EP1794420A1 - Nockenwellenversteller für eine verbrennungskraftmaschine - Google Patents

Nockenwellenversteller für eine verbrennungskraftmaschine

Info

Publication number
EP1794420A1
EP1794420A1 EP05773962A EP05773962A EP1794420A1 EP 1794420 A1 EP1794420 A1 EP 1794420A1 EP 05773962 A EP05773962 A EP 05773962A EP 05773962 A EP05773962 A EP 05773962A EP 1794420 A1 EP1794420 A1 EP 1794420A1
Authority
EP
European Patent Office
Prior art keywords
stator
rotor
camshaft adjuster
blades
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05773962A
Other languages
English (en)
French (fr)
Other versions
EP1794420B1 (de
Inventor
Josef Bachmann
Rolf Schwarze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Sinter Metals GmbH
Original Assignee
GKN Sinter Metals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKN Sinter Metals GmbH filed Critical GKN Sinter Metals GmbH
Publication of EP1794420A1 publication Critical patent/EP1794420A1/de
Application granted granted Critical
Publication of EP1794420B1 publication Critical patent/EP1794420B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values

Definitions

  • the invention relates to a camshaft adjuster for internal combustion engines.
  • Camshaft adjusters of the abovementioned type serve in each case to enable as optimally as possible or variable valve actuation. They offer the possibility of adjusting the phase angle of the valve control continuously and in a controlled manner.
  • Hier ⁇ to a camshaft adjuster is rotatably and non-positively connected to the respective Nocken ⁇ wave.
  • a rotational movement is transmitted to the camshaft, thereby providing a respectively desired adjustment of the camshaft relative to the crankshaft of the internal combustion engine.
  • camshaft adjusters are usually driven hydraulically.
  • the oil pressure required for adjusting the camshaft is obtained from the lubricating oil pressure circuit assigned to the respective combustion engine.
  • the camshaft is not yet in the desired relative position to the crankshaft, especially in the exhaust-gas-critical engine starting phase.
  • camshaft adjusters which continuously vary the angular position of the camshaft, is represented by systems which are constructed according to the Schwenkmotor ⁇ principle.
  • a drive wheel has a cavity formed by a circumferential wall and two side walls, in which at least one hydraulic working space is formed by at least two boundary walls.
  • a wing extending into the hydraulic working space divides the hydraulic working space into two hydraulic pressure chambers. Gaps between a head of a pressure medium distributor and an opening of the one side wall of the drive wheel and / or between the lateral surface and an opening of the other side wall of the drive wheel are sealed by wear-resistant sealing means against pressure medium leaks.
  • a vane-cell adjusting device in which between a swivel impeller and a drive wheel enlarged trained radial gaps are provided, while the sealing elements than in both directions of rotation of the
  • Schwenkeries swiveling pendulum sealing strips are formed, which are pivotable with pressure force of the hydraulic pressure medium against the respective counter surface on the drive wheel or the swing impeller.
  • a drive unit is pivotally mounted on a driven unit via a plurality of radial bearing points, wherein at least the surfaces of the individual radial bearing segments of the drive unit and the opposite radial bearing segments of the output unit and optionally also the axial contact surfaces between the drive unit and he output unit are formed with a friction-reducing coating.
  • Patent Abstracts of Japan JP 11013431 discloses a vane-type adjusting device in which, in order to achieve a compact construction, the rotation is transmitted by means of three bolts which engage in corresponding oblong holes in the housing of the vane-cell adjusting device.
  • the problem with such Nockenwellenverstellem is that to avoid larger internal leakage in the pressure chambers tight tolerances must be met, which can be met only costly, especially if such Bau ⁇ parts are made sintering technology. In a sintering production, these tolerances are therefore only by a corresponding complex mechanical processing, or on significantly reduced quantities reachable.
  • interlocks or return springs have to be installed in order to ensure the function in the so-called "hot idling".
  • the invention has for its object to provide a camshaft adjuster for Verbren ⁇ ubenskraftmaschinen, which prevents internal radial leaks and pondere ⁇ is low to produce.
  • stator planetary gear wheel rolls off on the toothed segment of the inner rotor and the rotor blade planetary gear, which is mounted in the rotor blade, rolls down on the toothed segment of the stator.
  • the geometry of the toothing must be designed so that the toothing data of the planet wheels, which are mounted in the rotor blade and in the stator blade, are the same.
  • the production costs are lowered, since only one tool is needed in the sintering technology of the rotor blade planet wheels and the stator planetary gears.
  • the adjustment of the inner rotor takes place in that pressure is applied to a pressure chamber, wherein in response to the applied pressure chamber, the pressure against the inner rotor blade and this accordingly rotates.
  • the oil pressure in the pressure chamber pressurizes the stator blade planetary gear meshing with the inner rotor gear segment, thereby forcing the tooth tips of the stator blade planetary gear against the stator blade bearing pocket wall and the stator flywheel tooth flanks against the tooth flanks of the stator wing planetary gear Veryakungs ⁇ segments of the inner rotor are pressed.
  • the stator has at least two stator blades and the rotor has at least two rotor blades. In a further advantageous embodiment, it is provided that the stator has three stator blades and the rotor has three rotor blades. In a likewise advantageous embodiment, it is provided that the stator has four stator blades and the rotor has four rotor blades.
