rüttlers entsprechend heruntergedrückt wird. Die umlaufende Dichtung 18 verhindert hierbei, dass Luft zwischen Schalung und Wärmedämmelement eindringen kann oder das Wärmedämmelement 10 in der Schalung verkippen kann. In Figur 9 ist der als Detail D bezeichnete Ausschnitt um eine der Dichtungen 18 nochmals vergrößert herausgezeichnet.To create the column 1, as in Figure 8 shown in the upper half, a formwork 19 is built around the column reinforcement 6 ', 6 "and the lower area 1' is filled with in-situ concrete. This is compacted in a conventional manner with an internal vibrator. The thermal insulation element 10 is then inserted into the formwork 19 from above and its reinforcing bars 15 pressed into the still liquid in-situ concrete The base body 11 is pressed against the fresh in-situ concrete until the liquid concrete rises slightly upwards in the through opening 14, so that it is ensured that the column 1 and the base body are between the concrete 11 of the thermal insulation element 10 is no longer present, then the vibrating bottle of a concrete vibrator is passed through the passage opening 14 into the fresh in-situ concrete located below, in order to compact it again the thermal insulation element 10 can be slightly raised by the volume of the concrete displaced by the vibrating bottle. When pulling out the vibrating bottle, care is therefore taken to ensure that the thermal insulation element 10 drops again by this volume by the thermal insulation element 10 being pressed down accordingly when the vibrator is pulled out. The circumferential seal 18 prevents air from entering between the formwork and the thermal insulation element or the thermal insulation element 10 from tilting in the formwork. In Figure 9 the detail designated as detail D is drawn out enlarged again by one of the seals 18.

Das Nachverdichten des noch flüssigen Frischbetons durch die Durchgangsöffnung 14 des Wärmedämmelements 10 hindurch führt zu einer innigen Verbindung des Wärmedämmelements 10 mit dem darunter befindlichen Ortbeton. Insbesondere werden hohle Stellen aufgrund von Lunkerbildung oder Sedimentation im frischen Beton zwischen Wärmedämmelement 10 und der Stütze 1 verhindert. Hierzu trägt vor allem auch die konisch verlaufende Profilierung an der Unterseite des Grundkörpers 11 bei, aufgrund der sich aufsteigende Luftblasen bzw. an der Oberfläche abgesondertes Zementwasser hauptsächlich im mittigen Bereich der Durchgangsöffnung 14 sammeln.The post-compression of the still liquid fresh concrete through the through opening 14 of the heat insulation element 10 leads to an intimate connection of the heat insulation element 10 with the in-situ concrete located underneath. In particular, hollow places due to the formation of voids or sedimentation in the fresh concrete between the thermal insulation element 10 and the support 1 are prevented. The conical profile on the underside of the base body 11, in particular, contributes to this, due to the rising air bubbles or cement water separated on the surface, collecting mainly in the central region of the passage opening 14.

Nach dem Betonieren der Stütze und dem Nachverdichten durch die Durchgangsöffnung 14 hindurch werden etwaige in der Durchgangsöffnung 14 verbliebene Betonreste entfernt. Anschließend wird die Durchgangsöffnung 14 mittels eines konischen Stopfens (nicht gezeigt) verschlossen. Der Verschlussstopfen kann aus einem Dämmmaterial wie etwa Polystyrol o.ä. bestehen und dient dazu, das Eindringen von Ortbeton in die Durchgangsöffnung 14 zu verhindern, wenn anschließend die Geschossdecke 3 erstellt wird. Auf diese Weise werden etwaige Wärmebrücken aufgrund einer Betonfüllung in der Durchgangsöffnung 14 vermieden. Anschließend wird oberhalb des Wärmedämmelements 10 in an sich gewohnter Weise die darüber liegende Geschossdecke 3 erstellt.After the support has been concreted and compacted through the through opening 14, any concrete residues remaining in the through opening 14 are removed. The passage opening 14 is then closed by means of a conical stopper (not shown). The sealing plug can be made of an insulating material such as polystyrene or the like. exist and serves to prevent the penetration of in-situ concrete into the through opening 14 when the floor 3 is subsequently created. In this way, any thermal bridges due to a concrete filling in the through opening 14 are avoided. Subsequently, the storey ceiling 3 above is created above the thermal insulation element 10 in a conventional manner.

