EP1786888A1 - Stickstoffhaltige heterocyclische verbindungen als reibverschleissvermindernder zusatz zu kraftstoffen - Google Patents

Stickstoffhaltige heterocyclische verbindungen als reibverschleissvermindernder zusatz zu kraftstoffen

Info

Publication number
EP1786888A1
EP1786888A1 EP05783500A EP05783500A EP1786888A1 EP 1786888 A1 EP1786888 A1 EP 1786888A1 EP 05783500 A EP05783500 A EP 05783500A EP 05783500 A EP05783500 A EP 05783500A EP 1786888 A1 EP1786888 A1 EP 1786888A1
Authority
EP
European Patent Office
Prior art keywords
fuel
additive
compound
use according
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05783500A
Other languages
English (en)
French (fr)
Inventor
Ludwig Völkel
Arno Lange
Christian Lockemann
Dietmar Posselt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1786888A1 publication Critical patent/EP1786888A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines

Definitions

  • Nitrogen-containing heterocyclic compounds as Reibverschl formulate-reducing additive to fuels
  • the present invention relates to the use of at least one heterocyclic compound of the formula (I)
  • R is H, or C 1 -C 3 -AIRyI, as a scuffing-reducing additive in fuel compositions; correspondingly additized fuel compositions and their preparation; and additive concentrates comprising such compounds.
  • Carburettors and intake systems of gasoline engines are heavily contaminated by impurities caused by dust particles from the air, unburned hydrocarbon radicals from the combustion chamber and the crankcase ventilation gases conducted into the gasifier. These residues shift the air-fuel ratio at idle and in the lower part-load range, so that the mixture becomes leaner, the combustion becomes more incomplete, and thus the proportion of unburned or partially combusted hydrocarbons in the exhaust gas increases. Increasing gasoline consumption is the result.
  • fuel additives are used to clean valves and carburetors or injection systems of gasoline engines (see, for example: M. Rossenbeck in Catalysts, Surfactants, Mineral Oil Additives, Ed. J. Falbe, U Hasserodt, p. 223, G. Thieme Verlag, Stuttgart 1978).
  • Such surface active fuel additives are generally referred to as "detergents”.
  • so-called “dispersants” are often used as surface-active additives, some of which are also suitable for use as detergents in fuel compositions.
  • Such detergents which can originate from a large number of chemical substance classes, such as, for example, polyalkeneamines, polyetheramines, polybutene-Mannich bases or polybutene-succinimides, are generally used in combination with carrier oils and, if appropriate, further additive components, for example corrosion inhibitors and demulsifiers.
  • further additive components for example corrosion inhibitors and demulsifiers.
  • Gasoline fuels with and without such gasoline additive show a different behavior with respect to their lubricating or wear properties in gasoline engines, which is unsatisfactory and should therefore be improved.
  • synergistically effective additive mixtures which can be used as lubricity improvers in fuels and lubricants and the reaction product of a dicarboxylic acid or a dicarboxylic acid derivative with a long-chain, aliphatic amine and a fatty acid ester or a fatty acid ester-containing component, such as.
  • a vegetable oil As a vegetable oil.
  • EP-A-1 246 895 describes other polycyclic aromatic compounds having at least one heteroatom selected from oxygen and nitrogen which is in the heterocyclic or an exocyclic group and which carries at least one C 1 -C 4 -alkyl substituent on the ring. These compounds are particularly suitable as lubricity additives in diesel fuels. According to local teaching may the alkyl substituent may not be bound to the molecule either in the a or in the position to form a ring heteroatom, since otherwise only an insufficient lubricating effect is to be observed. Preferred examples include compounds having at most two heteroatoms, such as in particular 5-methylbenzimidazole, 2-hydroxy-4-methylquinoline, 8-hydroxy-quinaldine and 4-amino-quinaldine.
  • This also has the advantage that compounds of the tolutriazole type, which are already used in fuels as non-ferrous metal corrosion inhibitors (generally in quantities of less than 10 ppm), are supplied to a further use, and thus it is possible to Corrosion protection and lubricating effect with one and the same additive to improve.
  • a first subject of the invention relates to the use of at least one heterocyclic compound of the formula (I)
  • R is H, or C 1 -C 3 alkyl, such as methyl, n- or iso-propyl, as a fretting-reducing additive in fuel compositions.
  • the compound of formula (I) is added to the fuel in a proportion of less than 1000 mg / kg, e.g. in a proportion of 1 to 500 mg / kg or 10 to 250 or 10 to 100 mg / kg, or in a proportion of 1 to ⁇ 50 mg / kg, e.g. 1 to 45 mg / kg.
  • the use of the compound of the formula (I) is preferably carried out as a mixture of compounds which are positional isomers with respect to the ring substituent R.
  • the compound of the formula (I) in particular a mixture of isomers of compounds of the formulas (Ia) and (Ib)
  • the molar ratio of (Ia) (4-alkyl compound) to (Ib) (5-alkyl compound) in a range of 10 to 60 to 90 to 40, such. is about 20 to 40 to 80 to 60 or about 30 to 40 to 70 to 60.
  • the relative proportion of (Ib) is greater than (Ia) and is about 50 to 90, e.g. 55 to 80 mol%, based on the mixture of (Ib) and (Ia).
  • R is methyl.
  • the proportion of (Ib) is about 63 mol% and the proportion of (Ia) about 37 mol%
  • friction modifiers according to the invention in combination with at least one further conventional fuel additive, such as, for example, selected from among detergent additives, carrier oils, corrosion inhibitors and mixtures comprising one or more of these additives
  • a reduction of the fretting wear value (R 1 in ⁇ m), determined as described in the following experimental part, is observed by about 5 to 70, e.g. 5 to 60, 5 to 50, 10 to 60, 10 to 50, 15 to 60 or 15 to 50% compared to the value determined before addition of the additive of the formula (I).
  • the method of determination is based on an HFRR test commonly used in the diesel fuel sector (according to CEC F-06-A-96) but with the measurement taken at room temperature (25 ° C) and under a load of 720g (about 7.06 N).
  • the Krafftscher to be examined are eingiert before distillation to 50 vol .-% by distillation.
  • the invention relates to the use of the above heterocycles in combination with at least one other conventional friction-reducing additive known from the prior art (see, for example, above).
  • a further subject of the invention are fuel compositions comprising, in a main amount of a customary base fuel, an amount of a heterocyclic compound of the formula (I) which reduces the coefficient of friction wear as defined above.
  • the invention also relates to additive concentrates comprising at least one friction-reducing additive as defined above in combination with at least one further customary fuel additive and optionally at least one further conventional friction-reducing additive. Particular preference is given to using the above-described friction modifiers in gasolines.
  • a final object of the invention relates to a process for the preparation of a fuel composition having improved fretting behavior, wherein an effective amount of a heterocyclic compound according to the above definition or an additive concentrate as defined above is added to a commercial fuel composition.
  • the friction modifier formulations according to the invention can be added to the fuels to be additive, individually or in admixture with other effective additive components (coadditives).
  • detergent additives As examples, detergency additives and / or valve seat wear-inhibiting effect (hereinafter referred to as detergent additives) may be cited.
  • This detergent additive has at least one hydrophobic hydrocarbon radical having a number-average molecular weight (Mn) of from 85 to 20,000 and at least one polar group selected from:
  • the hydrophobic hydrocarbon radical in the above detergent additives which provides sufficient solubility in the fuel, has a number average molecular weight (Mn) of from 85 to 20,000, especially from 113 to 10,000, especially from 300 to 5000.
  • Mn number average molecular weight
  • the polypropenyl, polybutenyl and polyisobutenyl radical having in each case Mn 300 to 5000, in particular 500 to 2500, come especially 700 to 2300, into consideration.
  • the preparation route is afforded by chlorination and subsequent deoxidation or by oxidation of the double bond with air or ozone to the carbonyl or carboxyl compound and subsequent amination under reductive (hydrogenating) conditions.
  • amines for example ammonia, monoamines or polyamines, such as dimethylaminopropylamine, ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine, can be used here.
  • Corresponding additives based on polypropene are described in particular in WO-A-94/24231.
  • monoamino groups (a) -containing additives are the compounds obtainable from polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols, as described in particular in DE-A-196 20 262.
  • These reaction products typically are mixtures of pure nitropolyisobutenes (e.g., alpha, beta-dinitropolyisobutene) and mixed hydroxynitropolyisobutenes (e.g., alpha-nitro-beta-hydroxy polyisobutene).
