US20150247103A1 - Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel - Google Patents

Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel Download PDF

Info

Publication number
US20150247103A1
US20150247103A1 US14/699,924 US201514699924A US2015247103A1 US 20150247103 A1 US20150247103 A1 US 20150247103A1 US 201514699924 A US201514699924 A US 201514699924A US 2015247103 A1 US2015247103 A1 US 2015247103A1
Authority
US
United States
Prior art keywords
motor oil
blend
group
olefins
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/699,924
Inventor
Ronald J. Sloan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BestLine International Research Inc
Original Assignee
BestLine International Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BestLine International Research Inc filed Critical BestLine International Research Inc
Priority to US14/699,924 priority Critical patent/US20150247103A1/en
Publication of US20150247103A1 publication Critical patent/US20150247103A1/en
Priority to KR1020177022963A priority patent/KR20170108050A/en
Priority to BR112017016291A priority patent/BR112017016291A2/en
Priority to EP16744071.8A priority patent/EP3250664A4/en
Priority to PCT/US2016/015256 priority patent/WO2016123279A1/en
Priority to MYPI2017702708A priority patent/MY184900A/en
Priority to AU2016211474A priority patent/AU2016211474B2/en
Priority to JP2017539298A priority patent/JP2018505276A/en
Priority to CA2972633A priority patent/CA2972633C/en
Priority to MX2017009809A priority patent/MX2017009809A/en
Priority to SG11201706040UA priority patent/SG11201706040UA/en
Priority to PE2017001266A priority patent/PE20171535A1/en
Priority to CN201680007483.5A priority patent/CN107532105B/en
Priority to US15/508,137 priority patent/US20170247632A1/en
Priority to EA201791682A priority patent/EA201791682A1/en
Priority to ZA2017/04431A priority patent/ZA201704431B/en
Priority to PH12017501281A priority patent/PH12017501281A1/en
Priority to IL253663A priority patent/IL253663B/en
Priority to CL2017001905A priority patent/CL2017001905A1/en
Priority to US15/831,036 priority patent/US20180087000A1/en
Priority to JP2018235512A priority patent/JP2019070140A/en
Priority to US16/750,368 priority patent/US11377616B2/en
Priority to US17/026,284 priority patent/US11473031B2/en
Assigned to BESTLINE INTERNATIONAL RESEARCH INC. reassignment BESTLINE INTERNATIONAL RESEARCH INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SLOAN, RONALD J.
Priority to JP2022089631A priority patent/JP2022126670A/en
Priority to US17/810,465 priority patent/US20220333034A1/en
Priority to US18/047,419 priority patent/US20230174884A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M131/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/08Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/042Carbon; Graphite; Carbon black halogenated, i.e. graphite fluoride
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/02Reduction, e.g. hydrogenation

Definitions

  • the field of this invention relates to the latest technology for substantially reducing steel-to-steel wear along with eliminating the need for Zinc Dialkyldithiophosphates (ZDDP) in motor oils as an anti-wear component.
  • the composition of this invention has been shown to modify the plastic response of steel while having a positive influence on the chemical reactivity of the surfaces subjected to being worn down due to friction. Specifically, based on the tribological testing detailed in U.S. 62/109,172, spectroscopic analysis of the wear tracks of an engine disk revealed that chemical elements like P, S, Mn, Zn, which can be from the ZDDP in the oil, were not detected. This suggests that this composition inhibits the reaction of ZDDP and renders it unnecessary for reducing wear.
  • ZDDP zinc di-alkyl-di-thiophosphates
  • ZDTP zinc di-thiophosphate
  • bearing corrosion inhibitors were developed to protect these new bearings. There was a need to protect the bearings against both corrosive and mechanical wear, and many of these compounds served both functions.
  • Compounds such as sulfurized sperm oil, organic phosphates, dithiocarbonates and dithiophosphates were experimented with to reduce premature wear.
  • Lubrizol developed Zinc Dialkyldithiophosphates, which remain the most commonly-used form of ZDDP, and introduced these to the market.
  • ZDDP was added to motor oils in low concentrations of less than 0.3% by volume as a bearing passivator, defined as treating or coating a metal in order to reduce the chemical reactivity of its surface.
  • ZDDP was found to be a remarkably effective anti-wear agent; a true extreme-pressure (EP) additive for heavily loaded steel-on-steel sliding mechanisms such as camshafts and valve lifters or tappets.
  • EP extreme-pressure
  • Group I base stocks contain less than 90 percent saturates and/or greater than 0.03 percent sulfur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table E-1.
  • Group II base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulfur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table E-1.
  • Group III base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulfur and have a viscosity index greater than or equal to 120 using the test methods specified in Table E-1.
  • Group IV base stocks are polyalphaolefins (PAO). PAOs can be interchanged without additional qualification testing as long as the interchange PAO meets the original PAO manufacturer's specifications in physical and chemical properties. The following key properties need to be met in the substituted stock:
  • Group V base stocks include all other base stocks not included in Group I, II, III, or IV.
  • An additive and related method for modifying the plastic response of steel comprising: polymerized alpha olefins; hydroisomerized hydro-treated severe hydrocracked base oil; and optionally, synthetic sulfonates.
  • a tribological study detailed in U.S. 62/109,172 and herein concludes that: (1) This additive significantly reduces wear of the carbon steel disk to 6% of the wear observed in pure oil without additive; (2) There is no obvious effect of the additive on friction except a slightly better stability with time of the coefficient of friction; (3) The additive appears to inhibit the reaction of ZDDP and renders ZDDP unnecessary for reducing wear.
  • the additive may be a replacement for ZDDP in motor oils; and (4)
  • the additive was found to modify the plastic response of the investigated steel and to influence the chemical reactivity of the worn surfaces. Although testing was not conducted to establish the coefficient of friction, as this will be concluded at a later time, previous testing supports that the friction is reduced.
  • This invention is for a synthetic lubricant additive that can be added at various ratios to provide the need protect against steel-to-steel wear or between bearing and steel surfaces, as well as related method of manufacturing this additive and related methods of its use. Further, this additive can be added to synthetic, synthetic blends and non-synthetic motor oils (motor oils in all of Groups I through V) to provide them with the anti-wear protection necessary in today's high speed and low speed gasoline and diesel motor oils. Further the invention allows steel under extreme pressure to yield or to respond to plastic deformation without the fracturing of the metal surface.
  • the additive incorporates the use of polymerized alpha olefins (PAO); hydroisomerized hydro-treated severe hydrocracked base oil; and optionally, synthetic sulfonates. Further, one can optionally employ vacuum distilled non aromatic solvents and liquefied polytetrafluoroethylene (PTFE) and when combined into the additive a specific sequence, this forms a finished product that exceeds the metal-protecting capability and benefits of ZDDP while providing an environmentally-friendly replacement. Further this product provides protection against steel-to-steel contact while positively influencing the chemical reactivity of worn metal surfaces. Further this product in independent testing reported in pending provisional application U.S. 62/109,172 has demonstrated the ability to modify the plastic response of steel placed under extreme pressure.
  • PAO polymerized alpha olefins
  • PTFE liquefied polytetrafluoroethylene
  • the ingredients of this additive when blended in a very specific sequence under specific conditions will provide a lubricant that has shown its ability to replace the need for ZDDP as an anti-wear agent in motors oils.
  • the blending is a combination of accurately-controlled sheering and homogenization of the compounds resulting in a long-term stable blend.
  • simple purification or physical separation, such as distillation or freezing does not constitute synthesis, in the manner, for example, of making synthetic Group III and Group IV from crude oil via a chemical reaction.
  • the finished product is a combination of:
  • vacuum distilled non aromatic solvents (less than 0.5% aromatics)
  • liquefied polytetrafluoroethylene comprising a stable aqueous disbursement
  • Synthetic lubricants have been successfully used for some time. They have the ability to offer very-high-viscosity index, low volatility, superior oxidation resistance, high thermal stability, excellent temperature fluidity and low toxicity to the environment. These characteristics in a finished lubricant are very important in modern high-speed and high-horsepower engines. Further these characteristics benefit the long term goals of being less toxic to the environment while providing maximum protection for automotive components.
  • This synthetic lubricant when tested has demonstrated the ability to provide and exceed the anti-wear protection currently provided by the inclusion of ZDDP in motor oils.
  • the synthetic lubricant can provide the necessary anti-wear in automotive, diesel and marine motor oil, but without the environmental impact of ZDDP. It has the ability to blend with, and be effective with, all of Group I, II, III, IV and Group base oils.
  • a motor oil selected from the motor oil group consisting of Group I, Group II, Group III, Group IV, and Group V motor oils
  • a motor oil additive comprising alpha-olefins and hydroisomerized hydro-treated severe hydrocracked base oil
  • ZDDP omitted from the chemical constituents of
  • Polymerized alpha-olefins (PAO): It is preferred that these comprise from 20% to 60% by volume. It is most preferred that these comprise approximately 55% by volume.
  • PAO alpha-olefins
  • AO alpha-olefins
  • mPAO modern metallocene poly-alpha-olefins
  • Hydroisomerized high viscosity index (VI) hydro-treated (HT) severe hydro-cracked base oils It is preferred that these comprise from 5% to 55% by volume. It is more preferred that these comprise from 7% to 25% by volume. It is most preferred that these comprise approximately 21% by volume. It is preferred, but not required, that these base oils have a viscosity grade 32.
  • Synthetic sulfonates are preferred, albeit optional ingredients. It is preferred that when used these comprise from 0.05% to 10% by volume. It is most preferred that these comprise approximately 3% by volume. It is preferred that these synthetic sulfonates comprise a total base number (TBN) from 200 to 600. It is most preferred that these comprise a 300 TBN. One may also use thixotropic calcium sulfonates.
  • Vacuum Distilled Low-Viscosity and Low-Aromatic Solvents Often referred to as aliphatic or mineral spirits, these are optional ingredients. It is preferred that when used, these comprise from 10% to 40% by volume. It is most preferred that these comprise approximately 21.5% by volume. The low-aromatic range is preferred to be less than 0.5% aromatic.
  • these solvents have a VOC Exemption, defined by the California Air Resources Board as including those compounds “not expected to meaningfully contribute to ozone formation due to their low reactivity in the atmosphere.”
  • VOC Exemption defined by the California Air Resources Board as including those compounds “not expected to meaningfully contribute to ozone formation due to their low reactivity in the atmosphere.”
  • the envisioned low viscosity is in the approximate range of 40 C mm2/s (ASTM D 445) and viscosity at 25 C cSt 2.60 and at 40 C cSt 1.98 (ASTM D 445).
  • PTFE Liquefied Polytetrafluoroethylene
  • Blending is based on speed of the agitator, and temperature will dictate the amount of time for the blend to complete.
  • the blending time range may vary from 4 to 6 hours.
  • the ideal temperature for each component is between 22 to 30 degrees centigrade for optimum blending.
  • vacuum distilled non-aromatic solvent and synthetic sulfonates are blended together to yield a second blend.
  • This second blend may be prepared in a much smaller, high-speed, enclosed blender. This second blend is then added to the first blend.
  • first and second blends are finally blended together with the PTFE.
  • the first and second blends are blended with additional low-aromatic aliphatic solvents to produce a third blend.
  • PTFE if PTFE is used, all of the foregoing is blended together with the PTFE.
  • This third blend or the mineral spirits alone absent the synthetic sulfonates, together with the balance of the ingredients, added to the first blend and the agitator is run until the components appear to have thoroughly blended into a consistent liquid.
  • the product is sheered by a high speed sheering pump until the product is consistent.
  • the sheering provides a stable flow viscosity exhibiting Newtonian behavior and greatly enhances the shelf life when there are substantial differences in specific gravity of each component.
  • Blending equipment can be by a combination of high- or low-speed blending apparatus.
  • the size or volume of the tank is not critical to the blend.
  • Sheering equipment should have a range of 60 to 5200 cycles per second with a typical speed of 3600 cycle per second and be capable of making stable emulsions of products with oil ingredients providing liquid suspensions and dispersions without aeration.
  • This motor additive is then combined with a motor oil selected from the motor oil group consisting of Group I, Group II, Group III, Group IV, and Group V motor oils, without the use of ZDDP of ZDTP, to provide an environmentally-improved motor oil blend for properly lubricating components of an engine and favorably modifying a plastic response of components of the engine.
  • the preferred blend ratio is from 85% to 95% by volume of motor oil, and from 5% to 15% by volume of the motor oil additive.
  • the motor oil and the additive are combined together, and this combination is then simply mixed with a high-speed blender before being packaged.
  • a high-speed blender Given the chemical characteristics of motor oil and of the additive, there should be minimal or no separation thereafter while the packaged blend is maintained on a shelf, i.e., the blend should remain homogeneous for whatever shelf-life the motor oil blend may have before it is poured by a user into an engine.
  • the overall combination of the motor oil with the lubricant depending upon the viscosity of the host motor oil without ZDDP or ZDTP, will have the following characteristics: 1) For some selected temperatures: 100° C., kinematic viscosity 1.7 to 102.0; 40° C., kinematic viscosity 5.4 to 1350; ⁇ 40° C.; kinematic viscosity 2,704 to 35,509. 2) Viscosity index: 90 to 200. 3) NOACK Volatility 0.6 to 99.5. 4) Pour point up to ⁇ 20 to ⁇ 61 C. Again, these ranges are dependent on the viscosity of the host oil. Finally, 5) the POA (or AO or mPAO) base should have a PAO Unsaturates viscosity grade from PAO-2 to PAO-100.
  • the base combination of alpha-olefins and hydroisomerized hydro-treated severe hydrocracked base oil can serve as a replacement for environmentally-undesirable chemicals not only in motor oils, but in other lubricating/anti-wear agents and applications including, but not limited to:

Abstract

An environmentally-improved motor oil blend and related methods for properly lubricating components of an engine and favorably modifying a plastic response of components of the engine, the blend being free of zinc di-alkyl-di-thiophosphates (ZDDP) and free of zinc di-thiophosphate (ZDTP), comprising: a motor oil selected from the motor oil group consisting of Group I, Group II, Group III, Group IV, and Group V motor oils; a motor oil additive comprising alpha-olefins and hydroisomerized hydro-treated severe hydrocracked base oil; ZDDP omitted from the chemical constituents of the motor oil; and ZDTP omitted from the chemical constituents of the motor oil.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority of pending provisional application U.S. 62/109,172 filed Jan. 29, 2015, which is hereby incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • The field of this invention relates to the latest technology for substantially reducing steel-to-steel wear along with eliminating the need for Zinc Dialkyldithiophosphates (ZDDP) in motor oils as an anti-wear component. The composition of this invention has been shown to modify the plastic response of steel while having a positive influence on the chemical reactivity of the surfaces subjected to being worn down due to friction. Specifically, based on the tribological testing detailed in U.S. 62/109,172, spectroscopic analysis of the wear tracks of an engine disk revealed that chemical elements like P, S, Mn, Zn, which can be from the ZDDP in the oil, were not detected. This suggests that this composition inhibits the reaction of ZDDP and renders it unnecessary for reducing wear.
  • This is important, because today there is a movement within a number of states and countries to remove or substantially reduce the need for ZDDP in motor oils. Environmentalists in the US have lobbied both State and Federal departments to legislate such a ban. Unfortunately, governments have been reluctant to issue or enforce such a ban until a cost-effective alternative becomes available which can have the same or better anti-wear performance results as ZDDP, while eliminating the need for ZDDP itself.
  • There are in fact two types of zinc-thiophosphates universally added to motor oils used today: zinc di-alkyl-di-thiophosphates (which is ZDDP proper), and/or zinc di-thiophosphate (which is often abbreviated to ZDTP). Unless otherwise specified, when the acronym ZDDP is used in this disclosure, it is being used to refer to either of these, with or without the di-alkyl group. And specifically, the composition of this invention eliminates the need for either of ZDDP-proper, or ZDTP to be used in motor oils any longer.
  • The automotive industry was much simpler in the early days. Engines bearings were made from a soft tin/copper/antimony alloy, commonly referred to as babbitt. This alloy is relatively inert chemically and has the ability to absorb small amounts of foreign particulate material. But, as engine horsepower increased, babbitt alloy surfaces proved to be inadequate to bear the increased loading on these surfaces.
  • Thus, the need for harder bearings arose, and new types of bearings with cadmium/silver, cadmium/nickel, and copper/lead construction were developed. Such bearings were much stronger, but were not as chemically inert as babbitt and could be attacked by the acids generated from oil oxidation. These new bearings were unable to absorb foreign material such as carbon, grit and wear debris into the bearing material, and consequently, improvements in oil filtration were developed and used in vehicles to decrease premature wear.
  • Further, bearing corrosion inhibitors, anti-wear agents and acid inhibitor compounds were developed to protect these new bearings. There was a need to protect the bearings against both corrosive and mechanical wear, and many of these compounds served both functions. Compounds such as sulfurized sperm oil, organic phosphates, dithiocarbonates and dithiophosphates were experimented with to reduce premature wear. In 1941, Lubrizol developed Zinc Dialkyldithiophosphates, which remain the most commonly-used form of ZDDP, and introduced these to the market.
  • Initially, ZDDP was added to motor oils in low concentrations of less than 0.3% by volume as a bearing passivator, defined as treating or coating a metal in order to reduce the chemical reactivity of its surface. In addition, ZDDP was found to be a remarkably effective anti-wear agent; a true extreme-pressure (EP) additive for heavily loaded steel-on-steel sliding mechanisms such as camshafts and valve lifters or tappets. During these years, there was little if any concern about the impact of ZDDP upon the environment.
  • For years, these ZDDP additives have been providing sufficient anti-wear service, starting with the early days of gasoline and diesel non-detergent motor oils, through the present day. Diesel engines of more than half a century ago, which generally operated at lower speeds and were more massively built, did not exhibit the same wear problems. But in a gasoline engine, the valve train is more heavily stressed due to the higher engine speeds, and these additives have played and continue to play an important role in reducing wear.
  • Current and previous motor oils have depended upon the use of ZDDP as a means to protect against premature wear between bearing surfaces and from steel-to-steel contact. In view especially of the detrimental impact of ZDDP on the environment, it would be desirable to have available a replacement additive which can eliminate the need for ZDDP, which additive at the same time provides the same level of protection—and even better protection—for engine components.
  • In U.S. Pat. No. 7,745,382, which was the first of several US and foreign patents issued to Ronald J. Sloan and assigned to BestLine International Research Inc. (BestLine) who are the inventor and assignee for the present application as well, it was disclosed that a synthetic lubricant additive comprising polymerized alpha-olefins (PAOs), hydroisomerized hydro-treated severe hydrocracked base oil, and synthetic sulfonates could provide better engine lubrication and reduce engine wear, and that in fact the PAOs and the base oils could be the primary composition for a broad range of lubricants useful in many different circumstances including and beyond automotive applications, and as applied to many different materials including and beyond steel. This includes diesel fuel additives (U.S. Pat. No. 8,062,388 et. seq.), gasoline additives (U.S. Pat. No. 7,931,704 et. seq.), general purpose lubricants (U.S. Pat. No. 8,022,020 et. seq.), marine lubricants (U.S. Pat. No. 8,334,244 et. seq.) and even golf club cleaners (U.S. Pat. No. 8,071,522 et. seq.).
  • But until the tribological testing detailed in U.S. 62/109,172, the tribological mechanism underlying the effectiveness of BestLine's synthetic lubricant additive was not fully understood. This testing established that not only did this PAO, base oil and (optionally) synthetic sulfonate composition enhance lubrication, but this composition was also found to modify the plastic response of the investigated steel and to influence the chemical reactivity of the worn surfaces. Particularly, as noted above, because elements like P, S, Mn, Zn were not detected when this composition was added to engine oils with ZDDP, this means that this composition inhibits the reaction of ZDDP and renders ZDDP unnecessary for reducing wear if the PAO and base oil is employed as a substitute.
  • Thus, it was only with the new understandings first disclosed in U.S. 62/109,172, that consideration could be given to adding this PAO, base oil and optionally synthetic sulfonate composition to motor oils, while at the same time removing all of the ZDDP and/or ZDTP from these very same motor oils. Thus, the addition of this PAO, base oil, sulfonate composition to motor oils simultaneously with the removal of all forms of ZDDP not only reduces engine wear by superior lubrication, but also favorably modifies the plastic response of all steel elements which it lubricates, and at the same time solves an important environmental problem.
  • The use of this composition to improve motor oils while removing the environmental harm caused by ZDDP and ZDTP is applicable to all of the five groups of motor oil as defined by the American Petroleum Institute (API). This API categorization is hereby incorporated by reference into this disclosure and its associated claims. Specifically, the September 2011 standards of the API at http://www.api.org/˜/media/files/certification/engine-oil-diesel/publications/appendix-e-rev-09-01-11.pdf?la=en specify as follows:
  • “All base stocks are divided into five general categories
  • a. Group I base stocks contain less than 90 percent saturates and/or greater than 0.03 percent sulfur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table E-1.
  • b. Group II base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulfur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table E-1.
  • c. Group III base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulfur and have a viscosity index greater than or equal to 120 using the test methods specified in Table E-1.
  • d. Group IV base stocks are polyalphaolefins (PAO). PAOs can be interchanged without additional qualification testing as long as the interchange PAO meets the original PAO manufacturer's specifications in physical and chemical properties. The following key properties need to be met in the substituted stock:
  • 1) Kinematic viscosity at 100° C., 40° C., and −40° C.
  • 2) Viscosity index
  • 3) NOACK volatility
  • 4) Pour point
  • 5) Unsaturates
  • e. Group V base stocks include all other base stocks not included in Group I, II, III, or IV.
  • TABLE E-1
    Analytical Methods for Base Stock
    Property Test Method
    Saturates ASTM D2007
    Viscosity index ASTM D2270
    Sulfur ASTM D1552
    (use one listed method) ASTM D2622
    ASTM D3120
    ASTM D4294
    ASTM D4927”
  • SUMMARY OF THE INVENTION
  • An additive and related method for modifying the plastic response of steel, the additive comprising: polymerized alpha olefins; hydroisomerized hydro-treated severe hydrocracked base oil; and optionally, synthetic sulfonates. A tribological study detailed in U.S. 62/109,172 and herein concludes that: (1) This additive significantly reduces wear of the carbon steel disk to 6% of the wear observed in pure oil without additive; (2) There is no obvious effect of the additive on friction except a slightly better stability with time of the coefficient of friction; (3) The additive appears to inhibit the reaction of ZDDP and renders ZDDP unnecessary for reducing wear. This suggests that the additive may be a replacement for ZDDP in motor oils; and (4) The additive was found to modify the plastic response of the investigated steel and to influence the chemical reactivity of the worn surfaces. Although testing was not conducted to establish the coefficient of friction, as this will be concluded at a later time, previous testing supports that the friction is reduced.
  • This invention is for a synthetic lubricant additive that can be added at various ratios to provide the need protect against steel-to-steel wear or between bearing and steel surfaces, as well as related method of manufacturing this additive and related methods of its use. Further, this additive can be added to synthetic, synthetic blends and non-synthetic motor oils (motor oils in all of Groups I through V) to provide them with the anti-wear protection necessary in today's high speed and low speed gasoline and diesel motor oils. Further the invention allows steel under extreme pressure to yield or to respond to plastic deformation without the fracturing of the metal surface.
  • The additive incorporates the use of polymerized alpha olefins (PAO); hydroisomerized hydro-treated severe hydrocracked base oil; and optionally, synthetic sulfonates. Further, one can optionally employ vacuum distilled non aromatic solvents and liquefied polytetrafluoroethylene (PTFE) and when combined into the additive a specific sequence, this forms a finished product that exceeds the metal-protecting capability and benefits of ZDDP while providing an environmentally-friendly replacement. Further this product provides protection against steel-to-steel contact while positively influencing the chemical reactivity of worn metal surfaces. Further this product in independent testing reported in pending provisional application U.S. 62/109,172 has demonstrated the ability to modify the plastic response of steel placed under extreme pressure.
  • As previous indicated the ingredients of this additive when blended in a very specific sequence under specific conditions will provide a lubricant that has shown its ability to replace the need for ZDDP as an anti-wear agent in motors oils. The blending is a combination of accurately-controlled sheering and homogenization of the compounds resulting in a long-term stable blend. Once blended in a specific sequence, simple purification or physical separation, such as distillation or freezing, does not constitute synthesis, in the manner, for example, of making synthetic Group III and Group IV from crude oil via a chemical reaction.
  • The finished product is a combination of:
  • Polymerized Alpha-Olefins
  • Hydroisomerized hydro-treated severe hydrocracked base oil
  • Optionally, Synthetic sulfonates
  • Optionally, vacuum distilled non aromatic solvents (less than 0.5% aromatics)
  • Optionally, liquefied polytetrafluoroethylene (PTFE) comprising a stable aqueous disbursement