Außer zum Verdichten bzw. Nachverdichten kann die Durchgangsöffnung 14 darüber hinaus auch als Einfüllöffnung zum Befüllen der Schalung für die Stütze 1 mit Ortbeton verwendet werden. In diesem Fall wird das Wärmedämmelement in die noch leere Schalung der Stütze 1 eingesetzt und gegebenenfalls die Bewehrungsstäbe 15 mit der Stützenbewehrung verbunden. Anschließend wird Frischbeton durch die Durchgangsöffnung 14 des Wärmedämmelements in die Schalung eingefüllt und anschließend verdichtet, indem durch die Durchgangsöffnung 14 eine Rüttelflasche eines Innenrüttlers eingeführt wird. Auch hier erfolgt also ein Verdichten des Frischbetons gegen die Unterseite des Wärmdämmelementes von oben durch die Durchgangsöffnung 14 hindurch. Alternativ kann die Stütze 1 auch aus selbstverdichtendem Beton erstellt werden oder das Verdichten der Stütze 1 kann durch einen Außenrüttler erfolgen. In den beiden letztgenannten Fällen dient die Durchgangsöffnung 14 somit lediglich als Einfüllöffnung.In addition to compacting or post-compacting, the passage opening 14 can also be used as a filling opening for filling the formwork for the support 1 with in-situ concrete. In this case, the thermal insulation element is inserted into the still empty formwork of the column 1 and, if necessary, the reinforcement bars 15 are connected to the column reinforcement. Then will Fresh concrete is poured into the formwork through the passage opening 14 of the thermal insulation element and then compacted by inserting a vibrating bottle of an internal vibrator through the passage opening 14. Here too, the fresh concrete is compacted against the underside of the thermal insulation element from above through the passage opening 14. Alternatively, the support 1 can also be made from self-compacting concrete, or the support 1 can be compacted by an external vibrator. In the latter two cases, the through opening 14 thus serves only as a filling opening.

Neben einem Einbau im oberen Bereich einer Stütze ist auch der Einbau im Fußbereich einer Stütze denkbar. Eine solche Anordnung ist in einem alternativen Ausführungsbeispiel in Figur 10 gezeigt. Die Stütze 1 ist hier zwischen der Bodenplatte 2 und der oberen Geschossdecke 3 angeordnet. Im Fußbereich der Stütze 1 ist ein erfindungsgemäßes Wärmedämmelement 10 verbaut, dessen Bewehrungsstäbe 15 von der Bodenplatte 2 bis in den oberen Bereich der Stütze 1 hineinragen und dort mit der Bewehrung 6 der Stütze 1 verbunden sind. Eine Wärmedämmschicht 5 aus Dämmplatten an sich bekannter Art ist in diesem Fall auf der Oberseite der Bodenplatte 2 angebracht.In addition to installation in the upper area of a support, installation in the foot area of a support is also conceivable. Such an arrangement is shown in an alternative embodiment in Figure 10 shown. The support 1 is arranged here between the base plate 2 and the upper floor 3. A thermal insulation element 10 according to the invention is installed in the foot region of the support 1, the reinforcing bars 15 of which protrude from the base plate 2 into the upper region of the support 1 and are connected there to the reinforcement 6 of the support 1. In this case, a heat insulation layer 5 made of insulation boards of a known type is attached to the top of the floor panel 2.