  • Known camshaft adjusters generally have four stator blades and four rotor blades, as a result of which the possible angle of rotation of the camshaft is limited by design.
  • a reduction of the number of stator blades and rotor blades to two or three blades leads to the result that, on the one hand, larger angles of rotation can be realized and, on the other hand, the camshaft adjusters become lighter and there is less mass for moving parts. Structurally, more than four wings are possible.
  • stator, the inner rotor and / or the planet wheels are made of sintered metal. These parts can be sintered with larger tolerances without the radial sealing worsened. Furthermore, the sensitivity to contaminated oil is low.
  • rotor, stator and the planetary gears have at least approximately equal coefficients of thermal expansion, so that these components can be paired with one another. It is possible with approximately the same thermal coefficient, for example, a rotor and Sta ⁇ gate made of sintered steel and the planet gears made of a plastic (Duroplast) use. In particular, this results in a reduction of the noise due to the combination of sintered steel / plastic.
  • FIG. 1 shows a section through the camshaft adjuster according to the invention with four stator and rotor blades
  • Fig. 2 shows the detail "X" of FIG. 1 and
  • FIG. 3 shows a section through the camshaft adjuster according to the invention with two stator and rotor blades
  • Fig. 1 shows a camshaft adjuster 1 for an internal combustion engine, not shown, with a stator 2, which has distributed over its circumference radially inwardly projecting stator blades 3.
  • the stator vanes 3 each have a Statorhoffllagerasche 4, which is open to the inside and in which a Statorhofflplanetenrad 5 is mounted.
  • a rotor 6 is mounted, the rotor blade 7 has.
  • Each rotor blade 7 has an outwardly open rotor blade bearing pocket 8, in which a rotor blade planet 9 is mounted.
  • stator blades 3 protrude radially inwards into the intermediate space between two rotor blades 7.
  • the rotor 6 is formed approximately star-shaped.
  • Statorhofflplanetenrad 5 engages in a arranged on the outer circumference of the rotor 6 between each rotor blade 7 Verzah ⁇ tion segment 10 a.
  • the rotor blade planetary gear 9 arranged in the rotor blade 7 engages in a toothing segment 11 arranged on the inner circumference of the stator 2 between in each case one stator wing 3.
  • the adjustment of the rotor 6 takes place in that 12 pressure is given by the pressure hole in the pressure chamber 13 or for the alternative direction of rotation that pressure in the pressure chamber 15 is given. Depending on the applied pressure chamber 13, 15, the pressure takes place against the rotor blade 7, as a result of which it is rotated accordingly.
  • Fig. 2 shows a detail "X" of Fig. 1 with the partially indicated camshaft adjuster 1, which consists of a stator 2 and a rotor 6 mounted therein, wo ⁇ in a state is shown in which the pressure chamber 15 with Pressure, for example mit ⁇ means of a hydraulic fluid, is acted upon.
  • Pressure for example mit ⁇ means of a hydraulic fluid
  • Pressure is introduced into the pressure chamber 15 via the pressure bore 14, wherein the pressurized space occupied by the hydraulic fluid is drawn in black. It turns out that in addition to the pressure chamber 15, which is formed from the space between the stator 3 and the rotor blade 7 also other areas are pressurized.
  • FIG. 3 shows a camshaft adjuster 1 for an internal combustion engine (not shown) with a stator 2, which has radially outwardly projecting stator blades 3 distributed over its circumference.
  • the stator vanes 3 each have a Statorhoffllagerasche 4, which is open to the inside and in which a Statorhofflplanetenrad 5 is mounted.
  • a rotor 6 is mounted, the rotor blade 7 has.
  • Each rotor blade 7 has an outwardly open rotor blade bearing pocket 8 in which a rotor blade planet 9 is mounted.
  • the stator blades 3 protrude radially inwards into the intermediate space between two rotor blades 7. The same applies to the rotor blades 7, which each protrude into the intermediate space.
  • the rotor 6 is formed approximately star-shaped.
  • the stator vane planetary gear 5 arranged in the stator vane 3 engages in a toothing segment 10 arranged on the outer circumference of the rotor 6 between in each case one rotor vane 7.
  • the rotor blade planetary gear 9 arranged in the rotor blade 7 engages in a toothed segment 11 arranged on the inner circumference of the stator 2 between a respective stator blade 3.
  • Internal radial leakages which arise between the contact points of the stator 2 and the inner rotor 6 in the form of gap losses, are prevented by the use of the toothed segments and the planetary gears engaging in them.
  • the adjustment of the rotor 6 takes place in that pressure is introduced into the pressure chamber 13 through the pressure bore 12 or, for the alternative direction of rotation, pressure is introduced into the pressure chamber 15.
  • pressure is introduced into the pressure chamber 13 through the pressure bore 12 or, for the alternative direction of rotation, pressure is introduced into the pressure chamber 15.
  • the pressure against the rotor blade 7, Dependent on from the applied pressure chamber 13, 15, the pressure against the rotor blade 7, whereby this is rotated accordingly.
  • the Statorerielplanetenrad 5 which is engaged with the toothed segment 10 of the rotor 6, pressurized, by this pressurization, the tooth tips of the Statorerielplanetenrades 5 are pressed against the wall of the Statoreriellagerasche 4 and the tooth flanks of the Statorhofflplanetenrades 5 against the Zahn ⁇ flanks of the toothed segment 10 of the rotor 6 are pressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Description