  • Synthetic lubricants have been successfully used for some time. They have the ability to offer very-high-viscosity index, low volatility, superior oxidation resistance, high thermal stability, excellent temperature fluidity and low toxicity to the environment. These characteristics in a finished lubricant are very important in modern high-speed and high-horsepower engines. Further these characteristics benefit the long term goals of being less toxic to the environment while providing maximum protection for automotive components.
  • This synthetic lubricant when tested has demonstrated the ability to provide and exceed the anti-wear protection currently provided by the inclusion of ZDDP in motor oils. The synthetic lubricant can provide the necessary anti-wear in automotive, diesel and marine motor oil, but without the environmental impact of ZDDP. It has the ability to blend with, and be effective with, all of Group I, II, III, IV and Group base oils.
  • In its preferred embodiment, disclosed here is an environmentally-improved motor oil blend and related methods for properly lubricating components of an engine and favorably modifying a plastic response of components of the engine, the blend being free of zinc di-alkyl-di-thiophosphates (ZDDP) and free of zinc di-thiophosphate (ZDTP), comprising: a motor oil selected from the motor oil group consisting of Group I, Group II, Group III, Group IV, and Group V motor oils; a motor oil additive comprising alpha-olefins and hydroisomerized hydro-treated severe hydrocracked base oil; ZDDP omitted from the chemical constituents of the motor oil; and ZDTP omitted from the chemical constituents of the motor oil.
  • DETAILED DESCRIPTION
  • The preferred blending ratios for each of the components of this additive are shown below. It is important to maintain a blend of components falling within the following percentages:
  • Polymerized alpha-olefins (PAO): It is preferred that these comprise from 20% to 60% by volume. It is most preferred that these comprise approximately 55% by volume. One may also use alpha-olefins (AO) which have not been polymerized, though PAOs are preferred. One may also use the modern metallocene poly-alpha-olefins (mPAO) which have higher viscosity indexes than conventional PAOs.
  • Hydroisomerized high viscosity index (VI) hydro-treated (HT) severe hydro-cracked base oils: It is preferred that these comprise from 5% to 55% by volume. It is more preferred that these comprise from 7% to 25% by volume. It is most preferred that these comprise approximately 21% by volume. It is preferred, but not required, that these base oils have a viscosity grade 32. One may also use can also saturated hydrocarbons, process oil and hydraulic oil for this base oil.
  • Synthetic sulfonates: These are preferred, albeit optional ingredients. It is preferred that when used these comprise from 0.05% to 10% by volume. It is most preferred that these comprise approximately 3% by volume. It is preferred that these synthetic sulfonates comprise a total base number (TBN) from 200 to 600. It is most preferred that these comprise a 300 TBN. One may also use thixotropic calcium sulfonates.
  • Vacuum Distilled Low-Viscosity and Low-Aromatic Solvents: Often referred to as aliphatic or mineral spirits, these are optional ingredients. It is preferred that when used, these comprise from 10% to 40% by volume. It is most preferred that these comprise approximately 21.5% by volume. The low-aromatic range is preferred to be less than 0.5% aromatic. It is preferred that these solvents have a VOC Exemption, defined by the California Air Resources Board as including those compounds “not expected to meaningfully contribute to ozone formation due to their low reactivity in the atmosphere.” The envisioned low viscosity is in the approximate range of 40 C mm2/s (ASTM D 445) and viscosity at 25 C cSt 2.60 and at 40 C cSt 1.98 (ASTM D 445).
  • Liquefied Polytetrafluoroethylene (PTFE): This is an optional ingredient. When used, it is preferred that these comprise from 0.001% to 10% by volume. It is most preferred that these comprise approximately 0.45% by volume. The PTFE should be liquefied to avoid agglomeration, and preferably comprise a stable aqueous dispersion of PTFE particles in water or oil. If oil is used, it is preferred to use 150 solvent neutral petroleum oil or an approximate equivalent.
  • The following describes the preferred method for blending these components to produce this motor oil additive.
  • Initially, the alpha olefins, and the base oils are blended until the liquid is a consistent amalgamation without any appearance of separation, to yield a first blend. Blending is based on speed of the agitator, and temperature will dictate the amount of time for the blend to complete. The blending time range may vary from 4 to 6 hours. The ideal temperature for each component is between 22 to 30 degrees centigrade for optimum blending.
  • Further, the vacuum distilled non-aromatic solvent and synthetic sulfonates are blended together to yield a second blend. This second blend may be prepared in a much smaller, high-speed, enclosed blender. This second blend is then added to the first blend.
  • If PTFE is used, then the first and second blends are finally blended together with the PTFE.
  • If low-aromatic aliphatic solvent is used, then the first and second blends are blended with additional low-aromatic aliphatic solvents to produce a third blend. Then, if PTFE is used, all of the foregoing is blended together with the PTFE.
  • It is preferred that there is an approximate 25%/75% ratio of calcium sulfonates to aliphatic or mineral spirits, when these are used.
  • This third blend, or the mineral spirits alone absent the synthetic sulfonates, together with the balance of the ingredients, added to the first blend and the agitator is run until the components appear to have thoroughly blended into a consistent liquid. Following the blending, the product is sheered by a high speed sheering pump until the product is consistent. The sheering provides a stable flow viscosity exhibiting Newtonian behavior and greatly enhances the shelf life when there are substantial differences in specific gravity of each component.
  • The preferred blending equipment used in this process is as follows: This process involves several blending and holding tanks in which the product can be weighed and then pumped through control valves to maintain consistent flow and pressure. The blending should be performed in an enclosed tank to reduce product evaporation loss and prevent exposure to open spark. Blending equipment can be by a combination of high- or low-speed blending apparatus. The size or volume of the tank is not critical to the blend. Sheering equipment should have a range of 60 to 5200 cycles per second with a typical speed of 3600 cycle per second and be capable of making stable emulsions of products with oil ingredients providing liquid suspensions and dispersions without aeration.
  • This motor additive is then combined with a motor oil selected from the motor oil group consisting of Group I, Group II, Group III, Group IV, and Group V motor oils, without the use of ZDDP of ZDTP, to provide an environmentally-improved motor oil blend for properly lubricating components of an engine and favorably modifying a plastic response of components of the engine. The preferred blend ratio is from 85% to 95% by volume of motor oil, and from 5% to 15% by volume of the motor oil additive.
  • To create the motor-oil blend, the motor oil and the additive are combined together, and this combination is then simply mixed with a high-speed blender before being packaged. Given the chemical characteristics of motor oil and of the additive, there should be minimal or no separation thereafter while the packaged blend is maintained on a shelf, i.e., the blend should remain homogeneous for whatever shelf-life the motor oil blend may have before it is poured by a user into an engine.
  • While not the preferred mode of usage, one could take a motor oil with no ZDDP and no ZDTP and introduce that into an engine separately from introducing the lubricant. However, in this circumstance the user would need to take care to maintain an optimum mix of 85% to 95% by volume of motor oil and 5% to 15% by volume of the motor oil additive. Using a blend that is already combined in the desired ratios is preferred because the user need not then be concerned with maintaining the ratio of motor oil to additive within the desired ranges, and the possibility of user mistake is eliminated.
  • Referring to the API properties laid out earlier in the background of the invention, the overall combination of the motor oil with the lubricant, depending upon the viscosity of the host motor oil without ZDDP or ZDTP, will have the following characteristics: 1) For some selected temperatures: 100° C., kinematic viscosity 1.7 to 102.0; 40° C., kinematic viscosity 5.4 to 1350; −40° C.; kinematic viscosity 2,704 to 35,509. 2) Viscosity index: 90 to 200. 3) NOACK Volatility 0.6 to 99.5. 4) Pour point up to −20 to −61 C. Again, these ranges are dependent on the viscosity of the host oil. Finally, 5) the POA (or AO or mPAO) base should have a PAO Unsaturates viscosity grade from PAO-2 to PAO-100.
  • Generally, for motor oil blends, the range from PAO-2 to PAO-10 is sufficient. However, for other lubricating applications in which it is desirable to remove environmentally-undesirable chemicals such as ZDDP and ZDTP replace them with the alpha-olefin and base oil additive of this disclosure, given the understanding disclosed in U.S. 62/109,172 regarding how this additive favorably modifies plastic response and influences chemical reactivity, one may find it desirable to use alpha-olefins in the higher range up to and including PAO-100 for other lubricating applications, as outlined further below.
  • Specifically, it is also understood and disclosed here that the base combination of alpha-olefins and hydroisomerized hydro-treated severe hydrocracked base oil can serve as a replacement for environmentally-undesirable chemicals not only in motor oils, but in other lubricating/anti-wear agents and applications including, but not limited to:
      • Gear Oils
      • Automatic Transmission Fluids
      • Hydraulic Fluids
      • Greases
      • Turbine Oils and Fluids
      • Metal Working Oils
      • Chain Lubes
      • Compressor Lubricants
      • Conveyor Lubricants
      • Paper Machine Oil
      • Form Oils
      • Way Oils
      • Drill Oils
      • Drawing and Stamping Oil
      • Bar Oils
      • 2 Cycle Oil
      • Steam Oil
  • The ability to omit environmentally-undesirable chemicals in this broad range of circumstances, which chemicals are widely thought to be essential to providing proper lubrication and protecting against wear, emanates from the disclosure in U.S. 62/109,172 that this base combination of alpha-olefins and hydroisomerized hydro-treated severe hydrocracked base oil modifies the plastic response of steel and changes the chemical reactivity of the surfaces subjected to being worn down due to friction whereby these environmentally-undesirable chemicals were not detected under spectroscopic analysis of the wear tracks. So while a very important application of this disclosure is to motor oils because of the widespread usage of these oils and the consequent substantial environmental impact of these oils, it is also understood that the same favorable plastic response modifications and chemical reactivity changes will also transpire in many other applications, which enables this disclosure to be fruitfully applied to those other applications as well, and particularly, to the removal from fluids, lubricants and oils generally of environmentally-undesirable chemicals widely regarded to be essential for proper lubrication and anti-wear protection.
  • The knowledge possessed by someone of ordinary skill in the art at the time of this disclosure, including but not limited to the prior art disclosed with this application, is understood to be part and parcel of this disclosure and is implicitly incorporated by reference herein, even if in the interest of economy express statements about the specific knowledge understood to be possessed by someone of ordinary skill are omitted from this disclosure. While reference may be made in this disclosure to the invention comprising a combination of a plurality of elements, it is also understood that this invention is regarded to comprise combinations which omit or exclude one or more of such elements, even if this omission or exclusion of an element or elements is not expressly stated herein, unless it is expressly stated herein that an element is essential to applicant's combination and cannot be omitted. It is further understood that the related prior art may include elements from which this invention may be distinguished by negative claim limitations, even without any express statement of such negative limitations herein. It is to be understood, between the positive statements of applicant's invention expressly stated herein, and the prior art and knowledge of the prior art by those of ordinary skill which is incorporated herein even if not expressly reproduced here for reasons of economy, that any and all such negative claim limitations supported by the prior art are also considered to be within the scope of this disclosure and its associated claims, even absent any express statement herein about any particular negative claim limitations.
  • Finally, while only certain preferred features of the invention have been illustrated and described, many modifications, changes and substitutions will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims (27)