Die Herstellung kann dergestalt erfolgen, indem das Wärmedämmelement 10 vor dem Betonieren der Bodenplatte 2 mit deren Bewehrung 2' verbunden wird. Die Bodenplatte 2 wird dann aus Ortbeton gegossen, so dass der Beton von unten gegen das Wärmedämmelement 10 steigt. Um hier eine gute und zwischenraumfreie Verbindung zu erhalten, kann der Ortbeton wiederum durch die mittige Durchgangsöffnung hindurch mit einem Rüttelwerkzeug verdichtet werden. Nach dem Aushärten wird die Bewehrung 6 der Stütze erstellt und mit den Bewehrungsstäben 15 des Wärmedämmelements verbunden. Um das Wärmedämmelement 10 herum wird anschließend die Schalung für die Stütze 1 aufgebaut und anschließend die Stütze 1 in herkömmlicher Weise aus Ortbeton gegossen und verdichtet.The production can take place in such a way that the thermal insulation element 10 is connected to the reinforcement 2 'before the base plate 2 is concreted. The base plate 2 is then poured from in-situ concrete, so that the concrete rises against the thermal insulation element 10 from below. In order to obtain a good and space-free connection here, the in-situ concrete can in turn be compacted through the central through opening with a vibrating tool. After curing, the reinforcement 6 of the support is created and connected to the reinforcement bars 15 of the thermal insulation element. The formwork for the support 1 is then built up around the thermal insulation element 10 and then the support 1 is poured and compacted from in-situ concrete in a conventional manner.

Das erfindungsgemäße Wärmedämmelement selbst kann in seinen Abmessungen an das darunter und/oder darüber befindliche Bauteil angepasst sein. Insbesondere können Wärmedämmelemente an die typischen Querschnitte von Stützen mit rundem, quadratischem oder rechteckigem Grundriss angepasst sein.The dimensions of the thermal insulation element itself can be adapted to the component located below and / or above it. In particular, thermal insulation elements can be adapted to the typical cross sections of supports with a round, square or rectangular outline.

Typische Abmessungen von runden Stützen sind Durchmesser von 24 und 30 cm, bzw. von Stützen mit rechteckigem Grundriss 25 x 25 cm und 30 x 30 cm. Wärmedämmelemente mit einer solchen Geometrie können auch zu größeren Stützen oder Stützwänden beliebig kombiniert werden.Typical dimensions of round supports are diameters of 24 and 30 cm, or of supports with a rectangular layout of 25 x 25 cm and 30 x 30 cm. Thermal insulation elements with such a geometry can also be combined as desired to form larger supports or retaining walls.

Die vorliegend beschriebenen Wärmedämmelemente eignen sich besonders zum Einsatz bei Pendelstützen sowie Wandstützen mit geringen Einspannmomenten. Daneben ist auch der Einsatz bei tragenden Außenwänden möglich, indem die Wärmedämmelemente in geeignetem Abstand zueinander verbaut werden und gegebenenfalls verbleibende Lücken zwischen den einzelnen Wärmedämmelementen mit nicht tragendem Isolationsmaterial ausgefüllt werden.The thermal insulation elements described here are particularly suitable for use with pendulum supports and wall supports with low clamping moments. In addition, use with load-bearing outer walls is also possible, in that the heat insulation elements are installed at a suitable distance from one another and any remaining gaps between the individual heat insulation elements are filled with non-load-bearing insulation material.

Die geometrische Gestaltung der profilierten Unterseite des Wärmedämmelementes kann neben der hier gezeigten Kegelform auch in vielfältiger anderer Weise realisiert werden, beispielsweise in einer Stufenform, einer radialen Verzahnung, einem ringförmigen Wulst und vielem mehr.In addition to the conical shape shown here, the geometrical design of the profiled underside of the thermal insulation element can also be realized in a variety of other ways, for example in a step shape, a radial toothing, an annular bead and much more.