Nockenwellenversteller für eine Verbrennungskraftmaschine
Die Erfindung betrifft einen Nockenwellenversteller fü r Verbrennungskraftmaschinen.
Nockenwellenversteller der vorgenannten Art dienen dazu, jeweils eine möglichst optima¬ le beziehungsweise veränderliche Ventilansteuerung zu ermöglichen. Sie bieten die Mög¬ lichkeit, den Phasenwinkel der Ventilsteuerung stufenlos und geregelt zu verstellen. Hier¬ zu ist ein Nockenwellenversteller drehfest und kraftschlüssig mit der jeweiligen Nocken¬ welle verbunden.
In Abhängigkeit der Vorgabe einer Überwachungs- und Steuerelektronik wird eine Dreh¬ bewegung auf die Nockenwelle übertragen und hierdurch eine jeweils gewünschte Ein¬ stellung der Nockenwelle relativ zur Kurbelwelle der Verbrennungskraftmaschine vorein¬ gestellt.
Herkömmliche Nockenwellenversteller werden zumeist hydraulisch angetrieben. Der zur Verstellung der Nockenwelle benötigte Öldruck wird aus dem der jeweiligen Verbren¬ nungskraftmaschine zugeordneten Schmieröldruckkreis gewonnen. Dabei besteht das Problem, das sich die Nockenwelle gerade in der abgaskritischen Motorstartphase noch nicht in der gewünschten Relativposition zur Kurbelwelle befindet.
Die aktuelle Generation von Nockenwellenverstellern , die stufenlos die Winkellage der Nockenwelle verändern, wird durch Systeme dargestellt, die nach dem Schwenkmotor¬ prinzip aufgebaut sind.
Die Vorteile derartiger Systeme sind die stufenlose Verstellung der Nockenwelle und die kompakte und kostengünstige Bauweise. Ein kostengünstiges Verfahren zur Herstellung von Nockenwellenverstellern ist das Sinterverfahren, das auch für Großserien geeignet ist.
Die vorstehend genannten Systeme werden über die Ölpumpe aus dem Schmierölkreis¬ lauf des Motors mit Drucköl versorgt, wobei während des sogenannten "Heißleerlaufs" diese Systeme auch bei Öltemperaturen von 150° C und Drücken von < 0,5 bar bei Leer¬ laufdrehzahl des Motors funktionieren müssen. Thermische Einflüsse, die aufgrund der im Motorbetrieb erreichten Temperaturen von maximal 150° C auftreten können, müssen bei der Auslegung der Bauteilgröße und Toleranzen berücksichtigt werden. Aus der DE 100 62 981 A1 ist eine nach dem sogenannten Flügelzellen-Prinzip arbeiten¬ de Nockenwellenverstelleinrichtung bekannt. Ein Antriebsrad weist einen durch eine Um- fangswand und zwei Seitenwände gebildeten Hohlraum auf, in dem durch mindestens zwei Begrenzungswände mindestens ein hydraulischer Arbeitsraum gebildet wird. Ein sich in den hydraulischen Arbeitsraum erstreckender Flügel unterteilt den hydraulischen Arbeitsraum in zwei hydraulische Druckkammern. Spalte zwischen einem Kopf eines Druckmittelverteilers und einem Durchbruch der einen Seitenwand des Antriebsrades und/oder zwischen der Mantelfläche und einem Durchbruch der anderen Seitenwand des Antriebsrades werden durch verschleißfeste Dichtmittel gegen Druckmittelleckagen abge- dichtet.
Die DE 198 08 619 A1 beschreibt eine Verriegelungseinrichtung für eine Flügelzellen- Verstelleinrichtung. Dort ist eine mechanische Kopplung zwischen einem Flügelrad und einem Antriebsrad durch mindestens einen sowohl als Flügelradschwenkelement als auch zugleich als Verriegelungselement ausgebildeten axial beweglichen Flügel des Flügelra¬ des herstellbar.
Aus der DE 100 20 120 A1 ist eine Flügelzellen-Verstelleinrichtung bekannt, in der zwi¬ schen einem Schwenkflügelrad und einem Antriebsrad vergrößert ausgebildete Radial- spalte vorgesehen sind, während die Dichtelemente als in beide Drehrichtungen des
Schwenkflügelrades schwenkbare Pendeldichtleisten ausgebildet sind, die mit Druckkraft des hydraulischen Druckmittels gegen die jeweilige Gegenfläche am Antriebsrad oder am Schwenkflügelrad verschwenkbar sind.
In der Flügelzellen-Verstelleinrichtung der DE 101 09 837 A1 ist eine Antriebseinheit über mehrere radiale Lagerstellen schwenkbar auf einer Abtriebseinheit gelagert, wobei zu¬ mindest die Oberflächen der einzelnen Radiallagersegmente der Antriebseinheit und der gegenüberliegenden Radiallagersegmente der Abtriebseinheit sowie wahlweise auch die axialen Kontaktflächen zwischen der Antriebseinheit und er Abtriebseinheit mit einer rei- bungsmindernden Beschichtung ausgebildet sind.