I claim:
1. An environmentally-improved motor oil blend for properly lubricating components of an engine and favorably modifying a plastic response of components of the engine, said blend being free of zinc di-alkyl-di-thiophosphates (ZDDP) and free of zinc di-thiophosphate (ZDTP), comprising:
a motor oil selected from the motor oil group consisting of Group I, Group II, Group III, Group IV, and Group V motor oils;
a motor oil additive comprising alpha-olefins and hydroisomerized hydro-treated severe hydrocracked base oil;
ZDDP omitted from the chemical constituents of said motor oil; and
ZDTP omitted from the chemical constituents of said motor oil.
2. The motor oil blend of claim 1, further comprising:
from 85% to 95% by volume of said motor oil; and
from 5% to 15% by volume of said motor oil additive.
3. The motor oil blend of claim 1, said motor oil additive further comprising synthetic sulfonates.
4. The motor oil blend of claim 3, said synthetic sulfonates comprising thixotropic calcium sulfonates.
5. The motor oil blend of claim 1, said alpha-olefins comprising polymerized alpha-olefins.
6. The motor oil blend of claim 5, said polymerized alpha-olefins comprising metallocene polymerized alpha-olefins.
7. The motor oil blend of claim 1, said motor oil additive further comprising vacuum distilled non-aromatic solvent.
8. The motor oil blend of claim 1, said motor oil additive further comprising liquefied polytetrafluoroethylene (PTFE).
9. A method of producing an environmentally-improved motor oil blend for properly lubricating components of an engine and favorably modifying a plastic response of components of the engine, said blend being free of zinc di-alkyl-di-thiophosphates (ZDDP) and free of zinc di-thiophosphate (ZDTP), comprising:
providing a motor oil selected from the motor oil group consisting of Group I, Group II, Group III, Group IV, and Group V motor oils;
omitting ZDDP from the chemical constituents of said motor oil; and
omitting ZDTP from the chemical constituents of said motor oil; and
combining a motor oil additive comprising alpha-olefins and hydroisomerized hydro-treated severe hydrocracked base oil with said motor oil to yield said motor oil blend.
10. The method of claim 9, further comprising combining from 5% to 15% by volume of said motor oil additive with from 85% to 95% by volume of said motor oil.
11. The method of claim 9, said motor oil additive further comprising synthetic sulfonates.
12. The method of claim 11, said synthetic sulfonates comprising thixotropic calcium sulfonates.
13. The method of claim 9, said alpha-olefins comprising polymerized alpha-olefins.
14. The method of claim 13, said polymerized alpha-olefins comprising metallocene polymerized alpha-olefins.
15. The method of claim 9, said motor oil additive further comprising vacuum distilled non-aromatic solvent.
16. The method of claim 9, said motor oil additive further comprising liquefied polytetrafluoroethylene (PTFE).
17. The method of claim 9, further comprising:
blending said alpha-olefins with said base oil to produce a first blend;
blending non-aromatic solvent with synthetic sulfonates to produce a second blend; and
blending said first and second blends with liquefied polytetrafluoroethylene (PTFE).
18. The method of claim 17, further comprising combining from 5% to 15% by volume of said motor oil additive with from 85% to 95% by volume of said motor oil.
19. The method of claim 9, further comprising:
blending said alpha-olefins with said base oils to produce a first blend;
blending non-aromatic solvent with synthetic sulfonates to produce a second blend;
blending said first and second blends with additional low-aromatic aliphatic solvents to produce a third blend; and
blending said first, second and third blends with liquefied polytetrafluoroethylene (PTFE).
20. A method for lubricating an engine and its components without zinc di-alkyl-di-thiophosphates (ZDDP) and without zinc di-thiophosphate (ZDTP), comprising introducing into the engine:
a motor oil selected from the motor oil group consisting of Group I, Group II, Group III, Group IV, and Group V motor oils, said motor oil omitting ZDDP from its chemical constituents and said motor oil omitting ZDTP from its chemical constituents;
a motor oil additive comprising polymerized alpha-olefins and hydroisomerized hydro-treated severe hydrocracked base oil; whereby:
the combination of said polymerized alpha-olefins and said base oil properly lubricates said engine components and favorably modifies a plastic response of engine components; and
said omission of ZDDP and ZDTP also favorably impacts the environment.
21. The method of claim 20, further comprising introducing into the engine from 5% to 15% by volume of said motor oil additive and from 85% to 95% by volume of said motor oil.
22. The method of claim 20, said motor oil additive further comprising synthetic sulfonates.
23. The method of claim 22, said synthetic sulfonates comprising thixotropic calcium sulfonates.
24. The method of claim 20, said alpha-olefins comprising polymerized alpha-olefins.
25. The method of claim 24, said polymerized alpha-olefins comprising metallocene polymerized alpha-olefins.
26. The motor oil blend of claim 20, said motor oil additive further comprising vacuum distilled non-aromatic solvent.
27. The motor oil blend of claim 20, motor oil additive further comprising liquefied polytetrafluoroethylene (PTFE).
US14/699,924 2010-09-22 2015-04-29 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel Abandoned US20150247103A1 (en)