Neben einer Geometrieoptimierung der Unterseite des Wärmedämmelementes können zusätzlich bzw. alternativ kleinere Öffnungen zum nachträglichen Verguss eventuell verbliebener Hohlräume zwischen dem Wärmedämmelement und der darunter befindlichen Betonfläche vorgesehen sein. Solche Öffnungen können mittels Blindstopfen verschlossen und bei Bedarf geöffnet werden, um einen eventuell verbliebenen Hohlraum mittels einer Vergussmasse wie etwa einem Vergussmörtel oder einer Kunstharzmasse nachträglich zu verfüllen und damit eine sichere statische Anbindung herzustellen, auch wenn im Einzelfall eine fehlerhafte Ausführung bei der Erstellung der Stütze bzw. dem Einbau des Wärmedämmelementes zu einer mangelhaften Anbindung geführt hatte. Außerdem können an dem Wärmedämmelement Indikatoren vorgesehen sein, die in der Art eines Schwimmers nach oben gedrückt werden können und hierbei anzeigen, dass das Wärmedämmelement an seiner Unterseite Kontakt mit dem darunter befindlichen Ortbeton hat.In addition to optimizing the geometry of the underside of the thermal insulation element, smaller or smaller openings can additionally or alternatively be provided for subsequent grouting of any remaining cavities between the thermal insulation element and the concrete surface located underneath. Such openings can be closed with blind plugs and opened if necessary in order to subsequently fill any remaining cavity with a potting compound such as a potting mortar or a synthetic resin compound and thus establish a secure static connection, even if in individual cases a faulty execution when creating the support or the installation of the thermal insulation element had led to a poor connection. In addition, indicators can be provided on the thermal insulation element, which can be pushed up in the manner of a float and thereby indicate that the thermal insulation element has contact with the in-situ concrete underneath on its underside.

Beim Einbau des Wärmedämmelements in den bereits verdichteten, frischen Beton der darunter befindlichen Stütze, beim anschließenden Nachverdichten sowie beim Herausziehen des Verdichtungswerkzeuges aus der Durchgangsöffnung des Wärmedämmelementes kann es gegebenenfalls vorteilhaft sein, wenn auf das Wärmedämmelement eine definierte Andruckkraft ausgeübt wird.When installing the thermal insulation element in the already compacted, fresh concrete of the support underneath, during subsequent compacting and when pulling out the compacting tool from the through opening of the thermal insulation element, it may be advantageous if a defined pressure force is exerted on the thermal insulation element.

Neben Bewehrungsstäben können im Rahmen der vorliegenden Erfindung auch andere stabförmige Bewehrungsmittel zur Anbindung des Wärmedämmelements an die darüber und darunterliegenden Gebäudeteile zum Einsatz kommen, beispielsweise Gewindestangen, Dübel oder ähnliches, da wie vorstehend erläutert die Anbindung zwischen einer Stütze und einer darüber befindlichen Geschossdecke statisch als Gelenkverbindung betrachtet werden kann und die Bewehrung an dieser Stelle somit vorzugsweise eine konstruktive Funktion erfüllen muss.In addition to reinforcement bars, other rod-shaped reinforcement means for connecting the thermal insulation element to the building parts above and below can be used within the scope of the present invention, for example threaded rods, dowels or the like, since, as explained above, the connection between a support and a floor slab above it statically as a joint connection can be considered and the reinforcement at this point must therefore preferably have a constructive function.

Claims (12)