Aus den Patent Abstracts of Japan JP 11013431 ist eine Flügelzellen-Verstelleinrichtung bekannt, bei der zur Erzielung eines kompakten Aufbaus eine Übertragung der Drehung mittels dreier Bolzen erfolgt, welche in entsprechende Langlöcher im Gehäuse der Flügel- zellen-Verstelleinrichtung eingreifen. Problematisch bei derartigen Nockenwellenverstellem ist, dass zur Vermeidung größerer interner Leckage in den Druckkammern enge Toleranzen eingehalten werden müssen, die nur kostenaufwendig eingehalten werden können, insbesondere wenn derartige Bau¬ teile sintertechnisch hergestellt werden. Bei einer sintertechnischen Herstellung sind diese Toleranzen deshalb nur durch eine entsprechende aufwändige mechanische Bearbeitung, oder über deutlich reduzierte Stückzahlen, erreichbar. Ferner müssen bei den meisten Nockenwellenverstellem Verriegelungen oder Rückstellfedern eingebaut werden, um bei dem sogenannten "Heißleerlauf' die Funktion zu gewährleisten.
Der Erfindung liegt die Aufgabe zugrunde, einen Nockenwellenversteller für Verbren¬ nungskraftmaschinen anzugeben, der innere radiale Leckagen verhindert und kosten¬ günstig herzustellen ist.
Die Aufgabe wird erfindungsgemäß gelöst durch einen Nockenwellenversteller für eine Brennkraftmaschine mit einem Stator, der über seinen Umfang verteilt radial nach innen ragende Statorflügel aufweist, die wenigstens eine im Stator angeordnete Statorflügella¬ gertasche aufweisen, die nach innen geöffnet ist und in der ein Statorflügelplanetenrad gelagert ist, wobei in dem Stator ein Rotor gelagert ist, der Rotorflügel mit wenigstens einer nach außen geöffneten Rotomflügellagertasche aufweist in der ein Rotorflügelplane- tenrad gelagert ist, wobei die Statorflügelplanetenräder in eine auf dem Außenumfang des Rotors zwischen jeweils einem Rotorflügel angeordnetes Verzahnungssegment eingreifen und die Rotorflügelplanetenräder in eine auf dem Innenumfang des Stators zwischen je¬ weils einem Statorflügel angeordnetes Verzahnungssegment eingreifen.
Interne radiale Leckagen, die zwischen den Kontaktstellen des Stators und des Innenro¬ tors in Form von Spaltverlusten entstehen, müssen durch die Anbringung eines Dichtele¬ mentes zwischen dem Innenrotor und dem Stator, oder durch eingeengte Toleranzen, verhindert werden. Durch die Anbringung eines Verzahnungssegments in Form einer Au¬ ßenverzahnung zwischen zwei Rotorflügeln am Innenrotor und einem im Statorflügel ge- lagerten Planetenrad, das mit dem Verzahnungssegment des Innenrotors im Eingriff steht, werden die Spaltverluste verhindert. Ergänzend wird am Stator ein Verzahnungs¬ segment in Form einer Innenverzahnung zwischen den Statorflügeln vorgesehen, wobei in dem Rotorflügel ein Rotorflügelplanetenrad gelagert ist, das mit dem Verzahnungsseg¬ ment des Stators im Eingriff steht. Bei einer Veränderung der Winkellage des Innenrotors zum Stator rollt das Statorplane¬ tenrad auf dem Verzahnungssegment des Innenrotors ab und das Rotorflügelplanetenrad, welches im Rotorflügel gelagert ist auf dem Verzahnungssegment des Stators ab.
Um Eingriffstörungen zu vermeiden, muss die Geometrie der Verzahnung so ausgelegt sein, dass die Verzahnungsdaten der Planetenräder, die im Rotorflügel und in dem Sta¬ torflügel gelagert sind, gleich sind. Hierdurch werden auch die Herstellungskosten ge¬ senkt, da bei der sintertechnischen Herstellung der Rotorflügelplanetenräder und Sta¬ torplanetenräder nur ein Werkzeug gebraucht wird. Die Verstellung des Innenrotors erfolgt dadurch, dass Druck auf eine Druckkammer gegeben wird, wobei in Abhängigkeit von der beaufschlagten Druckkammer der Druck gegen den Innenrotorflügel erfolgt und diesen dementsprechend dreht. Durch den Öldruck in der Druckkammer wird das Statorflü- gelplanetenrad, das mit dem Verzahnungssegment des Innenrotors im Eingriff steht, druckbeaufschlagt, wobei durch diese Druckbeaufschlagung die Zahnköpfe des Statorflü- gelplanetenrades gegen die Wand der Statorflügellagertasche gepresst werden und die Zahnflanken des Statorflügelplanetenrades gegen die Zahnflanken des Verzahnungs¬ segments des Innenrotors gepresst werden.
Durch die Anpressung der Zahnköpfe und Zahnflanken kommt es zu großen Dichtflächen, die die Druckkammer radial absolut dicht von der drucklosen Kammer trennen. Hierdurch wird eine radiale Abdichtung des Nockenwellenverstellers ermöglicht,
In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, dass der Stator wenigstens zwei Statorflügel und der Rotor wenigstens zwei Rotorflügel aufweist. In weiterer vorteil- harter Ausgestaltung ist vorgesehen, dass der Stator drei Statorflügel und der Rotor drei Rotorflügel aufweist. In ebenfalls vorteilhafter Ausgestaltung ist vorgesehen, dass der Stator vier Statorflügel und der Rotor vier Rotorflügel aufweist. Bekannte Nockenwellen- versteller weisen meistens vier Statorflügel und vier Rotorflügel auf, wodurch die mögli¬ chen Verdrehwinkel der Nockenwelle konstruktiv bedingt begrenzt sind. Eine Reduzierung der Anzahl der Statorflügel und Rotorflügel auf zwei oder drei Flügel, führt zu dem Ergeb¬ nis, dass einerseits größere Verdrehwinkel realisiert werden können und andererseits die Nockenwellenversteller leichter werden und eine geringere Masse zu bewegender Teile vorliegt. Konstruktiv sind auch mehr als vier Flügel möglich.