  • Carboxyl groups or their alkali metal or alkaline earth metal salts (d) containing additives are preferably copolymers of C 2 -C 40 olefins with maleic anhydride having a total molecular weight of 500 to 20 000, the carboxyl groups wholly or partially to the alkali metal or alkaline earth metal salts and a remaining Rest of the carboxyl groups are reacted with alcohols or amines.
  • Such additives are known in particular from EP-A-307 815.
  • Such additives are mainly used to prevent valve seat wear and, as described in WO-A-87/01126, can be advantageously used in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Sulphonic acid groups or their alkali metal or alkaline earth metal salts (e) containing additives are preferably alkali metal or alkaline earth metal salts of a sulfosuccinic acid alkyl ester, as described in particular in EP-A-639 632.
  • Such additives are mainly used to prevent valve seat wear and can be used to advantage in combination with conventional fuel detergents such as poly (iso) butenamines or polyetheramines.
  • Polyoxy-C 2 -C 4 alkylene groupings (f) containing additives are preferably polyether or polyetheramines, which by reaction of C 2 -C 6 o-alkanols, C6-C30 alkanediols, mono- or di-C 2 -C 3 o-alkylamines, Ci-Cao-Alkylcyclohexanolen or C 1 - C 30 alkylphenols with 1 to 30 moles of ethylene oxide and / or propylene oxide and / or Buty- lenoxid per hydroxyl group or amino group and, in the case of polyetheramines, by subsequent reductive amination with Ammonia, monoamines or polyamines are available.
  • Such products are described in particular in EP-A-310 875, EP-A-356 725, EP-A-700 985 and US-A-4 877 416.
  • polyethers such products also meet carrier oil properties. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobute- nolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • Carboxylic ester groups (g) containing additives are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, especially those having a minimum viscosity of 2 mm 2 / s at 100 0 C, as described in particular in DE-A-38 38 918 are described.
  • Aliphatic or aromatic acids can be used as the mono-, di- or tricarboxylic acids, and the ester alcohols or polyols used are, above all, long-chain representatives with, for example, 6 to 24 carbon atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, iso-nonanol, iso-decanol and isotridecanol. Such products also fulfill carrier oil properties.
  • derivatives with aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine.
  • Such gasoline additives are described in particular in US Pat. No. 4,849,572.
  • Mannich reaction of substituted phenols with aldehydes and mono- or polyamines generated groupings (i) containing additives are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine.
  • Such "polyisobutene-Mannich bases" are described in particular in EP-A-831 141.
  • additive formulations according to the invention can moreover be combined with even further customary components and additives.
  • Here are primarily carrier oils without pronounced detergent action to call.
  • Suitable mineral carrier oils are fractions obtained in petroleum processing, such as bright stock or base oils with viscosities such as, for example, from the class SN 500-2000; but also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols.
  • An accumulating as "hydrocrack oil” bekann ⁇ te and in the refining of mineral oil fraction is also useful (vacuum distillate cut obtainable with a boiling range of about 360-500 0 C 1 from catalytic high pressure table hydrogenated and isomerized and also deparaffinized natural mineral oil).
  • mineral carrier oils are mixtures of the abovementioned mineral carrier oils.
  • Examples of synthetic carrier oils which can be used according to the invention are selected from: polyolefins (polyalphaolefins or polyethylenemolefins), (poly) esters, (poly) ly) alkoxylates, polyethers, aliphatic polyetheramines, alkylphenol-initiated polyethers, alkylphenol-initiated polyetheramines and carboxylic acid esters of long-chain alkanols.
  • suitable polyethers or polyetheramines are preferably compounds containing polyoxy-C 2 -C 4 -alkylene groups which are prepared by reacting C 2 -C 60 -alkanols, C 6 -C 30 -alkanediols, mono- or di-C 2 -C 3 o-alkylamines, C 1 -C 30 -
  • Such products are described in particular in EPA-310 875, EP-A-356 725, EP-A-700 985 and US-A-4,877,416.
  • the polyetheramines used can be poly-C 2 -C 6 -alkylene oxide amines or functional derivatives thereof. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • carboxylic acid esters of long-chain alkanols are in particular esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as described in particular in DE-A-38 38 918.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 carbon atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and isotricanecanol, such as e.g. Di (n- or iso-tridecyl) phthalate.
  • suitable synthetic carrier oils are alcohol-started polyethers with about 5 to 35, such as about 5 to 30, C 3 -C 6 alkylene oxide units, such as selected from propylene oxide, n-butylene oxide and i-butylene oxide units, or mixtures thereof.
  • suitable starter alcohols are long-chain alkanols or substituted long-chain alkyl phenols, wherein the long chain alkyl group is 8 -alkyl radical, in particular a straight-chain or branched C 6 -C.
  • Preferred examples are tridecanol and nonylphenol.
  • suitable synthetic carrier oils are alkoxylated alkylphenols, as described in DE-A-10 102 913.6
  • corrosion inhibitors for example based on film-forming ammonium salts of organic carboxylic acids or of heterocyclic aromatics in the case of non-ferrous metal corrosion protection
  • Antioxidants or stabilizers for example based on amines such as p-phenylenediamine, dicyclohexylamine or derivatives thereof or of phenols such as 2,4-di-te ⁇ t-butylphenol or 3,5-di-tert-butyl-4-hydroxyphenylpropionklare
  • demulsifiers demulsifiers
  • Antistatic agents Metallocene such as ferrocene; methylcyclopentadienyl
  • Lubricity improvers other than the triazoles according to the invention, such as certain fatty acids, alkenylsuccinic esters, bis (hydroxyalkyl) fatty amines, hydroxyacetamides or ricin oil; as well as dyes (markers).
  • amines are added to lower the pH of the fuel.
  • the components or additives can be added to the fuel individually or as a previously prepared concentrate (additive package) together with the friction modifier according to the invention.
  • the said detergent additives with the polar groups (a) to (i) are added to the fuel usually in an amount of 10 to 5000 ppm by weight, in particular 50 to 1000 ppm by weight.
  • the other components and additives mentioned are, if desired, added in conventional amounts.
  • a gasoline having an aromatic content of at most 60 e.g. a maximum of 42 or a maximum of 35% by volume and / or a sulfur content of not more than 2000, e.g. maximum 150 or maximum 10 ppm by weight possible.
  • the aromatics content of the gasoline is, for example, from 0 to 50, e.g. 30 to 42 vol.%, In particular 32 to 40 vol.%, Or at most 35 vol.%.
  • Sulfur content of the gasoline is, for example, 2 to 500, e.g. 5 to 100 ppm by weight, or maximally 0 ppm by weight.
  • the gasoline may, for example, have an olefin content of up to 50% by volume, e.g. from 6 to 21% by volume, especially 7 to 18% by volume; a benzene content of up to 5% by volume, e.g. 0.5 to 1.0% by volume, in particular 0.6 to 0.9% by volume and / or an oxygen content of up to 25% by volume, such as e.g. up to 10 wt .-% or 1, 0 to 2.7 wt .-%, in particular from 1, 2 to 2.0 wt .-%, have.
  • an olefin content of up to 50% by volume, e.g. from 6 to 21% by volume, especially 7 to 18% by volume
  • a benzene content of up to 5% by volume e.g. 0.5 to 1.0% by volume, in particular 0.6 to 0.9% by volume
  • an oxygen content of up to 25% by volume such as e.g. up to 10 wt .-% or 1, 0 to 2.7 w
  • gasoline fuels may be mentioned by way of example, which at the same time have an aromatic content of not more than 38 or 35% by volume, an olefin content of not more than 21% by volume, a sulfur content of not more than 50 or 10 ppm by weight, a benzene content of not more than 1, 0 vol .-% and an oxygen content of 1, 0 to 2.7% by weight.
  • the content of alcohols and ethers in gasoline can vary over a wide range. Examples of typical maximum contents are 15% by volume for methanol, 65% by volume for ethanol, 20% by volume for isopropanol, 15% by volume for tert-butanol, 20% by volume for isobutanol and 20% by weight for isobutanol for ethers with 5 or more C atoms in the molecule 30 vol .-%.
  • the summer vapor pressure of the gasoline is usually not more than 70 kPa, in particular 60 kPa (each at 37 ° C).
  • the ROZ of the gasoline is usually 75 to 105.
  • a common range for the corresponding MOZ is 65 to 95.
  • the specified specifications are determined by conventional methods (DIN EN 228).
  • HFRR High Frequency Reciprocating Rig
  • the used petrol (OK) (typical petrol according to EN 228) was concentrated by distillation to 50 Vol .-% before the measurements.
  • For this ver ⁇ uses an MP 628 distillation unit of the company. Herzog, Lauda-Königshofen, Germany. This 50% residue was used in the examination in Verschl boss ⁇ measuring device to determine the blank value.
  • To this residue according to the examples given below in Table 1, the further additives were added and the fretting values were determined according to the method given above.
  • the re- resulting frictional wear values (R) are given in micrometers ( ⁇ m); the lower the value, the lower the wear that occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung wenigstens einer heterocyclischen Verbindung der Formel (I), worin R für H, oder C<sub

