EP1694754A1 - Partikelschaumstoffformteile aus expandierbaren, füllstoff enthaltenden polymergranulaten - Google Patents

Partikelschaumstoffformteile aus expandierbaren, füllstoff enthaltenden polymergranulaten

Info

Publication number
EP1694754A1
EP1694754A1 EP04803476A EP04803476A EP1694754A1 EP 1694754 A1 EP1694754 A1 EP 1694754A1 EP 04803476 A EP04803476 A EP 04803476A EP 04803476 A EP04803476 A EP 04803476A EP 1694754 A1 EP1694754 A1 EP 1694754A1
Authority
EP
European Patent Office
Prior art keywords
expandable
range
filler
weight
thermoplastic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04803476A
Other languages
English (en)
French (fr)
Inventor
Klaus Hahn
Gerd Ehrmann
Joachim Ruch
Markus Allmendinger
Bernhard Schmied
Klaus MÜHLBACH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1694754A1 publication Critical patent/EP1694754A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Definitions

  • Particle foam molded parts made of expandable polymer granules containing filler
  • the invention relates to particle foam molded parts with a density in the range from 8 to 200 g / l, which can be obtained by welding pre-expanded foam particles made of expandable, filler-containing, thermoplastic polymer granules, and to processes for producing the expandable polymer granules.
  • Expanded and expandable styrene polymers can also be produced by means of extrusion processes.
  • the blowing agent is e.g. mixed into the polymer melt via an extruder, conveyed through a nozzle plate and granulated into particles or strands (US Pat. No. 3,817,669, GB 1,062,307, EP-B 0 126459, US Pat. No. 5,000,891).
  • EP-A 668 139 describes a process for the economical production of expandable polystyrene granules (EPS), the blowing agent-containing melt being produced by means of static mixing elements in a dispersion, holding and cooling stage and then being granulated. Due to the cooling of the melt to a few degrees above the solidification temperature, high amounts of heat have to be removed.
  • EPS expandable polystyrene granules
  • GB 1 048 865 describes polystyrene extrusion foams with a high filler content in the form of sheets, strips and tapes with densities in the range from 100 to 1100 kg / m 3 .
  • Polystyrene containing blowing agents is premixed with the fillers and put in an extruder. Expandable styrene and polystyrene particle foams with a high filler content are not described.
  • WO 03/035728 describes the production of expandable polystyrene, which is an inorganic filler with an average diameter in the range from 0.01 to 100 ⁇ m, a refractive index above 1.6 and a color index of 22 or below.
  • 1 to 4% by weight of TiO 2 are used as a replacement for IR absorbers, such as graphite, in order to reduce the thermal conductivity of the foams.
  • Expandable styrene polymers containing halogen-free flame retardants are known. According to EP-A 0 834 529, at least 12% by weight of a mixture of a phosphorus compound and a water-releasing metal hydroxide, for example triphenyl phosphate and magnesium hydroxide, is used as the flame retardant in order to obtain foams which pass the fire test B2 in accordance with DIN 4102.
  • a water-releasing metal hydroxide for example triphenyl phosphate and magnesium hydroxide
  • WO 00/34342 describes expandable styrene polymers which contain 5 to 50% by weight of expandable graphite as flame retardant and optionally 2 to 20% by weight of a phosphorus compound.
  • WO 98/51735 describes expandable styrene polymers containing graphite particles with reduced thermal conductivity, which can be obtained by suspension polymerization or by extrusion in a twin-screw extruder. As a result of the high shear forces in a twin-screw extruder, a significant decrease in the molecular weight of the polymer used and / or partial decomposition of added additives, such as flame retardants, are generally observed.
  • EPS expandable styrene polymer
  • EPS granules produced by extrusion often cannot be foamed into foams with an optimal foam structure.
  • EP-A 1 002 829 describes the suspension polymerization of styrene in the presence of silylated glass fibers to give EPS particles which are processed into an open-cell foam.
  • particle foam molded parts obtainable by welding pre-expanded foam particles made of expandable, filler-containing, thermoplastic polymer granules, were found, the particle foam having a density in the range from 8 to 200 g / l, preferably in the range from 10 to 50 g / l.
  • the particle foam molded parts according to the invention despite the presence of fillers, have a high closed-cell structure, with generally more than 60%, preferably more than 70, particularly preferably more than 80% of the cells of the individual foam particles being closed-celled.
  • Suitable fillers are organic and inorganic powders or fibrous materials, and also mixtures thereof.
  • organic fillers such.
  • wood flour, starch, flax, hemp, ramie, jute, sisal, cotton, cellulose or aramid fibers can be used.
  • inorganic fillers such.
  • carbonates, silicates, heavy latex, glass spheres, zeolites or metal oxides can be used.
  • Powdery inorganic substances such as talc, chalk, kaolin (Al 2 (Si 2 O 5 ) (OH)), aluminum hydroxide, magnesium hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, calcium sulfate, silica, quartz powder, aerosil, are preferred.
  • Alumina or wollastonite or spherical or fibrous, inorganic substances such as glass spheres, glass fibers or carbon fibers.
  • the average particle diameter or, in the case of fibrous fillers, the length should be in the range of the cell size or smaller.
  • Inorganic fillers with a density in the range from 2.0 to 4.0 g / cm 3 are particularly preferred, in particular in the range from 2.5 to 3.0 g / cm 3 .
  • the whiteness / brightness (DIN / ISO) is preferably 50-100%, in particular 70-98%.
  • the oil number according to ISO 787/5 of the preferred fillers is in the range from 2 to 200 g / 100 g, in particular in the range from 5 to 150 g / 100 g
  • the type and amount of the fillers can influence the properties of the expandable thermoplastic polymers and the particle foam molded parts obtainable therefrom.
  • the proportion of the filler is generally in the range from 1 to 50, preferably 5 to 30,% by weight, based on the thermoplastic polymer.
  • adhesion promoters such as maleic anhydride-modified styrene copolymers, polymers containing epoxy groups, organosilanes or styrene copolymers with isocyanate or acid groups, the connection of the filler to the polymer matrix and thus the mechanical properties of the particle foam molded parts can be significantly improved.
  • inorganic fillers reduce flammability.
  • the fire behavior can be significantly improved, in particular by adding inorganic powders such as aluminum hydroxide.
  • thermoplastic polymer granules according to the invention show a low loss of blowing agent during storage even at high filler contents. Due to the nucleating effect, a reduction in the blowing agent content, based on the polymer, is also possible.
  • thermoplastic polymers which can be used are styrene polymers, polyamides (PA), polyolefins, such as polypropylene (PP), polyethylene (PE) or polyethylene-propylene copolymers, polyacrylates, such as polymethyl methaceylate (PMMA), polycarbonate (PC), polyesters, such as polyethylene terephthalate (PET ) or polybutylene terephthalate (PBT), polyether sulfones (PES), polyether ketones or polyether sulfides (PES) or mixtures thereof.
  • Styrene polymers are particularly preferably used.
  • the expandable styrene polymer preferably has a molecular weight in the range from 190,000 to 400,000 g / mol, particularly preferably in the range from 220,000 to 300,000 g / mol. Due to the reduction in molecular weight due to shear and / or the effect of temperature, the molecular weight of the expandable polystyrene is generally about 10,000 g / mol below the molecular weight of the polystyrene used.
  • the strand expansion after the nozzle outlet should be as small as possible. It has been shown that the strand expansion can be influenced, inter alia, by the molecular weight distribution of the styrene polymer.
  • the expandable styrene polymer should therefore preferably have a molecular weight distribution with a non-uniformity M w / M n of at most 3.5, particularly which preferably have in the range from 1.5 to 2.8 and very particularly preferably in the range from 1.8 to 2.6.
  • Preferred styrene polymers are glass-clear polystyrene (GPPS), impact-resistant polystyrene (HIPS), anionically polymerized polystyrene or impact-resistant polystyrene (A-IPS), styrene-a-methstyrene copolymers, acrylonitrile-butadiene-styrene polymers (ABS), styrene-acrylonitrile (SAN) Acrylonitrile-styrene-acrylic ester (ASA), methacrylate-butadiene-styrene (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) - polymers or mixtures thereof or with polyphenylene ether (PPE).
  • GPPS glass-clear polystyrene
  • HIPS impact-resistant polystyrene
  • A-IPS anionically polymerized polystyrene or impact-
  • the styrene polymers mentioned can be used, if appropriate, using compatibilizers with thermoplastic polymers, such as polyamides (PA), polyolefins, such as polypropylene (PP) or polyethylene (PE), polyacrylates, such as polymethyl methacrylate (PMMA), Polycarbonate (PC), polyesters, such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), polyether sulfones (PES), polyether ketones or polyether sulfides (PES) or mixtures thereof, as a rule in proportions of up to a maximum of 30% by weight, are preferred in the range from 1 to 10% by weight, based on the polymer melt, are mixed.
  • thermoplastic polymers such as polyamides (PA), polyolefins, such as polypropylene (PP) or polyethylene (PE), polyacrylates, such as polymethyl methacrylate (PMMA), Polycarbonate (PC), polyesters, such as polyethylene terephthalate
  • mixtures in the stated ranges are also with z.
  • B hydrophobically modified or functionalized polymers or oligomers, rubbers, such as polyacrylates or polydienes, eg. B. styrene-butadiene block copolymers or biodegradable aliphatic or aliphatic / aromatic copolyesters are possible.
  • Suitable compatibilizers are e.g. Maleic anhydride-modified styrene copolymers, polymers containing epoxy groups or organosilanes.
  • Polymer recyclates of the abovementioned thermoplastic polymers in particular styrene polymers and expandable styrene polymers (EPS), can also be mixed into the styrene polymer melt in amounts which do not significantly impair their properties, generally in amounts of at most 50% by weight, in particular in amounts of 1 to 20 wt .-%.
  • EPS expandable styrene polymers
  • the blowing agent-containing styrene polymer melt generally contains one or more blowing agents in a homogeneous distribution in a proportion of a total of 2 to 10% by weight, preferably 3 to 7% by weight, based on the blowing agent-containing styrene polymer melt.
  • Suitable blowing agents are the physical blowing agents usually used in EPS, such as aliphatic hydrocarbons with 2 to 7 carbon atoms, alcohols, ketones, ethers or halogenated hydrocarbons. Iso-butane, n-butane, iso-pentane, n-pentane is preferably used.
  • finely divided interior water droplets can be introduced into the styrene polymer matrix. This can be done, for example, by adding water to the melted styrene polymer matrix. The water can be added locally before, with or after the propellant metering. A homogeneous distribution of the water can be achieved using dynamic or static mixers.
  • 0 to 2 preferably 0.05 to 1.5% by weight of water, based on the styrene polymer, is sufficient.
  • Expandable styrene polymers with at least 90% of the internal water in the form of internal water droplets with a diameter in the range from 0.5 to 15 ⁇ m form foams with a sufficient number of cells and a homogeneous foam structure when foamed.
  • the amount of blowing agent and water added is selected so that the expandable styrene polymers (EPS) have an expansion capacity ⁇ , defined as bulk density before foaming / bulk density after foaming, at most 125, preferably 25 to 100.
  • EPS expandable styrene polymers
  • the expandable styrene polymer granules (EPS) according to the invention generally have a bulk density of at most 700 g / l, preferably in the range from 590 to 660 g / l.
  • bulk densities in the range from 590 to 1200 g / l can occur.
  • the styrene polymer melt can also contain additives, nucleating agents, plasticizers, flame retardants, soluble and insoluble inorganic and / or organic dyes and pigments, e.g. IR absorbers, such as carbon black, graphite or aluminum powder, together or spatially separated, e.g. can be added via mixer or side extruder.
  • IR absorbers such as carbon black, graphite or aluminum powder
  • the dyes and pigments are added in amounts in the range from 0.01 to 30, preferably in the range from 1 to 5,% by weight.
  • a dispersing aid e.g. Organosilanes, polymers containing epoxy groups or styrene polymers grafted with maleic anhydride.
  • Preferred plasticizers are mineral oils, low molecular weight styrene polymers, phthalates, which can be used in amounts of 0.05 to 10% by weight, based on the styrene polymer.
  • an IR absorber such as carbon black or graphite is preferably used in amounts of 0.1 to 10% by weight, in particular in amounts of 2 to 8% by weight.
  • carbon black when using smaller amounts of fillers, e.g. B. below 5 wt .-%, it is also possible to use carbon black in amounts of 1 to 25 wt .-%, preferably in the range of 10 to 20 wt .-%. At these high carbon black contents, the carbon black addition is preferably mixed into the styrene polymer melt by means of the mainstream and a side-stream extruder.