  1. Thermal insulation element for thermal decoupling between load-bearing building parts to be constructed from concrete, preferably between a vertical building part, especially a pillar (1), and a horizontal building part located thereabove or therebelow, especially a ceiling (3), wherein the thermal insulation element (10) has a main body (11) which consists at least partly of a compressive-force-transmitting material and has an upper and a lower support face (12, 13) for vertical connection to the building parts (1, 2, 3),
    characterised in that
    the main body (11) of the thermal insulation element (10) consists at least partly of a compressive-force-transmitting and thermally insulating material, namely lightweight concrete, and has one or more bar-like reinforcing means, especially reinforcing bars (15), passing through the main body (11) and extending substantially vertically beyond the upper and lower support faces (12, 13), which reinforcing means consist of a fibre-reinforced composite material.
  2. Thermal insulation element according to claim 1, wherein the reinforcing bars (15) are installed in sleeves which are embedded in the compressive-force-transmitting material.
  3. Thermal insulation element according to claim 1 or 2, which has at least one through-opening (14) extending from the upper support face (12) to the lower support face (13), which through-opening is provided to allow passage of a compaction device for wet concrete.
  4. Thermal insulation element according to claim 3, wherein the lower support face (13) has a three-dimensionally profiled surface, especially a surface that is domed or inclined funnel-like in the direction of the through-opening (14).
  5. Thermal insulation element according to claim 3 or 4, having a preferably conical closure plug for subsequent closure of the through-opening (14), the closure plug preferably consisting of a thermally insulating material.
  6. Thermal insulation element according to any one of the preceding claims, having a reinforcing hoop (17) arranged in the interior of the compressive-force-transmitting material.
  7. Thermal insulation element according to any one of the preceding claims, which has an elasticity modulus lower than the elasticity modulus of standard concrete, preferably from 30 to 70 % of the elasticity modulus of standard concrete.
  8. Thermal insulation element for thermal decoupling between load-bearing building parts to be constructed from concrete, preferably between a vertical building part, especially a pillar (1), and a horizontal building part located thereabove or therebelow, especially a ceiling or a floor slab (2, 3), wherein the thermal insulation element (10) has a main body (11) which consists at least partly of a compressive-force-transmitting material and has an upper and a lower support face (12, 13) for vertical connection to the building parts (1, 2, 3),
    characterised in that
    the main body (11) of the thermal insulation element (10) consists at least partly of a compressive-force-transmitting and thermally insulating material, namely lightweight concrete, and has one or more sleeves passing through the main body (11) vertically from the upper support face (12) to the lower support face (13), which sleeves are provided for the insertion of bar-like reinforcing means, especially reinforcing bars (15), extending substantially vertically beyond the upper and lower support faces (12, 13).
  9. Load-bearing vertical building part constructed from concrete, especially a pillar (1), having a first support face (12, 13) for load-bearing attachment to a horizontal building part to be constructed from concrete thereabove or therebelow, especially a ceiling or a floor slab (2, 3), wherein the vertical building part has a reinforcement (6, 7) having one or more bar-like reinforcing means, especially reinforcing bars (7, 15), extending substantially vertically beyond the first support face (12, 13), wherein a region (4) of the vertical building part, which region adjoins the first support face (12, 13), is in the form of a thermal insulation element (10), according to any one of the preceding claims, for thermal decoupling between the vertical building part and the horizontal building part to be constructed thereabove or therebelow, wherein the region (4) forming the thermal insulation element (10) consists at least partly of a compressive-force-transmitting and thermally insulating material, namely lightweight concrete, and wherein the reinforcing means (7', 15') extending beyond the first support face (12, 13) consist of a fibre-reinforced composite material and extend through the first region (4) of the vertical building part, which first region forms the thermal insulation element (10), substantially vertically into an adjoining second region (1') in which the vertical building part has been constructed from reinforced standard concrete.
  10. Method of constructing a vertical building part from concrete, especially a pillar (1), having a first support face (12, 13) for load-bearing attachment to a horizontal building part to be constructed from concrete thereabove or therebelow, especially a ceiling (3), wherein:
    - a first region (1') of the vertical building part (1) is constructed from reinforced standard concrete;
    - a second region (4) of the vertical building part (1), which second region is located between the first support face (12) and the first region (1'), is formed at least partly from a compressive-force-transmitting and thermally insulating material, namely lightweight concrete, in order to serve as thermal insulation element (10) for thermal decoupling between the vertical building part(1) and the horizontal building part (3) to be constructed thereabove or therebelow; and
    - in the second region (4) of the vertical building part, which second region forms the thermal insulation element (10), there are installed bar-like reinforcing means, especially reinforcing bars (7, 15) made of a fibre-reinforced composite material, which extend through the second region (4) of the vertical building part(1) substantially vertically into the adjoining first region (1') and beyond the first support face (12).
  11. Method according to claim 10, wherein
    - for the first region (1') of the vertical building part, a reinforcement (6) and a formwork arranged around the reinforcement (6) are constructed;
    - wet standard concrete is introduced into the formwork up to the level of the first region (1') of the vertical building part (1);
    - in a first region of the formwork which corresponds to the second region (4) of the vertical building part (1), reinforcing bars (7) made of fibre-reinforced composite material are inserted; and
    - then the second region (4) of the vertical building part(1) is constructed by introducing wet lightweight concrete into the first region of the formwork.
  12. Method according to claim 10, wherein
    - - for the first region (1') of the vertical building part (1), a reinforcement (6) and a formwork arranged around the reinforcement (6) are constructed;
    - wet standard concrete is introduced into the formwork up to the level of the first region (1') of the vertical building part (1); and
    - the second region (4) of the vertical building part (1) is formed by a thermal insulation element (10) according to any one of claims 1 to 8, which is inserted into the formwork.
EP16164249.1A 2015-04-23 2016-04-07 Device and method for heat decoupling of concreted parts of buildings Active EP3112542B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20164907.6A EP3690159A1 (en) 2015-04-23 2016-04-07 Building section and method for thermal decoupling of concreted sections of buildings
SI201630754T SI3112542T1 (en) 2015-04-23 2016-04-07 Device and method for heat decoupling of concreted parts of buildings
PL16164249T PL3112542T3 (en) 2015-04-23 2016-04-07 Device and method for heat decoupling of concreted parts of buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015106294.1A DE102015106294A1 (en) 2015-04-23 2015-04-23 Device and method for heat decoupling of concrete building parts