Description

Stickstoffhaltige heterocyclische Verbindungen als Reibverschleiß- vermindernder Zusatz zu Kraftstoffen
Beschreibung
Die vorliegende Erfindung betrifft die Verwendung wenigstens einer heterocyclischen Verbindung der Formel (I)
worin R für H, oder C1-C3-AIRyI steht, als Reibverschleiß-vermindernder Zusatz in Kraftstoffzusammensetzungen; entspre¬ chend additivierte Kraftstoffzusammensetzungen und derer Herstellung; und Additiv- konzentrate, welche derartige Verbindungen umfassen.
Stand der Technik:
Vergaser und Einlasssysteme von Ottomotoren, aber auch Einspritzsysteme für die Kraftstoffdosierung, werden durch Verunreinigungen stark belastet, die durch Staub¬ teilchen aus der Luft, unverbrannte Kohlenwasserstoffreste aus dem Brennraum und die in den Vergaser geleiteten Kurbelwellengehäuseentlüftungsgase verursacht wer¬ den. Diese Rückstände verschieben das Luft-Kraftstoff-Verhältnis im Leerlauf und im unteren Teillastbereich, so dass das Gemisch magerer, die Verbrennung unvollständi- ger wird und damit die Anteile unverbrannter oder teilverbrannter Kohlenwasserstoffe im Abgas größer werden. Steigender Benzinverbrauch ist die Folge.
Es ist bekannt, dass zur Vermeidung dieser Nachteile Kraftstoffadditive zur Reinhal¬ tung von Ventilen und Vergasern bzw. Einspritzsystemen von Ottomotoren verwendet werden (vgl. z. B.: M. Rossenbeck in Katalysatoren, Tenside, Mineralöladditive, Hrsg. J. Falbe, U. Hasserodt, S. 223, G. Thieme Verlag, Stuttgart 1978). Derartige grenzflä¬ chenaktive Kraftstoffadditive werden im Allgemeinen als "Detergenzien" bezeichnet. Im Bereich der Schmierstoffzusammensetzungen werden oftmals sogenannte "Disperga- toren" als grenzflächenaktive Additive eingesetzt, wobei diese teilweise auch für den Einsatz als Detergenzien in Kraftstoffzusammensetzungen geeignet sind. Derartige Detergentien, die einer Vielzahl chemischer Substanzklassen entstammen können, wie zum Beispiel Polyalkenamine, Polyetheramine, Polybuten-Mannichbasen oder Polybuten-succinimide, gelangen im Allgemeinen in Kombination mit Trägerölen und gegebenenfalls weiteren Additivkomponenten, wie z.B. Korrosionsinhibitoren und Demulgatoren, zur Anwendung. Ottokraftstoffe mit und ohne derartigen Ottokraftstoff- additiven zeigen ein unterschiedliches Verhalten bezüglich ihrer Schmierfähigkeits- bzw. Verschleißeigenschaften in Ottomotoren, das jedoch nicht zufriedenstellend ist und somit verbessert werden sollte.
Im Gegensatz zu Kraftstoffadditiven für Dieselkraftstoffe, bei denen Komponenten zur Verbesserung der Schmierfähigkeit von Dieselkraftstoffen schon zum Stand der Tech¬ nik gehören, gibt es auf der Seite der Ottokraftstoffe erst wenige technische Lösungen, um durch die Zugabe geeigneter Additive zu Ottokraftstoffen deren Schmierfähigkeit signifikant zu erhöhen und damit zu verbessern. Beispielsweise ist bekannt, dass Fett- säuren und Derivate davon (EP-A-780 460, EP-A- 829 527), Alkenylbemsteinsäu- reester (WO 97/45507), Bis(hydroxyalkyl)- fettamine (EP-A-869 163) oder Hydroxyace- tamide (WO-98/30658, US-A-5,756,435) als Zusätze zu Ottokraftstoffen und/oder Otto¬ kraftstoffadditiven die Schmierfähigkeit der Ottokraftstoffe verbessern können. Auch bei Ricinusöl ist bekannt, dass dessen Zugabe zu Dieselkraftstoffen (EP-A-605 857) und/oder Ottokraftstoffen (US-A-5,505,867) die Schmierfähigkeit erhöhen kann.
Aus der EP-A-1 230 328 der BASF AG sind synergistisch wirksame Additivgemische bekannt, welche als Schmierfähigkeitsverbesserer in Kraft- und Schmierstoffen ein¬ setzbar sind und das Umsetzungsprodukt einer Dicarbonsäure oder eines Dicarbon- Säurederivates mit einem langkettigen, aliphatischen Amin sowie einem Fettsäureester oder eine Fettsäureester enthaltende Komponente, wie z. B. ein pflanzliches Öl, enthalten.
Aus der US-A-4,060,491 ist die Verwendung von 5-Alkyl-benzotriazolen, wobei der Alkylrest 4 bis 16 Kohlenstoffatome aufweist, als reibeverschleissmindemder Zusatz in Schmiermittelzusammensetzungen bekannt. Eine Verwendung in Kraftstoffzusammen¬ setzungen, insbesondere in Ottokraftstoffen, wird nicht beschrieben. Benzotriazol und Tolutriazol zeigten selbst bei Additivierung im Bereich von 1000 ppm (0,1 Gew.-%) keine zufriedenstellende Performance im Schmiermittel.
Die EP-A-1 246 895 beschreibt weitere polycyclische aromatische Verbindungen mit wenigstens einem unter Sauerstoff und Stickstoff ausgewählten Heteroatom, welches in der heterocyclischen oder in einer exocyclischen Gruppe vorliegt, und wenigstens einen CrC4-Alkyl-Substituenten am Ring tragen. Diese Verbindungen eignen sich ins- besondere dann als Lubricity Additive in Dieselkraftstoffen. Nach dortiger Lehre darf der Alkyl-Substituent weder in a- noch in ^-Position zu einem Ring-Heteroatom an das Molekül gebunden sein, da sonst nur eine unzureichende Schmierwirkung zu beo¬ bachten ist. Bevorzugte Beispiele umfassen Verbindungen mit höchstens zwei Hetero- atomen, wie insbesondere 5-Methylbenzimidazol, 2-Hydroxy-4-methylchinolin, 8- Hydroxy-chinaldin und 4-Amino-chinaldin. Außerdem werden zufriedenstellende Er¬ gebnisse erst bei einer Dosierung von über 50 ppm, vorzugsweise bei etwa 150 ppm, erhalten. Die Brauchbarkeit von Verbindungen mit mehr als zwei Heteroatomen, und damit polareren Verbindungen, wie z.B Tolutriazolen und verwandten Verbindungen, als Friction Modifier für Ottokraftstoffe wird in dieser Entgegenhaltung weder ausdrück- lieh vorgeschlagen noch dem fachkundigen Leser in irgend einer Form nahegelegt.
Es besteht daher die Aufgabe neue Kraftstoffadditive bereitzustellen, welche die Schmierfähigkeit insbesondere von Ottokraftstoffen bzw. die Verschleißfestigkeit ins¬ besondere von Ottomotoren verbessern.
Kurze Beschreibung der Erfindung:
Es wurde nun überraschenderweise gefunden, dass obige Aufgabe durch Verwendung von Tolutriazol und strukturell verwandten Verbindungen als Friction Modifier gelöst. Überraschenderweise wurde festgestellt, dass bereits geringe Mengen an diesem Ad¬ ditiv zu einer signifikanten Verbesserung der Reibverschleißeigenschaften des additivierten Kraftstoffs führen.
Dies hat außerdem den Vorteil, dass Verbindungen vom Tolutriazol-Typ, die in Kraft- Stoffen bereits als Buntmetallkorrosionsschutz eingesetzt werden (in der Regel in Men¬ gen von weniger als 10 ppm), einer weiteren Verwendung zugeführt werden, und damit die Möglichkeit besteht, Korrosionsschutz und Schmierwirkung mit ein und dem selben Additiv zu verbessern.
Detaillierte Beschreibung der Erfindung:
A) Bevorzugte Ausführungsformen
Ein erster Gegenstand der Erfindung betrifft die Verwendung wenigstens einer hetero- cyclischen Verbindung der Formel (I)
worin R für H, oder C1-C3-AIKyI, wie z.B. Methyl, n- oder iso-Propyl, steht, als Reibverschleiß-vermindemder Zusatz in Kraftstoffzusammensetzungen.
