EP1704270B1 - Procede et dispositif pour determiner l'epaisseur d'une couche de peinture - Google Patents

Procede et dispositif pour determiner l'epaisseur d'une couche de peinture Download PDF

Info

Publication number
EP1704270B1
EP1704270B1 EP04803525A EP04803525A EP1704270B1 EP 1704270 B1 EP1704270 B1 EP 1704270B1 EP 04803525 A EP04803525 A EP 04803525A EP 04803525 A EP04803525 A EP 04803525A EP 1704270 B1 EP1704270 B1 EP 1704270B1
Authority
EP
European Patent Office
Prior art keywords
lacquer
thickness
article
layer
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04803525A
Other languages
German (de)
English (en)
Other versions
EP1704270A1 (fr
Inventor
Zoltan-Josef Horvath
Martin Kern
Stephen Sindlinger
Jürgen SCHLECHT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisenmann Anlagenbau GmbH and Co KG
Original Assignee
Eisenmann Anlagenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisenmann Anlagenbau GmbH and Co KG filed Critical Eisenmann Anlagenbau GmbH and Co KG
Priority to PL04803525T priority Critical patent/PL1704270T3/pl
Publication of EP1704270A1 publication Critical patent/EP1704270A1/fr
Application granted granted Critical
Publication of EP1704270B1 publication Critical patent/EP1704270B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes

Definitions

  • the invention relates to a method for determining the thickness of a lacquer layer which is applied to an object by electrophoretic dip coating, wherein the object for dip coating immersed in a paint liquid paint dip tank and generates an electric field as an electrode with at least one counter electrode.
  • the invention further relates to a system for determining the thickness of a lacquer layer which is applied by electrophoretic dip coating on an object, comprising a paint dip tank for receiving a coating liquid, in which the object can be immersed, a voltage source, one pole of which is connectable to the object and whose other pole is connected to at least one counter electrode extending into the paint pool.
  • the applied paint layer In the painting of objects, it is generally important that the applied paint layer as closely as possible has the predetermined target thickness. If the actual thickness deviates too much from the desired thickness, this usually adversely affects the quality of the lacquering, for example the resistance or the color effect. Too thick applied paint layers also lead to an unnecessarily high paint consumption, which is to be avoided in terms of cost and environmental considerations.
  • the thickness of electrophoretically applied lacquer layers is generally determined manually after drying, for example with the aid of a measuring microscope or a capacitive measuring device. If it is ascertained that the thickness of the applied lacquer layer deviates beyond the tolerance limits beyond the setpoint thickness, the faults causative for this can be searched for and, if necessary, remedied. However, repainting is possible in the case of excessively thin lacquer coats, if necessary after removal of the dried lacquer coat. The too thin or thick painted objects increase as a committee, the production costs not insignificant.
  • the object of the invention is therefore to improve the known methods and equipment for determining the thickness of an electrophoretically applied paint layer such that is reduced with little effort of the Committee by too thick or too thin painted objects.
  • this object is achieved in that the flowing through the article during the dip coating electrical charge and the surface of the object exposed to the paint liquid determined and from the thickness of the paint layer is determined.
  • the invention is based on the finding that despite the relatively complex processes in the dipping bath during the electrophoretic dip coating, the thickness of a paint layer applied is at least to a first approximation proportional to the electrical charge flowing during the dip coating and approximately inversely proportional to the size of the total surface of the object to be painted. Both sizes, ie the total electrical charge flowing and the size of the surface of the article to be coated, can be determined in a simple manner.
  • the invention allows the layer thickness to be determined practically without contact during the dip coating. This, in turn, makes it possible to repaint the article if the finish is too thin.
  • the Committee in the painting is considerably reduced in this way.
  • the final inspection during painting can be omitted, since each individual painting step can be checked directly on site to see if the thicknesses of the paint layers are still within the specified tolerances lie.
  • the o. G. Task in a system of the type mentioned in that the system comprises means for determining the flowing through the article during the dip coating electrical charge and a computer that determines the thickness of the paint layer from the charge and the surface of the object exposed to the coating liquid.
  • the surface of the article can in many cases be calculated from the design data. However, if such a calculation is difficult, as may be the case, for example, in highly fissured motor vehicle bodies, then the maximum inrush current flowing through the object at the beginning of dip painting may also be used as a measure of the surface area of the object. Namely, the larger the surface, the larger the inrush current flowing through the object.
  • the measurement of the inrush current at the beginning of the dip painting is advantageous because in this way the measurements for different objects can be compared well.
  • the current strength used at a later time as a measure of the surface of the object, so the problem would arise that then the objects already coated different thickness and thus would be different insulating and thus the flowing stream is no longer a clear measure of the surface of the object.
  • the installation can first be calibrated by coating several articles with different surfaces over different periods of time. The recorded measured values are then set in relation to manually determined layer thicknesses of the objects.
  • the measurement accuracy of the layer thickness measurement can be improved if, in addition to the charge and the size of the surface to be coated, further process parameters are taken into account. These process parameters are, in particular, the temperature, the pH, the electrical conductivity, the solids content and the density of the coating liquid. These parameters influence the mobility of the coating pigments in the electrically charged field and the concentration of other charged particles which contribute to the flow of current but not to the coating.
  • the voltage applied between the electrode and the at least one counterelectrode can be regulated in such a way that the inrush current density at the beginning the dip coating has a given, preferably dependent on the paint parameters value. It has been shown that particularly good coating results can be achieved if the decisive factor for the coating effect, namely the current density, at the beginning of the dip coating has a value which is optimally adapted to the properties of the coating liquid.
  • the method described above can be used not only for the actual determination of the layer thickness, but also in the context of controlling the electrophoretic dip coating.
  • the controller may be designed, for example, so that the dip coating is terminated as soon as the specific layer thickness has reached a predetermined target value.
  • the fact is exploited that information about the layer thickness are already available during the dip coating by the measurement of the flowed to a certain time charge.
  • the increase in the layer thickness during the dip coating can be continuously monitored and interrupted in this way as soon as the desired layer thickness is reached.
  • FIG. 1 is a plant for determining the thickness of a cataphoretically applied paint layer shown schematically and designated 10 in total.
  • the plant 10 comprises a grounded paint dip tank 12, in which a paint liquid 14 is filled.
  • the coating liquid 14 contains binders and pigments, which constitute the actual constituents of the later lacquer layer. In the illustrated embodiment, it is believed that both the binders and the pigments are electrically positively charged. However, there are also paint liquids 14, in which only the binder particles, but not the pigments themselves are electrically charged.
  • the coating liquid 14 also contains a solvent whose ion concentration can be detected via the pH and the electrical conductivity of the coating liquid 14.
  • the paint dip tank 12 two anode sheets 16, 18 are arranged, which are connected to the positive terminal 20 of a coating power source 22.
  • a negative terminal 24 of the coating power source 22 is connected via a line 26 to an object to be painted, which is a vehicle body 28 in the illustrated embodiment.
  • the vehicle body 28 is suspended on a conveying system 30, indicated at 30, which is part of a superordinate transport system of a painting line.
  • the conveyor system 30 makes it possible to immerse the vehicle body 28 in the paint dip tank 12 and to raise it again after completion of the dip painting.
  • the anode plates 16, 18 may also be arranged inside dialysis housings.
  • the so far known Appendix 10 further includes a Ammeter 32, with which the current flowing through the vehicle body 28 during the dip painting current can be measured.
  • the ammeter 32 is disposed in the conduit 26 which connects the coating power source 22 to the vehicle body 28.
  • the ammeter 32 may also be located elsewhere within the circuit or within the coating power source 22.
  • the ammeter 32 is connected via a data line L1 to a computer 34, in which the measured current can be detected over time.