Priority Applications (26)

Application Number Priority Date Filing Date Title
US14/699,924 US20150247103A1 (en) 2015-01-29 2015-04-29 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
CA2972633A CA2972633C (en) 2015-01-29 2016-01-28 Motor oil blend for modifying the plastic response of steel
CN201680007483.5A CN107532105B (en) 2015-01-29 2016-01-28 The method that machine oil blend and the plastic response by changing steel reduce steel abrasion and eliminate the ZDDP in machine oil
EA201791682A EA201791682A1 (en) 2015-01-29 2016-01-28 MIXTURE ON THE BASIS OF MOTOR OIL AND A METHOD TO REDUCE WEAR AND NON-SWITCHING ZDDP INTO MOTOR OILS BY MODELING THE STEEL PLASTIC BEHAVIOR
EP16744071.8A EP3250664A4 (en) 2015-01-29 2016-01-28 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel
PCT/US2016/015256 WO2016123279A1 (en) 2015-01-29 2016-01-28 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel
MYPI2017702708A MY184900A (en) 2015-01-28 2016-01-28 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel
AU2016211474A AU2016211474B2 (en) 2015-01-29 2016-01-28 Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel
JP2017539298A JP2018505276A (en) 2015-01-29 2016-01-28 Motor oil blend and method for reducing steel wear and eliminating ZDDP in motor oil by modifying the plastic response of the steel
BR112017016291A BR112017016291A2 (en) 2015-01-29 2016-01-28 engine oil blending and method for reducing steel wear and eliminating the need for zddp in engine oils by modifying the plastic response of steel
MX2017009809A MX2017009809A (en) 2015-01-29 2016-01-28 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel.
SG11201706040UA SG11201706040UA (en) 2015-01-29 2016-01-28 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel
PE2017001266A PE20171535A1 (en) 2015-01-29 2016-01-28 ENGINE OIL BLENDING AND METHOD TO REDUCE WEAR ON STEEL AND ELIMINATE ZDDP IN ENGINE OILS BY MODIFYING THE PLASTIC RESPONSE OF STEEL
KR1020177022963A KR20170108050A (en) 2015-01-29 2016-01-28 Motor oil blend and method for modifying the plastic response of steel to remove ZDDP from motor oil and reduce wear of steel
US15/508,137 US20170247632A1 (en) 2015-01-29 2016-01-28 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
ZA2017/04431A ZA201704431B (en) 2015-01-29 2017-06-29 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic
PH12017501281A PH12017501281A1 (en) 2015-01-29 2017-07-13 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel
IL253663A IL253663B (en) 2015-01-29 2017-07-25 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel
CL2017001905A CL2017001905A1 (en) 2015-01-29 2017-07-25 Mixing engine oil and method to reduce steel wear and eliminate zddp in engine oils by modifying the plastic response of steel a mixture
US15/831,036 US20180087000A1 (en) 2010-09-22 2017-12-04 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
JP2018235512A JP2019070140A (en) 2015-01-29 2018-12-17 Motor oil blend and method for reducing steel wear by modifying plastic response of steel and eliminating zddp in motor oil
US16/750,368 US11377616B2 (en) 2015-01-29 2020-01-23 Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel
US17/026,284 US11473031B2 (en) 2010-09-22 2020-09-20 Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel
JP2022089631A JP2022126670A (en) 2015-01-29 2022-06-01 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oil by modifying plastic response of steel
US17/810,465 US20220333034A1 (en) 2015-01-29 2022-07-01 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel
US18/047,419 US20230174884A1 (en) 2010-09-22 2022-10-18 Motor oil blends void of zppd and methods for reducing engine wear via motor oil blends void of zppd

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562109172P 2015-01-29 2015-01-29
US14/699,924 US20150247103A1 (en) 2015-01-29 2015-04-29 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2016/015256 Continuation WO2016123279A1 (en) 2010-09-22 2016-01-28 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel
US15/508,137 Continuation US20170247632A1 (en) 2015-01-29 2016-01-28 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US15/508,137 Continuation US20170247632A1 (en) 2015-01-29 2016-01-28 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
US15/090,797 Continuation US9932538B2 (en) 2010-09-22 2016-04-05 Universal synthetic water displacement multi-purpose penetrating lubricant, method and product-by-process
US15/831,036 Continuation US20180087000A1 (en) 2010-09-22 2017-12-04 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
US16/750,368 Continuation US11377616B2 (en) 2015-01-29 2020-01-23 Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel

Publications (1)

Publication Number Publication Date
US20150247103A1 true US20150247103A1 (en) 2015-09-03

Family

ID=54006473

Family Applications (6)

Application Number Title Priority Date Filing Date
US14/699,924 Abandoned US20150247103A1 (en) 2010-09-22 2015-04-29 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
US15/508,137 Abandoned US20170247632A1 (en) 2015-01-29 2016-01-28 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
US15/831,036 Abandoned US20180087000A1 (en) 2010-09-22 2017-12-04 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
US16/750,368 Active US11377616B2 (en) 2015-01-29 2020-01-23 Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel
US17/026,284 Active US11473031B2 (en) 2010-09-22 2020-09-20 Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel
US17/810,465 Pending US20220333034A1 (en) 2015-01-29 2022-07-01 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel

Family Applications After (5)

Application Number Title Priority Date Filing Date
US15/508,137 Abandoned US20170247632A1 (en) 2015-01-29 2016-01-28 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
US15/831,036 Abandoned US20180087000A1 (en) 2010-09-22 2017-12-04 Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
US16/750,368 Active US11377616B2 (en) 2015-01-29 2020-01-23 Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel
US17/026,284 Active US11473031B2 (en) 2010-09-22 2020-09-20 Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel
US17/810,465 Pending US20220333034A1 (en) 2015-01-29 2022-07-01 Motor oil blend and method for reducing wear on steel and eliminating zddp in motor oils by modifying the plastic response of steel

Country Status (3)

Country Link
US (6) US20150247103A1 (en)
EP (1) EP3250664A4 (en)
CN (1) CN107532105B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834735B2 (en) 2007-12-19 2017-12-05 Bestline International Research, Inc. Universal synthetic lubricant, method and product-by-process to replace the lost sulfur lubrication when using low-sulfur diesel fuels
US9932538B2 (en) 2010-09-22 2018-04-03 Bestline International Research, Inc. Universal synthetic water displacement multi-purpose penetrating lubricant, method and product-by-process
US10400192B2 (en) 2017-05-17 2019-09-03 Bestline International Research, Inc. Synthetic lubricant, cleaner and preservative composition, method and product-by-process for weapons and weapon systems
US20230054666A1 (en) * 2021-08-17 2023-02-23 Sk Innovation Co., Ltd. Process of producing high-quality lube base oil by using refined oil fraction of waste lubricant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137098A1 (en) * 2003-12-22 2005-06-23 Chevron Oronite S.A. Overbased detergents for lubricating oil applications
US20110015103A1 (en) * 2005-01-18 2011-01-20 Bestline International Research, Inc Universal Synthetic Water Displacement Multi-Purpose Penetrating Lubricant, Method and Product-by-Process
US8039424B2 (en) * 2005-01-18 2011-10-18 Bestline International Research, Inc. Universal synthetic lubricant additive with micro lubrication technology to be used with synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam
US20160264908A1 (en) * 2013-08-08 2016-09-15 The Lubrizol Corporation Method of lubricating an internal combustion engine