  • soot agglomerates to be simply comminuted to an average agglomerate size in the range from 0.3 to 10 / m, preferably in the range from 0.5 to 5 ⁇ m, and homogeneous coloring of the expandable styrene polymer granules which form closed-cell foam particles with a Density in the range of 5 -40 kg / m 3 , in particular 10 - 15 kg / m 3 can be foamed.
  • the particle foams obtainable with 10 to 20% by weight carbon black after foaming and sintering achieve a thermal conductivity ⁇ , determined at 10 ° C according to DIN 52612, in the range from 30 to 33 mW / mK.
  • the BET surface area is preferably in the range from 10 to 120 m 2 / g.
  • Graphite with an average particle size in the range from 1 to 50 ⁇ m is preferably used as graphite.
  • Expandable, styrene polymer granules with reduced thermal conductivity preferably contain
  • a filler selected from powdery inorganic substances such as talc, chalk, kaolin, aluminum hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, titanium dioxide, chalk, calcium sulfate, kaolin, silica, quartz powder, aerosil, alumina or wollastonite and
  • the EPS granules particularly preferably contain hexabromocylododecane (HBCD) as the flame retardant and dicumyl or dicumyl peroxide as the flame retardant synergist.
  • HBCD hexabromocylododecane
  • the weight ratio of flame retardant synergist to organic bromine compound is generally in the range from 1 to 20, preferably in the range from 2 to 5.
  • carbonates, such as chalk, as fillers the hydrogen halide acids released by halogenated flame retardants, such as HBDC, are neutralized and the corrosion of plants during processing is avoided or reduced.
  • a filler selected from powdery inorganic substances such as talc, chalk, kaolin, aluminum hydroxide, aluminum nitrite, aluminum silicate, barium sulfate, calcium carbonate, titanium dioxide, chalk, calcium sulfate, kaolin, silica, quartz powder, areosil, alumina or wollastonite and
  • Preferred halogen-free, flame-retardant expandable styrene polymer granules contain, in addition to the fillers and expandable graphite, 1 to 10% by weight of red phosphorus, triphenyl phosphate or 9,10-dihydro-9-oxa-10phospha-phenantrene-10-oxide and an effective IR absorber Expandable graphite different graphite with an average particle size in the range of 0.1 to 100 microns in amounts of 0.1 to 5 wt .-%, each based on styrene polymer.
  • graphite Due to its layered lattice structure, graphite is able to form special forms of intercalation compounds. In these so-called interstitial compounds, foreign atoms or molecules, some of which are stoichiometric, have been incorporated into the spaces between the carbon atoms. These graphite compounds, for example with sulfuric acid as a foreign molecule, which are also produced on an industrial scale, are referred to as expanded graphite.
  • the density of this expanded graphite is in the range from 1.5 to 2.1 g / cm 3 , the average particle size is generally advantageously from 10 to 1000 ⁇ m, in the present case preferably from 20 to 500 ⁇ m and in particular from 30 to 300 ⁇ m ,
  • Inorganic or organic phosphates, phosphites or phosphonates and red phosphorus can be used as phosphorus compounds.
  • Preferred phosphorus compounds are, for example, diphenyl phosphate, triphenyl phosphate, diphenyl cresyl phosphate, ammonium polyphosphate, resorcinol diphenyl phosphate, melamine phosphate, dimyl phenyl phosphate or dimethyl methyl phosphonate.
  • the blowing agent is mixed into the polymer melt.
  • the process comprises the steps a) melt production, b) mixing c) cooling d) conveying and e) granulating.
  • Static or dynamic mixers for example extruders, are suitable for mixing.
  • the polymer melt can be removed directly from a polymerization reactor or can be produced directly in the mixing extruder or in a separate melt extruder by melting polymer granules.
  • the melt can be cooled in the mixing units or in separate coolers.
  • Apparatus arrangements suitable for carrying out the method are, for example:
  • the blowing agent-containing styrene polymer melt is generally conveyed through the nozzle plate at a temperature in the range from 140 to 300 ° C., preferably in the range from 160 to 240 ° C. It is not necessary to cool down to the glass transition temperature range.
  • the nozzle plate is heated to at least the temperature of the blowing agent-containing polystyrene melt.
  • the temperature of the nozzle plate is preferably in the range from 20 to 100 ° C. above the temperature of the polystyrene melt containing blowing agent. This prevents polymer deposits in the nozzles and guarantees trouble-free granulation.
  • the diameter (D) of the nozzle bores at the nozzle outlet should be in the range from 0.2 to 1.5 mm, preferably in the range from 0.3 to 1.2 mm, particularly preferably in the range from 0.3 to 0.8 mm. In this way, even after strand expansion, pellet sizes below 2 mm, in particular in the range from 0.4 to 1.4 mm, can be set in a targeted manner.
  • the strand expansion can be influenced by the nozzle geometry.
  • the nozzle plate preferably has bores with a ratio L / D of at least 2, the length (L) denoting the nozzle area, the diameter of which corresponds at most to the diameter (D) at the nozzle outlet.
  • the L / D ratio is preferably in the range from 3 to 20.
  • the diameter (E) of the holes at the nozzle inlet of the nozzle plate should be at least twice as large as the diameter (D) at the nozzle outlet.
  • the nozzle plate has bores with a conical inlet and an inlet angle ⁇ of less than 180 °, preferably in the range from 30 to 120 °. In a further embodiment, the nozzle plate has bores with a conical outlet and an outlet angle ⁇ less than 90 °, preferably in the range from 15 to 45 °.
  • the nozzle plate can be equipped with holes of different outlet diameters (D). The various embodiments of the nozzle geometry can also be combined with one another.
  • a particularly preferred method for producing expandable styrene polymers comprises the steps
  • step g) the granulation can take place directly behind the nozzle plate under water at a pressure in the range from 1 to 25 bar, preferably 5 to 15 bar.
  • Variable back pressure in the UWG enables the targeted production of both compact and foamed granules. Even when using nucleating agents, foaming at the UWG nozzles remains controllable.
  • pressurized underwater pelletizing with pressures in the range from 1 to 40 bar, in particular in the range from 4 to 20 bar, solves the problem.
  • the foaming of the granules can not only be completely suppressed in the presence of nucleating agents (compact granules), but can also be controlled in a targeted manner (slightly foamed granules, bulk density 40 to 550 g / l).
  • the foam is pre-foamed in flowing steam to form foam beads with a density of usually 10-50 kg / m 3, temporarily stored for 24 hours and then welded in gas-tight forms with water vapor to form foam bodies.
  • foaming can be carried out several times in this way, the granules usually being stored temporarily between the foaming steps and possibly being dried.
  • the foamed, dry granules can be further foamed in water vapor or a gas mixture which contains at least 50% by volume of water, preferably at temperatures in the range from 100 to 130 ° C. on even lower poets.
  • the targeted bulk densities are less than 25g / l, in particular between 8 and 16g / l.
  • a polymer melt is directly available for the blowing agent impregnation in stage c) and it is not necessary to melt styrene polymers.
  • This is not only more economical, but also leads to expandable styrene polymers (EPS) with low styrene monomer contents, since the mechanical shearing action in the melting area of an extruder, which usually leads to the cleavage of monomers, is avoided.
  • EPS expandable styrene polymers
  • Shear rates below 50 / sec, preferably 5 to 30 / sec, and temperatures below 260 ° C. and short residence times in the range from 1 to 20, preferably 2 to 10 minutes in stages c) to e) are therefore particularly preferred.
  • Static mixers and static coolers are particularly preferably used in the entire process.
  • the polymer melt can by pressure pumps, for. B. Gear pumps are promoted and carried out.
  • a further possibility for reducing the styrene monomer content and / or residual solvents such as ethylbenzene is to provide a high degassing by means of entraining agents, for example water, nitrogen or carbon dioxide, in stage b) or to carry out the polymerization stage a) anionically.
  • entraining agents for example water, nitrogen or carbon dioxide
  • the anionic polymerization of styrene not only leads to styrene polymers with a low styrene monomer content, but also to a low styrene oligomer content.
  • the finished expandable styrene polymer granules can be coated with glycerol esters, antistatic agents or anti-adhesive agents.
  • the expandable styrene polymer granules (EPS) according to the invention generally have higher bulk densities, which are generally in the range from 590 to 1200 g / l.
  • the expandable thermoplastic polymer granules according to the invention show good expansibility even at low blowing agent contents. Even without a coating, the bond is significantly less than with conventional EPS beads.
  • the expandable, styrene polymer granules according to the invention can be prefoamed by means of hot air or steam to form foam particles with a density in the range from 8 to 200 kg / m 3 , preferably in the range from 10 to 50 kg / m 3 , and then welded in a closed form to give foam moldings.
  • foam particles with a density in the range from 8 to 200 kg / m 3 , preferably in the range from 10 to 50 kg / m 3 , and then welded in a closed form to give foam moldings.
  • n-Pentane based on the total polymer melt
  • Kaolin Kaolin B22, Blancs Mineraux
  • Micro glass balls Micro glass balls PA, Potters-Ballotini GmbH
  • the melt mixture containing blowing agent was cooled in the cooler from originally 260 to 190 ° C.
  • a filler-containing polystyrene melt was metered in via a side-stream extruder, so that the proportion by weight given in Table 1 for the respective filler, based on the granules, was established.
  • the filler-containing polystyrene melt was conveyed at a throughput of 60 kg / h through a nozzle plate with 32 bores (diameter of the nozzle 0.75 mm). With the help of a pressurized underwater pelletizer, compact granules with a narrow size distribution were produced.
  • the pentane contents in the granules measured after the granulation and after 14 days of storage are shown in Table 1
  • the molded foam body was flame-treated with a Bunsen burner flame for 2 seconds. While the molded foam body produced from the comparison test burned off, the molded foam body obtained from Example 17 was self-extinguishing.
  • the pre-expanded beads were passed through a coarse mesh sieve and the proportion remaining in the sieve was determined.
  • Examples 1a, 5a, 7a and 14a were carried out in accordance with Examples 1, 5, 7 and 14, but with the addition of 1% by weight of a styrene-maleic anhydride copolymer with 12% by weight of maleic anhydride (Dylark®) as adhesion promoters.
  • Table 4 shows the compressive strengths of the foam molded articles.
  • the mixture of polystyrene melt, blowing agent, flame retardant and synergist was conveyed at 60 kg / h through a nozzle plate with 32 holes (diameter of the nozzle 0.75 mm). With the help of a pressurized underwater pelletizer, compact granules with a narrow size distribution were produced.
  • VZ viscosity number
  • VZ viscosity number
  • the mixture of polystyrene melt, blowing agent and filler was conveyed at 60 kg / h through a nozzle plate with 32 holes (diameter of the nozzle 0.75 mm). With the help of a pressurized underwater pelletizer (12 bar), compact pellets with a narrow size distribution were produced.
  • VZ viscosity number
  • the mixture of polystyrene melt, blowing agent and filler was conveyed at 60 kg / h through a nozzle plate with 32 holes (diameter of the nozzle 0.75 mm). With the help of pressurized underwater granulation (4 bar), foamed granules (380 kg / m 3 ) with a narrow size distribution were produced.
  • a polystyrene melt was added via a side-stream extruder, which melt contained the fillers (chalk) listed in Table 1 and the corresponding flame retardant mixture (expanded graphite: ES 350 F5 from Kropfmühl , red phosphorus, triphenyl phosphate (TPP) or, 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOP)) and mixed into the main stream.
  • the stated amounts in% by weight relate to the total amount of polystyrene.
  • the mixture of polystyrene melt, blowing agent, filler and flame retardant was conveyed at 60 kg / h through a nozzle plate with 32 holes (diameter of the nozzle 0.75 mm). With the help of pressurized underwater granulation, compact granules with a narrow size distribution were produced.
  • test specimens were stored for at least 72 hours. Examples 1-4 were self-resolving and passed fire test B2 according to DIN 4102.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Partikelschaumstoffformteile mit einer Dichte im Bereich von 8 bis 200 g/l, die durch Verschweissen von vorgeschäumten Schaumpartikeln aus expandierbaren, Füllstoff enthaltenden, thermoplastischen Polymergranulaten erhältlich sind, sowie Verfahren zur Herstellung der expandierbaren Polymergranulate.

Description

Partikelschaumstoffformteile aus expandierbaren, Füllstoff enthaltenden Polymergranulaten
Beschreibung
Die Erfindung betrifft, Partikelschaumstoffformteile mit einer Dichte im Bereich von 8 bis 200 g/1, die durch Verschweißen von vorgeschäumten Schaumpartikeln aus expandierbaren, Füllstoff enthaltenden, thermoplastischen Polymergranulaten erhältlich sind, sowie Verfahren zur Herstellung der expandierbaren Polymergranulate.
Verfahren zur Herstellung von expandierbaren Styrolpolymeren, wie expandierbarem Polystyrol (EPS) durch Suspensionspolymerisation ist seit langem bekannt. Diese Verfahren haben den Nachteil, dass große Mengen Abwasser anfallen und entsorgt werden müssen. Die Polymerisate müssen getrocknet werden um Innenwasser zu entfer- nen. Außerdem führt die Suspensionspolymerisation in der Regel zu breiten Perlgrößenverteilungen, die aufwändig in verschiedene Perlfraktionen gesiebt werden müssen.
Weiterhin können expandierte und expandierbare Styrolpolymerisate mittels Extrusi- onsverfahren hergestellt werden. Hierbei wird das Treibmittel z.B. über einen Extruder in die Polymerschmelze eingemischt, durch eine Düsenplatte gefördert und zu Partikeln oder Strängen granuliert (US 3,817,669, GB 1,062,307, EP-B 0 126459, US 5,000,891).
Die EP-A 668 139 beschreibt ein Verfahren zur wirtschaftlichen Herstellung von expandierbarem Polystyrolgranulat (EPS) wobei die treibmittelhaltige Schmelze mittels statischer Mischelemente in einer Dispergier-, Halte- und Abkühlstufe hergestellt und anschließend granuliert wird. Aufgrund der Abkühlung der Schmelze auf wenige Grad über der Erstarrungstemperatur ist die Abführung hoher Wärmemengen notwendig.
Um das Aufschäumen nach der Extrusion weitgehend zu verhindern, wurden verschiedene Verfahren für die Granulierung, wie Unterwassergranulierung (EP-A 305 862), Sprühnebel (WO 03/053651) oder Zerstäubung (US 6,093,750) vorgeschlagen.
Die DE 198 19 058 beschreibt schwach angeschäumte, expandierbare Styrolpolymerisate, die durch Extrusion einer Schmelze von treibmittelhaltigem Polystyrol und Unterwassergranulierung in ein Wasserbad mit einer Temperatur zwischen 50 und 90°C und 2 bis 20 bar Druck.
Die GB 1 048 865 beschreibt Polystyrol-Extrusionsschaumstoffe mit hohem Füllstoffgehalt in Form von Platten, Streifen und Bändern mit Dichten im Bereich von 100 bis 1100 kg/m3. Hierbei wird treibmittlehaltiges Polystyrol mit den Füllstoffen vorgemischt und in einem Extruder gegeben. Expandierbares Styrol und Polystyrolpartikelschaumstoffe mit hohem Füllstoffgehalt sind nicht beschrieben.
Die WO 03/035728 beschreibt die Herstellung von expandierbarem Polystyrol, das einen anorganischen Füllstoff mit einem durchschnittlichen Durchmesser im Bereich von 0,01 bis 100 μm, einem Brechungsindex über 1,6 und einem Colour Index von 22 oder darunter. In den Beispielen werden 1 bis 4 Gew.-% TiO2 als Ersatz für IR- Absorber, wie Graphit, eingesetzt, um die Wärmeleitfähigkeit der Schaumstoffe zu verringern.
Halogenfreie Flammschutzmittel enthaltende, expandierbare Styrolpolymerisate sind bekannt. Nach EP-A 0 834 529 wird als Flammschutzmittel mindestens 12 Gew.-% einer Mischung aus einer Phosphorverbindung und einem wasserabspaltenden Metallhydroxid, beispielsweise Triphenylphosphat und Magnesiumhydroxid eingesetzt, um Schaumstoffe zu erhalten, die den Brandtest B2 nach DIN 4102 bestehen.
Die WO 00/34342 beschreibt expandierbare Styrolpolymerisate, die als Flammschutzmittel 5 bis 50 Gew.-% Blähgraphit sowie gegebenenfalls 2 bis 20 Gew.-% einer Phosphorverbindung enthalten.
Die WO 98/51735 beschreibt Graphitpartikel enthaltende expandierbare Styrolpolyme- re mit verringerter Wärmeleitfähigkeit, die durch Suspensionspolymerisation oder durch Extrusion in einem Zweischneckentextruder erhältlich sind. Aufgrund der hohen Scherkräfte in einem Zweischneckentextruder beobachtet man in der Regel einen signifikan- ten Molekulargewichtsabbau des eingesetzten Polymeren und/oder teilweise Zersetzung von zugegebenen Additiven, wie Flammschutzmittel.
Zur Erzielung optimaler Dämmeigenschaften und guter Oberflächen der Schaumstoffkörper ist die Zellzahl und Schaumstruktur, die sich beim Verschäumen der expandier- baren Styrolpolymeren (EPS) einstellt, von entscheidender Bedeutung. Die durch
Extrusion hergestellten EPS-Granulaten lassen sich häufig nicht zu Schaumstoffen mit optimaler Schaumstruktur verschäumen.
Ferner ist es bekannt, anorganischen Stoffe, wie Talk, Ruß, Graphit oder Glasfasern in geringen Mengen den Polymeren zur Keimbildung in Schäumprozessen beizugeben. Bei höheren Konzentrationen erhält man in der Regel offenzellige Schaumstoffe. So beschreibt die EP-A 1 002 829 die Suspensionspolymerisation von Styrol in Gegenwart von silylierten Glasfasern zu EPS-Partikeln, die zu einem offenzelligen Schaumstoff verarbeitet werden.
Bei der Herstellung von expandierbarem Polystyrol durch Suspensionspolymerisation muss häufig das Verfahren an die jeweiligen Zusatzstoffe angepasst werden, um Koa- gulationen zu vermeiden. Zur gezielten Anpassung der physikalischen Eigenschaften von Schaumstoffen sowie zur Streckung und damit verbundenen Einsparung von Kunststoffen wäre es wünschenswert, expandierbare thermoplastische Polymergranulate mit hohen Füllstoffmengen auf einfache Weise zugänglich zu machen.
Aufgabe der vorliegenden Erfindung war es, expandierbare thermoplastische Polymergranulate bereitzustellen, die bei hohen Füllstoffgehalten zu überwiegend geschlos- senzelligen Schaumstoffpartikeln vorschäumbar und zu Partikelschaumformkörpern mit einer Dichte im Bereich von 8 bis 200 g/l verschweißbar sind.
Demgemäß wurden Partikelschaumformteile, erhältlich durch Verschweißen von vorgeschäumten Schaumpartikeln aus expandierbaren, Füllstoff enthaltenden, thermoplastischen Polymergranulaten, gefunden, wobei der Partikelschaumstoff eine Dichte im Bereich von 8 bis 200 g/l, bevorzugt im Bereich von 10 bis 50 g/l aufweist.
Überraschenderweise zeigen der erfindungsgemäßen Partikelschaumformteile trotz der Anwesenheit von Füllstoffen eine hohe Geschlossenzelligkeit, wobei in der Regel mehr als 60%, bevorzugt mehr als 70, besonders bevorzugt mehr als 80 % der Zellen der einzelnen Schaumpartikel geschlossenzellig sind.
Als Füllstoffe kommen organische und anorganische Pulver oder Faserstoffe, sowie Mischungen davon in Betracht. Als organische Füllstoffe können z. B. Holzmehl, Stärke, Flachs-, Hanf-, Ramie-, Jute-, Sisal- Baumwoll- Cellulose oder Aramidfasem eingesetzt werden. Als anorganische Füllstoffe können z. B. Carbonate, Silikate, Schwer- spat, Glaskugeln, Zeolithe oder Metalloxide eingesetzt werden. Bevorzugt werden pul- verförmige anorganische Stoffe, wie Talk, Kreide, Kaolin (Al2(Si2O5)(OH) ), Aluminiumhydroxid, Magnesiumhydroxid, Aluminiumnitrit, Aluminiumsilikat, Bariumsulfat, Calci- umcarbonat, Caiciumsulfat, Kieselsäure, Quarzmehl, Aerosil, Tonerde oder Wollastonit oder Kugel- oder faserförmige, anorganische Stoffe, wie Glaskugeln, Glasfasern oder Kohlefasern.
Die mittleren Teilchendurchmesser bzw. bei faserförmigen Füllstoffen die Länge sollte im Bereich der Zellgröße oder kleiner liegen. Bevorzugt wird ein mittlerer Teilchendurchmesser im Bereich von 1 bis 100 μm, bevorzugt im Bereich von 2 bis 50 μm.
Besonders bevorzugt werden anorganische Füllstoffe mit einer Dichte im Bereich von 2,0 -4,0 g/cm3 insbesondere im Bereich von 2,5 - 3,0 g/cm3. Der Weißgrad/Helligkeit (DIN/ISO) beträgt bevorzugt 50 - 100%, insbesondere 70 - 98%. Die Ölzahl nach ISO 787/5 der bevorzugten Füllstoffe liegt im Bereich von 2 - 200 g/100 g, insbesonde- re im Bereich von 5 - 150 g/100 g Durch die Art und Menge der Füllstoffe können die Eigenschaften der expandierbaren thermoplastischen Polymeren und der daraus erhältlichen Partikelschaumformteile beeinflussen. Der Anteil des Füllstoffes liegt in der Regel im Bereich von 1 bis 50, bevorzugt 5 bis 30 Gew.-%, bezogen auf das thermoplastische Polymer. Bei Füllstoff- gehalten im Bereich von 5 bis 15 Gew.-% wird keine wesentliche Verschlechterung der mechanischen Eigenschaften der Partikelschaumstoffe, wie Biegefestigkeit oder Druckfestigkeit beobachtet. Durch die Verwendung von Haftvermittlern, wie Maleinsäu- reanhydrid-modifizierte Styrolcopolymere, epoxidgruppenhaltige Polymere, Organosi- lane oder Styrolcopolymere mit Isocyanat- oder Säuregruppen kann die Anbindung des Füllstoffes an die Polymermatrix und damit die mechanischen Eigenschaften der Partikelschaumformteile deutlich verbessert werden.
In der Regel verringern anorganische Füllstoffe die Brennbarkeit. Insbesondere durch Zusatz von anorganischen Pulvern, wie Aluminiumhydroxid kann das Brandverhalten deutlich verbessert werden.
Überraschenderweise zeigen die erfindungsgemäßen thermoplastischen Polymergranulate auch bei hohen Füllstoffgehalten einen geringen Treibmitteiverlust bei der Lagerung. Aufgrund der nukleierenden Wirkung ist auch eine Verringerung des Treibmittel- gehaltes, bezogen auf das Polymer, möglich.
Als thermoplastische Polymere können beispielsweise Styrolpolymere, Polyamide (PA), Polyolefine, wie Polypropylen (PP), Polyethylen (PE) oder Polyethylen-Propylen- copolymere, Polyacrylate, wie Polymethylmethaceylat (PMMA), Polycarbonat (PC), Polyester, wie Polyethylentherephtalat (PET) oder Polybutylenterephftalat (PBT), Poly- ethersulfone (PES), Polyehterketone oder Polyethersulfide (PES) oder Mischungen davon eingesetzt werden. Besonders bevorzugt werden Styrolpolymere eingeszetzt.
Es hat sich gezeigt, dass Styrolpolymere mit Molekulargewichten Mw von unter 160.000 bei der Granulierung zu Polymerabrieb führen. Bevorzugt weist das expandierbare Styrolpolymer ein Molekulargewicht im Bereich von 190.000 bis 400.000 g/mol, besonders bevorzugt im Bereich von 220.000 bis 300.000 g/mol auf. Aufgrund des Molekulargewichtsabbaus durch Scherung und/oder Temperatureinwirkung liegt das Molekulargewicht des expandierbaren Polystyrols in der Regel etwa 10.000 g/mol unter dem Molekulargewicht des eingesetzten Polystyrols.
Um möglichst kleine Granulatpartikel zu erhalten, sollte die Strangaufweitung nach dem Düsenaustritt möglichst gering sein. Es hat sich gezeigt, dass die Strangaufweitung unter anderem durch die Molekulargewichtsverteilung des Styrolpolymeren beein- flusst werden kann. Das expandierbare Styrolpolymer sollte daher bevorzugt eine Molekulargewichtsverteilung mit einer Uneinheitlichkeit Mw/Mn von höchstens 3,5, beson- ders bevorzugt im Bereich von 1 ,5 bis 2,8 und ganz besonders bevorzugt im Bereich von 1 ,8 bis 2,6 aufweisen.
Bevorzugt werden als Styrolpolymere glasklares Polystyrol (GPPS), Schlagzähpolysty- rol (HIPS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A-IPS), Sty- rol-a-MethstyroI-copolymere, Acrylnitril-Butadien-Styrolpolymerisate (ABS), Styrol- Acrylnitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Methyacrylat-Butadien-Styrol (MBS), Methylmethacrylat-Acrylnitril-Butadien-Styrol (MABS)- polymerisate oder Mischungen davon oder mit Polyphenylenether (PPE) eingesetzt.
Die genannten Styrolpolymeren können zur Verbesserung der mechanischen Eigenschaften oder der Temperaturbeständigkeit gegebenenfalls unter Verwendung von Verträglichkeitsvermittlern mit thermoplastischen Polymeren, wie Polyamiden (PA), Polyolefinen, wie Polypropylen (PP) oder Polyethylen (PE), Polyacrylaten, wie Poly- methylmethacrylat (PMMA), Polycarbonat (PC), Polyestern, wie Polyethylentherephtalat (PET) oder Polybutylenterephtalat (PBT), Polyethersulfonen (PES), Polyetherketo- nen oder Polyethersulfiden (PES) oder Mischungen davon in der Regel in Anteilen von insgesamt bis maximal 30 Gew.-%, bevorzugt im Bereich von 1 bis 10 Gew.-%, bezogen auf die Polymerschmelze, abgemischt werden. Desweiteren sind Mischungen in den genannten Mengenbereichen auch mit z. B hydrophob modifizierten oder funktio- nalisierten Polymeren oder Oligomeren, Kautschuken, wie Polyacrylaten oder Polydie- nen, z. B. Styrol-Butadien-Blockcopolymeren oder biologisch abbaubaren aliphatischen oder aliphatisch/aromatischen Copolyestem möglich.
Als Verträglichkeitsvermittler eignen sich z.B. Maleinsäureanhydrid-modifizierte Styrolcopolymere, Epoxidgruppenhaltige Polymere oder Organosilane.
Der Styrolpolymerschmelze können auch Polymerrecyklate der genannten thermoplastischen Polymeren, insbesondere Styrolpolymere und expandierbare Styrolpolymerer (EPS) in Mengen zugemischt werden, die deren Eigenschaften nicht wesentlich verschlechtern, in der Regel in Mengen von maximal 50 Gew.-%, insbesondere in Mengen von 1 bis 20 Gew.-%.
Die treibmittelhaltige Styrolpolymerschmelze enthält in der Regel eine oder mehrere Treibmittel in homogener Verteilung in einem Anteil von insgesamt 2 bis 10 Gew.-% bevorzugt 3 bis 7 Gew.-%, bezogen auf die treibmittelhaltige Styrolpolyermschmelze. Als Treibmittel, eigenen sich die üblicherweise in EPS eingesetzten physikalische Treibmittel, wie aliphatischen Kohlenwasserstoffe mit 2 bis 7 Kohlenstoffatomen, Alkohole, Ketone, Ether oder halogenierte Kohlenwasserstoffe. Bevorzugt wird iso-Butan, n-Butan, iso-Pentan, n-Pentan eingesetzt. Zur Verbesserung der Verschäumbarkeit können feinverteilte Innenwassertröpfchen in die Styrolpolymermatirx eingebracht werden. Dies kann beispielsweise durch die Zugabe von Wasser in die aufgeschmolzene Styrolpolymermatrix erfolgen. Die Zugabe des Wassers kann örtlich vor, mit oder nach der Treibmitteldosierung erfolgen. Eine homogene Verteilung des Wassers kann mittels dynamischen oder statischen Mischern erreicht werden.
In der Regel sind 0 bis 2, bevorzugt 0,05 bis 1 ,5 Gew.-% Wasser, bezogen auf das Styrolpolymer, ausreichend.
Expandierbare Styrolpolymere (EPS) mit mindestens 90% des Innenwassers in Form von Innenwassertröpfchen mit einem Durchmesser im Bereich von 0,5 bis 15 μm bilden beim Verschäumen Schaumstoffe mit ausreichender Zellzahl und homogener Schaumstruktur.
Die zugesetzte Treibmittel- und Wassermenge wird so gewählt, dass die expandierbaren Styrolpolymeren (EPS) ein Expansionsvermögen α, definiert als Schüttdichte vor dem Verschäumen/Schüttdichte nach dem Verschäumen höchstens 125 bevorzugt 25 bis 100 aufweisen.
Die erfindungsgemäßen expandierbaren Styrolpolymergranulate (EPS) weisen in der Regel eine Schüttdichte von höchstens 700 g/l bevorzugt im Bereich von 590 bis 660 g/l auf. Bei Verwendung von Füllstoffen können in Abhängigkeit von der Art und Menge des Füllstoffes Schüttdichten im Bereich von 590 bis 1200 g/l auftreten.
Des weiteren können der Styrolpolymerschmelze zusätzlich zu den Füllstoffen Additive, Keimbildner, Weichmacher, Flammschutzmittel, lösliche und unlösliche anorganische und/oder organische Farbstoffe und Pigmente, z.B. IR-Absorber, wie Ruß, Graphit oder Aluminiumpulver gemeinsam oder räumlich getrennt, z.B. über Mischer oder Seitenextruder zugegeben werden. In der Regel werden die Farbstoffe und Pigmente in Mengen im Bereich von 0,01 bis 30, bevorzugt im Bereich von 1 bis 5 Gew.-% zugesetzt. Zur homogenen und mikrodispersen Verteilung der Pigmente in dem Styrolpolymer kann es insbesondere bei polaren Pigmenten zweckmäßig sein ein Disper- gierhilfsmittel, z.B. Organosilane, epoxygruppenhaltige Polymere oder Maleinsäurean- hydrid-gepfropfte Styrolpolymere, einzusetzen. Bevorzugte Weichmacher sind Mineralöle, niedermolekulare Styrolpolymere, Phthalate, die in Mengen von 0,05 bis 10 Gew.- %, bezogen auf das Styrolpolymerisat, eingesetzt werden können.
Füllstoffe mit Partikelgrößen im Bereich von 0,1 bis 100μm, insbesondere im Bereich von 0,5 und 10 μm ergeben im Polystyrol-Schaumstoff bei Gehalten von 10 Gew.-% eine Absenkung der Wärmeleitfähigkeit um 1 bis 3 mW. Daher lassen sich schon bei geringeren Mengen and Ir-Absorbern, wie Ruß und Graphit vergleichsweise niedrige Wärmeleitfähigkeiten erreichen.
Bevorzugt wird zur Verringerung der Wärmeleitfähigkeit ein IR-Absorber, wie Ruß oder Graphit in Mengen von 0,1 bis 10 Gew.-%, insbesondere in Mengen von 2 bis 8 Gew.-% eingesetzt.
Bei Verwendung von geringeren Mengen an Füllstoffen, z. B. unter 5 Gew.-%, ist es auch möglich, Ruß in Mengen von 1 bis 25 Gew.-%, bevorzugt im Bereich von 10 bis 20 Gew.-% einzusetzen. Bei diesen hohen Rußgehalten wird die Rußzugabe bevorzugt aufgeteilt über den Hauptstrom- und einen Seitenstromextruder in die Styrolpolymerschmelze eingemischt. Die Zugabe über Extruder ermöglicht eine einfache Zerkleinerung der Rußagglomerate auf eine mittlere Agglomeratgröße im Bereich von 0,3 bis 10 /m, bevorzugt im Bereich von 0,5 bis 5 μm und homogene Färbung der expanierba- ren Styrolpolymergranuläte, die zu geschlossenzelligen Schaumstoffpartikel mit einer Dichte im Bereich von 5 -40 kg/m3, insbesondere 10 - 15 kg/m3 verschäumt werden können. Die mit 10 bis 20 Gew.-% Ruß nach Verschäumen und Versintem erhältlichen Partikelschaumstoffe erreichen eine Wärmeleitfähigkeit λ, bestimmt bei 10°C nach DIN 52612, im Bereich von 30 bis 33 mW/mK.
Bevorzugt wird Ruß mit einer mittleren Primär-Teilchengröße im Bereich von 10 bis 300 nm, insbesondere im Bereich von 30 bis 200 nm eingesetzt. Die BET-Oberfläche liegt bevorzugt im Bereich von 10 bis 120 m2/g.
Als Graphit wird bevorzugt Graphit mit einer mittleren Teilchengröße im Bereich von 1 bis 50 μm eingesetzt.
Expandierbare, Styrolpolymergranuläte mit verringerter Wärmeleitfähigkeit, enthalten bevorzugt
a) 5 bis 50 Gew.-% eines Füllstoffes, ausgewählt aus pulverförmigen anorganische Stoffen, wie Talk, Kreide, Kaolin, Aluminiumhydroxid, Aluminiumnitrit, Aluminiumsilikat, Bariumsulfat, Calciumcarbonat, Titandioxid, Kreide, Caiciumsulfat, Kaolin, Kieselsäure, Quarzmehl, Aerosil, Tonerde oder Wollastonit und
b) 0,1 bis 10 Gew.-% Ruß oder Graphit
Besonders bevorzugt enthält das EPS-Granulat als Flammschutzmittel Hexabromcylo- dodecan (HBCD) und als Flammschutzsynergist Dicumyl oder Dicumylperoxid. Das Gewichtsverhältnis von Flammschutzsynergist zu organischer Bromverbindung liegt in der Regel im Bereich von 1 bis 20, bevorzugt im Bereich von 2 bis 5. Insbesondere bei der Verwendung von Carbonaten, wie Kreide als Füllstoff werden die von halogenierten Flammschutzmitteln, wie HBDC freigesetzten Halogenwasserstoffsäuren neutralisiert und die Korrosion von Anlagen bei der Verarbeitung vermieden oder verringert.
Erfindungsgemäße halogenfrei flammgeschützte, expandierbare, Styrolpolymergranuläte, enthaltend bevorzugt
a) 5 bis 50 Gew.-% eines Füllstoffes, ausgewählt aus pulverförmigen anorganische Stoffen, wie Talk, Kreide, Kaolin, Aluminiumhydroxid, Aluminiumnitrit, Aluminiumsilikat, Bariumsulfat, Calciumcarbonat, Titandioxid, Kreide, Caiciumsulfat, Kaolin, Kieselsäure, Quarzmehl, Areosil, Tonerde oder Wollastonit und
b) 2 bis 40 Gew.-% Blähgraphit mit einer mittleren Teilchengröße im Bereich von 10 bis 1000 μm, enthalten
c) 0 bis 20 Gew.-% roter Phosphor oder ein organisches oder anorgansiches Phosphat, Phosphit oder Phosphonat,
d) 0 bis 10 Gew.-% Ruß oder Graphit.
Aufgrund der synergistischen Wirkung von Füllstoffen, wie Kreide mit Blähgraphit und rotem Phosphor oder einer Phosphorverbindung kann ein kostengünstiger, halogenfreier Flammschutz erreicht werden.
Bevorzugte halogenfrei flammgeschützte expandierbare Styrolpolymergranuläte enthalten zusätzlich zu den Füllstoffen und Blähgraphit 1 bis 10 Gew.-% roter Phosphor, Triphenylphosphat oder 9,10-dihydro-9-oxa-10phospha-phenantren-10-oxid und einen als IR-Absorber wirksamen, von Blähgraphit verschiedenen Graphit mit einer mittleren Teilchengröße im Bereich von 0,1 bis 100 μm in Mengen von 0,1 bis 5 Gew.- %, jeweils bezogen auf Styrolpolymer.
Aufgrund seiner Schichtgitterstruktur ist Graphit in der Lage, spezielle Formen von Einlagerungsverbindungen zu bilden. In diesen sogenannten Zwischengitterverbindungen sind Fremdatome oder -moleküle in z.T. stöchiometrischen Verhältnissen in die Räume zwischen den Kohlenstoffatomen aufgenommen worden. Diese Graphitverbindungen, z.B. mit Schwefelsäure als Fremdmolekül, die auch in technischem Maßstab hergestellt werden, werden als Blähgraphit bezeichnet. Die Dichte dieses Blähgraphits liegt im Bereich von 1,5 bis 2,1 g/cm3, die mittlere Teilchengröße im allgemeinen zweckmä- ßigerweise bei 10 bis 1000 tm, im vorliegenden Fall vorzugsweise bei 20 bis 500 μm und insbesondere bei 30 bis 300 μm. Als Phosphorverbindungen können anorganische oder organische Phosphate, Phos- phite oder Phosphonate sowie roter Phosphor, eingesetzt werden. Bevorzugte Phosphorverbindungen sind beispielsweise Diphenylphosphat, Triphenylphosphat, Diphe- nylkresylphosphat, Ammoniumpolyphosphat, Resorcinoldiphenylphosphat, Melamin- phosphat, Phenylphosphonsäuredimethylester oder Dimethylmethylphosphonat.
Zur Herstellung der erfindungsgemäßen expandierbaren Styrolpolymerisate wird das Treibmittel in die Polymerschmelze eingemischt. Das Verfahren umfasst die Stufen a) Schmelzerzeugung, b) Mischen c) Kühlen d) Fördern und e) Granulieren. Jede dieser Stufen kann durch die in der Kunststoffverarbeitung bekannten Apparate oder Apparatekombinationen ausgeführt werden. Zur Einmischung eignen sich statische oder dynamische Mischer, beispielsweise Extruder. Die Polymerschmelze kann direkt aus einem Polymerisationsreaktor entnommen werden oder direkt in dem Mischextruder oder einem separaten Aufschmelzextruder durch Aufschmelzen von Polymergranulaten erzeugt werden. Die Kühlung der Schmelze kann in den Mischaggregaten oder in separaten Kühlern erfolgen. Für die Granulierung kommen beispielsweise die druckbeaufschlagte Unterwassergranulierung, Granulierung mit rotierenden Messern und Kühlung durch Sprühvemebelung von Temperierflüssigkeiten oder Zerstäubungsgranulation in Betracht. Zur Durchführung des Verfahrens geeignete Apparateanordnungen sind z.B.:
a) Polymerisationsreaktor - statischer Mischer/Kühler - Granulator b) Polymerisationsreaktor - Extruder - Granulator c) Extruder - statischer Mischer - Granulator d) Extruder - Granulator
Weiterhin kann die Anordnung Seitenextruder zur Einbringung von Additiven, z.B. von Feststoffen oder thermisch empfindlichen Zusatzstoffen aufweisen.
Die treibmittelhaltige Styrolpolymerschmelze wird in der Regel mit einer Temperatur im Bereich von 140 bis 300°C, bevorzugt im Bereich von 160 bis 240°C durch die Düsenplatte gefördert. Eine Abkühlung bis in den Bereich der Glasübergangstemperatur ist nicht notwendig.
Die Düsenplatte wird mindestens auf die Temperatur der treibmittelhaltigen Polystyrolschmelze beheizt. Bevorzugt liegt die Temperatur der Düsenplatte im Bereich von 20 bis 100°C über der Temperatur der treibmittelhaltigen Polystyrolschmelze. Dadurch werden Polymerablagerungen in den Düsen verhindert und eine störungsfreie Granulierung gewährleistet.
Um marktfähige Granulatgrößen zu erhalten sollte der Durchmesser (D) der Düsenbohrungen am Düsenaustritt im Bereich von 0,2 bis 1 ,5 mm, bevorzugt im Bereich von 0,3 bis 1,2 mm, besonders bevorzugt im Bereich von 0,3 bis 0,8 mm liegen. Damit lassen sich auch nach Strangaufweitung Granulatgrößen unter 2 mm, insbesondere im Bereich 0,4 bis 1 ,4 mm gezielt einstellen.
Die Strangaufweitung kann außer über die Molekulargewichtsverteilung durch die Düsengeometrie beeinflusst werden. Die Düsenplatte weist bevorzugt Bohrungen mit einem Verhältnis L/D von mindestens 2 auf, wobei die Länge (L) den Düsenbereich, dessen Durchmesser höchstens dem Durchmesser (D) am Düsenaustritt entspricht, bezeichnet. Bevorzugt liegt das Verhältnis L/D im Bereich von 3 - 20.
Im allgemeinen sollte der Durchmesser (E) der Bohrungen am Düseneintritt der Düsenplatte mindestens doppelt so groß wie der Durchmesser (D) am Düsenaustritt sein.
Eine Ausführungsform der Düsenplatte weist Bohrungen mit konischem Einlauf und einem Einlaufwinkel α kleiner 180°, bevorzugt im Bereich von 30 bis 120° auf. In einer weiteren Ausführungsform besitzt die Düsenplatte Bohrungen mit konischem Auslauf und einen Auslaufwinkel ß kleiner 90°, bevorzugt im Bereich von 15 bis 45°. Um gezielte Granulatgrößenverteilungen der Styrolpolymeren zu erzeugen kann die Düsenplatte mit Bohrungen unterschiedlicher Austrittsdurchmesser (D) ausgerüstet werden. Die verschiedenen Ausführungsformen der Düsengeometrie können auch miteinander kombiniert werden.
Ein besonders bevorzugtes Verfahren zur Herstellung von expandierbaren Styrolpolymeren, umfasst die Schritte
a) Polymerisation von Styrolmonomer und gegebenenfalls copolymersierbaren Monomeren,
b) Entgasungung der erhaltenen Styrolpolymerschmelze,
c) Einmischen des Treibmittels und gegebenenfalls Additiven, in die Styrolpolymerschmelze mittels statischen oder dynamischen Mischer bei einer Temperatur von mindestens 150°C, bevorzugt 180 - 260°C,
d) Kühlen der treibmittelhaltigen Styrolpolymerschmelze auf eine Temperatur, die mindestens 120°C, bevorzugt 150 - 200°C beträgt,
e) Zugabe des Füllstoffs,
f) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Düsenaustritt höchstens 1 ,5 mm beträgt und g) Granulieren der treibmittelhaltigen Schmelze.
In Schritt g) kann die Granulierung direkt hinter der Düsenplatte unter Wasser bei einem Druck im Bereich von 1 bis 25 bar, bevorzugt 5 bis 15 bar erfolgen.
Variabler Gegendruck im UWG gibt die Möglichkeit gezielt sowohl kompakte als auch angeschäumte Granulate herzustellen. Auch bei Einsatz von Nukleierungsmitteln bleibt das Anschäumen an den Düsen des UWG kontrollierbar.
Die Granulierung von gasbeladenen Schmelzen bzw. Polymersträngen deutlich oberhalb ihrer Glastemperatur stellt hinsichtlich der Herstellung kompakter Granulate eine Herausforderung dar, da ein Anschäumen häufig nur schwer zu unterdrücken ist. Dies gilt insbesondere in Gegenwart von Nukleierungsmitteln, wie anorganischen oder organischen Feststoffpartikeln oder Phasengrenzflächen in Blends.
Der Einsatz einer druckbeaufschlagten Unterwassergranulierung mit Drücken im Bereich von 1 bis 40 bar, insbesondere im Bereich von 4 bis 20 bar löst das Problem. Darüber hinaus kann das Anschäumen der Granulate auch in Gegenwart von Nuklei- rungsmitteln nicht nur vollständig unterdrückt werden (kompakte Granulate), sondern auch gezielt gesteuert werden (leicht angeschäumte Granulate, Schüttdichte 40 bis 550 g/l).
Im Falle der kompakten Granulate wird (gegebenenfalls nach Beschichtung) in strömendem Wasserdampf zu Schaumstoffperlen mit einer Dichte von üblicherweise 10 - 50 kg/m3 vorgeschäumt, 24 Stunden zwischengelagert und anschließend in gasdichten Formen mit Wasserdampf zu Schaumstoffkörpern verschweißt.
Zum Erzielen besonders niedriger Schüttdichten, kann mehrfach in dieser Weise geschäumt werden, wobei die Granulate üblicherweise zwischen den Schäumschritten zwischengelagert und unter Umständen getrocknet werden. Die angeschäumten, trockenen Granulate können in Wasserdampf oder einem Gasgemisch, das mindestens 50 Vol.-% Wasser enthält, vorzugsweise bei Temperaturen im Bereich von 100 bis 130°C auf noch niederer Dichtern weiter geschäumt werden. Die angestrebten Schüttdichten liegen bei weniger als 25g/l, insbesondere zwischen 8 und 16g/l.
Aufgrund der Polymerisation in Stufe a) und Entgasung in Stufe b) steht für die Treib- mittelimpägnierung in Stufe c) direkt eine Polymerschmelze zur Verfügung und ein Aufschmelzen von Styrolpolymeren ist nicht notwendig. Dies ist nicht nur wirtschaftlicher, sondern führt auch zu expandierbaren Styrolpolymeren (EPS) mit niedrigen Sty- rolmonomergehalten, da die mechanischen Schereinwirkung im Aufschmelzbereich eines Extruders, die in der Regel zu einer Rückspaltung von Monomeren führt, vermieden wird. Um den Styrolmonomerengehalt niedrig zu halten, insbesondere unter 500 ppm mit Styrolmomomergehalten, ist es ferner zweckmäßig, den mechanischen und thermischen Energieeintrag in allen folgenden Verfahrensstufen so gering wie möglich zu halten. Besonders bevorzugt werden daher Scherraten unter 50/sec, bevorzugt 5 bis 30/sec, und Temperaturen unter 260°C sowie kurze Verweilzeiten im Bereich von 1 bis 20, bevorzugt 2 bis 10 Minuten in den Stufen c) bis e) eingehalten. Besonders bevorzugt werden ausschließlich statische Mischer und statische Kühler im gesamten Verfahren eingesetzt. Die Polymerschmelze kann durch Druckpumpen, z. B. Zahnradpumpen gefördert und ausgetragen werden.
Eine weitere Möglichkeit zur Verringerung des Styrolmonomerengehaltes und/oder Restlösungsmittel wie Ethylbenzol besteht darin, in Stufe b) eine Hochentgasung mittels Schleppmitteln, beispielsweise Wasser, Stickstoff oder Kohlendioxid, vorzusehen oder die Polymerisationsstufe a) anionisch durchzuführen. Die anionische Polymerisation von Styrol führt nicht nur zu Styrolpolymeren mit niedrigem Styrolmonomeranteil, sondern gleichzeitig zur geringen Styrololigomerenanteilen.
Zur Verbesserung der Verarbeitbarkeit können die fertigen expandierbaren Styrolpolymergranuläte durch Glycerinester, Antistatika oder Antiverklebungsmittel beschichten werden.
Die erfindungsgemäßen expandierbaren Styrolpolymergranuläte (EPS) weisen in Abhängigkeit von Füllstoff-Art und -Gehalt in der Regel höhere Schüttdichten auf, die im allgemeinen im Bereich von 590 bis 1200 g/l liegen.
Die erfindungsgemäßen expandierbaren thermoplastischen Polymergranulate zeigen auch bei geringen Treibmittelgehalten ein gutes Expansionsvermögen. Die Verklebung ist auch ohne Beschichtung deutlich geringer als bei herkömmlichen EPS-Perlen.
Die erfindungsgemäßen expandierdierbaren, Styrolpolymergranuläte können mittels Heißluft oder Wasserdampf zu Schaumpartikeln mit einer Dichte im Bereich von 8 bis 200 kg/m3, bevorzugt im Bereich von 10 bis 50 kg/m3 vorgeschäumt und anschließend in einer geschlossenen Form zu Schaumstoffformkörpern verschweißt werden. Beispiele:
Beispiele 1 bis 17:
Für die Beispiele wurde eine Polystyrolschmelze aus PS VPT der BASF Aktiengesellschaft mit einer Viskositätszahl VZ von 75 ml/g (Mw = 185.000 g/mol, Uneinheitlichkeit Mw/Mn = 2,6) eingesetzt, in die zusätzlich 6 Gew.-% n-Pentan, bezogen auf die gesamte Polymerschmelze, eingemischt wurden. In den Beispielen 1 bis 3 wurden lediglich 4 Gew.-% n-Pentan zugemischt.
Als Füllstoffe wurden verwendet:
Kreide: Ulmer Weiss XM, Omya GmbH; Mittlerer Teilchendurchmesser 4,8 μm
Kaolin: Kaolin B22, Blancs Mineraux
Talk: Finntalc, Finnminerals; 99 % der Teilchen unter 20 μm
Aluminiumhydroxid: Apral 15, Nabaltec GmbH
Mikroglaskugeln: Mikroglaskugeln PA, Potters-Ballotini GmbH
Die treibmittelhaltige Schmelzemischung wurde im Kühler von ursprünglich 260 auf 190 °C abgekühlt. Am Ausgang des Kühlers wurde über einen Seitenstromextruder eine Füllstoff-haltige Polystyrolschmelze zudosiert, so dass sich der in Tabelle 1 für den jeweiligen Füllstoff angeführte Gewichtsanteil, bezogen auf das Granulat, eingestellt wurde. Die Füllstoff-haltige Polystyrolschmelze wurde bei einem Durchsatz von 60 kg/h durch eine Düsenplatte mit 32 Bohrungen (Durchmesser der Düse 0,75 mm) gefördert. Mit Hilfe einer druckbeaufschlagten Unterwassergranulierung wurden kom- pakte Granulate mit enger Größenverteilung hergestellt. Die im gemessenen Pentangehalte im Granulat nach der Granulierung und nach 14 Tagen Lagerung sind in Tabelle 1 zusammengestellt
Diese Granulate wurden in strömendem Wasserdampf zu Schaumstoffperlen mit einer Dichte von 20 g/l vorgeschäumt, 12 Stunden zwischengelagert und anschließend in gasdichten Formen mit Wasserdampf zu Schaumstoffkörpern verschweißt. Vergleichsversuch:
Der Vergleichsversuch wurde wie die Beispiele 1 bis 17, jedoch ohne Zusatz von Füllstoffen durchgeführt.
Zur Beurteilung des Brandverhaltens erfolgte eine Beflammung des Schaumstoffformkörpers mit einer Bunsenbrennerflamme für die Dauer von 2 Sekunden. Während der aus dem Vergleichsversuch hergestellte Schaumstoffformkörper abbrannte, war der aus Beispiel 17 erhaltenen Schaumstoffformkörper selbstverlöschend.
Tabelle 1:
Tabelle 2: Expandierbarkeit der Granulate (Schüttdichte [g/l])
Zur Bestimmung der Verklebung wurden die vorgeschäumten Perlen über ein grobmaschiges Sieb gegeben und der im Sieb verbliebe Anteil bestimmt.
Tabelle 3: Verklebung
Zur Beurteilung der Verschweißung der Schaumpartikel wurde ein 4 cm dicker Schaumstoff-Probekörper zerbrochen und der Anteil von zerstörten Schaumperlen und nichtzerstörten Perlen an der Bruchoberfläche ermittelt. Die Bruchverschweißung charakterisiert den Zusammenhalt der Perlen und ist damit ein Maß für die mechanischen Eigenschaften, wie Biegeverhalten. Die Oberflächengüte (Lunker, Zwickel) wurde wie in Tabelle 4 zusammengestellt beurteilt. Die Geschlossenzelligkeit wurde aus rastere- lektonenmikroskopischen Aufnahmen (REM) der Schaumstoffe ermittelt.
Tabelle 4: Eigenschaften der Schaumstoffformkörper
Beispiele 1a, 5a, 7a und 14a:
Die Beispiele 1a, 5a, 7a und 14a wurden entsprechend den Beispielen 1, 5, 7 und 14 durchgeführt, jedoch mit dem Zusatz von 1 Gew.-% eines Styrol-Maleinsäureanhydrid- copolymeren mit 12 Gew.-% Maleinsäureanhydrid (Dylark®) als Haftvermittler. Tabelle 4 zeigt die Druckfestigkeiten der Schaumstoffformkörper.
Tabelle 5: Druckfestigkeiten der Schaumformkörper
Beurteilung der Druckfestigkeit:
+/-: vergleichbar mit VPT ohne Füllstoff -: geringfügig schlechtere Druckfestigkeit - -: deutlich verschlechterte Druckfestigkeit +•: verbesserte Druckfestigkeit + +: deutlich verbesserte Druckfestigkeit
Beispiele 18 - 20 und Vergleichsversuche V2, V3:
In eine Polystyrolschmelze aus PS 158 K der BASF Aktiengesellschaft mit einer Viskositätszahl VZ von 98 ml/g (Mw = 280.000 g/mol, Uneinheitlichkeit Mw/Mn = 2,8) wurden in einem Extruder 7 Gew.-%, bezogen auf Polystyrol, Pentan eingemischt. Nach Abkühlen der treibmittelhaltigen Schmelze von ursprünglich 260 °C auf eine Temperatur von 190 °C, wurden über einen Seitenstromextruder ein Gemisch aus Polystyrolschmelze, Füllstoff (Kreide, Ulmer Weiß (Omya)), IR-Absorber (Ruß oder Graphit, UF298 Kropfmühl) und Flammschutzmittel (HBCD) entsprechend Tabelle 1 zugegeben und in den Hauptstrom eingemischt. Zusätzlich auf der Höhe des Seitensrtomextruders über eine Dosierlanze mittels einer Kolbenpumpe die in Pentan gelöste Flammschutz- Synergisten Dicumyl (DC) bzw. Dicumylperoxid dem gekühlten Hauptstrom zudosiert.
Das Gemisch aus Polystyrolschmelze, Treibmittel, Flammschutzmittel und Synergist wurde mit 60 kg/h durch eine Düsenplatte mit 32 Bohrungen (Durchmesser der Düse 0,75 mm) gefördert. Mit Hilfe einer druckbeaufschlagten Unterwassergranulierung wur- den kompakte Granulate mit enger Größenverteilung hergestellt.
Diese Granulate wurden in strömendem Wasserdampf zu Schaumstoffperlen (20 g/l) vorgeschäumt, 24 Stunden zwischengelagert und anschließend in gasdichten Formen mit Wasserdampf zu Schaumstoffkörpern verschweißt.
Nachbrennzeiten von unterhalb 6 Sekunden sind geeignet um den B2 Test nach DIN 4102 zu bestehen.
Tabelle 6:
Beispiele 21 - 23
Beispiel 21 : Für das Beispiel wurde eine Polystyrolschmelze aus PS 148G der BASF Aktiengesellschaft mit einer Viskositätszahl VZ von 83 ml/g (M = 220.000 g/mol, Uneinheitlichkeit Mw/Mn = 2,8) eingesetzt, in die 7 Gew.-% n-Pentan und 0,3 Gew.-% Wasser eingemischt wurden. Nach Abkühlen der treibmittelhaltigen Schmelze von ursprünglich 260°C auf eine Temperatur von 190°C, wurde das Gemisch aus Polystyrolschmelze und Treibmittel mit 60 kg/h durch eine Düsenplatte mit 32 Bohrungen (Durchmesser der Düse 0,75 mm) gefördert. Mit Hilfe einer druckbeaufschlagten Unterwassergranu- lierung (4 bar) wurden angeschäumte Granulate (Schüttdichte 550 kg/m3) mit enger Größenverteilung hergestellt.
Beispiel 22: Für das Beispiel wurde eine Polystyrolschmelze aus PS 148G der BASF Aktiengesellschaft mit einer Viskositätszahl VZ von 83 ml/g (Mw = 220.000 g/mol, Uneinheitlichkeit Mw/Mn = 2,8) eingesetzt, in die 7 Gew.-% n-Pentan und 10 Gew.-% Kreide eingemischt wurden. Nach Abkühlen der treibmittelhaltigen Schmelze von ursprünglich 260°C auf eine Temperatur von 190°C, wurde im Seitenstrom (Extruder) ein Gemisch aus Polystyrolschmelze und Füllstoff zugegeben und in den Hauptstrom eingemischt, so dass das Endprodukt 10 Gew.-% Füllstoff enthielt. Das Gemisch aus Polystyrolschmelze, Treibmittel und Füllstoff wurde mit 60 kg/h durch eine Düsenplatte mit 32 Bohrungen (Durchmesser der Düse 0,75 mm) gefördert. Mit Hilfe einer druckbeaufschlagten Unterwassergranulierung (12 bar) wurden kompakte Granulate mit enger Größenverteilung hergestellt.
Beispiel 23: Für das Beispiel wurde eine Polystyrolschmelze aus PS 148G der BASF Aktiengesellschaft mit einer Viskositätszahl VZ von 83 ml/g (Mw = 220.000 g/mol, Uneinheitlichkeit Mw/Mn = 2,8) eingesetzt, in die 7 Gew.-% n-Pentan, 0,3 Gew.-% Wasser und 10 Gew.- % Kreide eingemischt wurden. Nach Abkühlen der treibmittelhaltigen Schmelze von ursprünglich 260°C auf eine Temperatur von 190°C, wurde der Füllstoff über einen Seitenstromextruder in Form einer Polystyrolschmelzemischung zugegeben und in den Hauptstrom eingemischt, so dass das Endprodukt 10 Gew.-% Füllstoff enthielt. Das Gemisch aus Polystyrolschmelze, Treibmittel und Füllstoff wurde mit 60 kg/h durch eine Düsenplatte mit 32 Bohrungen (Durchmesser der Düse 0,75 mm) gefördert. Mit Hilfe einer druckbeaufschlagten Unterwassergranulierung (4 bar) wurden angeschäumte Granulate (380 kg/m3) mit enger Größenverteilung hergestellt.
Beispiele 24 - 27:
7 Gew.-% n-Pentan wurden in eine Polystyrolschmelze aus PS 148G der BASF Aktiengesellschaft mit einer Viskositätszahl VZ von 83 ml/g (Mw = 220.000 g/mol, Uneinheitlichkeit Mw/Mn = 2,9) eingemischt. Nach Abkühlen der treibmittelhaltigen Schmelze von ursprünglich 260 °C auf eine Temperatur von 190 °C, wurde über einen Seitenstromextruder eine Polystyrolschmelze zugegeben, welche die in Tabelle 1 genannten Füllstoffe (Kreide) und die entsprechenden Flammschutzmittelmischung (Blähgraphit: ES 350 F5 der Fa. Kropfmühl, roter Phosphor, Triphenylphosphat (TPP) oder, 9,10-Dihydro-9-oxa-10-phospha-phenanthren-10-oxid (DOP)) und in den Hauptstrom eingemischt. Die angegebenen Mengen in Gew.-% beziehen auf die gesamte Polystyrolmenge.
Das Gemisch aus Polystyrolschmelze, Treibmittel, Füllstoff und Flammschutzmittel wurde mit 60 kg/h durch eine Düsenplatte mit 32 Bohrungen (Durchmesser der Düse 0,75 mm) gefördert. Mit Hilfe einer druckbeaufschlagten Unterwassergranulierung wurden kompakte Granulate mit enger Größenverteilung hergestellt.
Diese Granulate wurden in strömendem Wasserdampf zu Schaumstoffperlen (10-15g/l) vorgeschäumt, 24 Stunden zwischengelagert und anschließend in gasdichten Formen mit Wasserdampf zu Schaumstoffkörpern verschweißt.
Vor Untersuchung des Brandverhaltens und der Wärmeleitfähigkeit wurden die Probenkörper für mindestens 72 Stunden gelagert. Die Beispiele 1 -4 waren selbstverlö- sehend und bestanden den Brandtest B2 nach DIN 4102.
Tabelle 7:

Claims

Patentansprüche:
1. Partikelschaumstoffformteile, erhältlich durch Verschweißen von vorgeschäumten Schaumpartikeln aus expandierbaren, Füllstoff enthaltenden, thermoplasti- sehen Polymergranulaten, dadurch gekennzeichnet, dass der Partikelschaumstoff eine Dichte im Bereich von 8 bis 200 g/l aufweist.
2. Partikelschaumstoffformteile nach Anspruch 1 , dadurch gekennzeichnet, dass mehr als 80 % der Zellen der einzelnen Schaumpartikel geschlossenzellig sind.
3. Partikelschaumstoffformteile nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie als thermoplastisches Polymer ein Styrolpolymer enthalten.
4. Partikelschaumstoffformteile nach einem der Ansprüche 1 bis 3, dadurch ge- kennzeichnet, dass der Anteil des Füllstoffes 1 bis 50 Gew.-%, bezogen auf das thermoplastische Polymer, beträgt.
5. Partikelschaumstoffformteile nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie als Füllstoff pulverförmige anorganische Stoffe, wie Talk, Kreide, Kaolin, Aluminiumhydroxid, Magnesiumhydroxid, Aluminiumnitrit, Aluminiumsilikat, Bariumsulfat, Calciumcarbonat, Caiciumsulfat, Kieselsäure, Quarzmehl, Aerosil, Tonerde oder Wollastonit enthalten.
6. Partikelschaumstoffformteile nach einem der Ansprüche 1 bis 4, dadurch ge- kennzeichnet, dass sie als Füllstoffe Kugel- oder faserförmige, anorganische Stoffe, wie Glaskugeln, Glasfasern oder Kohlefasern enthalten.
7. Expandierbare, thermoplastische Polymergranulate, dadurch gekennzeichnet, dass sie 5 bis 50 Gew.-% eines Füllstoffes, ausgewählt aus a) pulverförmigen anorganische Stoffen, wie Talk, Kreide, Kaolin, Aluminiumhydroxid, Aluminiumnitrit, Aluminiumsilikat, Bariumsulfat, Calciumcarbonat, Caiciumsulfat, Kieselsäure, Quarzmehl, Areosil, Talk, Tonerde oder Wollastonit oder b) Kugel- oder faserförmigen, anorganische Stoffen, wie Glaskugeln, Glasfasern oder Kohlefasern enthalten.
8. Expandierbare, thermoplastische Polymergranulate nach Anspruch 7, dadurch gekennzeichnet, dass sie a) 5 bis 50 Gew.-% eines Füllstoffes, ausgewählt aus pulverförmigen anorganischen Stoffen, wie Talk, Kreide, Kaolin, Aluminiumhydroxid, Aluminiumnitrit, Aluminiumsilikat, Bariumsulfat, Calciumcarbonat, Titandioxid, Kreide, Caiciumsulfat, Kaolin, Kieselsäure, Quarzmehl, Areosil, Tonerde oder Wollastonit und b) 2 bis 40 Gew.-% Blähgraphit mit einer mittleren Teilchengröße im Bereich von 10 bis 1000 μm, enthalten c) 0 bis 20 Gew.-% roten Phosphor oder ein organisches oder anorganisches Phosphat, Phosphit oder Phosphonat, d) 0 bis 10 Gew.-% Ruß oder Graphit, enthalten.
9. Expandierbare, thermoplastische Polymergranulate nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass sie 3 bis 7 Gew.-% eines organischen Treibmittels enthalten.
10. Verfahren zur Hersteilung von expandierbaren thermoplastischen Polymergranulaten, umfassend die Schritte a) Einmischen eines organischenTreibmittels und 5-50 Gew.-% eines Füllstoffes, in die Polymerschmelze mittels statischen oder dynamischen Mischer bei einer Temperatur von mindestens 150°C, b) Kühlen der treibmittel- und Füllstoff-haltigen Polymerschmelze auf eine Temperatur von mindestens 120°C, c) Austrag durch eine Düsenplatte mit Bohrungen, deren Durchmesser am Düsenaustritt höchstens 1 ,5 mm beträgt und d) Granulieren der treibmittelhaltigen Schmelze direkt hinter der Düsenplatte unter Wasser bei einem Druck im Bereich von 1 bis 20 bar.
11. Verfahren zur Herstellung von Partikelschaumstoffformteilen nach Anspruch 1 , dadurch gekennzeichnet, dass man expandierbare, thermoplastische Polymer- granulate gemäß Anspruch 7 in einem ersten Schritt mittels Heißluft oder Wasserdampf zu Schaumpartikeln mit einer Dichte im Bereich von 8 bis 200 g/l vorschäumt und in einem 2. Schritt in einer geschlossenen Form verschweißt.
EP04803476A 2003-12-12 2004-12-03 Partikelschaumstoffformteile aus expandierbaren, füllstoff enthaltenden polymergranulaten Withdrawn EP1694754A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10358786A DE10358786A1 (de) 2003-12-12 2003-12-12 Partikelschaumformteile aus expandierbaren, Füllstoff enthaltenden Polymergranulaten
PCT/EP2004/013748 WO2005056653A1 (de) 2003-12-12 2004-12-03 Partikelschaumstoffformteile aus expandierbaren, füllstoff enthaltenden polymergranulaten

Publications (1)

Publication Number Publication Date
EP1694754A1 true EP1694754A1 (de) 2006-08-30

Family

ID=34672783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04803476A Withdrawn EP1694754A1 (de) 2003-12-12 2004-12-03 Partikelschaumstoffformteile aus expandierbaren, füllstoff enthaltenden polymergranulaten

Country Status (13)

Country Link
US (1) US20070112082A1 (de)
EP (1) EP1694754A1 (de)
JP (1) JP2007514027A (de)
KR (1) KR20060120195A (de)
CN (1) CN100412118C (de)
BR (1) BRPI0417385A (de)
CA (1) CA2547888A1 (de)
DE (1) DE10358786A1 (de)
MX (1) MXPA06006499A (de)
RU (1) RU2371455C2 (de)
SG (1) SG149017A1 (de)
UA (1) UA79410C2 (de)
WO (1) WO2005056653A1 (de)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028768A1 (de) * 2004-06-16 2005-12-29 Basf Ag Styrolpolymer-Partikelschaumstoffe mit verringerter Wärmeleitfähigkeit
DE102004034527A1 (de) * 2004-07-15 2006-02-16 Basf Ag Verfahren zur Herstellung von expandierbaren Styrolpolymeren mit verbesserter Expandierbarkeit
DE102004044380A1 (de) * 2004-09-10 2006-03-30 Basf Ag Halogenfreie, flammgeschützte Polymerschaumstoffe
DE102004058586A1 (de) * 2004-12-03 2006-06-14 Basf Ag Halogenfrei flammgeschützte, expandierbare Styrolpolymerisate
RU2295439C2 (ru) * 2005-02-21 2007-03-20 Общество с ограниченной ответственностью "ПРОМПЛАСТ 14" Способ получения гранул вспенивающегося стирольного полимера
ES2403187T3 (es) * 2005-03-17 2013-05-16 Sulzer Chemtech Ag Procedimiento e instalación para la fabricación continua de granulado de plástico que puede expandirse
CN101248121B (zh) * 2005-08-23 2012-03-21 巴斯夫欧洲公司 生产泡沫板的方法
IT1366567B (it) 2005-10-18 2009-10-06 Polimeri Europa Spa Granulati espandibili a basemdi polimeri vinilaromatici dotati di migliorata espansibilita'e procedimento per la loro preparazione
KR100860305B1 (ko) * 2006-05-02 2008-09-25 박정부 인계 난연제를 이용한 난연성 폴리머 폼 제조방법 및 그에의해 제조된 난연성 폴리머 폼
NL1033014C2 (nl) * 2006-12-07 2008-06-10 Synbra Tech Bv Werkwijze voor het vervaardigen van een uitgangsmateriaal voor een geschuimd vormdeel, alsmede het geschuimde vormdeel.
KR100825203B1 (ko) 2007-04-12 2008-04-28 권태열 난연성 발포 스티로폼 제조용 난연비드 조성물 및 이를이용한 난연비드의 제조방법
ITMI20071003A1 (it) * 2007-05-18 2008-11-19 Polimeri Europa Spa Compositi a base di polimeri vinilaromatici aventi migliorate proprieta' di isolamento termico e procedimento per la loro preparazione
ITMI20071005A1 (it) * 2007-05-18 2008-11-19 Polimeri Europa Spa Procedimento per la preparazione di granuli a base di polimeri termoplastici espandibili e relativo prodotto
CN101796114A (zh) * 2007-05-30 2010-08-04 金在千 具有优异的绝热和防火效果的可发性聚苯乙烯珠粒及其生产方法
PL2152789T3 (pl) * 2007-05-30 2016-11-30 Polistyren ognioodporny
DE102007037316A1 (de) * 2007-08-08 2009-02-12 Lanxess Deutschland Gmbh Thermisch leitfähige und elektrisch isolierende thermoplastische Compounds
SI2190939T1 (sl) * 2007-09-14 2011-09-30 Basf Se Sestavek za prevleko penastih delcev in postopek za proizvodnjo vlitih penastih teles
KR100876211B1 (ko) * 2007-11-21 2008-12-31 주식회사 동부하이텍 레진으로 코팅된 판상형 활석을 포함하는 발포성폴리스티렌 비드 및 그 제조 방법
CA2714210C (en) * 2008-02-06 2016-05-17 Dow Global Technologies Inc. Article and method of producing a low density foam blend of styrenic polymer and polyolefin
WO2009133975A1 (en) * 2008-04-30 2009-11-05 Hyun-Kwang Kim Flame-retardant bead composition for producing flame-retardant expanded polystyrene foam and method of producing flame-retardant beads using the same
JP5509679B2 (ja) * 2008-06-27 2014-06-04 株式会社カネカ ポリオレフィン系樹脂発泡粒子の製造方法、該製造方法から得られるポリオレフィン系樹脂発泡粒子および型内発泡成形体
DE102008038916A1 (de) 2008-08-13 2010-02-18 Basf Se Expandierbare Styrolpolymere mit halogenfreier Flammschutzbeschichtung
DE102009047442A1 (de) 2008-12-08 2010-07-08 Basf Se Verbesserte Schaumstoffeigenschaften durch Verwendung nachwachsender Naturfasern
EP2403913A1 (de) 2009-03-06 2012-01-11 Basf Se Beschichtungszusammensetzung für schaumstoffpartikel
JP5518349B2 (ja) * 2009-03-06 2014-06-11 株式会社カネカ 難燃性ポリプロピレン系樹脂発泡粒子
WO2010115919A1 (de) 2009-04-07 2010-10-14 Basf Se Verfahren zur herstellung von hohlkörpern mit eingeschlossenen frei beweglichen partikeln
WO2010146146A1 (de) 2009-06-19 2010-12-23 Basf Se Beschichtete schaumstoffpartikel
US9074059B2 (en) 2009-08-13 2015-07-07 Asahi Kasei Chemicals Corporation Expandable beads having flame retardancy of V-0 or V-1, and molded body using the same
EP2287241A1 (de) 2009-08-20 2011-02-23 Basf Se Dämmstoffe aus unterschiedlichen pigmentierten Partikeln
JP2011094024A (ja) * 2009-10-29 2011-05-12 Sekisui Plastics Co Ltd 不燃剤含有発泡性ポリスチレン系樹脂粒子とその製造方法、不燃性ポリスチレン系樹脂予備発泡粒子及び不燃性ポリスチレン系樹脂発泡成形体
EP2504140A1 (de) 2009-11-27 2012-10-03 Basf Se Beschichtungszusammensetzung für schaumstoffpartikel
KR101332431B1 (ko) * 2010-07-08 2013-11-22 제일모직주식회사 난연성 발포 폴리스티렌계 비드 및 그 제조방법
EP2603550A1 (de) 2010-08-09 2013-06-19 Basf Se Hochtemperatur- und feuchtigkeitsstabile werkstoffe mit verbesserten isolationseigenschaften auf basis von schaumstoffen und dispersen silikaten
US9249270B2 (en) * 2010-08-13 2016-02-02 Basf Se Expandable pelletized materials based on polyester
EP2603549B1 (de) 2010-08-13 2016-12-21 Basf Se Expandierbare granulate auf polyesterbasis
DE102011110216A1 (de) 2010-08-18 2012-02-23 Basf Se Partikelschaumstoffe mit verbesserter Steifigkeit
US9169638B2 (en) 2010-09-10 2015-10-27 Total Research & Technology Feluy Expandable vinyl aromatic polymers
EP2433771B1 (de) 2010-09-28 2016-12-21 Uhde Inventa-Fischer GmbH Verfahren zur Erhöhung des Molekulargewichts unter Nutzung der Restwärme von Polyestergranulat
CN103154104B (zh) * 2010-10-26 2016-04-27 Kaneka比利时公司 含粉末状活性炭的发泡聚烯烃
JP5642521B2 (ja) * 2010-12-01 2014-12-17 旭化成ケミカルズ株式会社 発泡ビーズ成形体及びその製造方法
FR2973387B1 (fr) * 2011-04-04 2013-03-29 Rhodia Operations Composition polyamide de forte conductivite thermique
CN103703062B (zh) 2011-06-23 2015-08-05 道达尔研究技术弗吕公司 改进的能膨胀的乙烯基芳族聚合物
EP2683763A1 (de) 2011-06-27 2014-01-15 Total Research & Technology Feluy Dehnbares graphit mit aromatischen vinylpolymeren
CN102286159A (zh) * 2011-07-01 2011-12-21 广东工业大学 低温可膨胀石墨/聚合物发泡材料的制备方法
CN102492232B (zh) * 2011-12-08 2013-09-25 山西中环绿科环境工程项目管理有限公司 一种膨胀石墨聚苯板的制备方法
PL2687354T3 (pl) 2012-07-17 2017-09-29 Basf Se Termoplastyczne płyty z tworzywa piankowego o grubości spoiny od 30 do 200 mikrometrów
ES2600157T3 (es) * 2012-09-24 2017-02-07 Basf Se Sistema y procedimiento de fabricación de una espuma in-situ
DE102012020839A1 (de) 2012-10-24 2014-04-24 Jackon Insulation Gmbh Herstellung von XPS-Schaumplatten großer Dicke durch Schweißen
JP6555251B2 (ja) * 2014-03-10 2019-08-07 株式会社カネカ スチレン系樹脂発泡成形体及びその製造方法
DE102014216992A1 (de) * 2014-08-26 2016-03-03 Adidas Ag Expandierte Polymerpellets
CN104292680B (zh) * 2014-09-15 2017-02-15 刘崴崴 一种聚苯乙烯泡沫保温材料及其制备方法
DE102014013643A1 (de) 2014-09-19 2016-04-07 Jackon Gmbh Flammschutzmittel für Kunststoffschaum
WO2016102246A1 (de) 2014-12-22 2016-06-30 Basf Se Faserverstärkte formkörper aus expandiertem partikelschaum
CN107406610B (zh) 2014-12-22 2020-10-30 巴斯夫欧洲公司 含发泡剂的泡沫材料的纤维增强
CN107250228B (zh) 2014-12-22 2021-03-16 巴斯夫欧洲公司 由互相连接的片段组成的纤维增强泡沫材料
JP6735281B2 (ja) 2015-01-14 2020-08-05 シントス エス.アー.Synthos S.A. ペロブスカイト構造を有する鉱物のビニル芳香族ポリマーフォームでの使用
US10961154B2 (en) 2015-01-14 2021-03-30 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
MA41344B1 (fr) * 2015-01-14 2019-01-31 Synthos Sa Combinaison de silice et de graphite et son utilisation pour réduire la conductivité thermique d'une mousse de polymère aromatique vinylique
MA41342A (fr) 2015-01-14 2017-11-21 Synthos Sa Procédé pour la production de granulés de polymère vinylique aromatique expansible ayant une conductivité thermique réduite
JP6612634B2 (ja) * 2016-01-30 2019-11-27 積水化成品工業株式会社 スチレン系樹脂発泡性粒子、発泡粒子及び発泡成形体
JP6399021B2 (ja) * 2016-03-10 2018-10-03 トヨタ自動車株式会社 二次電池および組電池
EP3463794A1 (de) 2016-05-25 2019-04-10 Basf Se Konfektionierung faserverstärkter schaumstoffe
EP4151682A1 (de) 2016-05-25 2023-03-22 Basf Se Faserverstärkung von reaktivschaumstoffen aus einem doppelbandschäum- oder einem blockschäumverfahren
EP3464437B1 (de) 2016-05-25 2021-07-07 Basf Se Faserverstärkung von reaktivschaumstoffen aus einem formschäumverfahren
RU2745267C2 (ru) * 2016-06-23 2021-03-22 Басф Се Способ получения пенопластовых частиц из термопластичных эластомеров с полиамидными сегментами
CN109562998A (zh) 2016-07-20 2019-04-02 西索斯公司 地质聚合物添加剂连同非溴化阻燃剂在聚合物泡沫中的应用
DE102017111796A1 (de) * 2017-05-30 2018-12-06 Thyssenkrupp Ag Elektronische Steuereinheit für eine Lenkkraftunterstützungseinheit
WO2019025245A1 (de) * 2017-08-04 2019-02-07 Basf Se Expandierbare, treibmittelhaltige granulate auf basis von hochtemperaturthermoplasten
CN109354861B (zh) * 2017-08-04 2021-06-08 南通德亿新材料有限公司 热塑性微气囊聚合物弹性体材料及其制备方法
CN109762200B (zh) * 2017-11-09 2021-08-06 四川大学 功能性可发/已发聚苯乙烯珠粒及其制备方法
WO2020007220A1 (zh) * 2018-07-04 2020-01-09 中国石油化工股份有限公司 一种多相颗粒、其制造方法及其应用
KR20210051027A (ko) * 2019-10-29 2021-05-10 코닝 인코포레이티드 유리 라미네이트 물품
AU2021328002A1 (en) 2020-08-18 2023-05-04 Evonik Operations Gmbh Production of high temperature polymer based pellets by underwater pelletization at elevated water temperature to produce (rigid) bead foams
CN112341789A (zh) * 2020-11-30 2021-02-09 中国第一汽车股份有限公司 一种聚苯醚材料及其制备方法和应用
CN115090245B (zh) * 2022-06-30 2023-10-24 广东石油化工学院 一种本体法生产阻燃型可发泡聚苯乙烯装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE651512A (de) * 1963-08-17
US3817669A (en) * 1971-08-19 1974-06-18 Dow Chemical Co Apparatus for the preparation of plastic foam
US4098941A (en) * 1974-11-21 1978-07-04 Mobil Oil Corporation Polystyrene foam extrusion
JPS5230872A (en) * 1975-09-04 1977-03-08 Mitsubishi Plastics Ind Process for manufacturing expandable polyolefin particles
US5000891A (en) * 1986-09-29 1991-03-19 Green James R Expandable polystyrene pellets
JPH0657760B2 (ja) * 1986-11-13 1994-08-03 鐘淵化学工業株式会社 押出成形に用いるペレット状発泡用軟質塩化ビニル系樹脂組成物
DE3814783A1 (de) * 1988-04-30 1989-11-09 Basf Ag Expandierbare polymerlegierung in partikelform und verfahren zu seiner herstellung
JP2794450B2 (ja) * 1989-05-30 1998-09-03 株式会社ジェイエスピー 導電性ポリエチレン発泡粒子
DE3936596A1 (de) * 1989-11-03 1991-05-08 Basf Ag Expandierbare styrolpolymerisate und daraus hergestellte aromatenbestaendige schaumstoffe
US5206271A (en) * 1989-11-03 1993-04-27 Basf Aktiengesellschaft Expandable styrene polymers, and aromatic-resistant foams produced therefrom
US6783710B1 (en) * 1994-02-21 2004-08-31 Sulzer Chemtech Ag Method for the production of expandable plastics granulate
DE4416862A1 (de) * 1994-05-13 1996-02-22 Basf Ag Expandierbare Styrolpolymerisate
JPH09221562A (ja) * 1996-02-16 1997-08-26 Dainippon Ink & Chem Inc 発泡性熱可塑性樹脂粒子の製造方法
JP3944281B2 (ja) * 1996-08-20 2007-07-11 株式会社クレハ ポリグリコール酸発泡体
JP3653897B2 (ja) * 1996-12-02 2005-06-02 住友化学株式会社 メタクリル酸メチル系樹脂発泡体及びその製造方法
DE19709119A1 (de) * 1997-03-06 1998-09-10 Basf Ag Schaumstoffplatten mit verminderter Wärmeleitfähigkeit
DE19716572A1 (de) * 1997-04-19 1998-10-22 Basf Ag Expandierbare Styrolpolymerisate
US6340713B1 (en) * 1997-05-14 2002-01-22 Basf Aktiengesellschaft Expandable styrene polymers containing graphite particles
JP3728684B2 (ja) * 1997-05-30 2005-12-21 日本ゼオン株式会社 塩化ビニル系樹脂組成物
US5977195A (en) * 1997-08-01 1999-11-02 Huntsman Corporation Expandable thermoplastic polymer particles and method for making same
JP3618525B2 (ja) * 1997-10-01 2005-02-09 株式会社カネカ ポリプロピレン系樹脂組成物からなる予備発泡粒子およびその製法
US6100307A (en) * 1998-03-17 2000-08-08 Shell Oil Company Compositions of polycondensed branched polyester polymers and aromatic polycarbonates, and the closed cell polymer foams made therefrom
DE19852683A1 (de) * 1998-11-16 2000-05-18 Basf Ag Offenzellige Polystyrol-Partikelschaumstoffe
US6187232B1 (en) * 1998-12-04 2001-02-13 The Dow Chemical Company Acoustical insulation foams
RU2253658C2 (ru) * 1998-12-09 2005-06-10 Басф Акциенгезельшафт Способ получения расширяющихся полистирольных гранул
AT406477B (de) * 1999-01-25 2000-05-25 Sunpor Kunststoff Gmbh Teilchenförmige, expandierbare styrolpolymerisate und verfahren zu ihrer herstellung
RU2167061C2 (ru) * 1999-07-15 2001-05-20 Общество ограниченной ответственности "Пеноплэкс" Способ получения вспененных плит с высоким сопротивлением сжатию
JP4653321B2 (ja) * 2001-02-01 2011-03-16 株式会社ジェイエスピー 発泡性ゴム変性アクリロニトリル・スチレン系樹脂粒子、その製造法及び発泡成形体
ITMI20012168A1 (it) * 2001-10-18 2003-04-18 Enichem Spa Polimeri vinilaromatici espandibili e procedimento per la loro preparazione
JP3825702B2 (ja) * 2002-02-14 2006-09-27 ユニチカ株式会社 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体
JP2003261781A (ja) * 2002-03-11 2003-09-19 Toray Ind Inc 複合物質の製造方法および複合物質
JP2003268143A (ja) * 2002-03-15 2003-09-25 Mitsubishi Chemicals Corp 発泡体製造用脂肪族ポリエステル系樹脂及び発泡体
JP2003335847A (ja) * 2002-05-21 2003-11-28 Mitsubishi Gas Chem Co Inc 発泡体用ポリエステル樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005056653A1 *

Also Published As

Publication number Publication date
CN100412118C (zh) 2008-08-20
RU2006124972A (ru) 2008-01-27
WO2005056653A1 (de) 2005-06-23
UA79410C2 (en) 2007-06-11
KR20060120195A (ko) 2006-11-24
JP2007514027A (ja) 2007-05-31
MXPA06006499A (es) 2006-08-23
CN1890309A (zh) 2007-01-03
RU2371455C2 (ru) 2009-10-27
US20070112082A1 (en) 2007-05-17
BRPI0417385A (pt) 2007-04-10
DE10358786A1 (de) 2005-07-14
CA2547888A1 (en) 2005-06-23
SG149017A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
EP1694754A1 (de) Partikelschaumstoffformteile aus expandierbaren, füllstoff enthaltenden polymergranulaten
EP1819758B1 (de) Halogenfrei flammgeschützte, expandierbare styrolpolymerisate
WO2006058733A1 (de) Expandierbare styrolpolymergranulate und partikelschaumstoffe mit verringerter wärmeleitfähigkeit
EP1791896B8 (de) Halogenfreie, flammgeschützte polymerschaumstoffe
EP2212377B1 (de) Flammgeschützte expandierbare styrolpolymere und verfahren zu ihrer herstellung
EP2513209A1 (de) Flammgeschützte polymerschaumstoffe
WO2005056652A1 (de) Partikelschaumformteile aus expandierbaren styrolpolymeren und mischungen mit thermoplastischen polymeren
WO2003106544A2 (de) Verfahren zur herstellung von expandierbarem polystyrol
EP1771502A2 (de) Verfahren zur herstellung von flammgesch]tztem, expandierbarem polystyrol
EP1869112A1 (de) Verfahren zur herstellung von polystyrolschaumpartikeln hoher dichte
EP2531552A2 (de) Halogenfreie, phosphorhaltige flammgeschützte polymerschaumstoffe
EP1694755B1 (de) Expandierbare styrolpolymergranulate mit bi- oder multimodaler molekulargewichtsverteilung
DE102004034527A1 (de) Verfahren zur Herstellung von expandierbaren Styrolpolymeren mit verbesserter Expandierbarkeit
DE102004034514A1 (de) Synergistische Flammschutzmischungen für Polystyrolschaumstoffe
DE10358798A1 (de) Expandierbare Styrolpolymergranulate
EP1616902A1 (de) Selbstverlöschender Styrolpolymer-Partikelschaumstoff
DE10358805A1 (de) Partikelschaumformteile aus expandierbaren, schlagzähmodifizierten, thermoplastischen Polymergranulaten
EP2062935B1 (de) Verfahren zur Einbringung von Feststoffpartikeln in Polymerschmelzen
WO2005056654A1 (de) Expandierbare styrolpolymergranulate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20110426

R17C First examination report despatched (corrected)

Effective date: 20110504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111115