  • the system 10 also has a voltmeter 36, which measures the electrical voltage between the positive pole 20 and the negative pole 24. Via a data line L2 of the voltmeter 36 is also connected to the computer 34.
  • a plurality of sensors namely a temperature sensor 38, a pH sensor 40 and a conductivity sensor 42 are also arranged, which detect the corresponding quantities by measurement and transmit data lines L3, L4 and L5 to the computer 34.
  • FIG. 2 shows a graph in which is plotted for three consecutively coated objects measured by the current meter 32 Amperage J as a function of time.
  • the coating power source 22 After immersing the vehicle body 28 in the Paint liquid 14, the coating power source 22 is turned on.
  • the coating current source 22 thereby generates a DC voltage which is of the order of a few hundred volts.
  • the application of this voltage to the anode plates 16, 18 and to the cathode forming a vehicle body 28 leads to the formation of an electric field within the coating liquid 14, the strength of which in particular the voltage and the distance between the anode plates 16, 18 on the one hand and the vehicle body 28 on the other depends. Since the pigments and binder particles contained in the paint liquid are electrically positively charged, the prevailing electric field generates electrokinetic forces which lead to deposition of the pigments and binder particles on the vehicle body 28.
  • the vehicle body 28 Since the vehicle body 28 is still uncoated when the coating current source 22 is switched on at the time t 0 , initially a high inrush current flows whose maximum value J max is a measure for the entire surface of the vehicle body 28 to be painted.
  • the quantitative relationship between the maximum inrush current J max and the area of the vehicle body 28 is preferably determined by calibration.
  • the vehicle body 28 As a result of the cataphoretic coating of the vehicle body 28 with the pigments and the binder particles, the vehicle body 28 is increasingly electrically insulated, as a result of which the current intensity measured by the ammeter 32 soon drops again (compare current curve 43 in FIG. 2 ).
  • a higher-level control switches off the coating current source 22 after a time t 1 -t 0 so far that only a small residual current flows, which prevents detachment of the lacquer layer from the object, but no longer increases the layer thickness.
  • the vehicle body 28 may at the end of the cycle time T raised with the help of the conveyor system 30 from the paint dip tank 12 and z. B. a subsequent rinsing station.
  • To determine the thickness of the applied coating during immersion coating 34 integrates the computer measured by the flow meter 32 current during the time interval t 1 - t 0 on. This integral, which in the FIG. 2 is indicated as a dotted area 44 is equal to the total charge that has flowed through the vehicle body 28 during the cataphoretic coating. If the coating liquid 14 contains no further electrically charged particles in addition to the positively charged pigments and binder particles, then the total charge indicated by the surface 44 would correspond exactly to the amount of pigments and binder particles which have been deposited on the vehicle body 28. In fact, the paint liquid contains other charged particles. However, if it can be established that their concentration and mobility remain at least approximately constant during dip coating, there is nevertheless a direct correlation between the measured total charge on the one hand and the total amount of pigments and binder particles deposited on the vehicle body 28 during dip coating.
  • the thickness of the coating cataphoretically applied to the vehicle body 28 during dip coating is then given as the volume of deposited pigments and binder particles divided by the total surface area of the vehicle body 28. It will be understood, of course, that there will be no variation in thickness, such as due to Disturbances of the electric field distribution, comes.
  • the entire surface of the vehicle body to be painted 28 is determined in advance either on the basis of the design data and supplied to the computer 34 or the latter by means of the above-mentioned maximum inrush current I max , z. B. using a so-called. "Look-Up Table" determined in which the relationship between inrush current and surface is stored.
  • the relevant variables of the temperature sensor 38, the pH sensor 40 and the conductivity sensor 42 are also transmitted to the computer 34.
  • a density sensor and a sensor for detecting the solids content may also be provided (not shown); the attachment of additional sensors is also possible. If the values detected by the sensors change significantly during the dip coating, then the layer thickness value can be corrected accordingly.
  • the correction values can also be taken from a "look-up table" created by means of a calibration or also calculated using a physical model. For this purpose, the model simulates the electrokinetic movement of all charged particles in the coating liquid 14.
  • the computer 34 determines that the thickness of the applied layer is outside the permissible tolerance range, then different measures can be taken. For example, if the layer has been applied too thin, then the conveyor system 30 may be the vehicle body 28 left for some time in the paint dip tank 12 or re-immerse and re-coat, since the paint is not cured at this time. The thus nachbe Anlagenete vehicle body 28 is not a committee in this way.
  • the vehicle body 28 will generally have to be regarded as scrap. However, the vehicle body 28 can then be discarded early from the paint line.
  • the computer 34 can also switch off the coating current source 22 directly via a data line L6 when the desired target layer thickness has been reached.
  • a procedure is particularly useful if, for example, the contacting of the objects to be painted is difficult. In this case, it may happen that arise due to the varying electrical resistance due to the poor contact very different current curves. This is in the FIG. 2 shown for three identical objects. In the second article whose current curve is drawn at 46, due to the poor contact, only an overall lower current intensity is achieved. As a result, the cataphoretic coating is slower.
  • the computer 34 now continuously detects the increase in thickness of the coating and switches the
  • the surface 48 under the current curve 46 thus has at least approximately the same size as the surface 44 under the first current curve 43 already described above. With even worse contacting, the cycle time T is too short, so that the object is rejected and reworked at a later time got to.
  • the current curve is designated by 50, however, it is assumed that although the contact is just as good as in the first described object with the current curve 43.
  • the coating liquid 14 has since changed so that the charged pigments and binder particles have a higher mobility, whereby the current strength decreases less rapidly after the start of the dip coating.
  • the computer 34 therefore switches off the coating current source 22 earlier, so that the area 52 under the current curve 50 has approximately the same size as the areas 44 and 48.
  • the system 10 may also be provided with a control device which ensures that the vehicle body 28 is always exposed to the same current density at the beginning of the dip painting. Specifically, while the voltage generated by the coating power source 22 is adjusted so that regardless of the area of the vehicle body 28 results everywhere the same paint-specific current density. Compliance with a specific paint-specific current density has proved to be useful because under these conditions applied paints have particularly good adhesive properties and the cycle time is independent of the size of the surface to be coated.
  • the vehicle body 28 is katpahoretisch coated.
  • the above-described method for measuring layer thickness is, of course, also applicable to installations in which an anaphoretic coating takes place. For this purpose, only the polarities must be reversed and a coating liquid used in which the pigments are not positive, but negatively charged.
  • the system 10 can not only be clocked as described above, but also operated continuously. Furthermore, it is possible to introduce a plurality of similar workpieces at the same time on suitable goods carriers in the paint dip tank 12 and to determine the thicknesses of the applied paint on the workpieces in the manner described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Coating Apparatus (AREA)