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2055456A (en) 1931-10-06 1936-09-22 Shell Dev Process and product relating to olefin derivatives
FR781570A (en) 1934-03-26 1935-05-18 Bataafsche Petroleum Process for the preparation of lubricants
NL45837C (en) 1936-07-24
US2270577A (en) 1940-05-31 1942-01-20 Shell Dev Compounded lubricating oil
US2402325A (en) 1943-08-19 1946-06-18 Atlantic Refining Co Oil solutions of basic alkaline earth metal sulphonates and method of making same
US2418894A (en) 1944-12-09 1947-04-15 Standard Oil Dev Co Compounded lubricating oil
US2485861A (en) 1945-10-01 1949-10-25 Sumner E Campbell Lubricating oil
US2501731A (en) 1946-10-14 1950-03-28 Union Oil Co Modified lubricating oil
US3406419A (en) 1966-08-30 1968-10-22 Chester W. Young Self-polishing cover for golf club heads
US3480550A (en) 1967-01-17 1969-11-25 Shell Oil Co Lubricant containing mixture of low and high molecular weight sulfonates
FR2193080A1 (en) 1972-07-24 1974-02-15 Oleotechnique Sa Pentrating/lubricating oils - contg lipid mixt, low-viscosity petroleum hydrocarbon and wetting agent/solvent aid
US3984599A (en) 1973-10-30 1976-10-05 Exxon Research And Engineering Company Lubricant coating compositions for use in metal drawing operations
GB1488922A (en) 1974-12-17 1977-10-19 Exxon Research Engineering Co Halogen containing disulphides
US4127491A (en) 1976-07-23 1978-11-28 Michael Ebert Hybrid lubricant including halocarbon oil
US4131551A (en) 1977-08-15 1978-12-26 Standard Oil Company Railway lubricating oil
US4224173A (en) 1978-06-12 1980-09-23 Michael Ebert Lubricant oil containing polytetrafluoroethylene and fluorochemical surfactant
US4218330A (en) 1978-06-26 1980-08-19 Ethyl Corporation Lubricant
US4224170A (en) 1978-11-06 1980-09-23 Texaco Inc. Rust inhibiting additive compositions for oils
US4261840A (en) 1979-04-17 1981-04-14 Phillips Petroleum Company Grease composition and preparation thereof
GB2082619A (en) 1980-08-29 1982-03-10 Exxon Research Engineering Co Basic calcium sulphonate
GB2108149B (en) 1981-08-20 1984-08-08 Ciba Geigy Ag Lubricant compositions containing chlorinated organic compounds
US4375418A (en) 1981-10-28 1983-03-01 Texaco Inc. Lubricating oil composition
US4956122A (en) 1982-03-10 1990-09-11 Uniroyal Chemical Company, Inc. Lubricating composition
US4443348A (en) 1982-07-13 1984-04-17 General Electric Company Protective lubricant composition
FR2531722B1 (en) 1982-08-11 1985-08-23 Elf France NOVEL LUBRICANT COMPOSITIONS WITH FRICTION REDUCING EFFECT EACH COMPRISING AN ADDITIVE
US4483195A (en) 1982-12-28 1984-11-20 Lockheed Corporation Fluctuating pressure measuring apparatus with miniature, high temperature, pressure transducer
JPS59204700A (en) 1983-05-04 1984-11-20 西山ステンレスケミカル株式会社 Cleaning liquid for grip portion
US4597880A (en) 1983-09-09 1986-07-01 Witco Corporation One-step process for preparation of overbased calcium sulfonate greases and thickened compositions
US4534873A (en) 1983-09-28 1985-08-13 Clark Gary G Automotive friction reducing composition
US4844825A (en) 1985-03-20 1989-07-04 Pro-Long Technology Of Canada Ltd. Extreme pressure additive for use in metal lubrication
US4659488A (en) 1985-09-18 1987-04-21 The Lubrizol Corporation Metal working using lubricants containing basic alkaline earth metal salts
US4640792A (en) 1985-11-25 1987-02-03 Dow Corning Corporation Silicone brake fluid having reduced air solubility
US5013463A (en) 1986-11-19 1991-05-07 Amoco Corporation Process for overbased petroleum oxidate
US5169564A (en) 1987-03-16 1992-12-08 King Industries, Inc. Thermooxidatively stable compositions
US4968853A (en) 1987-12-29 1990-11-06 The Lubrizol Corporation Alpha-olefin polymers
US4859359A (en) 1988-03-25 1989-08-22 Dyna-5, Inc. Hard surface cleaning and polishing compositions
US4879053A (en) 1988-07-11 1989-11-07 Texaco Inc. Process for preparing overbased calcium sulfonates
US4946510A (en) 1988-08-04 1990-08-07 Master's International Corporation Golf club grip cleaner
JP2804271B2 (en) 1988-09-30 1998-09-24 出光興産株式会社 Lubricating oil composition for two-stroke engine
US5120358A (en) 1989-08-24 1992-06-09 Pippett Robert J Golf practice aid
GB8919598D0 (en) 1989-08-30 1989-10-11 Exxon Chemical Patents Inc Coating compositions
US5202040A (en) 1990-06-12 1993-04-13 Texaco Chemical Company Synthetic lubricant base stocks by co-reaction of olefins and anisole compounds
US5136118A (en) 1990-08-23 1992-08-04 Mobil Oil Corporation High VI synthetic lubricants from cracked refined wax
CA2051279C (en) 1990-12-31 2003-05-27 Tze-Chi Jao Improved overbased calcium sulfonate
US5332516A (en) 1992-04-27 1994-07-26 Stephens James C Friction reducing composition and lubricant for motors
US5431841A (en) 1993-06-23 1995-07-11 Lockhart; Ronald R. Golf equipment cleaner formulation
US5672572A (en) 1993-05-27 1997-09-30 Arai; Katsuya Lubricating oil composition
JP2854791B2 (en) 1993-11-01 1999-02-03 株式会社三協精機製作所 Lubricating oil for sintered oil-impregnated bearings
JPH07233001A (en) 1994-02-22 1995-09-05 Takeda Chem Ind Ltd Aerosol composition
US5439602A (en) 1994-07-06 1995-08-08 Witco Corporaton Overbased sulfonates combined with petroleum oxidates for metal forming
US5505867A (en) 1994-07-06 1996-04-09 Ritter; Clyde G. Fuel and Lubrication oil additive
EP0862606A1 (en) 1995-11-22 1998-09-09 Exxon Chemical Patents Inc. Two-cycle synthetic lubricating oil
SG64414A1 (en) 1996-01-16 1999-04-27 Lubrizol Corp Lubricating compositions
US5681797A (en) 1996-02-29 1997-10-28 The Lubrizol Corporation Stable biodegradable lubricant compositions
IT1282788B1 (en) 1996-06-04 1998-03-31 Euron Spa LUBRICANT COMPOSITIONS WITH LOW PARTICULATE EMISSIONS FOR INTERNAL COMBUSTION ENGINES
US5741764A (en) 1996-10-15 1998-04-21 The Lubrizol Corporation Two-cycle lubricant containing solvent and high molecular weight polymer
US5888281A (en) 1997-08-22 1999-03-30 Daubert Chemical Company, Inc. Corrosion inhibiting composition
CN1058515C (en) 1997-08-22 2000-11-15 中国石化兰州炼油化工总厂 Oil composition for two-stroke carburetor engine
US6774091B2 (en) 1997-08-27 2004-08-10 Ashland Inc. Lubricant and additive formulation
US5885942A (en) 1997-09-23 1999-03-23 Nch Corporation Multifunctional lubricant additive
US5972853A (en) 1997-11-12 1999-10-26 Exxon Chemical Patents Inc. Wear control with dispersants employing poly alpha-olefin polymers
US6046142A (en) 1998-02-20 2000-04-04 Zilonis; Stephen A. Composition to substantially reduce hooks or slices in golf shots
US6143701A (en) 1998-03-13 2000-11-07 Exxon Chemical Patents Inc. Lubricating oil having improved fuel economy retention properties
US6008164A (en) 1998-08-04 1999-12-28 Exxon Research And Engineering Company Lubricant base oil having improved oxidative stability
FR2783824B1 (en) 1998-09-25 2001-01-05 Chevron Chem Sa LOW-BASED ALKYLARYL SULFONATES AND LUBRICATING OIL CONTAINING THEM
JP2000319682A (en) 1999-05-10 2000-11-21 Tonen Corp Lubricating oil composition for internal combustion engine
US6413916B1 (en) 1999-07-15 2002-07-02 Ashland Inc. Penetrating lubricant composition