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP20164907.6A Division EP3690159A1 (en) 2015-04-23 2016-04-07 Building section and method for thermal decoupling of concreted sections of buildings
EP20164907.6A Division-Into EP3690159A1 (en) 2015-04-23 2016-04-07 Building section and method for thermal decoupling of concreted sections of buildings

Publications (2)

Publication Number Publication Date
EP3112542A1 EP3112542A1 (en) 2017-01-04
EP3112542B1 true EP3112542B1 (en) 2020-04-29

Family

ID=55794854

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20164907.6A Pending EP3690159A1 (en) 2015-04-23 2016-04-07 Building section and method for thermal decoupling of concreted sections of buildings
EP16164249.1A Active EP3112542B1 (en) 2015-04-23 2016-04-07 Device and method for heat decoupling of concreted parts of buildings

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20164907.6A Pending EP3690159A1 (en) 2015-04-23 2016-04-07 Building section and method for thermal decoupling of concreted sections of buildings

Country Status (8)

Country Link
US (1) US10041244B2 (en)
EP (2) EP3690159A1 (en)
CA (1) CA2928063A1 (en)
DE (1) DE102015106294A1 (en)
DK (1) DK3112542T3 (en)
HU (1) HUE050718T2 (en)
PL (1) PL3112542T3 (en)
SI (1) SI3112542T1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863137B2 (en) * 2015-03-23 2018-01-09 Jk Worldwide Enterprises Inc. Thermal break for use in construction
US10787809B2 (en) * 2015-03-23 2020-09-29 Jk Worldwide Enterprises Inc. Thermal break for use in construction
US9598891B2 (en) 2015-03-23 2017-03-21 Jk Worldwide Enterprises Inc. Thermal break for use in construction
DE102015109887A1 (en) * 2015-06-19 2016-12-22 Schöck Bauteile GmbH Thermal insulation system for the vertical, load-bearing connection of concrete parts of buildings
EP3467220B1 (en) * 2017-10-09 2023-06-07 Schöck Bauteile GmbH Building section and method for producing same
DE102018130843A1 (en) 2018-12-04 2020-06-04 Schöck Bauteile GmbH Device for heat decoupling between a concrete building wall and a floor ceiling and manufacturing process
DE202019100581U1 (en) * 2019-01-31 2020-05-04 Hartmann Hauke Building with a wall and a ceiling resting on this wall, building with a wall, reinforcement element, reinforcement component and reinforcement assembly
CN111779129A (en) * 2020-08-18 2020-10-16 中国十七冶集团有限公司 Construction method for synchronously pouring high-rise balcony decorative column and shear wall column platform structure
AT17361U1 (en) * 2020-12-11 2022-02-15 Porr Bau Gmbh Building construction, method of forming the same and functional part
DE102021108995A1 (en) 2021-04-12 2022-10-13 Kronimus Aktiengesellschaft L-shaped finished part

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001990A (en) * 1975-07-23 1977-01-11 Chase William P Prefabricated building structure
CH630436A5 (en) * 1978-04-26 1982-06-15 Michel Vercelletto PREFABRICATED WALL, PARTICULARLY FOR THE CONSTRUCTION OF HOUSES.
DE4035044C1 (en) * 1990-11-05 1991-11-07 Johann Dipl.-Ing. Zams At Goidinger Load-bearing concrete building panel - has embedded reinforced concrete columns in two rows parallel to panel surface
DE19519630A1 (en) * 1995-05-29 1996-12-05 Sfs Handels Holding Ag Cantilever and / or joint element for reinforced building constructions
DE19823100C1 (en) * 1998-05-22 2000-01-13 Sfs Handels Holding Ag Heerbru Cantilever and / or joint element for reinforced building constructions
FR2804703B1 (en) * 2000-02-04 2002-11-08 Plakabeton Coffratec S C A REINFORCED CONCRETE CONSTRUCTION METHOD WITH INTEGRATED THERMAL BREAK AND CONSTRUCTION THUS OBTAINED
DE20008570U1 (en) * 2000-05-12 2001-09-27 Schoeck Bauteile Gmbh Brick-shaped thermal insulation element
DE10106222A1 (en) 2001-02-10 2002-08-14 Schoeck Entwicklungsgmbh Brick-shaped thermal insulation element
US7461488B2 (en) * 2003-02-10 2008-12-09 Integrated Structures, Inc. Internally braced straw bale wall and method of making same
FR2868448B1 (en) * 2004-04-01 2007-01-12 Pakon Gmbh INSULATION ELEMENT FOR FLOOR OR CONCRETE BALCONY SLABS
FR2882421A1 (en) * 2005-02-22 2006-08-25 Freyssinet Internat Stup Soc P Lattice type metallic tubular structure reinforcing method, involves introducing linear carbon rods inside structure, and injecting cement grout inside structure so that grout makes contact with inner surface of structure and covers rods
DE202005019077U1 (en) * 2005-12-06 2007-04-19 nolasoft Ingenieurgemeinschaft Ozbolt Mayer GbR (vertretungsberechtigter Gesellschafter: Dr.-Ing. Utz Mayer, 70178 Stuttgart) Reinforcement element for structures made of reinforced concrete, prestressed concrete or the like.
US8132388B2 (en) * 2008-12-31 2012-03-13 The Spancrete Group, Inc. Modular concrete building
SI2405065T1 (en) * 2010-11-19 2014-08-29 Georg Koch Insulating connection element for bearing compressive loads
CH710940B1 (en) * 2015-04-07 2019-02-15 Ruwa Drahtschweisswerk Ag Thermal wall connection element for the thermally insulated connection of a concrete-cast wall with a vertically running concrete-cast floor tile.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DK3112542T3 (en) 2020-06-02
US20160312460A1 (en) 2016-10-27
DE102015106294A1 (en) 2016-10-27
EP3690159A1 (en) 2020-08-05
PL3112542T3 (en) 2020-08-10
CA2928063A1 (en) 2016-10-23
SI3112542T1 (en) 2020-09-30
US10041244B2 (en) 2018-08-07
EP3112542A1 (en) 2017-01-04
HUE050718T2 (en) 2020-12-28