Vorzugsweise setzt man dem Kraftstoff die Verbindung der Formel (I) in einem Anteil von weniger als 1000 mg/kg, wie z.B. in einem Anteil von 1 bis 500 mg/kg oder 10 bis 250 oder 10 bis 100 mg/kg, oder in einem Anteil von 1 bis <50 mg/kg , wie z.B. 1 bis 45 mg/kg zu.
bevorzugt erfolgt die Verwendung der Verbindung der Formel (I) als Gemisch von Ver¬ bindungen, die bezüglich des Ringsubstituenten R Stellungsisomere sind. So kann als Verbindung der Formel (I) insbesondere ein Isomerengemisch von Verbindungen der Formeln (Ia) und (Ib)
eingesetzt werden, wobei das molare Verhältnis von (Ia) (4-Alkyl-Verbindung) zu (Ib) (5-Alkyl-Verbindung) in ei¬ nem Bereich von 10 bis 60 zu 90 bis 40, wie z.B. bei etwa 20 bis 40 zu 80 bis 60 oder bei etwa 30 bis 40 zu 70 bis 60 liegt.
Vorzugsweise ist der relative Anteil von (Ib) größer als von (Ia) und liegt bei etwa 50 bis 90, wie z.B. 55 bis 80 Mol%, bezogen auf das Gemisch von (Ib) und (Ia).
Erfindungsgemäß werden alle möglichen tautomeren Formen von Verbindungen der Formel I1 Ia und Ib einzeln oder im Gemisch umfasst. Beispielsweise lassen sich für Formel I folgende tautomeren Formen angeben:
Gemäß einer besonders bevorzugten Ausführungsform steht R für Methyl. Der Anteil von (Ib) liegt dabei bei etwa 63 Mol% und der Anteil von (Ia) bei etwa 37 Mol%
Weiterhin ist es bevorzugt, die erfindungsgemäßen Friction Modifier in Kombination mit wenigstens einem weiteren herkömmlichen Kraftstoffadditiv, wie z.B. ausgewählt unter Detergensadditiven, Trägerölen, Korrosionsinhibitoren und Mischungen enthaltend eines oder mehrere dieser Additive, einzusetzen
Bei erfindungsgemäßer Verwendung beobachtet man überraschenderweise eine Ver¬ ringerung des Reibverschleißwerts (R; in μm), bestimmt wie im folgenden experimen- teilen Teil beschrieben, um etwa 5 bis 70, wie z.B. 5 bis 60, 5 bis 50, 10 bis 60, 10 bis 50, 15 bis 60 oder 15 bis 50 % im Vergleich zu dem ermittelten Wert vor Zugabe des Additivs der Formel (I). Die Bestimmungsmethode basiert dabei auf einem auf dem Dieselkraftstoffsektor üblicherweise verwendeten HFRR-Test (entsprechend CEC F- 06-A-96), wobei jedoch die Messung bei Raumtemperatur (25°C) und unter einer Be- lastung von 720g (etwa 7,06 N) erfolgt. Die zu untersuchenden Krafftstoffe werden vor der Messung auf 50 Vol.-% destillativ eingeeingt.
In einer alternativen Ausführungsform betrifft die Erfindung die Verwendung obiger Heterocyclen in Kombination mit wenigstens einem weiteren üblichen, aus dem Stand der Technik ( vgl. z.B. oben) bekannten, reibungsvermindernden Zusatz.
Ein weiterer Gegenstand der Erfindung sind Kraftstoffzusammensetzungen, umfas¬ send in einer Hauptmenge eines üblichen Grundkraftstoffs eine den Reibverschlei߬ wert verringernde Menge einer heterocyclischen Verbindung der Formel (I) gemäß obiger Definition.
Gegenstand der Erfindung sind auch Additivkonzentrate, enthaltend wenigstens einen reibungsvermindernden Zusatz nach obiger Definition in Kombination mit wenigstens einem weiteren üblichen Kraftstoffadditiv und gegebenenfalls wenigstens einem weite- ren üblichen reibungsvermindernden Zusatz. Besonders bevorzugt verwendet man die oben beschriebenen Friction Modifier in Otto¬ kraftstoffen.
Ein letzter Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung einer Kraft- stoffzusammensetzung mit verbessertem Reibverschleißverhalten, wobei man einer handelsüblichen Kraftstoffzusammensetzung eine wirksame Menge einer heterozykli¬ schen Verbindung gemäß obiger Definition oder eines Additivkonzentrats nach obiger Definition zusetzt.
B) Weitere Additivkomponenten
Die erfindungsgemäßen Friction Modifier Formulierungen können den zu additivieren- den Kraftstoffen einzeln oder im Gemisch mit weiteren wirksamen Additivkomponenten (Co-Additiven) zugesetzt werden.
B1) Detergensadditive
Als Beispiele können Additive mit Detergenswirkung und/oder mit Ventilsitzverschleiß- hemmender Wirkung (im folgenden bezeichnet als Detergensadditive) genannt wer- den. Dieses Detergensadditiv besitzt mindestens einen hydrophoben Kohlenwasser¬ stoffrest mit einem zahlengemittelten Molekulargewicht (Mn) von 85 bis 20 000 und mindestens eine polare Gruppierung ausgewählt aus:
(a) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
(b) Nitrogruppen, ggf. in Kombination mit Hydroxylgruppen;
(c) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei min- destens ein Stickstoffatom basische Eigenschaften hat;
(d) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
(e) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen; (f) Polyoxy-C2- bis C4-alkylengruppierungen, die durch Hydroxylgruppen, Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat, oder durch Carbamatgruppen terminiert sind;
(g) Carbonsäureestergruppen;
(h) aus Bernsteinsäureanhydrid abgeleiteten Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen; und/oder
(i) durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mo¬ no- oder Polyaminen erzeugten Gruppierungen;
Der hydrophobe Kohlenwasserstoff rest in den obigen Detergensadditiven, welcher für die ausreichende Löslichkeit im Kraftstoff sorgt, hat ein zahlengemitteltes Molekular- gewicht (Mn) von 85 bis 20,000, insbesondere von 113 bis 10,000, vor allem von 300 bis 5000. Als typischer hydrophober Kohlenwasserstoff rest, insbesondere in Verbin¬ dung mit den polaren Gruppierungen (a), (c), (h) und (i), kommen der Polypropenyl-, Polybutenyl- und Polyisobutenylrest mit jeweils Mn = 300 bis 5000, insbesondere 500 bis 2500, vor allem 700 bis 2300, in Betracht.
Als Beispiele für obige Gruppen von Detergensadditiven seien die folgenden genannt:
Mono- oder Polyaminogruppen (a) enthaltende Additive sind vorzugsweise Polyalken- mono- oder Polyalkenpolyamine auf Basis von Polypropen oder konventionellem (d.h. mit überwiegend mittenständigen Doppelbindungen) Polybuten oder Polyisobuten mit Mn = 300 bis 5000. Geht man bei der Herstellung der Additive von Polybuten oder Po¬ lyisobuten mit überwiegend mittenständigen Doppelbindungen (meist in der beta-und gamma-Position) aus, bietet sich der Herstellweg durch Chlorierung und anschließen¬ de Aminierung oder durch Oxidation der Doppelbindung mit Luft oder Ozon zur Carbo- nyl- oder Carboxylverbindung und anschließende Aminierung unter reduktiven (hydrie¬ renden) Bedingungen an. Zur Aminierung können hier Amine, wie z.B. Ammoniak, Mo- noamine oder Polyamine, wie Dimethylaminopropylamin, Ethylendiamin, Diethylentri- amin, Triethylentetramin oder Tetraethylenpentamin, eingesetzt werden. Entsprechen¬ de Additive auf Basis von Polypropen sind insbesondere in der WO-A-94/24231 be- schrieben. Weitere bevorzugte Monoaminogruppen (a) enthaltende Additive sind die Hydrierungs¬ produkte der Umsetzungsprodukte aus Polyisobutenen mit einem mittleren Polymerisa¬ tionsgrad P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauer- stoff, wie sie insbesondere in WO-A-97/03946 beschrieben sind.
Weitere bevorzugte Monoaminogruppen (a) enthaltende Additive sind die aus Polyiso- butenepoxiden durch Umsetzung mit Aminen und nachfolgender Dehydratisierung und Reduktion der Aminoalkohole erhältlichen Verbindungen, wie sie insbesondere in DE- A-196 20 262 beschrieben sind.
Nitrogruppen (b), ggf. in Kombination mit Hydroxylgruppen, enthaltende Additive sind vorzugsweise Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisati¬ onsgrades P = 5 bis 100 oder 10 bis 100 mit Stickoxiden oder Gemischen aus Stick- oxiden und Sauerstoff, wie sie insbesondere in WO-A-96/03367 und WO-A-96/03479 beschrieben sind. Diese Umsetzungsprodukte stellen in der Regel Mischungen aus reinen Nitropolyisobutenen (z.B. alpha, beta-Dinitropolyisobuten) und gemischten Hydroxynitropolyisobutenen (z.B. alpha-Nitro-beta-hydroxypolyisobuten) dar.
Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen (c) enthaltende Additive sind insbesondere Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus vorzugsweise überwiegend endständige Doppelbindungen aufweisendem Polyiso- buten mit Mn = 300 bis 5000, mit Ammoniak, Mono- oder Polyaminen, wie sie insbe¬ sondere in EP-A-476 485 beschrieben sind.
Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (d) enthaltende Additive sind vorzugsweise Copolymere von C2-C40-Olefinen mit Maleinsäureanhydrid mit einer Gesamt-Molmasse von 500 bis 20 000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind. Solche Additive sind insbesondere aus der EP-A-307 815 bekannt. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können, wie in der WO-A-87/01126 be¬ schrieben, mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Po- ly(iso)butenaminen oder Polyetheraminen eingesetzt werden. Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (e) enthaltende Additive sind vorzugsweise Alkalimetall- oder Erdalkalimetallsalze eines Sulfo- bernsteinsäurealkylesters, wie er insbesondere in der EP-A-639 632 beschrieben ist. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Po- ly(iso)butenaminen oder Polyetheraminen eingesetzt werden.
Polyoxy-C2-C4-alkylengruppierungen (f) enthaltende Additive sind vorzugsweise PoIy- ether oder Polyetheramine, welche durch Umsetzung von C2-C6o-Alkanolen, C6-C30- Alkandiolen, Mono- oder Di-C2-C3o-alkylaminen, Ci-Cao-Alkylcyclohexanolen oder C1- C30-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/oder Propylenoxid und/oder Buty- lenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyami- nen erhältlich sind. Derartige Produkte werden insbesondere in EP-A-310 875, EP-A- 356 725, EP-A-700 985 und US-A-4 877 416 beschrieben. Im Falle von Polyethern erfüllen solche Produkte auch Trägeröleigenschaften. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobute- nolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
Carbonsäureestergruppen (g) enthaltende Additive sind vorzugsweise Ester aus Mono- , Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, insbesondere solche mit einer Mindestviskosität von 2 mm2/s bei 1000C, wie sie insbesondere in DE- A-38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphati- sehe oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw.- polyole eig¬ nen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typi¬ sche Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Tri- mellitate des iso-Octanols, iso-Nonanols, iso-Decanols und des iso-Tridecanols. Derar¬ tige Produkte erfüllen auch Trägeröleigenschaften.
Aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen (h) enthaltende Additive sind vorzugsweise entsprechende Derivate von Polyisobutenylbernsteinsäureanhydrid, welche durch Um¬ setzung von konventionellem oder hochreaktivem Polyisobuten mit Mn = 300 bis 5000 mit Maleinsäureanhydrid auf thermischen Wege oder über das chlorierte Polyisobuten erhältlich sind. Von besonderem Interesse sind hierbei Derivate mit aliphatischen PoIy- aminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethylenpen- tamin. Derartige Ottokraftstoffadditive sind insbesondere in US-A-4 849 572 beschrie¬ ben.
Durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugte Gruppierungen (i) enthaltende Additive sind vorzugsweise Umsetzungsprodukte von polyisobutensubstituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin oder Dimethylaminopropylamin. Die polyisobutenylsubstituierten Phenole können aus konventionellem oder hochreaktivem Polyisobuten mit Mn = 300 bis 5000 stammen. Derartige "Polyisobuten-Mannichbasen" sind insbesondere in der EP-A-831 141 beschrieben.
Zur genaueren Definition der einzelnen aufgeführten Ottokraftstoffadditive wird hier auf die Offenbarungen der obengenannten Schriften des Standes der Technik ausdrücklich Bezug genommen.
B2) Trägeröle und weitere Komponenten:
Die erfindungsgemäßen Additiv-Formulierungen können darüber hinaus mit noch wei¬ teren üblichen Komponenten und Additiven kombiniert werden. Hier sind in erster Linie Trägeröle ohne ausgeprägte Detergenswirkung zu nennen.
Geeignete mineralische Trägeröle sind bei der Erdölverarbeitung anfallende Fraktio¬ nen, wie Brightstock oder Grundöle mit Viskositäten wie beispielsweise aus der Klasse SN 500 - 2000; aber auch aromatische Kohlenwasserstoffe, paraffinische Kohlenwas¬ serstoffe und Alkoxyalkanole. Brauchbar ist ebenfalls eine als "hydrocrack oil" bekann¬ te und bei der Raffination von Mineralöl anfallende Fraktion (Vakuumdestillatschnitt mit einem Siedebereich von etwa 360 bis 5000C1 erhältlich aus unter Hochdruck kataly- tisch hydriertem und isomerisiertem sowie entparaffiniertem natürlichen Mineralöl). Ebenfalls geeignet sind Mischungen oben genannter mineralischer Trägeröle.
Beispiele für erfindungsgemäß verwendbare synthetische Trägeröle sind ausgewählt unter: Polyolefinen (Polyalphaolefine oder Polyintemalolefine), (Poly)estern, (Po- ly)alkoxylaten, Polyethem, aliphatischen Polyetheraminen, alkylphenolgestarteten Po- lyethern, alkylphenolgestarteten Polyetheraminen und Carbonsäureester langkettiger Alkanole.
Beispiele für geeignete Polyolefine sind Olefinpolymerisate mit Mn = 400 bis 1800, vor allem auf Polybuten- oder Polyisobuten-Basis (hydriert oder nicht hydriert).
Beispiele für geeignete Polyether oder Polyetheramine sind vorzugsweise Polyoxy-C2- C4-alkylengruppierungen enthaltende Verbindungen, welche durch Umsetzung von C2- C60-Alkanolen, C6-C30-Alkandiolen, Mono- oder Di-C2-C3o-alkylaminen, C1-C30-
Alkylcyclohexanolen oder CrC30-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/ oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesonde- re in EPA-310 875, EP-A-356 725, EP-A-700 985 und US-A-4,877,416 beschrieben. Beispielsweise können als Polyetheramine Poly-C2-C6-Alkylenoxidamine oder funktio¬ nelle Derivate davon verwendet werden. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
Beispiele für Carbonsäureester langkettiger Alkanole sind insbesondere Ester aus Mo¬ no-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen , wie sie insbe¬ sondere in der DE-A-38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C- Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Te- rephthalate und Trimellitate des Isooctanols, Isononanols, Isodecanols und des Isotri- decanols, wie z.B. Di-(n- oder lso-tridecyl)-phthalat.
Weitere geeignete Trägerölsysteme sind beispielsweise beschrieben in DE-A-38 26 608, DE-A-41 42 241 , DE-A-43 09 074, EP-A-O 452 328 und EP-A-O 548 617, worauf hiermit ausdrücklich Bezug genommen wird.
Beispiele für besonders geeignete synthetische Trägeröle sind alkoholgestartete PoIy- ether mit etwa 5 bis 35, wie z.B. etwa 5 bis 30, C3-C6-Alkylenoxideinheiten, wie z.B. ausgewählt unter Propylenoxid-, n-Butylenoxid- und i-Butylenoxid-Einheiten, oder Ge¬ mischen davon. Nichtlimitierende Beispiele für geeignete Starteralkohole sind langket- tige Alkanole oder mit langkettigem Alkyl substituierte Phenole, wobei der langkettige Alkylrest insbesondere für einen geradkettigen oder verzweigten C6-Ci8-Alkylrest steht. Als bevorzugte Beispiele sind zu nennen Tridecanol und Nonylphenol.
Weitere geeignete synthetische Trägeröle sind alkoxylierte Alkylphenole, wie sie in der DE-A-10 102 913.6 beschrieben sind
B3) Weitere Co-Additive
Weitere übliche Additive sind Korrosionsinhibitoren, beispielsweise auf Basis von zur Filmbildung neigenden Ammoniumsalzen organischer Carbonsäuren oder von hetero- cyclischen Aromaten im Falle von Buntmetallkorrosionsschutz; Antioxidantien oder Stabilisatoren, beispielsweise auf Basis von Aminen wie p-Phenylendiamin, Dicyclohe- xylamin oder Derivaten hiervon oder von Phenolen wie 2,4-Di-teιt-butylphenol oder 3,5-Di-tert.-butyl-4-hydroxyphenylpropionsäure; Demulgatoren; Antistatikmittel; Metal- locene wie Ferrocen; Methylcyclopentadienylmangantricarbonyl; Schmierfähigkeitsver- besserer (andere als die erfindungsgemäßen Triazole) wie bestimmte Fettsäuren, Al- kenylbemsteinsäureester, Bis(hydroxyalkyl)fettamine, Hydroxyacetamide oder Ricinu- söl; sowie Farbstoffe (Marker). Gegebenenfalls werden auch Amine zur Absenkung des pH-Wertes des Kraftstoffes zugesetzt.
Die Komponenten bzw. Additive können dem Kraftstoff einzeln oder als vorher zuberei- tetes Konzentrat (Additivpaket) zusammen mit dem erfindungsgemäßen Friction Modi- fier zugegeben werden.
Die genannten Detergensadditive mit den polaren Gruppierungen (a) bis (i) werden dem Kraftstoff üblicherweise in einer Menge von 10 bis 5000 Gew.-ppm, insbesondere 50 bis 1000 Gew.-ppm, zugegeben. Die sonstigen erwähnten Komponenten und Addi¬ tive werden, wenn gewünscht, in hierfür üblichen Mengen zugesetzt.
C) Kraftstoffe Die erfindungsgemäßen Additivzusammensetzungen sind in allen herkömmlichen Ot¬ tokraftstoffen, wie sie beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, 5. Aufl. 1990, Band A16, S. 719 ff. beschrieben sind, verwendbar.
Zum Beispiel ist die Verwendung in einem Ottokraftstoff mit einem Aromatengehalt von maximal 60, wie z.B. maximal 42 oder maximal 35 Vol.-% und/oder einem Schwefel¬ gehalt von maximal 2000, wie z.B. maximal 150 oder maximal 10 Gew.-ppm möglich.
Der Aromatengehalt des Ottokraftstoffes beträgt beispielsweiselO bis 50, wie z.B. 30 bis 42 Vol.-%, insbesondere 32 bis 40 Vol.-%, oder maximal 35 Vol.-%. Der
Schwefelgehalt des Ottokraftstoffes beträgt beispielsweise 2 bis 500, wie z.B. 5 bis 100Gew.-ppm, oder maximall 0 Gew.-ppm.
Weiterhin kann der Ottokraftstoff beispielsweise einen Olefingehalt bis zu 50 Vol.-%, wie z.B. von 6 bis 21 Vol.-%, insbesondere 7 bis 18 Vol.-%; einen Benzolgehalt von bis zu 5 Vol.-%, wie z.B. 0,5 bis 1 ,0 Vol.-%, insbesondere 0,6 bis 0,9 Vol.-% und/oder ei¬ nen Sauerstoffgehalt von bis zu 25 Vol.-%, wie z.B. bis zu 10 Gew.-% oder 1 ,0 bis 2,7 Gew.-%, insbesondere von 1 ,2 bis 2,0 Gew.-%, aufweisen.
Insbesondere können solche Ottokraftstoffe beispielhaft genannt werden, welche gleichzeitig einen Aromatengehalt von maximal 38 oder 35 Vol.-%, einen Olefingehalt von maximal 21 Vol.-%, einen Schwefelgehalt von maximal 50 oder 10 Gew.-ppm, eine Benzolgehalt von maximal 1 ,0 Vol.-% und eine Sauerstoffgehalt von 1 ,0 bis 2,7 Gew.- % aufweisen.
Der Gehalt an Alkoholen und Ethern im Ottokraftstoff kann über einem weiten Bereich variieren. Beispiele typischer maximaler Gehalte sind für Methanol 15 Vol.-%, für Etha- nol 65 Vol.-%, für Isopropanol 20 Vol.-%, für tert.-Butanol 15 Vol.-%, für Isobutanol 20 Vol.-% und für Ether mit 5 oder mehr C-Atomen im Molekül 30 Vol.-%.
Der Sommer-Dampfdruck des Ottokraftstoffes beträgt üblicherweise maximal 70 kPa, insbesondere 60 kPa (jeweils bei 37°C).
Die ROZ des Ottokraftstoffes beträgt in der Regel 75 bis 105. Ein üblicher Bereich für die entsprechende MOZ liegt bei 65 bis 95. Die genannten Spezifikationen werden nach üblichen Methoden bestimmt (DIN EN 228).
Die Erfindung wird nun anhand der folgenden Ausführungsbeispiele näher beschrie¬ ben:
Experimenteller Teil:
Herstellungsbeispiel: Herstellung einer Additivformulierung
Man erwärmt Keropur ® 3458N (Handelsprodukt der BASF, umfassend Polyisobute- namin Mn=1000, sowie Tridecanol-polypropoxylat (Tridecanol 15xPO) und Dimer- Fettsäure als Korrosionsschutz) auf 600C erwärmt und gibt dazu unter Rühren Tolutria- zol (63 Mol% 5-Methyl- und 37 Mol% 4-Methylverbindung) in dem aus Tabelle 1 ableit¬ baren Mischungsverhältnis. Diese Mischung wird dann bei 600C 1 Stunde gerührt.
Anwendungsbeispiele: Bestimmung der Reibverschleißwerte in Ottokraftstoff
Zur Überprüfung der Schmierfähigkeit bzw. des Verschleisses in Ottokraftstoffen wurde ein High Frequency Reciprocating Rig (HFRR) - Gerät der Fa. PCS Instruments, Lon¬ don, verwendet. Die Messbedingungen wurden auf den Einsatz von Ottokraftstoffen (ausgehend von der Norm CEC F-06-A-96) angepasst (Messtemperatur 25 0C, Belas¬ tung 720g). Die Anwendbarkeit dieser Testmethode für Ottokraftstoffe ist durch die Literaturstellen D. Margaroni, Industrial Lubrication and Tribology, Vol. 50, No. 3,
May/June 1998, pp. 108-118, und W. D. Ping, S. Korcek, H. Spikes, SAE Techn. Paper 962010, pp. 51-59 (1996) belegt.
Die hierbei eingesetzten Ottokraftstoffe (OK) (typische Ottokraftstoffe nach EN 228) wurden vor den Messungen destillativ schonend auf 50 Vol.-% eingeengt. Dazu ver¬ wendet man eine MP 628 Destillationsautomat der Fa. Herzog, Lauda-Königshofen, Deutschland. Dieser 50%-ige Rückstand diente bei der Überprüfung im Verschlei߬ messgerät zur Ermittlung des Blindwertes. Zu diesem Rückstand wurden entsprechend der unten in Tabelle 1 aufgeführten Beispiele die weiteren Additive gegeben und die Reibverschleißwerte wurden nach der oben angegebenen Methode bestimmt. Die re- sultierenden Reibverschleißwerte (R) sind in Mikrometer (μm) angegeben; je geringer der Wert ist, desto geringer ist der auftretende Verschleiß.
Tabelle 1 : Reibverschleißwerte R in Ottokraftstoffen
Überraschenderweise beobachtet man bereits bei Dosierungen von 10 ppm eine signi¬ fikante, im Lichte des Standes der Technik völlig unerwartete Verbesserung des Reib¬ verschleißwertes (d.h. eine Abnahme von R).