US6919300B2 (en) 1999-07-15 2005-07-19 Ashland Inc. Penetrating lubricant composition
EP1204730B1 (en) 1999-07-22 2007-08-22 JohnsonDiversey, Inc. Lubricant composition for lubricating a conveyor belt
US6074993A (en) 1999-10-25 2000-06-13 Infineuma Usa L.P. Lubricating oil composition containing two molybdenum additives
US20040060229A1 (en) 1999-12-10 2004-04-01 Todd Thomas A. Fuel additive systems
CN1218024C (en) 2000-02-09 2005-09-07 西铁城钟表股份有限公司 Lubricating oil compositions and watch containing the same
US6761645B1 (en) 2000-02-18 2004-07-13 Lawrence J. Weber Golf ball lubricant
US6423670B2 (en) 2000-03-20 2002-07-23 Infineum International Ltd. Lubricating oil compositions
PL192607B1 (en) 2000-10-24 2006-11-30 Marek Garcarzyk Lead-free motor spirits of premium/eurosuper class
JP2001271077A (en) 2001-03-30 2001-10-02 Idemitsu Kosan Co Ltd Diesel gas oil composition
US7022766B2 (en) 2001-05-31 2006-04-04 Mitsui Chemicals, Inc. Olefin block copolymer, viscosity index improver for lubricating oils and lubricating oil composition
US7018960B2 (en) 2001-06-11 2006-03-28 Fuji Photo Film Co., Ltd. Lubricant composition, method for using and preparing thereof and molecular complex compound used for the same
US6624124B2 (en) 2001-07-13 2003-09-23 Renewable Lubricants, Inc. Biodegradable penetrating lubricant
US6992049B2 (en) 2002-01-31 2006-01-31 Exxonmobil Research And Engineering Company Lubricating oil compositions
US7018958B2 (en) 2002-10-22 2006-03-28 Infineum International Limited Lubricating oil compositions
US7285516B2 (en) 2002-11-25 2007-10-23 The Lubrizol Corporation Additive formulation for lubricating oils
US7124728B2 (en) 2003-01-24 2006-10-24 Exxonmobil Research And Engineering Company Modification of lubricant properties in an operating all loss lubricating system
CA2535035A1 (en) 2003-08-05 2005-02-24 Grip Kleen, Llc Golf grip cleaning wipe
US20050043191A1 (en) * 2003-08-22 2005-02-24 Farng L. Oscar High performance non-zinc, zero phosphorus engine oils for internal combustion engines
JP4515797B2 (en) 2004-03-19 2010-08-04 新日本石油株式会社 Lubricating oil composition for diesel engines
MY145889A (en) * 2004-07-08 2012-05-15 Shell Int Research Lubricating oil composition
ZA200700810B (en) * 2004-08-05 2008-10-29 Chevron Usa Inc Multigrade engine oil prepared from Fischer-Tropsch distillate base oil
DE102004038113A1 (en) 2004-08-05 2006-03-16 Basf Ag Nitrogen-containing heterocyclic compounds as Reibverschleißvermindernder addition to fuels
US8062388B2 (en) 2005-01-18 2011-11-22 Bestline International Research, Inc. Universal synthetic lubricant, method and product-by-process to replace the lost sulfur lubrication when using low-sulfur diesel fuels
US8071522B2 (en) 2005-01-18 2011-12-06 Bestline International Research, Inc. Universal synthetic golf club cleaner and protectant, method and product-by-process to clean, protect golf club faces and rejuvenate golf clubs grips
US7931704B2 (en) 2005-01-18 2011-04-26 Bestline International Research Universal synthetic gasoline fuel conditioner additive, method and product-by-process
US8022020B2 (en) 2005-01-18 2011-09-20 Bestline International Research, Inc. Universal synthetic penetrating lubricant, method and product-by-process
US8268022B2 (en) 2005-01-18 2012-09-18 Bestline International Research, Inc. Universal synthetic gasoline fuel conditioner additive, method and product-by-process
US8415280B2 (en) 2005-01-18 2013-04-09 Bestline International Research, Inc. Universal synthetic penetrating lubricant, method and product-by-process
US8377861B2 (en) 2005-01-18 2013-02-19 Bestline International Research, Inc. Universal synthetic golf club cleaner and protectant, method and product-by-process to clean, protect golf club faces and rejuvenate golf clubs grips
CA2496921C (en) * 2005-02-22 2013-09-03 Kathleen G. Sloan Synthetic lubricant additive
US7476645B2 (en) * 2005-03-03 2009-01-13 Chevron U.S.A. Inc. Polyalphaolefin and fischer-tropsch derived lubricant base oil lubricant blends
WO2006100188A1 (en) 2005-03-21 2006-09-28 Ciba Specialty Chemicals Holding Inc. Antiwear lubricant compositions for use in combustion engines
EP1904610A1 (en) 2005-07-01 2008-04-02 Yong Man Lee Fuel composition containing bioethanol and biodiesel for internal combustion engine
US7776233B2 (en) 2005-10-27 2010-08-17 The United States Of America As Represented By The Secretary Of The Navy Oleaginous corrosion resistant composition
US20070111904A1 (en) * 2005-11-14 2007-05-17 Chevron Oronite Company Llc Low sulfur and low phosphorus lubricating oil composition
US20080236538A1 (en) 2007-03-26 2008-10-02 Lam William Y Lubricating oil composition for improved oxidation, viscosity increase, oil consumption, and piston deposit control
EP2142624B1 (en) 2007-04-25 2017-09-06 Dow Global Technologies LLC Lubricant blend composition
EP3527650A1 (en) 2010-02-01 2019-08-21 Exxonmobil Research And Engineering Company Use for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
CN101805657B (en) 2010-04-23 2012-11-07 路路达润滑油(无锡)有限公司 Motorcycle shock-absorber oil
US8784642B2 (en) * 2010-11-29 2014-07-22 Chevron Japan Ltd. Lubricating oil composition for lubricating automotive engines
US10400192B2 (en) 2017-05-17 2019-09-03 Bestline International Research, Inc. Synthetic lubricant, cleaner and preservative composition, method and product-by-process for weapons and weapon systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137098A1 (en) * 2003-12-22 2005-06-23 Chevron Oronite S.A. Overbased detergents for lubricating oil applications
US20110015103A1 (en) * 2005-01-18 2011-01-20 Bestline International Research, Inc Universal Synthetic Water Displacement Multi-Purpose Penetrating Lubricant, Method and Product-by-Process
US8039424B2 (en) * 2005-01-18 2011-10-18 Bestline International Research, Inc. Universal synthetic lubricant additive with micro lubrication technology to be used with synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam
US20160264908A1 (en) * 2013-08-08 2016-09-15 The Lubrizol Corporation Method of lubricating an internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834735B2 (en) 2007-12-19 2017-12-05 Bestline International Research, Inc. Universal synthetic lubricant, method and product-by-process to replace the lost sulfur lubrication when using low-sulfur diesel fuels
US9932538B2 (en) 2010-09-22 2018-04-03 Bestline International Research, Inc. Universal synthetic water displacement multi-purpose penetrating lubricant, method and product-by-process
US10400192B2 (en) 2017-05-17 2019-09-03 Bestline International Research, Inc. Synthetic lubricant, cleaner and preservative composition, method and product-by-process for weapons and weapon systems
US20230054666A1 (en) * 2021-08-17 2023-02-23 Sk Innovation Co., Ltd. Process of producing high-quality lube base oil by using refined oil fraction of waste lubricant
US11873456B2 (en) * 2021-08-17 2024-01-16 SK INNOVATION CO., LTD. and SK ENMOVE CO., LTD. Process of producing high-quality lube base oil by using refined oil fraction of waste lubricant