Claims (17)

  1. Procédé pour déterminer l'épaisseur d'une couche de peinture qui est appliquée sur un objet (28) par peinture par immersion électrophorétique, l'objet (28) étant plongé pour la peinture par immersion dans un bassin de peinture par immersion (12) contenant une peinture liquide (4) et générant en tant qu'électrode, avec au moins une contre-électrode (16, 18), un champ électrique,
    caractérisé en ce que
    - l'épaisseur de la couche de peinture est déterminée à partir de la charge électrique circulant à travers l'objet (28) pendant la peinture par immersion et de la surface de l'objet (28) exposée à la peinture liquide (14), et
    - la surface de l'objet (28) exposée à la peinture liquide (14) est déterminée à partir du courant de démarrage maximal (Jmax) qui circule à travers l'objet (28) au début de la peinture par immersion.
  2. Procédé selon la revendication 1, caractérisé en ce que pour déterminer la charge, on mesure le courant circulant à travers l'objet (28) pendant la peinture par immersion.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'épaisseur de la couche de peinture est déterminée en tenant compte de la température de la peinture liquide (14).
  4. Procédé selon une des revendications précédentes, caractérisé en ce que l'épaisseur de la couche de peinture est déterminée en tenant compte du pH de la peinture liquide (14).
  5. Procédé selon une des revendications précédentes, caractérisé en ce que l'épaisseur de la couche de peinture est déterminée en tenant compte de la conductibilité électrique de la peinture liquide (14).
  6. Procédé selon une des revendications précédentes, caractérisé en ce que l'épaisseur de la couche de peinture est déterminée en tenant compte de la teneur en corps solides de la peinture liquide (14).
  7. Procédé selon une des revendications précédentes, caractérisé en ce que l'épaisseur de la couche de peinture est déterminée en tenant compte de la densité de la peinture liquide (14).
  8. Procédé selon une des revendications précédentes, caractérisé en ce que l'épaisseur de la couche de peinture est déterminée en tenant compte de la distance entre l'objet (28) et ladite au moins une contre-électrode (16, 18).
  9. Procédé selon une des revendications précédentes, caractérisé en ce qu'il est mis fm à la peinture par immersion dès que l'épaisseur de couche déterminée a atteint une valeur de consigne prédéfinissable.
  10. Installation pour déterminer l'épaisseur d'une couche de peinture qui est appliquée sur un objet (28) par peinture par immersion électrophorétique, comprenant un bassin de peinture par immersion (12) destiné à recevoir une peinture liquide (14), dans lequel l'objet (28) peut être plongé, une source de tension (22) dont un pôle (24) peut être relié à l'objet (28) et dont l'autre pôle (20) est reliée à au moins une contre-électrode (16, 18) s'étendant jusque dans le bassin de peinture par immersion (12),
    caractérisée en ce que
    - l'installation comprend des moyens (32) pour déterminer la charge électrique circulant à travers l'objet (28) pendant la peinture par immersion ainsi qu'un calculateur (34) qui détermine l'épaisseur de la couche de peinture à partir de la charge et de la surface de l'objet (28) exposée à la peinture liquide (14),
    - le courant de démarrage maximal (Jmax) qui circule à travers l'objet (28) au début de la peinture par immersion peut être enregistré dans le calculateur (34),
    - le calculateur (34) détermine à partir du courant de démarrage maximal (Jmax) la surface de l'objet (28) exposée à la peinture liquide (14).
  11. Installation selon la revendication 10, caractérisée en ce que les moyens pour déterminer la charge comprennent un ampèremètre (32).
  12. Installation selon la revendication 10 ou 11, caractérisée par un capteur de température (38) relié au calculateur (34) pour déterminer la température de la peinture liquide (14).
  13. Installation selon une des revendications 10 à 12, caractérisée par un capteur de pH (40) relié au calculateur (34) pour mesurer le pH de la peinture liquide (14).
  14. Installation selon une des revendications 10 à 13, caractérisée par un capteur de conductibilité (42) relié au calculateur (34) pour mesurer la conductibilité de la peinture liquide (14).
  15. Installation selon une des revendications 10 à 14, caractérisée par un capteur relié au calculateur (34) pour déterminer la teneur en corps solides de la peinture liquide (14).
  16. Installation selon une des revendications 10 à 15, caractérisée par un capteur de densité relié au calculateur (34) pour mesurer la densité de la peinture liquide (14).
  17. Installation selon une des revendications 10 à 16, caractérisée en ce que l'installation comprend une commande qui met fin à la peinture par immersion dès que l'épaisseur de couche déterminée a atteint une valeur de consigne prédéfinissable.
EP04803525A 2004-01-22 2004-12-04 Procede et dispositif pour determiner l'epaisseur d'une couche de peinture Not-in-force EP1704270B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04803525T PL1704270T3 (pl) 2004-01-22 2004-12-04 Sposób i instalacja do określania grubości warstwy lakieru