Im besonders vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, dass der Stator, der Innenrotor und/oder die Planetenräder aus Sintermetall bestehen. Diese Teile können mit größeren Toleranzen sintertechnisch gefertigt werden ohne dass die radiale Dichtig- keit verschlechtert wird. Des weiteren ist die Empfindlichkeit gegen verschmutztes Öl ge¬ ring.
Ein weiterer Vorteil der relativ großen Fertigungstoleranzen ist die Möglichkeit andere Materialien wie Sinteraluminium oder Kunststoff zu verwenden. Vorteilhaft ist es wenn der Rotor, Stator und die Planetenräder zumindest annähernd gleiche Wärmeausdehnungs¬ koeffizienten aufweisen, damit diese Bauteile miteinander gepaart werden können. Es ist bei annähernd gleichem Wärmekoeffizienten beispielsweise möglich einen Rotor und Sta¬ tor aus Sinterstahl und die Planetenräder aus einem Kunststoff (Duroplast) einzusetzen. Hierdurch ergibt sich insbesondere eine Reduzierung der Geräusche durch die Paarung Sinterstahl/Kunststoff.
Weitere Merkmale, Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen, sowie aus der nachstehenden Beschreibung der Erfin- düng anhand der beigefügten Zeichnungen. Diese zeigen in:
Fig. 1 einen Schnitt durch den erfindungsgemäßen Nockenwellenversteller mit vier Stator- und Rotorflügeln,
Fig. 2 die Einzelheit "X" gemäß Fig. 1 und
Fig. 3 einen Schnitt durch den erfindungsgemäßen Nockenwellenversteller mit zwei Stator- und Rotorflügeln,
Fig. 1 zeigt einen Nockenwellenversteller 1 für eine nicht dargestellte Brennkraftmaschine mit einem Stator 2, der über seinen Umfang verteilt radial nach innen ragende Statorflügel 3 aufweist. Die Statorflügel 3 weisen jeweils eine Statorflügellagertasche 4 auf, die nach innen geöffnet ist und in der ein Statorflügelplanetenrad 5 gelagert ist. In dem Stator 2 ist ein Rotor 6 gelagert, der Rotorflügel 7 aufweist. Jeder Rotorflügel 7 weist eine nach au- ßen geöffnete Rotorflügellagertasche 8 auf, in der ein Rotorflügelplaneten 9 gelagert ist.
Die Statorflügel 3 ragen radial nach innen jeweils in den zwischen zwei Rotorflügeln 7 bestehenden Zwischenraum rein. Gleiches gilt für die Rotorflügel 7, die jeweils in den Zwischenraum reinragen. Es ergibt sich somit, dass der Rotor 6 annähernd sternförmig ausgebildet ist. Das in dem Statorflügel 3 angeordnete Statorflügelplanetenrad 5 greift in einen auf den Außenumfang des Rotors 6 zwischen jeweils einem Rotorflügel 7 angeordnetes Verzah¬ nungssegment 10 ein. Das in dem Rotorflügel 7 angeordnete Rotorflügelplanetenrad 9 greift in einen auf den Innenumfang des Stators 2 zwischen jeweils einem Statorflügel 3 angeordnetes Verzahnungssegment 11 ein.
Interne radiale Leckagen, die zwischen den Kontaktstellen des Stators 2 und des Innenro¬ tors 6 in Form von Spaltverlusten entstehen, werden durch den Einsatz der Verzahnungs¬ segmente und die in diese eingreifenden Planetenräder verhindert.
Die Verstellung des Rotors 6 erfolgt dadurch, dass durch die Druckbohrung 12 Druck in die Druckkammer 13 gegeben wird oder für die alternative Drehrichtung, dass Druck in die Druckkammer 15 gegeben wird. In Abhängigkeit von der beaufschlagten Druckkam¬ mer 13, 15 erfolgt der Druck gegen den Rotorflügel 7, wodurch dieser entsprechend ge- dreht wird. Durch den Öldruck in der Druckkammer 13 oder 15 wird das Statorflügelplane¬ tenrad 5, das mit dem Verzahnungssegment 10 des Rotors 6 im Eingriff steht, druckbe¬ aufschlagt, wobei durch diese Druckbeaufschlagung die Zahnköpfe des Statorflügelplane- tenrades 5 gegen die Wand der Statorflügellagertasche 4 gepresst werden und die Zahn¬ flanken des Statorflügelplanetenrades 5 gegen die Zahnflanken des Verzahnungsseg- mentes 10 des Rotors 6 gepresst werden. Durch die Anpressung der Zahnköpfe und
Zahnflanken kommt es zu großen Dichtflächen, die die Druckkammern 13, 15 radial abso¬ lut dicht von der jeweils drucklosen Kammer 13, 15 trennen, so dass eine radiale Abdich¬ tung des Nockenwellenverstellers 1 ermöglicht wird.
Fig. 2 zeigt eine Einzelheit "X" aus Fig. 1 mit dem teilweise angedeuteten Nockenwellen- versteller 1 , der aus einem Stator 2 und einem in diesem gelagerten Rotor 6 besteht, wo¬ bei ein Zustand gezeigt wird, in dem die Druckkammer 15 mit Druck, beispielsweise mit¬ tels einer Hydraulikflüssigkeit, beaufschlagt ist.
Über die Druckbohrung 14 wird Druck in die Druckkammer 15 gegeben, wobei der von der Hydraulikflüssigkeit eingenommene druckbeaufschlagte Raum schwarz gezeichnet ist. Es zeigt sich, dass zusätzlich zu der Druckkammer 15, die aus dem Raum zwischen dem Statorflügel 3 und dem Rotorflügel 7 gebildet wird auch weitere Bereiche mit Druck beaufschlagt werden.
Durch die Druckbeaufschlagung der Druckkammer 15 wird Druck auf den Rotorflügel 7 ausgeübt, wodurch sich der Rotor in Richtung des Pfeils A verdreht. Gleichzeitig erfolgt auch eine Drehung des in der Rotorflügellagertasche 8 gelagerten Rotorflügelplanetenra- des 9 in Richtung des Pfeils B während dieses auf dem zwischen den Statorfllügeln 3 angeordneten Verzahnungssegment 11 abrollt. Durch die Druckbeaufschlagung werden die Zahnköpfe 16 des Rotorflügelplanetenrades 9 gegen die Wand 17 der Rotorflügella- gertasche 8 gepresst. Gleichzeitig werden die Zahnflanken 18 des Rotorflügelplanetenra¬ des 9 gegen die Zahnflanken 19 des Verzahnungssegmentes 11 gepresst. Durch die An¬ pressung der Zahnköpfe 16 an die Wand 17 und die Zahnflanken 18 an die Zahnflanken 19 des Verzahnungssegmentes 11 kommt es zu großen Dichtflächen, die die Druckkam¬ mer 15 radial absolut dicht von der drucklosen Kammer 13 trennen, so dass eine radiale Abdichtung des Nockenwellenversteller 1 gewährleistet ist.
Diese Abdichtung wird auf der einen Seite der Druckkammer durch die Abdichtung im Bereich des Rotorflügelplanetenrades 9 und auf der anderen Seite der Kammer im Be¬ reich des Statorflügelplanetenrades 5 erzielt. Bei dem Statorflügelplanetenrad 5 werden entsprechend die Zahnköpfe 20 des Statorflügelplanetenrades gegen die Wand 21 der Statorflügellagertasche 4 gepresst und gleichzeitig die Zahnflanken 22 des Statorflü¬ gelplanetenrades 5 gegen die Zahnflanken 23 des Verzahnungssegmentes 10 gepresst.
Fig. 3 zeigt einen Nockenwellenversteller 1 für eine nicht dargestellte Brennkraftmaschine mit einem Stator 2, der über seinen Umfang verteilt radial nach innen ragende Statorflügel 3 aufweist. Die Statorflügel 3 weisen jeweils eine Statorflügellagertasche 4 auf, die nach innen geöffnet ist und in der ein Statorflügelplanetenrad 5 gelagert ist. In dem Stator 2 ist ein Rotor 6 gelagert, der Rotorflügel 7 aufweist. Jeder Rotorflügel 7 weist eine nach au¬ ßen geöffnete Rotorflügellagertasche 8 auf, in der ein Rotorflügelplaneten 9 gelagert ist. Die Statorflügel 3 ragen radial nach innen jeweils in den zwischen zwei Rotorflügeln 7 bestehenden Zwischenraum rein. Gleiches gilt für die Rotorflügel 7, die jeweils in den Zwischenraum reinragen. Es ergibt sich somit, dass der Rotor 6 annähernd sternförmig ausgebildet ist. Das in dem Statorflügel 3 angeordnete Statorflügelplanetenrad 5 greift in einen auf den Außenumfang des Rotors 6 zwischen jeweils einem Rotorflügel 7 angeord- netes Verzahnungssegment 10 ein. Das in dem Rotorflügel 7 angeordnete Rotorflügelpla- netenrad 9 greift in einen auf den Innenumfang des Stators 2 zwischen jeweils einem Sta¬ torflügel 3 angeordnetes Verzahnungssegment 11 ein. Interne radiale Leckagen, die zwi¬ schen den Kontaktstellen des Stators 2 und des Innenrotors 6 in Form von Spaltverlusten entstehen, werden durch den Einsatz der Verzahnungssegmente und die in diese eingrei- fenden Planetenräder verhindert. Die Verstellung des Rotors 6 erfolgt dadurch, dass durch die Druckbohrung 12 Druck in die Druckkammer 13 gegeben wird oder für die alter¬ native Drehrichtung, dass Druck in die Druckkammer 15 gegeben wird. In Abhängigkeit von der beaufschlagten Druckkammer 13, 15 erfolgt der Druck gegen den Rotorflügel 7, wodurch dieser entsprechend gedreht wird. Durch den Öldruck in der Druckkammer 13 oder 15 wird das Statorflügelplanetenrad 5, das mit dem Verzahnungssegment 10 des Rotors 6 im Eingriff steht, druckbeaufschlagt, wobei durch diese Druckbeaufschlagung die Zahnköpfe des Statorflügelplanetenrades 5 gegen die Wand der Statorflügellagertasche 4 gepresst werden und die Zahnflanken des Statorflügelplanetenrades 5 gegen die Zahn¬ flanken des Verzahnungssegmentes 10 des Rotors 6 gepresst werden. Durch die An¬ pressung der Zahnköpfe und Zahnflanken kommt es zu großen Dichtflächen, die die Druckkammern 13, 15 radial absolut dicht von der jeweils drucklosen Kammer 13, 15 trennen, so dass eine radiale Abdichtung des Nockenwellenverstellers 1 ermöglicht wird. Dadurch, dass der Nockenwellenversteller 1 in Fig. 3 nur zwei Statorflügel 3 und zwei Rotorflügel 7 aufweist, wird durch diese Reduzierung der Anzahl der Statorflügel und Ro¬ torflügel von vier Flügeln 3, 7 auf zwei Flügel erreicht, dass einerseits größere Verdreh¬ winkel realisiert werden können und andererseits die Nockenwellenversteller leichter wer- den und eine geringere Masse zu bewegender Teile vorliegt. Zusätzlich reduziert sich die Reibung, da gleichzeitig weniger Planetenräder in die entsprechenden Verzahnungseg¬ mente eingreifen.