Claims

Patentansprüche
1. Verwendung wenigstens einer heterocyclischen Verbindung der Formel (I)
worin R für H, oder C1-C3-AIKyI steht, als reibverschleißvermindemder Zusatz in Kraftstoffzusammensetzungen.
2. Verwendung nach Anspruch 1 , wobei man dem Kraftstoff die Verbindung der Formel (I) in einem Anteil von weniger als 1000 mg/kg zusetzt.
3. Verwendung nach Anspruch 2, wobei man dem Kraftstoff die Verbindung in ei- nem Anteil von 1 bis 500 mg/kg zusetzt.
4. Verwendung nach Anspruch 3, wobei man dem Kraftstoff die Verbindung in ei¬ nem Anteil von 1 bis <50 mg/kg zusetzt.
Verwendung nach einem der vorhergehenden Ansprüche, wobei die Verbindung der Formel (I) als Gemisch von Verbindungen eingesetzt wird, die bezüglich des Ringsubstituenten R Stellungsisomere sind.
6. Verwendung nach Anspruch 5, wobei Verbindung der Formel (I) ein Isomeren- gemisch von Verbindungen der Formeln (Ia) und (Ib)
umfasst, wobei das molare Verhältnis von (Ia) zu (Ib) in einem Bereich von 10 bis 60 zu 90 bis 40 liegt.
7. Verwendung nach einem der vorhergehenden Ansprüche, wobei R für Methyl steht.
8. Verwendung nach einem der vorhergehenden Ansprüche in Kombination mit we¬ nigstens einem weiteren herkömmlichen Kraftstoffadditiv.
9. Verwendung nach einem der vorhergehenden Ansprüche, wobei der Reibver¬ schleißwert (R) in μm, um etwa 5 bis 70 % im Vergleich zu dem ermittelten Wert vor Zugabe des Additivs, umfassend eine Verbindung der Formel (I), verringert wird.
10. Verwendung nach einem der vorhergehenden Ansprüche, in Kombination mit wenigstens einem weiteren üblichen reibungsvermindernden Zusatz.
11. Kraftstoffzusammensetzung, umfassend in einer Hauptmenge eines Grundkraft¬ stoffs eine den Reibverschleißwert verringernde Menge einer heterocyclischen Verbindung der Formel (I), gemäß der Definition in einem der Ansprüche 1 bis10.
12. Additivkonzentrat enthaltend wenigstens einen reibungsvermindernden Zusatz nach einem der Ansprüche 1 bis 9 in Kombination mit wenigstens einem weite¬ ren üblichen Kraftstoff additiv und gegebenenfalls wenigstens einem weiteren üb- liehen reibungsvermindernden Zusatz.
13. Verwendung, Kraftstoffzusammensetzung oder Additivkonzentrat nach einem der vorhergehenden Ansprüche, wobei die Kraftstoffzusammensetzung ein Otto¬ kraftstoff ist.
14. Verfahren zur Herstellung einer Kraftstoffzusammensetzung mit verbessertem Reibverschleißverhalten, wobei man einer handelsüblichen Kraftstoffzusammen¬ setzung eine wirksame Menge einer heterozyklischen Verbindung gemäß der Definition in einem der Ansprüche 1 bis 9 oder eines Additivkonzentrats nach Anspruch 12 zusetzt.
EP05783500A 2004-08-05 2005-08-04 Stickstoffhaltige heterocyclische verbindungen als reibverschleissvermindernder zusatz zu kraftstoffen Withdrawn EP1786888A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004038113A DE102004038113A1 (de) 2004-08-05 2004-08-05 Stickstoffhaltige heterocyclische Verbindungen als Reibverschleißvermindernder Zusatz zu Kraftstoffen
PCT/EP2005/008468 WO2006015800A1 (de) 2004-08-05 2005-08-04 Stickstoffhaltige heterocyclische verbindungen als reibverschleissvermindernder zusatz zu kraftstoffen

Publications (1)

Publication Number Publication Date
EP1786888A1 true EP1786888A1 (de) 2007-05-23

Family

ID=35414740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05783500A Withdrawn EP1786888A1 (de) 2004-08-05 2005-08-04 Stickstoffhaltige heterocyclische verbindungen als reibverschleissvermindernder zusatz zu kraftstoffen

Country Status (15)