Similar Documents

Publication Publication Date Title
EP3112542B1 (en) Device and method for heat decoupling of concreted parts of buildings
EP3085843B1 (en) Device and method for heat decoupling of concreted parts of buildings
WO2016037864A1 (en) Double wall made of high-strength or ultra-high-strength reinforced concrete
EP2715013A1 (en) Connecting arrangement and method for producing a punching shear reinforcement, a subsequent lateral-force reinforcement and/or a reinforcement connection
DE3335141C2 (en)
EP3106581B1 (en) Thermal insulation system for vertical, load-bearing connection of parts of buildings made from concrete
EP3225758B1 (en) Connection component for thermal isolation between a vertical and horizontal building part
EP3663474B1 (en) Device for decoupling heat between a concrete wall of a building and a floor and production method
EP0457969B1 (en) Method and device for the lifting of buildings
DE102005048147B3 (en) Wall element formed as a hollow concrete finished part for a building element for erecting the first storey of a building comprises an inner wall, an outer wall and vertical channels extending from the upper side to the lower side
EP3492665A1 (en) Finished concrete part with at least one load-absorbing component and connection plate for assembly in the gap between same and load-absorbing component
EP3467220B1 (en) Building section and method for producing same
DE10120368A1 (en) Building or building section for temporary use comprises double-walled elements made of prefabricated concrete plates and connecting elements provided in the walls for connecting to a further wall or a ceiling element
EP3728756B1 (en) Column-ceiling node for a reinforced concrete ceiling and two concrete columns in storey construction
DE202011002466U1 (en) Profile element for arrangement on a building wall opening
AT520529B1 (en) Support ceiling node for a reinforced concrete floor and two concrete columns in the storey
EP1457609B1 (en) Floor for a building
EP3225759B1 (en) Connection component for thermal isolation between vertically connected building sections
EP2787135A1 (en) Concrete components and method for erecting the same
DE10121864B4 (en) Drempelwandvorrichtung
DE3203980A1 (en) Underpass structure and method of producing it
EP3663475A2 (en) Device for decoupling heat between a concrete wall of a building and a ceiling and production method
AT405070B (en) MULTI-SHELLED MASONRY
DE102016114771A1 (en) wall element
DE202016104385U1 (en) wall element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20170612

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170704

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/16 20060101AFI20191108BHEP

Ipc: E04B 1/76 20060101ALN20191108BHEP

Ipc: E04C 5/06 20060101ALN20191108BHEP

Ipc: E04C 3/34 20060101ALN20191108BHEP

Ipc: E04B 1/78 20060101ALI20191108BHEP

INTG Intention to grant announced

Effective date: 20191126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1263496

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009720

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200529

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200429

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 34373

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E050718

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009720

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230327

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230315

Year of fee payment: 8

Ref country code: PL

Payment date: 20230324

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230417

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230418

Year of fee payment: 8

Ref country code: IT

Payment date: 20230428

Year of fee payment: 8

Ref country code: FR

Payment date: 20230417

Year of fee payment: 8

Ref country code: DK

Payment date: 20230419

Year of fee payment: 8

Ref country code: DE

Payment date: 20230418

Year of fee payment: 8

Ref country code: CH

Payment date: 20230502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230403

Year of fee payment: 8

Ref country code: SI

Payment date: 20230327

Year of fee payment: 8

Ref country code: HU

Payment date: 20230330

Year of fee payment: 8

Ref country code: FI

Payment date: 20230417

Year of fee payment: 8

Ref country code: AT

Payment date: 20230414

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230417

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 8