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004003456A DE102004003456B4 (de) 2004-01-22 2004-01-22 Verfahren und Anlage zur Bestimmung der Dicke einer Lackschicht
PCT/EP2004/013813 WO2005073436A1 (fr) 2004-01-22 2004-12-04 Procede et dispositif pour determiner l'epaisseur d'une couche de peinture

Publications (2)

Publication Number Publication Date
EP1704270A1 EP1704270A1 (fr) 2006-09-27
EP1704270B1 true EP1704270B1 (fr) 2010-06-23

Family

ID=34800942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04803525A Not-in-force EP1704270B1 (fr) 2004-01-22 2004-12-04 Procede et dispositif pour determiner l'epaisseur d'une couche de peinture

Country Status (9)

Country Link
US (1) US7825671B2 (fr)
EP (1) EP1704270B1 (fr)
AT (1) ATE471999T1 (fr)
DE (2) DE102004003456B4 (fr)
PL (1) PL1704270T3 (fr)
RU (1) RU2368708C2 (fr)
UA (1) UA90466C2 (fr)
WO (1) WO2005073436A1 (fr)
ZA (1) ZA200606571B (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006044050A1 (de) 2006-09-20 2008-04-03 Eisenmann Anlagenbau Gmbh & Co. Kg Verfahren zur elektrophoretischen Beschichtung von Werkstücken und Beschichtungsanlage
FR2974174B1 (fr) * 2011-04-18 2013-04-26 Peugeot Citroen Automobiles Sa Procede pour controler la couche de protection anti-corrosion deposee a l'interieur des corps creux de la caisse d'un vehicule automobile
DE102011106702A1 (de) 2011-07-06 2013-01-10 Bejotec Gmbh Verfahren zur Analyse eines Beschichtungsprozesses
CN104237611A (zh) * 2013-06-06 2014-12-24 北汽福田汽车股份有限公司 一种电泳异常检测装置及方法
CN103453866B (zh) * 2013-07-29 2016-01-27 浙江吉利汽车有限公司 一种电泳内腔膜厚测量方法及测量装置
CN104655074B (zh) * 2015-03-11 2017-09-19 北京汽车研究总院有限公司 一种车身内腔电泳涂层检测工装
CN104962976A (zh) * 2015-07-14 2015-10-07 安徽财富重工机械有限公司 汽车零部件阴极电泳漆表面质量加工工艺

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB293343A (en) 1927-04-06 1928-07-06 Dunlop Rubber Co Method and means for determining optimum current strength in the electro deposition of rubber and other substances
DE1577934C3 (de) 1966-03-17 1973-11-08 Siemens Ag, 1000 Berlin U. 8000 Muenchen Einrichtung zur Stromversorgung von Werkstucken beim Durchlaufen von elektrophoretischen Lackierbadern
US3492213A (en) 1967-06-02 1970-01-27 Ford Motor Co Method for electrodeposition coating including a preimmersion deposition step
US3627661A (en) * 1969-02-13 1971-12-14 Ransburg Electro Coating Corp Electronic apparatus and method
US3658676A (en) * 1970-05-13 1972-04-25 Sherwin Williams Co Monitoring apparatus and process for controlling composition of aqueous electrodeposition paint baths
GB2085922B (en) * 1980-10-15 1984-01-25 Metal Box Co Ltd Electrocoating apparatus
JPS63310996A (ja) * 1987-06-10 1988-12-19 Honda Motor Co Ltd 電着塗装方法
US4851102A (en) * 1987-08-12 1989-07-25 Poly Techs Inc. Electrodeposition coating system
JPH01272795A (ja) * 1988-04-25 1989-10-31 Mitsubishi Motors Corp 電着塗装方法
JP2768969B2 (ja) * 1989-03-30 1998-06-25 トリニティ工業 株式会社 混合生産ラインにおける電着塗装方法
JP2732148B2 (ja) 1990-10-25 1998-03-25 トリニティ工業株式会社 電着塗装装置
US5914022A (en) 1996-01-05 1999-06-22 Lowry; Patrick Ross Method and apparatus for monitoring and controlling electrodeposition of paint
US5759371A (en) * 1996-07-09 1998-06-02 Ufs Corporation Electrocoat painting overload protection circuit and method
JPH10237695A (ja) * 1997-02-20 1998-09-08 Toyota Motor Corp 電着塗装方法
JP3877442B2 (ja) * 1998-08-24 2007-02-07 デュポン神東・オートモティブ・システムズ株式会社 電着塗装方法および連続電着装置
JP4384825B2 (ja) 2001-04-26 2009-12-16 上村工業株式会社 電着塗膜の膜厚算出方法
JP4641672B2 (ja) * 2001-07-02 2011-03-02 関西ペイント株式会社 塗装設備管理システム

Also Published As

Publication number Publication date
EP1704270A1 (fr) 2006-09-27
US20080169829A1 (en) 2008-07-17
ATE471999T1 (de) 2010-07-15
DE102004003456A1 (de) 2005-08-25
DE102004003456B4 (de) 2006-02-02
DE502004011320D1 (de) 2010-08-05
RU2368708C2 (ru) 2009-09-27
ZA200606571B (en) 2008-01-08
RU2006130008A (ru) 2008-02-27
WO2005073436A1 (fr) 2005-08-11
UA90466C2 (uk) 2010-05-11
US7825671B2 (en) 2010-11-02
PL1704270T3 (pl) 2010-11-30

Similar Documents

Publication Publication Date Title
EP0376222B1 (fr) Procédé et appareillage pour le dépôt par électrophorèse d'une laque sur de petits objets en vrac
DE2006086A1 (de) Verfahren und Anlage zum Einstellen der Konzentration von in einer Überzugs lösung enthaltenen Überzugsmaterialien, die auf elektrischem Wege auf einem elektrisch leitenden Gegenstand niedergeschlagen werden, während der Gegenstand in der Lösung eingetaucht ist
EP1704270B1 (fr) Procede et dispositif pour determiner l'epaisseur d'une couche de peinture
DE19643082C2 (de) Verfahren zum Innen- und Außenbeschichten einer Karosserie mit Hohlräumen
CH690273A5 (de) Verfahren zum galvanischen Aufbringen einer Oberflächenbeschichtung.
DE4116643C2 (de) Verfahren zum anodischen oder kathodischen Elektrolackieren von Band- oder Profilmaterial
DE1546926B2 (de) Verfahren zum elektrophoretischen Beschichten von Hohlräume aufweisenden Kraftfahrzeug-Karosserien
DE4127740C2 (fr)
DE102006033721A1 (de) Verfahren und Vorrichtung zur Vorhersage der Lackschichtdicke
DE19731101C1 (de) Verfahren zur Elektro-Tauch-Beschichtung
DE102007006335A1 (de) Verfahren zur Vorhersage der Korrosionsanfälligkeit eines Bauelements
EP2692905A2 (fr) Installation de revêtement galvanique et son procédé de fonctionnement
DE102013224748B4 (de) Verfahren zur Ermittlung der maximalen Abscheidespannung oder Abscheidestromstärke bei einem Elektrotauchlackierverfahren
DE102012023844A1 (de) Verfahren zur Bestimmung zumindest eines zeitabhängigen Beschichtungparameters bei der Elektro-Tauchlackierung
DE19940233C2 (de) Verfahren zur Elektrotauchlackierung von Automobilkarossen
DE2534918C3 (de) Vorrichtung zum Elektrotauchlackieren
DE102013003377A1 (de) Elektrotauchlackierung mit einem kombinierten Verfahren zur Schichtdickenoptimierung
DE1621915B2 (de) Vorrichtung zum kontinuierlichen elektroueberziehen von elektrisch leitenden gegenstaenden
WO2022233362A1 (fr) Procédé d'actionnement de système de traitement, système de traitement et produit-programme d'ordinateur
DE1646168C (de) Verfahren zur elektrophoretischen Be schichtung von leitenden Werkstoffen mit Lack
DE1621912B2 (de) Verfahren zur stabilisierung eines waessrigen elektrophoretischen abscheidungsbades sowie hierfuer geeignete vorrichtung
DE102011106702A1 (de) Verfahren zur Analyse eines Beschichtungsprozesses
JPS6096794A (ja) 電着塗装方法およびその装置
DE102015122467A1 (de) Anlage und Verfahren zum Behandeln von Werkstücken
DE10105806A1 (de) Verfahren und Anlage zur elektrophoretischen, insbesondere kataphoretischen, Tauchlackierung von Gegenständen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060913

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EISENMANN ANLAGENBAU GMBH & CO. KG

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004011320

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7855

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110324

BERE Be: lapsed

Owner name: EISENMANN ANLAGENBAU G.M.B.H. & CO. KG

Effective date: 20101231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004011320

Country of ref document: DE

Effective date: 20110323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011320

Country of ref document: DE

Owner name: EISENMANN AG, DE

Free format text: FORMER OWNER: EISENMANN ANLAGENBAU GMBH & CO. KG, 71032 BOEBLINGEN, DE

Effective date: 20110513

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011320

Country of ref document: DE

Owner name: EISENMANN SE, DE

Free format text: FORMER OWNER: EISENMANN ANLAGENBAU GMBH & CO. KG, 71032 BOEBLINGEN, DE

Effective date: 20110513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101204

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 471999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101224

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101204

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20141120

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011320

Country of ref document: DE

Representative=s name: OSTERTAG & PARTNER, PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011320

Country of ref document: DE

Owner name: EISENMANN SE, DE

Free format text: FORMER OWNER: EISENMANN AG, 71032 BOEBLINGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20151203

Year of fee payment: 12

Ref country code: PL

Payment date: 20151120

Year of fee payment: 12

Ref country code: CZ

Payment date: 20151202

Year of fee payment: 12

Ref country code: FR

Payment date: 20151221

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161204

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7855

Country of ref document: SK

Effective date: 20161204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191230

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191219

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004011320

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161204