Claims

Patentansprüche
1. Nockenwellenversteller (1 ) für eine Brennkraftmaschine mit einem Stator (2), der über seinen Umfang verteilt radial nach innen ragende Statorflügel (3) aufweist, die wenigstens eine im Stator (2) angeordente Statorflügellagertasche (4) aufwei¬ sen, die nach innen geöffnet ist und in der ein Statorflügelplanetenrad (5) gelagert ist, wobei in dem Stator (2) ein Rotor (6) gelagert ist, der Rotorflügel (7) mit we¬ nigstens einer nach außen geöffneten Rotorflügellagertasche (8) aufweist in der ein Rotorflügelplanetenrad (9) gelagert ist, wobei die Statorflügelplanetenräder (5) in ein auf dem Außenumfang des Rotors (6) zwischen jeweils einem Rotorflügel
(7) angeordnetes Verzahnungssegment (10) eingreifen und die Rotorflügelplane- tenräder (9) in ein auf dem Innenumfang des Stators (2) zwischen jeweils einem Statorflügel (3) angeordnetes Verzahnungssegment (11) eingreifen.
2. Nockenwellenversteller (1 ) für eine Brennkraftmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass der Stator (2) wenigstens zwei Statorflügel (3) und der Rotor (6) wenigstens zwei Rotorflügel (7) aufweist.
3. Nockenwellenversteller (1 ) für eine Brennkraftmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass der Stator (2) drei Statorflügel (3) und der Rotor (6) drei Ro¬ torflügel (7) aufweist.
4. Nockenwellenversteller (1 ) für eine Brennkraftmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass der Stator (2) vier Statorflügel (3) und der Rotor (6) vier Ro- torflügel (7) aufweist.
5. Nockenwellenversteller nach einem der Ansprüche 1 bis 4, dadurch gekennzeich¬ net, dass der Stator (2), der Innenrotor (6) und/oder die Planetenräder (5), (9) aus Sintermetall bestehen.
6. Nockenwellenversteller nach einem der Ansprüche 1 bis 5, dadurch gekennzeich¬ net, dass der Stator (2), der Innenrotor (6) und/oder die Planetenräder (5), (9) aus Kunststoff bestehen.
7. Nockenwellenversteller nach einem der Ansprüche 1 bis 6, dadurch gekennzeich¬ net, dass der Stator (2), der Innenrotor (6) und/oder die Planetenräder (5), (9) ei¬ nen zumindest annähernd gleichen Wärmeausdehnungskoeffizienten aufweisen.
EP05773962A 2004-09-29 2005-08-10 Nockenwellenversteller für eine verbrennungskraftmaschine Not-in-force EP1794420B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004047817A DE102004047817B3 (de) 2004-09-29 2004-09-29 Nockenwellenversteller für eine Verbrennungskraftmaschine
PCT/EP2005/008669 WO2006034752A1 (de) 2004-09-29 2005-08-10 Nockenwellenversteller für eine verbrennungskraftmaschine

Publications (2)

Publication Number Publication Date
EP1794420A1 true EP1794420A1 (de) 2007-06-13
EP1794420B1 EP1794420B1 (de) 2009-07-01

Family

ID=35197982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05773962A Not-in-force EP1794420B1 (de) 2004-09-29 2005-08-10 Nockenwellenversteller für eine verbrennungskraftmaschine

Country Status (11)

Country Link
US (1) US7584731B2 (de)
EP (1) EP1794420B1 (de)
JP (1) JP4845888B2 (de)
KR (1) KR101185387B1 (de)
CN (1) CN100504041C (de)
AT (1) ATE435360T1 (de)
BR (1) BRPI0515941A (de)
DE (2) DE102004047817B3 (de)
ES (1) ES2328381T3 (de)
MX (1) MX2007003419A (de)
WO (1) WO2006034752A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019607B4 (de) * 2006-04-25 2008-01-31 Hydraulik-Ring Gmbh Nockenwellenversteller
DE102008028640A1 (de) * 2008-06-18 2009-12-24 Gkn Sinter Metals Holding Gmbh Hydraulischer Nockenwellenversteller
JP6221694B2 (ja) * 2013-11-29 2017-11-01 アイシン精機株式会社 弁開閉時期制御装置
JP5987868B2 (ja) * 2014-07-22 2016-09-07 株式会社デンソー バルブタイミング調整装置
WO2018077404A1 (en) * 2016-10-26 2018-05-03 HELLA GmbH & Co. KGaA Apparatus for camshaft timing adjustment

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296011A (ja) * 1992-04-14 1993-11-09 Toyo A Tec Kk 内燃機関の弁開閉時期制御装置
JPH0583303U (ja) * 1992-04-14 1993-11-12 トーヨーエイテック株式会社 内燃機関の弁開閉時期制御装置
JPH1113431A (ja) * 1997-06-24 1999-01-19 Aisin Seiki Co Ltd 弁開閉時期制御装置
DE19808619A1 (de) * 1998-02-28 1999-09-02 Schaeffler Waelzlager Ohg Verriegelungseinrichtung für eine Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine, insbesondere für eine Flügelzellen-Verstelleinrichtung
JP2002514705A (ja) * 1998-05-12 2002-05-21 トロホーツェントリック・インテルナツィオナール・アーゲー 軸の位相位置を調整するための調整装置
JP2000045727A (ja) * 1998-08-04 2000-02-15 Mitsubishi Electric Corp 油圧式バルブタイミング調節装置およびその組立方法
JP2000161028A (ja) * 1998-11-26 2000-06-13 Denso Corp バルブタイミング調整装置
JP2000204915A (ja) * 1999-01-12 2000-07-25 Toyota Motor Corp 内燃機関の可変動弁装置
JP2000297614A (ja) 1999-04-12 2000-10-24 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
DE19922792A1 (de) * 1999-05-18 2000-11-23 Gkn Sinter Metals Holding Gmbh Verzahnungsrotorsatz
DE19962981A1 (de) * 1999-12-24 2001-07-05 Schaeffler Waelzlager Ohg Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine insbesondere hydraulische Nockenwellen-Verstelleinrichtung in Rotationskolbenbauart
DE10010170A1 (de) 2000-03-05 2001-09-06 Gkn Sinter Metals Gmbh Inverser Verzahnungsrotorsatz
DE10020120A1 (de) * 2000-04-22 2001-10-25 Schaeffler Waelzlager Ohg Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine, insbesondere hydraulische Nockenwellen-Verstelleinrichtung in Rotationskolbenbauart
DE10054796A1 (de) * 2000-11-04 2002-06-13 Ina Schaeffler Kg Vorrichtung zur Drehwinkelverstellung einer Welle gegenüber ihrem Antrieb
DE10062981A1 (de) 2000-12-16 2002-06-20 Mitsubishi Polyester Film Gmbh Heißsterilisierbare, biaxial orientierte Polyesterfolie mit guter Metallhaftung, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10109837A1 (de) * 2001-03-01 2002-09-05 Ina Schaeffler Kg Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine, insbesondere Rotationskolben-Verstelleinrichtung zur Drehwinkelverstellung einer Nockenwelle gegenüber einer Kurbelwelle
JP2002332812A (ja) * 2001-05-08 2002-11-22 Unisia Jecs Corp 内燃機関のバルブタイミング制御装置
JP3996895B2 (ja) 2003-12-26 2007-10-24 株式会社日立製作所 内燃機関のバルブタイミング変更装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006034752A1 *

Also Published As

Publication number Publication date
EP1794420B1 (de) 2009-07-01
JP4845888B2 (ja) 2011-12-28
KR101185387B1 (ko) 2012-09-25
MX2007003419A (es) 2007-05-23
ATE435360T1 (de) 2009-07-15
KR20070057199A (ko) 2007-06-04
DE102004047817B3 (de) 2005-12-08
BRPI0515941A (pt) 2008-08-12
CN100504041C (zh) 2009-06-24
DE502005007631D1 (de) 2009-08-13
US20070169733A1 (en) 2007-07-26
WO2006034752A1 (de) 2006-04-06
US7584731B2 (en) 2009-09-08
ES2328381T3 (es) 2009-11-12
CN101027463A (zh) 2007-08-29
JP2008514853A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
EP1347154B1 (de) Ventilsteuerung zur Einstellung des Hubes von Ventilen in einer Brennkraftmaschine
EP1078148B1 (de) Verstellvorrichtung zum verstellen der phasenlage einer welle
EP1794420B1 (de) Nockenwellenversteller für eine verbrennungskraftmaschine
DE102008019747A1 (de) Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102017111223B3 (de) Nockenwellenversteller
DE102011079609A1 (de) Nockenwellenversteller
DE102012206562A1 (de) Nockenwellenversteller
DE102015214623A1 (de) Nockenwellenverstellvorrichtung
DE10112206A1 (de) Vorrichtung zur relativen Drehwinkelverstellung einer Nockenwelle einer Brennkraftmaschine zu einem Antriebsrad
DE102008019745A1 (de) Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102018129673A1 (de) Betätigungsmechanismus für eine Nockenwellenverstellvorrichtung zur Betätigung einer konzentrischen Nockenwellenanordnung
DE102014220578A1 (de) Nockenwellenversteller
DE102013203244A1 (de) Nockenwellenversteller
DE102017111900A1 (de) Nockenwellenverstellvorrichtung
DE102008056666A1 (de) Nockenwellenverstelleinrichtung
DE102016207180B3 (de) Abtriebselement eines Nockenwellenverstellers, das an der Kontaktfläche zur Nockenwelle eine partielle Strukturierung aufweist
DE102016121238B4 (de) Hydraulischer Antrieb, hydraulischer Motor und Pumpe mit dem hydraulischen Antrieb
WO2020069693A1 (de) Deckel eines nockenwellenverstellers
DE102014214119A1 (de) Nockenwellenversteller
WO2015176989A1 (de) Axialkolbenmaschine
DE102016210476A1 (de) Nockenwellenverstelleinrichtung
WO2001011201A1 (de) Verstellvorrichtung zum verstellen der phasenlage einer welle
DE102013223860A1 (de) Innenzahnradpumpe
WO2004044429A2 (de) Pumpe
DE102009005115A1 (de) Mechanisch variable Nockenwellenverstellvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005007631

Country of ref document: DE

Date of ref document: 20090813

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2328381

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

BERE Be: lapsed

Owner name: GKN SINTER METALS HOLDING G.M.B.H.

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

26N No opposition filed

Effective date: 20100406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120827

Year of fee payment: 8

Ref country code: ES

Payment date: 20120824

Year of fee payment: 8

Ref country code: FR

Payment date: 20120831

Year of fee payment: 8

Ref country code: IT

Payment date: 20120824

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005007631

Country of ref document: DE

Effective date: 20140301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130811