EP1652231A1 - Vorrichtung mit wenigstens einer von einem zu kühlenden funktionselement gebildeten wärmequelle, mit wenigstens einer wärmesenke und mit wenigstens einer zwischenlage aus einer thermischen leitenden masse zwischen der wärmequelle und der wärmesenke sowie thermische leitende masse, insbesondere zur verwendung bei einer solchen vorrichtung - Google Patents
Vorrichtung mit wenigstens einer von einem zu kühlenden funktionselement gebildeten wärmequelle, mit wenigstens einer wärmesenke und mit wenigstens einer zwischenlage aus einer thermischen leitenden masse zwischen der wärmequelle und der wärmesenke sowie thermische leitende masse, insbesondere zur verwendung bei einer solchen vorrichtungInfo
- Publication number
- EP1652231A1 EP1652231A1 EP04738584A EP04738584A EP1652231A1 EP 1652231 A1 EP1652231 A1 EP 1652231A1 EP 04738584 A EP04738584 A EP 04738584A EP 04738584 A EP04738584 A EP 04738584A EP 1652231 A1 EP1652231 A1 EP 1652231A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nanofibers
- organic matrix
- thermally conductive
- heat
- conductive composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims abstract description 62
- 239000002121 nanofiber Substances 0.000 claims abstract description 59
- 239000000203 mixture Substances 0.000 claims description 25
- 238000012546 transfer Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 15
- 239000002826 coolant Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 9
- 235000011837 pasties Nutrition 0.000 claims description 8
- 238000001465 metallisation Methods 0.000 claims description 7
- -1 polypropylene Polymers 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229920002545 silicone oil Polymers 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 238000005087 graphitization Methods 0.000 claims description 3
- 239000002071 nanotube Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 239000004945 silicone rubber Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000002109 single walled nanotube Substances 0.000 claims description 3
- 238000005476 soldering Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229920001971 elastomer Polymers 0.000 claims 6
- 239000000806 elastomer Substances 0.000 claims 6
- 239000010419 fine particle Substances 0.000 claims 5
- 230000000996 additive effect Effects 0.000 claims 4
- 229910052582 BN Inorganic materials 0.000 claims 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 150000002736 metal compounds Chemical class 0.000 claims 2
- 239000002048 multi walled nanotube Substances 0.000 claims 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims 2
- 230000008859 change Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/29393—Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
- H01L2924/13034—Silicon Controlled Rectifier [SCR]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/15786—Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2924/15787—Ceramics, e.g. crystalline carbides, nitrides or oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0058—Laminating printed circuit boards onto other substrates, e.g. metallic substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Definitions
- Heat source and the heat sink and thermal conductive mass in particular
- the invention relates to an arrangement or device according to the preamble of claim 1 and to a thermally conductive mass for the intermediate layer of such a device according to the preamble of claim 36.
- Heat source in the sense of the invention is generally to be understood as a part of the device or arrangement which contains at least one heat-generating functional element, for example a corresponding component or a group of components.
- heat source in the sense of the invention is in particular an electrical or to understand electronic component, a group of several such components, an integrated circuit or else an electrical or electronic circuit that contains one or more such components, integrated circuits, etc.
- heat sink is generally to be understood as a part of the device or arrangement according to the invention to which the heat from the heat source, for example for cooling, is to be transferred as optimally as possible.
- heat sink in the sense of the invention also includes To understand part of the arrangement according to the invention, which is used to cool the electrical or electronic components.
- Thermally conductive mass in the sense of the invention is to be understood in particular as a material in the liquid, viscous, pasty or solid state which, as an intermediate layer between the heat source and the heat sink, ensures optimal heat transfer over as large an area as possible, even if the Corresponding surfaces intended for heat transfer (heat transfer surfaces) between the heat source and the heat sink, for example due to production, are not completely flat and / or are not significantly roughness.
- the temperature change leads according to a knowledge on which the invention is based at the transition between the heat source (component, circuit or module) and the heat sink apparently to a mechanical pump effect, with the effect that the thermal paste, in particular also the components causing the thermal conductivity of this paste, increasingly in a reduced area, for example in the edge area of the heat transfer surfaces between the heat source and the heat sink are concentrated so that there is a sharp reduction in the area actually available for heat transfer and thus a deterioration in the cooling effect.
- the object of the invention is to show an arrangement which avoids these disadvantages and enables stable heat transfer between a heat source and a heat sink even over a long operating period.
- a thermally conductive mass which is particularly suitable for the intermediate layer of the arrangement according to the invention, is designed in accordance with claim 36.
- the intermediate layer or the thermally conductive mass of this intermediate layer present between the heat source and the heat sink has a high thermal conductivity. Furthermore, due to the use of the nanofibers, this intermediate layer is stable even over a long operating time, that is to say, especially in the case of frequent temperature changes in the region of this intermediate layer, there is no, or at least no noticeable Change this layer. According to one finding on which the invention is based, the nanofibers therefore also have a stabilizing effect on the intermediate layer.
- Fig. 1 shows the basic structure of a simplified schematic representation
- FIG. 2 shows a schematic representation of a device for testing the thermal conductivity of the intermediate layer used in the device according to the invention or of the material used for this intermediate layer (thermal paste);
- Fig. 3 is a graphical representation of the change in temperature of a sample heated by the intermediate layer according to the invention, together with the temperature profile in comparative measurements.
- Fig. 4-6 in an enlarged view, the intermediate layer in the device according to Figure 1 between the heat source and the heat sink, namely in different embodiments of the invention; Fig. 7 - 1 1 different versions of a device according to the invention.
- 1 is a heat source, the thermal energy of which is via a
- Heat sink 2 is to be derived.
- the heat source 1 is, for example, an electrical or electronic component, preferably an electrical or electronic power component, for example a semiconductor component, such as a transistor, mosfet, diode, also laser diode, integrated circuit, thyristor, laser diode or the like, or else an electrical or electronic Circuit (also module), which has one or more electrical or electronic components that generate power loss during operation and must therefore be cooled.
- the heat sink 2 can also be designed in any way, in such a way that it is suitable for dissipating the thermal power supplied by the heat source 1.
- the heat source 1 and heat sink 2 are connected to one another in a suitable manner, so that they are directly adjacent to one another on two essentially planar surface sides 1.1 and 2.1 (heat transfer surfaces).
- the heat source 1 and the heat sink 2 are screwed together or else connected and braced in another way.
- an intermediate layer or layer 3 made of a material with a high thermal conductivity is provided between the heat source 1 and the heat sink 2.
- the intermediate layer 3 or the material forming this intermediate layer are selected such that, at least in the operation of the heat-generating components, it creates a heat-conducting connection with low resistance between the heat source 1 and the heat sink 2, even in the region of unevenness in the heat transfer surfaces.
- the thickness of the intermediate layer 3 is chosen to be as small as possible, for example in such a way that this intermediate layer 3
- Unevenness of the surface sides 1.1 and 2.1 are just equalized or compensated.
- the thickness of the intermediate layer 3 is in the range between 0.01 and 0.5 mm.
- the material used for the intermediate layer 3 consists of at least one organic component as a matrix and of this organic one Component of embedded carbon nanofibers, which can be in a wide variety of forms, for example single-walled nanotubes as double-walled or multiple-walled nanotubes or in another form, for example those with herringbone-like surface structures, which ensure optimal integration into the organic matrix.
- the nanofibers have a length in the range between 1 and 100 ⁇ m and a thickness in the range from approximately 1.3 nm to 300 nm, the ratio of length to thickness being at least 10.
- at least a large part of the nanofibers embedded in the organic matrix has a length greater than 10 ⁇ m.
- the length of the nanofibers for example, is randomly oriented in the intermediate layer.
- the proportion of nanofibers in the organic matrix is in the range between 1 to 70 percent by weight based on the total weight of the material or the thermally conductive composition, with a proportion between 5 and 20 percent by weight having very good properties, in particular also with regard to thermal conductivity and stability can be achieved.
- a major advantage of the intermediate layer 3 is that a stable structure for the intermediate layer is achieved through the use of the nanofibers, ie even if the organic matrix is in the liquid or pasty state at least during the operation of the heat source 1, the remains Intermediate layer 3 forming mass remains stable, ie a separation or displacement of the nanofibers, for example, from the middle of the surface sides 1 .1 and 2.1 at their edge area, etc., as is the case, for example, with known thermal pastes, in particular at changing temperatures on the Heat source is observed does not occur. This is obviously due to the fact that the nanofibers hold or fixate each other in the matrix, but also possibly other additives or components added to the organic matrix.
- oils such as e.g. Silicone oil.
- the organic matrix i.a. also substances or mixtures of substances that are at least in one
- Temperature range which the heat source 1 has during its operation i.e. is liquid in a temperature range of about 40 to 80 °.
- the following are suitable as the organic matrix: Waxes or thermoplastics.
- the heat source 1 and the heat sink 2 are pressed against one another via the intermediate layer 3, specifically with a surface pressure in the range between approximately 0.1 to 100 bar.
- the use of carbon or carbon nanofibers in the organic matrix has the advantage that a high thermal conductivity is achieved for the intermediate layer 3.
- the material used for the intermediate layer 3 also has electrically insulating properties, in spite of a thermal conductivity that approximately corresponds to the thermal conductivity of aluminum.
- elastomeric organic compounds can be used as the matrix component, for example elastomeric plastics, such as, for example, silicone rubber, or else polymers, for example polycarbonate, polypropylene, polyethylene, etc.
- elastomeric plastics such as, for example, silicone rubber
- polymers for example polycarbonate, polypropylene, polyethylene, etc.
- the use of a matrix made of an elastomeric material has the advantage that 3 changes in the contact pressure P can be compensated for at least within certain limits by the elastic formation of the intermediate layer such that the intermediate layer 3 always within both limits against both
- the experimental arrangement shown in FIG. 2 essentially consists of two square plates 5.1 and 5.2 made of metal, namely aluminum.
- the two plates each have an edge length of 5 cm and a thickness of 0.2 cm and are provided parallel to one another and spaced apart, with a gap 6 of 150 ⁇ m.
- An electrical heating device 5.3 is provided on the surface side of the plate 5.1 facing away from the plate 5.2, with a power of 1.2 watts.
- the plate 5.2 is blackened on its surface side facing away from the plate 5.1, in such a way that the temperature of the plate 5.2 can be measured without contact using an infrared camera 7.
- FIG. 3 shows the time course of the temperature measured with the infrared camera 7, specifically with the curve a there for the case of an air gap 6 of 150 between the two plates 5.1 and 5.2, with curve b for the case that the gap 6 is filled with pure aluminum, and with curve c for the case that the gap 6 is bridged with the material of the intermediate layer 3, ie with a paste consisting of the organic matrix of silicone oil with a proportion of carbon nanofibers of 10 percent by weight.
- the curve c has a marked approximation to curve b and also runs clearly above curve a, which confirms the advantageous high thermal conductivity coefficient of the mass consisting of the organic matrix and the nanofibers.
- the mass forming the intermediate layer 3 consists only of the organic matrix and the added nanofibers.
- Other components or additives are conceivable, for example heat-conducting ceramics in powder form, for example Al 2 O 3 , Aln, BN, Si 3 N 4 SiC, BeO, ZrO, etc. are conceivable.
- further additions or components are possible, for example in the form of metal particles, such as those made of silver, copper, gold or alloys of these metals.
- metal particles or particles made of metal alloys can also be used as additives, which (particles) change into the molten state at temperatures above 50 ° C.
- the nanofibers contained in the organic matrix are at least partially with at least one metal or one Coated metal alloy, for example electrically or electrolytically and / or chemically.
- FIG. 4 again shows the intermediate layer 3 consisting of the organic matrix and those embedded in this matrix in an enlarged partial representation
- Nanofibers 8 and possibly other additives or components are shown in such a way that they are embedded or crumpled in the matrix.
- FIG. 5 shows, in a representation like FIG. 4, the intermediate layer 3 in a further possible embodiment.
- the nanofibers 8 are oriented at least for the most part with their longitudinal extension perpendicular or approximately perpendicular to the surface sides 1.1 and 2.1.
- an electrical voltage for example the voltage of a DC voltage source 9
- the voltage is chosen so that there is an electrical field strength of about 1 volt per ⁇ m within the intermediate layer 3.
- the thermal conductivity of the intermediate layer 3 is significantly improved by the alignment of the nanofibers 8.
- the voltage applied also results in additional stabilization. In a practical embodiment, this low electric field strength within the intermediate layer 3 can e.g. be easily realized by a corresponding potential difference between the heat source 1 and the heat sink 2.
- FIG. 6 shows a further embodiment in a representation similar to FIG.
- the nanofibers embedded in the organic matrix can at least for the most part also be connected to one another to form a two- or three-dimensional structure, for example in a type of fabric or a nonwoven material (fleece) or else in a three-dimensional one porous structure or a three-dimensional network or lattice.
- FIG. 7 again shows a schematic representation of a device according to the invention with the heat source 1 and a heat sink 2a, which is formed by a cooling element or passive cooler 10 with a large number of cooling fins or pins or pin-like projections on the side facing away from the heat source 1 is.
- the cooler 10 is arranged to dissipate the heat in the air stream of a blower or fan 1 1.
- FIG. 8 shows the device according to the invention with a heat sink formed by an active cooler 12.
- the active cooler 12 is, for example, a micro cooler, as is e.g. is described in DE 197 10 783 A1.
- This cooler 12 is flowed through by a cooling medium, for example water or a cooling medium containing water, and is arranged for this purpose in a coolant circuit which has a circulating pump 13, an external recooler 14 with blower 15 and a compensating or collecting container 16 for the cooling medium.
- a cooling medium for example water or a cooling medium containing water
- FIG. 9 shows an embodiment of the device according to the invention, in which the heat sink is formed by a heat pipe 16.
- this heat pipe 17 has a cooling medium that can be evaporated by heating, for example alcohol or another evaporable organic medium.
- at least two parallel flow paths are provided in the closed, elongated housing are connected to one another at least at the two ends of the housing, specifically a channel-like flow path for the evaporated cooling medium and a capillary-like flow path for the liquid phase of the cooling medium.
- the heat source 1 is connected via the intermediate layer 3.
- a cooler 18 for example having a plurality of cooling fins or corresponding projections or pins, which is arranged in the air flow of a blower 19.
- FIG. 10 shows a further possible embodiment of a device according to the invention, in which the heat sink 2 is formed by a heat pipe 20 serving as a heat spreader and by a cooler 21 corresponding to the cooler 10.
- the cooler 21 is in turn in the air flow of a blower, not shown, or else the cooler 21 is corresponding to the cooler 12 as active, i.e. coolant through which a coolant flows, for example in the form of a microcooler.
- the mode of operation of the heat pipe 20 corresponds to that of the heat pipe 17, but with that
- the area where the heat source 1 is provided is located in the middle of the housing of the heat pipe 20, that is to say it is symmetrical at least with respect to a plane oriented perpendicular to the surface side 1.1 of the heat source 1.
- FIG. 1 1 shows an embodiment in which an electronic circuit 23 produced using a ceramic-metal substrate, preferably a copper-ceramic substrate, is provided on the heat sink, which is generally designated 2 in this figure.
- the substrate 22 consists, in a manner known per se, of a ceramic layer, for example of an aluminum oxide or aluminum nitride ceramic, and is e.g. provided with the likewise known DCB or active soldering process with a metallization formed by a metal foil, for example copper foil.
- the upper metallization 22.2 is structured in conductor tracks, contact areas, etc.
- the power component 24 is also attached to this metallization, for example by soldering.
- the lower metallization 22.3 is used for heat spreading and cooling and is connected via the intermediate layer 3 to the heat sink 2, which in turn can be designed as desired and according to the respective application, for example also in a manner as described above in connection with FIGS. 7-10 has been described.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003127530 DE10327530A1 (de) | 2003-06-17 | 2003-06-17 | Vorrichtung mit wenigstens einer von einem zu kühlenden Funktionselement gebildeten Wärmequelle, mit wenigstens einer Wärmesenke und mit wenigstens einer Zwischenlage aus einer thermischen leitenden Masse zwischen der Wärmequelle und der Wärmesenke sowie thermische leitende Masse, insbesondere zur Verwendung bei einer solchen Vorrichtung |
PCT/DE2004/001115 WO2004114404A1 (de) | 2003-06-17 | 2004-06-02 | Vorrichtung mit wenigstens einer von einem zu kühlenden funktionselement gebildeten wärmequelle, mit wenigstens einer wärmesenke und mit wenigstens einer zwischenlage aus einer thermischen leitenden masse zwischen der wärmequelle und der wärmesenke sowie thermische leitende masse, insbesondere zur v |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1652231A1 true EP1652231A1 (de) | 2006-05-03 |
Family
ID=33520709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04738584A Withdrawn EP1652231A1 (de) | 2003-06-17 | 2004-06-02 | Vorrichtung mit wenigstens einer von einem zu kühlenden funktionselement gebildeten wärmequelle, mit wenigstens einer wärmesenke und mit wenigstens einer zwischenlage aus einer thermischen leitenden masse zwischen der wärmequelle und der wärmesenke sowie thermische leitende masse, insbesondere zur verwendung bei einer solchen vorrichtung |
Country Status (6)
Country | Link |
---|---|
US (1) | US7800908B2 (ja) |
EP (1) | EP1652231A1 (ja) |
JP (1) | JP4711956B2 (ja) |
CN (1) | CN1813348B (ja) |
DE (1) | DE10327530A1 (ja) |
WO (1) | WO2004114404A1 (ja) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8048688B2 (en) * | 2006-10-24 | 2011-11-01 | Samsung Electronics Co., Ltd. | Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays |
TWI388042B (zh) * | 2004-11-04 | 2013-03-01 | Taiwan Semiconductor Mfg | 基於奈米管基板之積體電路 |
TW200633171A (en) | 2004-11-04 | 2006-09-16 | Koninkl Philips Electronics Nv | Nanotube-based fluid interface material and approach |
NL1027632C2 (nl) * | 2004-12-01 | 2006-06-02 | Electrische App Nfabriek Capax | Drager voor elektrische componenten met aangesoldeerd koellichaam. |
US20060231237A1 (en) * | 2005-03-21 | 2006-10-19 | Carlos Dangelo | Apparatus and method for cooling ICs using nano-rod based chip-level heat sinks |
US20070031684A1 (en) | 2005-08-03 | 2007-02-08 | Anderson Jeffrey T | Thermally conductive grease |
DE102006037185A1 (de) * | 2005-09-27 | 2007-03-29 | Electrovac Ag | Verfahren zur Behandlung von Nanofasermaterial sowie Zusammensetzung aus Nanofasermaterial |
AT504807A1 (de) * | 2005-11-18 | 2008-08-15 | Electrovac Ag | Leuchtschirm |
JP2007288054A (ja) * | 2006-04-19 | 2007-11-01 | Toyota Motor Corp | パワーモジュール |
DE102007006175A1 (de) | 2007-02-07 | 2008-08-14 | Osram Opto Semiconductors Gmbh | Wärmeleitfähige Schicht und Verfahren zur Herstellung einer wärmeleitfähigen Schicht |
JP4953206B2 (ja) | 2007-06-08 | 2012-06-13 | 株式会社デンソー | 熱交換部材及び熱交換装置 |
DE102007039904A1 (de) | 2007-08-23 | 2008-08-28 | Siemens Ag | Verfahren zur Herstellung einer wärmeleitfähigen Materialschicht |
US20090159238A1 (en) * | 2007-12-19 | 2009-06-25 | Hao-Chih Ko | Cooling and warming device |
CN101906288B (zh) * | 2009-06-02 | 2013-08-21 | 清华大学 | 热界面材料,具该热界面材料的电子装置及制备方法 |
CN102460695A (zh) * | 2009-06-19 | 2012-05-16 | 株式会社安川电机 | 布线基板以及电力变换装置 |
DE102009033029A1 (de) * | 2009-07-02 | 2011-01-05 | Electrovac Ag | Elektronische Vorrichtung |
WO2011028924A2 (en) * | 2009-09-02 | 2011-03-10 | University Of Washington | Porous thermoplastic foams as heat transfer materials |
US10373891B2 (en) | 2013-06-14 | 2019-08-06 | Laird Technologies, Inc. | Methods for establishing thermal joints between heat spreaders or lids and heat sources |
US11286372B2 (en) | 2013-08-28 | 2022-03-29 | Eaton Intelligent Power Limited | Heat sink composition for electrically resistive and thermally conductive circuit breaker and load center and method of preparation therefor |
US9253871B2 (en) | 2013-10-31 | 2016-02-02 | General Electric Company | Circuit card assembly and method of fabricating the same |
CN104694086A (zh) * | 2013-12-04 | 2015-06-10 | 苏州环明电子科技有限公司 | 一种新型散热材料的配方及其制备方法 |
DE102014105269A1 (de) * | 2014-04-14 | 2015-10-15 | Hella Kgaa Hueck & Co. | Vorrichtung zur Kühlung einer Leistungselektronik mittels eines Kühlmediums und Verfahren zur Herstellung der Vorrichtung |
SG10201401622RA (en) | 2014-04-17 | 2015-11-27 | Delta Electronics Int’L Singapore Pte Ltd | Package structure |
US9318450B1 (en) * | 2014-11-24 | 2016-04-19 | Raytheon Company | Patterned conductive epoxy heat-sink attachment in a monolithic microwave integrated circuit (MMIC) |
CN105742252B (zh) * | 2014-12-09 | 2019-05-07 | 台达电子工业股份有限公司 | 一种功率模块及其制造方法 |
EP3086365A1 (en) * | 2015-04-23 | 2016-10-26 | ABB Technology Oy | Compensation of power electronic module flatness deviations |
CN105186267B (zh) * | 2015-10-23 | 2018-10-12 | 惠州市杰普特电子技术有限公司 | 激光散热器 |
CN105263297B (zh) * | 2015-10-23 | 2018-06-08 | 惠州市杰普特电子技术有限公司 | 激光隔热装置 |
CN107548223A (zh) * | 2016-06-24 | 2018-01-05 | 苏州天脉导热科技有限公司 | 一种bga与pcb板的安装方法 |
DE102018218830B4 (de) * | 2018-11-05 | 2022-09-29 | Robert Bosch Gmbh | Wärmeleitendes Verbindungselement, dessen Verwendung, Kühlanordnung und Wärmeverteilungsanordnung |
US11063495B2 (en) | 2019-07-01 | 2021-07-13 | Nidec Motor Corporation | Heatsink clamp for multiple electronic components |
DE102019209657A1 (de) * | 2019-07-02 | 2021-01-07 | Continental Automotive Gmbh | Kühlanordnung |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1186689A1 (en) * | 2000-09-12 | 2002-03-13 | Polymatech Co., Ltd. | Thermally conductive polymer composition and thermally conductive molded article |
US20030096104A1 (en) * | 2001-03-15 | 2003-05-22 | Polymatech Co., Ltd. | Carbon nanotube complex molded body and the method of making the same |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5780101A (en) * | 1995-02-17 | 1998-07-14 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide |
JP2953996B2 (ja) * | 1995-05-31 | 1999-09-27 | 日本電気株式会社 | 金属被覆カーボンナノチューブおよびその製造方法 |
DE19710783C2 (de) | 1997-03-17 | 2003-08-21 | Curamik Electronics Gmbh | Kühler zur Verwendung als Wärmesenke für elektrische Bauelemente oder Schaltkreise |
US6156256A (en) * | 1998-05-13 | 2000-12-05 | Applied Sciences, Inc. | Plasma catalysis of carbon nanofibers |
US6309703B1 (en) * | 1998-06-08 | 2001-10-30 | The United States Of America As Represented By The Secretary Of The Air Force | Carbon and ceramic matrix composites fabricated by a rapid low-cost process incorporating in-situ polymerization of wetting monomers |
US6552883B1 (en) * | 1998-08-06 | 2003-04-22 | Room Temperature Superconductors, Inc. | Devices comprising thin films having temperature-independent high electrical conductivity and methods of making same |
FR2787203B1 (fr) * | 1998-12-15 | 2001-12-07 | France Etat | Procede et dispositif photoactive de limitation large bande d'un flux lumineux |
JP3490011B2 (ja) * | 1999-02-12 | 2004-01-26 | 富士高分子工業株式会社 | 熱伝導性エラストマー組成物およびこれを用いた熱伝導性エラストマー |
US6913075B1 (en) * | 1999-06-14 | 2005-07-05 | Energy Science Laboratories, Inc. | Dendritic fiber material |
US6312303B1 (en) * | 1999-07-19 | 2001-11-06 | Si Diamond Technology, Inc. | Alignment of carbon nanotubes |
ATE355323T1 (de) * | 1999-12-07 | 2006-03-15 | Univ Rice William M | Orientierte nanofaser eingebunden in einer polymermatrix |
JP4116238B2 (ja) * | 2000-05-19 | 2008-07-09 | 株式会社タイカ | 電磁波遮蔽性を有する熱伝導性シート |
US6596139B2 (en) * | 2000-05-31 | 2003-07-22 | Honeywell International Inc. | Discontinuous high-modulus fiber metal matrix composite for physical vapor deposition target backing plates and other thermal management applications |
JP2002088171A (ja) * | 2000-09-13 | 2002-03-27 | Polymatech Co Ltd | 熱伝導性シートおよびその製造方法ならびに放熱装置 |
US6407922B1 (en) * | 2000-09-29 | 2002-06-18 | Intel Corporation | Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader |
JP2002121404A (ja) * | 2000-10-19 | 2002-04-23 | Polymatech Co Ltd | 熱伝導性高分子シート |
JP2002195277A (ja) * | 2000-10-19 | 2002-07-10 | Nsk Ltd | 転がり軸受 |
US6542371B1 (en) * | 2000-11-02 | 2003-04-01 | Intel Corporation | High thermal conductivity heat transfer pad |
JP2002146672A (ja) * | 2000-11-06 | 2002-05-22 | Polymatech Co Ltd | 熱伝導性充填剤及び熱伝導性接着剤並びに半導体装置 |
JP4514344B2 (ja) * | 2001-02-07 | 2010-07-28 | 電気化学工業株式会社 | 熱伝導性樹脂成形体及びその用途 |
JP4796704B2 (ja) * | 2001-03-30 | 2011-10-19 | 株式会社タイカ | 押出可能な架橋済グリース状放熱材を充填・封入した容器の製法 |
JP4714371B2 (ja) * | 2001-06-06 | 2011-06-29 | ポリマテック株式会社 | 熱伝導性成形体及びその製造方法 |
US6643165B2 (en) * | 2001-07-25 | 2003-11-04 | Nantero, Inc. | Electromechanical memory having cell selection circuitry constructed with nanotube technology |
US6680016B2 (en) * | 2001-08-17 | 2004-01-20 | University Of Dayton | Method of forming conductive polymeric nanocomposite materials |
US6821625B2 (en) * | 2001-09-27 | 2004-11-23 | International Business Machines Corporation | Thermal spreader using thermal conduits |
US7311967B2 (en) * | 2001-10-18 | 2007-12-25 | Intel Corporation | Thermal interface material and electronic assembly having such a thermal interface material |
JP3938681B2 (ja) * | 2001-11-21 | 2007-06-27 | 信越化学工業株式会社 | 放熱構造体 |
US6965513B2 (en) * | 2001-12-20 | 2005-11-15 | Intel Corporation | Carbon nanotube thermal interface structures |
JP2003321554A (ja) * | 2002-04-26 | 2003-11-14 | Polymatech Co Ltd | 熱伝導性成形体及びその製造方法 |
US7147367B2 (en) * | 2002-06-11 | 2006-12-12 | Saint-Gobain Performance Plastics Corporation | Thermal interface material with low melting alloy |
JP2004103766A (ja) * | 2002-09-09 | 2004-04-02 | Toray Ind Inc | 熱伝達体及びその製造方法 |
DE10248644B4 (de) * | 2002-10-18 | 2008-07-03 | Semikron Elektronik Gmbh & Co. Kg | Leistungshalbleitermodul |
JP4167048B2 (ja) * | 2002-12-10 | 2008-10-15 | 愛三工業株式会社 | 熱伝導性被膜及びその形成方法 |
JP4068983B2 (ja) * | 2003-02-13 | 2008-03-26 | 株式会社タイカ | 熱伝導性シート |
JP2004315761A (ja) * | 2003-04-21 | 2004-11-11 | Hitachi Metals Ltd | 放熱体 |
US7118941B2 (en) * | 2003-06-25 | 2006-10-10 | Intel Corporation | Method of fabricating a composite carbon nanotube thermal interface device |
US7168484B2 (en) * | 2003-06-30 | 2007-01-30 | Intel Corporation | Thermal interface apparatus, systems, and methods |
US20050061496A1 (en) * | 2003-09-24 | 2005-03-24 | Matabayas James Christopher | Thermal interface material with aligned carbon nanotubes |
US7303820B2 (en) * | 2003-10-14 | 2007-12-04 | Graftech International Holdings Inc. | Heat spreader for display device |
US7180174B2 (en) * | 2003-12-30 | 2007-02-20 | Intel Corporation | Nanotube modified solder thermal intermediate structure, systems, and methods |
CN100383213C (zh) * | 2004-04-02 | 2008-04-23 | 清华大学 | 一种热界面材料及其制造方法 |
US20050255304A1 (en) * | 2004-05-14 | 2005-11-17 | Damon Brink | Aligned nanostructure thermal interface material |
CN100404242C (zh) * | 2005-04-14 | 2008-07-23 | 清华大学 | 热界面材料及其制造方法 |
US20060270301A1 (en) * | 2005-05-25 | 2006-11-30 | Northrop Grumman Corporation | Reflective surface for deployable reflector |
-
2003
- 2003-06-17 DE DE2003127530 patent/DE10327530A1/de not_active Ceased
-
2004
- 2004-06-02 US US10/561,433 patent/US7800908B2/en not_active Expired - Fee Related
- 2004-06-02 JP JP2006515666A patent/JP4711956B2/ja not_active Expired - Fee Related
- 2004-06-02 EP EP04738584A patent/EP1652231A1/de not_active Withdrawn
- 2004-06-02 CN CN2004800168878A patent/CN1813348B/zh not_active Expired - Fee Related
- 2004-06-02 WO PCT/DE2004/001115 patent/WO2004114404A1/de active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1186689A1 (en) * | 2000-09-12 | 2002-03-13 | Polymatech Co., Ltd. | Thermally conductive polymer composition and thermally conductive molded article |
US20030096104A1 (en) * | 2001-03-15 | 2003-05-22 | Polymatech Co., Ltd. | Carbon nanotube complex molded body and the method of making the same |
Non-Patent Citations (1)
Title |
---|
See also references of WO2004114404A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2006527912A (ja) | 2006-12-07 |
WO2004114404A1 (de) | 2004-12-29 |
CN1813348B (zh) | 2011-01-12 |
DE10327530A1 (de) | 2005-01-20 |
CN1813348A (zh) | 2006-08-02 |
US7800908B2 (en) | 2010-09-21 |
US20070091572A1 (en) | 2007-04-26 |
JP4711956B2 (ja) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004114404A1 (de) | Vorrichtung mit wenigstens einer von einem zu kühlenden funktionselement gebildeten wärmequelle, mit wenigstens einer wärmesenke und mit wenigstens einer zwischenlage aus einer thermischen leitenden masse zwischen der wärmequelle und der wärmesenke sowie thermische leitende masse, insbesondere zur v | |
DE102008048005B3 (de) | Leistungshalbleitermodulanordnung und Verfahren zur Herstellung einer Leistungshalbleitermodulanordnung | |
EP2143139B1 (de) | Kühldose für bauelemente oder schaltungen | |
DE10251247A1 (de) | Halbleiterbaugruppe mit Halbleiterchip, gebildet unter Verwendung eines Halbleiters mit breitem Bandabstand als Basismaterial | |
DE102009001722B4 (de) | Verfahren zum Aufbringen eines Wärmeleitmediums auf eine Wärmeableitfläche | |
DE3933956C2 (de) | Spannverband für einen Stromrichter | |
EP2392027B1 (de) | Verbundbauteil | |
DE112020006374T5 (de) | Leistungsmodul mit verbesserten elektrischen und thermischen Charakteristiken | |
EP2114116B1 (de) | Hybridkühlung | |
DE102007050405A1 (de) | Elektrische Leistungskomponente, insbesondere Leistungshalbleiter-Modul, mit einer Kühlvorrichtung und Verfahren zum flächigen und wärmeleitenden Anbinden einer Kühlvorrichtung an eine elektrische | |
DE112011104406B4 (de) | Halbleitervorrichtung | |
EP2114113A1 (de) | Leiterplatteneinheit und Verfahren zu deren Herstellung | |
DE102004018477A1 (de) | Halbleitermodul | |
DE102017203132A1 (de) | Leistungsmodul | |
DE102014213545A1 (de) | Leistungshalbleitermodul | |
AT411126B (de) | Halbleitermodul | |
DE102015115132A1 (de) | Halbleitermodul mit integrierter Stift- oder Rippenkühlstruktur | |
DE19506091A1 (de) | Kühlelement | |
WO2022268502A1 (de) | Beidseitige kühlung von leistungselektronikbaugruppen | |
DE102009034138B4 (de) | Leistungshalbleitermodul mit einem Sandwich mit einem Leistungshalbleiterbauelement | |
DE10038178A1 (de) | Kühlschiene für die direkte Fluidkühlung von Schaltungsmodulen, insbesondere Halbleitermodulen, Leistungshalbleitermodulen oder dergleichen | |
EP1366519A2 (de) | Kühlvorrichtung | |
EP4071801A1 (de) | Halbleitermodulanordnung mit einem kühlkörper und zumindest einem halbleitermodul | |
WO2020127375A1 (de) | Kühlvorrichtung | |
EP1421618A2 (de) | Leistungselektronikeinheit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20110119 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CURAMIK ELECTRONICS GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROGERS GERMANY GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160105 |