Country Link
US (2) US7850744B2 (de)
EP (1) EP1786888A1 (de)
JP (1) JP4940138B2 (de)
KR (1) KR101218902B1 (de)
CN (1) CN1993450B (de)
AR (2) AR051366A1 (de)
AU (1) AU2005270349A1 (de)
BR (1) BRPI0514137B1 (de)
CA (1) CA2575494C (de)
DE (1) DE102004038113A1 (de)
MX (1) MX2007000840A (de)
MY (1) MY145663A (de)
SG (2) SG155185A1 (de)
WO (1) WO2006015800A1 (de)
ZA (1) ZA200701847B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022020B2 (en) 2005-01-18 2011-09-20 Bestline International Research, Inc. Universal synthetic penetrating lubricant, method and product-by-process
US8377861B2 (en) 2005-01-18 2013-02-19 Bestline International Research, Inc. Universal synthetic golf club cleaner and protectant, method and product-by-process to clean, protect golf club faces and rejuvenate golf clubs grips
US8071522B2 (en) 2005-01-18 2011-12-06 Bestline International Research, Inc. Universal synthetic golf club cleaner and protectant, method and product-by-process to clean, protect golf club faces and rejuvenate golf clubs grips
US8268022B2 (en) 2005-01-18 2012-09-18 Bestline International Research, Inc. Universal synthetic gasoline fuel conditioner additive, method and product-by-process
US7745382B2 (en) 2005-01-18 2010-06-29 Bestline International Research Inc. Synthetic lubricant additive with micro lubrication technology to be used with a broad range of synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam
US8334244B2 (en) 2005-01-18 2012-12-18 Bestline International Research, Inc. Universal synthetic water displacement multi-purpose penetrating lubricant, method and product-by-process
US7931704B2 (en) * 2005-01-18 2011-04-26 Bestline International Research Universal synthetic gasoline fuel conditioner additive, method and product-by-process
US8415280B2 (en) 2005-01-18 2013-04-09 Bestline International Research, Inc. Universal synthetic penetrating lubricant, method and product-by-process
US7597726B2 (en) * 2006-01-20 2009-10-06 Afton Chemical Corporation Mannich detergents for hydrocarbon fuels
DE102007008465B4 (de) * 2007-02-19 2008-10-16 Tyco Electronics Amp Gmbh Elektrisches Steckermodul insbesondere für eine RJ 45-Steckverbindung
AU2007362572B2 (en) * 2007-12-19 2010-09-16 Bestline International Research, Inc. Universal synthetic lubricant, method and product-by-process to replace the lost sulfur lubrication when using low-sulfur diesel fuels
US20150247103A1 (en) 2015-01-29 2015-09-03 Bestline International Research, Inc. Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
AU2013265575B2 (en) 2012-05-25 2017-06-15 Basf Se Tertiary amines for reducing injector nozzle fouling in direct injection spark ignition engines
WO2014019911A1 (en) 2012-08-01 2014-02-06 Basf Se Process for improving thermostability of lubricant oils in internal combustion engines
US9388354B2 (en) 2012-11-06 2016-07-12 Basf Se Tertiary amines for reducing injector nozzle fouling and modifying friction in direct injection spark ignition engines
WO2014023853A2 (en) 2012-11-06 2014-02-13 Basf Se Tertiary amines for reducing injector nozzle fouling and modifying friction in direct injection spark ignition engines
WO2014184066A1 (en) 2013-05-14 2014-11-20 Basf Se Polyalkenylsuccinimides for reducing injector nozzle fouling in direct injection spark ignition engines
WO2015059210A1 (en) * 2013-10-24 2015-04-30 Shell Internationale Research Maatschappij B.V. Liquid fuel compositions
US10400192B2 (en) 2017-05-17 2019-09-03 Bestline International Research, Inc. Synthetic lubricant, cleaner and preservative composition, method and product-by-process for weapons and weapon systems
CN108219874B (zh) * 2017-12-13 2020-05-29 四川大学 一种超低硫柴油用妥尔油脂肪酸复配抗磨剂
CN117986243B (zh) * 2024-04-03 2024-05-31 湖南浩润科技有限公司 一种含杂环化合物的柴油抗磨剂及其制备方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223496A (en) * 1962-07-05 1965-12-14 Sinclair Research Inc Light stabilized hydrocarbon fuel
US3511623A (en) * 1969-04-14 1970-05-12 Sinclair Research Inc Gasoline composition containing a metal salt of an azole compound
US3843337A (en) * 1971-06-14 1974-10-22 Sherwin Williams Co Benzotriazole and tolyltriazole mixtures
BE814268A (fr) * 1973-04-28 1974-10-28 Carburants contenant des anti-corrossifs
US4060491A (en) * 1975-10-02 1977-11-29 Mobil Oil Corporation Lubricant composition
FR2485031A1 (fr) * 1980-03-10 1981-12-24 Lubrizol Corp Compositions benzotriazole-olefine sulfuree et lubrifiants et concentres les contenant
JPS612794A (ja) * 1984-06-16 1986-01-08 Fuji Sekiyu Kk 燃料油の貯蔵安定性改善方法
US4690687A (en) 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
DE3711985A1 (de) * 1987-04-09 1988-10-20 Union Rheinische Braunkohlen Verwendung von polyolethern zur verhinderung oder verminderung von ablagerungen in gemischaufbereitungssystemen
ATE74620T1 (de) 1987-09-15 1992-04-15 Basf Ag Kraftstoffe fuer ottomotoren.
DE3732908A1 (de) 1987-09-30 1989-04-13 Basf Ag Polyetheramine enthaltende kraftstoffe fuer ottomotoren
US4877416A (en) 1987-11-18 1989-10-31 Chevron Research Company Synergistic fuel compositions
US4849572A (en) 1987-12-22 1989-07-18 Exxon Chemical Patents Inc. Process for preparing polybutenes having enhanced reactivity using boron trifluoride catalysts (PT-647)
US5035720A (en) * 1988-02-24 1991-07-30 Petrolite Corporation Composition for inhibition of corrosion in fuel systems, and methods for use and preparation thereof
DE3826608A1 (de) 1988-08-05 1990-02-08 Basf Ag Polyetheramine oder polyetheraminderivate enthaltende kraftstoffe fuer ottomotoren
DE3838918A1 (de) 1988-11-17 1990-05-23 Basf Ag Kraftstoffe fuer verbrennungsmaschinen
DE4030164A1 (de) 1990-09-24 1992-03-26 Basf Ag Kraftstoffe fuer verbrennungsmotoren und schmierstoffe enthaltende hochmolekulare aminoalkohole
EP0482253A1 (de) * 1990-10-23 1992-04-29 Ethyl Petroleum Additives Limited Umweltfreundliche Kraftstoffzusammensetzungen und Zusätze dafür
DE4142241A1 (de) 1991-12-20 1993-06-24 Basf Ag Kraftstoffe fuer ottomotoren
DE4300207A1 (de) 1993-01-07 1994-07-14 Basf Ag Mineralische schwefelarme Dieselkraftstoffe
DE4309074A1 (de) 1993-03-20 1994-09-22 Basf Ag Als Kraftstoffadditiv geeignete Mischungen
DE4313088A1 (de) 1993-04-22 1994-10-27 Basf Ag Poly-1-n-alkenamine und diese enthaltende Kraft- und Schmierstoffzusammensetzungen
AT400149B (de) 1993-08-17 1995-10-25 Oemv Ag Additiv für unverbleite ottokraftstoffe sowie dieses enthaltender kraftstoff
US5482521A (en) * 1994-05-18 1996-01-09 Mobil Oil Corporation Friction modifiers and antiwear additives for fuels and lubricants
US5505867A (en) 1994-07-06 1996-04-09 Ritter; Clyde G. Fuel and Lubrication oil additive
DE4425835A1 (de) 1994-07-21 1996-01-25 Basf Ag Verwendung von Umsetzungsprodukten aus Polyolefinen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff als Additive für Kraftstoffe
DE4425834A1 (de) 1994-07-21 1996-01-25 Basf Ag Umsetzungsprodukte aus Polyisobutenen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff und ihre Verwendung als Kraft- und Schmierstoffadditive
DE4432038A1 (de) 1994-09-09 1996-03-14 Basf Ag Polyetheramine enthaltende Kraftstoffe für Ottomotoren
DE19525938A1 (de) 1995-07-17 1997-01-23 Basf Ag Verfahren zur Herstellung von organischen Stickstoffverbindungen, spezielle organische Stickstoffverbindungen und Mischungen aus solchen Verbindungen sowie deren Verwendung als Kraft- und Schmierstoffadditive
JPH0940978A (ja) * 1995-07-31 1997-02-10 Tonen Corp ディーゼル燃料油
CA2182108A1 (en) * 1995-07-31 1997-02-01 Yutaka Hasegawa Gas oil
ATE202595T1 (de) 1995-12-22 2001-07-15 Exxonmobil Res & Eng Co Benzinzusatzkonzentrat
DE19620262A1 (de) 1996-05-20 1997-11-27 Basf Ag Verfahren zur Herstellung von Polyalkenaminen
HUP9902408A3 (en) 1996-05-31 2000-04-28 Ass Octel Fuel additives
GB9618546D0 (en) 1996-09-05 1996-10-16 Bp Chemicals Additives Dispersants/detergents for hydrocarbons fuels
EP0829527A1 (de) 1996-09-12 1998-03-18 Exxon Research And Engineering Company Zusatzkonzentrat für Kraftstoffzusammensetzungen
US5858029A (en) 1997-01-13 1999-01-12 Mobil Oil Corporation Friction reducing additives for fuels and lubricants
EP0869163A1 (de) 1997-04-03 1998-10-07 Mobil Oil Corporation Verfahren zur Motorreibungsherabsetzung
US5756435A (en) 1997-04-18 1998-05-26 Mobil Oil Corporation Friction reducing additives for fuels and lubricants
JPH1121569A (ja) * 1997-07-07 1999-01-26 Furukawa Yakuhin Kogyo Kk ディーゼル軽油の水溶解剤
DE19955354A1 (de) 1999-11-17 2001-05-23 Basf Ag Schmierfähigkeitsverbesserer und diese enthaltende Kraftstoff- und Schmierstoffzusammensetzungen
GB2357296A (en) * 1999-12-16 2001-06-20 Exxon Research Engineering Co Low sulphur fuel composition with enhanced lubricity
DE10102913A1 (de) 2001-01-23 2002-07-25 Basf Ag Alkoxylierte Alkyphenole und deren Verwendung in Kraft- und Schmierstoffen
US6709573B2 (en) 2002-07-12 2004-03-23 Anthon L. Smith Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
CN100523156C (zh) * 2002-08-22 2009-08-05 新日本理化株式会社 轴承用润滑油

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006015800A1 *

Also Published As

Publication number Publication date
ZA200701847B (en) 2008-07-30
AU2005270349A1 (en) 2006-02-16
BRPI0514137B1 (pt) 2014-09-16
AR082343A2 (es) 2012-11-28
AR051366A1 (es) 2007-01-10
JP2008508412A (ja) 2008-03-21
US20080190014A1 (en) 2008-08-14
CA2575494A1 (en) 2006-02-16
MX2007000840A (es) 2007-04-17
US7850744B2 (en) 2010-12-14
DE102004038113A1 (de) 2006-03-16
US20100236136A1 (en) 2010-09-23
KR20070051293A (ko) 2007-05-17
CN1993450A (zh) 2007-07-04
CN1993450B (zh) 2011-11-16
KR101218902B1 (ko) 2013-01-07
WO2006015800A1 (de) 2006-02-16
BRPI0514137A (pt) 2008-05-27
US8814957B2 (en) 2014-08-26
SG10201404612PA (en) 2014-09-26
MY145663A (en) 2012-03-15
CA2575494C (en) 2013-07-02
SG155185A1 (en) 2009-09-30
JP4940138B2 (ja) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2006015800A1 (de) Stickstoffhaltige heterocyclische verbindungen als reibverschleissvermindernder zusatz zu kraftstoffen
EP2270119B1 (de) Kraftstoffzusammensetzung
EP1613694B1 (de) Polyalkenamine mit verbesserten anwendungseigenschaften
EP1277828A2 (de) Kraftstoffzusammensetzung
EP2114844B1 (de) Verzweigte decylnitrate und ihre verwendung als verbrennungsverbesserer und/oder cetanzahlverbesserer in kraftstoffen
EP1399490B1 (de) Verfahren zur herstellung von polyisobutenylsuccinimidprodukten, polyisobutenylsuccinimidprodukte mit verbesserten eigenschaften, zwischenprodukte und verwendungen
EP2240519B1 (de) Spezielle polyisobutenamine und ihre verwendung als detergentien in kraftstoffen
EP1278814B1 (de) Kraftstoffadditivpakete für ottokraftstoffe mit verbesserten viskositätseigenschaften und guter ivd performance
EP1098953A1 (de) Propoxilat enthaltende kraftstoffzusammensetzungen
EP1495096B1 (de) Kraftstoffadditivgemisch für ottokraftstoffe mit synergistischer ivd-performance
WO2004024851A1 (de) Additivgemisch für kraft- und schmierstoffe
EP1230328B1 (de) Schmierfähigkeitsverbesserer und diese enthaltende kraftstoff- und schmierstoffzusammensetzungen
EP1177270B1 (de) Polyalkenalkohol-polyetheramine und deren verwendung in kraft- und schmierstoffen
EP3933014A1 (de) Additivierung von kraftstoffen zur verringerung unkontrollierter zündungen in verbrennungsmotoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20111121

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170301