Also Published As

Publication number Publication date
US20180087000A1 (en) 2018-03-29
US11377616B2 (en) 2022-07-05
CN107532105B (en) 2019-04-02
EP3250664A4 (en) 2018-02-07
US20210002575A1 (en) 2021-01-07
EP3250664A1 (en) 2017-12-06
US11473031B2 (en) 2022-10-18
US20170247632A1 (en) 2017-08-31
US20200157458A1 (en) 2020-05-21
US20220333034A1 (en) 2022-10-20
CN107532105A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
US11377616B2 (en) Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel
CN102549125B (en) Lubricating composition
CN107849479A (en) Organic metal salt composite, its preparation method and lubricant additive compositions
US11162046B2 (en) Lubricating oil composition for automatic transmission
JP5964943B2 (en) Lubricant composition and method of using the lubricant composition
US9206377B1 (en) Solid lubricant blends for use in lubricating compositions
JP5766425B2 (en) Grease composition
EP0811675A1 (en) Grease composition for constant velocity joints
CN108822943A (en) Diesel engine oil composition and application thereof
CA2972633C (en) Motor oil blend for modifying the plastic response of steel
US20230174884A1 (en) Motor oil blends void of zppd and methods for reducing engine wear via motor oil blends void of zppd
KR20160044306A (en) Diesel Engine Oil Composition for Improving Fuel Efficiency and Endurance Performance
JP2005330328A (en) Method of improving oil performance
JP5033610B2 (en) Lubricating oil composition for agricultural machinery
WO2016149475A1 (en) Synthetic anti-friction & extreme pressure metal conditioner composition and method of preparation
CN113862065B (en) Lubricating oil composition for automobiles and preparation method thereof
JP7411252B2 (en) Lubricating oil additive composition, lubricating oil composition containing the lubricating oil additive composition, and uses of the lubricating oil additive composition
KR102423111B1 (en) lubricating composition
JP2022044925A (en) Lubricant composition for transmission
WO2019189168A1 (en) Lubricant composition
JP2017197608A (en) Lubricating oil composition for agricultural machine

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: BESTLINE INTERNATIONAL RESEARCH INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SLOAN, RONALD J.;REEL/FRAME:058607/0698

Effective date: 20211214

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION