EP1642021B1 - Kraftstoffeinspritzsystem für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzsystem für brennkraftmaschinen Download PDF

Info

Publication number
EP1642021B1
EP1642021B1 EP04724527A EP04724527A EP1642021B1 EP 1642021 B1 EP1642021 B1 EP 1642021B1 EP 04724527 A EP04724527 A EP 04724527A EP 04724527 A EP04724527 A EP 04724527A EP 1642021 B1 EP1642021 B1 EP 1642021B1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
injection system
low
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04724527A
Other languages
English (en)
French (fr)
Other versions
EP1642021A1 (de
Inventor
Patrick Mattes
Hans Brekle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1642021A1 publication Critical patent/EP1642021A1/de
Application granted granted Critical
Publication of EP1642021B1 publication Critical patent/EP1642021B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0007Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves

Definitions

  • Injection timing and injection quantity are calculated in the electronic control unit and implemented by an injector on each engine cylinder.
  • the injector has the task to set the start of injection and injection quantity.
  • control and leakage quantities of the injector or injectors are discharged via a non-pressurized fuel return and fed into the fuel tank.
  • the leakage oil in the injector must have a defined pressure.
  • These injectors include piezo-controlled common rail injectors.
  • a hydraulic coupler is arranged between the piezoelectric actuator and the control valve, which increases the travel of the piezoelectric actuator.
  • a coupler space is present, the filling of which requires a defined, lying above the ambient pressure leak oil pressure.
  • Out DE-A 199 52 513 is a fuel injection system for internal combustion engines with at least one injector, or connected to a non-pressurized fuel return are known. Between the injector (s) and the fuel return means are provided for maintaining a leakage oil pressure in the injector (s). In particular, the means for maintaining a leak oil pressure in or in the injectors of one or more pressure holding valves.
  • DE-A 101 04 634 relates to a fuel injection system for internal combustion engines with a plurality of injectors, wherein the injectors each have a high-pressure port and a low-pressure port, the low-pressure ports open into a manifold, with an arranged between manifold and a non-pressurized fuel return pressure holding valve, wherein the manifold is designed as a pressure accumulator.
  • the pressure load of the pressure holding valve to maintain the pressure on the low pressure side of the injectors up to 20 bar is very high.
  • the manifold (return rail) and the actuator and an optional bellows are exposed to high loads by this pressure.
  • the fuel injection system according to the invention avoids the disadvantages occurring in the prior art and allows a pressure relief of several system components, in particular of the actuator and / or the manifold and / or the pressure holding valve and / or the bellows.
  • a further advantage is that the fuel injection system according to the invention can be used for common rail systems, in which either at least one pressure-holding valve or at least one electric fuel pump sets the injector-coupler space for filling under a pressure necessary for this purpose. In this case, if necessary, the pressure-maintaining valve can be omitted and this results in a cost savings, wherein the functional scope is maintained even without pressure holding valves.
  • Further advantages of the fuel injection system according to the invention are that no additional moving internal parts are needed and thus wear and high production costs are avoided. Further, no additional adjustment operations are required over the prior art fuel injection system.
  • a fuel injection system for internal combustion engines with multiple injectors, wherein the injectors each have a high pressure port and a low pressure port, the low pressure ports open into at least one manifold, with a between the manifold and means for maintaining the fuel pressure, wherein between the low-pressure port of each injector and the means for maintaining the fuel pressure at least one throttle is arranged.
  • the at least one throttle ensures that the pressure required on the low-pressure side of the injector is set at high load points. At low load points this ensures the means to maintain fuel pressure. Since the high pressures are represented by the throttle, only the low pressures of the means for maintaining the fuel pressure are required after the throttle, which then causes the substantial relief of the entire low-pressure system.
  • the fuel injection system according to the invention has the further advantage that the production claim for the at least one throttle is very low.
  • all injectors are connected via their low-pressure connections to a common manifold. It can be present between the manifold and the respective injector a connecting line to make the manifold short and simple geometry can.
  • it is sufficient to provide a throttle between the low-pressure port of the injector and the means for maintaining the fuel pressure, in particular in the common manifold.
  • a plurality of manifolds are provided.
  • each cylinder bank of a V-engine can be assigned its own manifold.
  • This embodiment of the fuel injection system according to the invention may have advantages in terms of the required installation space and the cost of connecting the low-pressure connections of the injectors with the respective manifold.
  • the use of a plurality of mutually independent manifolds requires the arrangement of at least one throttle per manifold between the low pressure port of the respective injector and the respective means for maintaining the fuel pressure, in particular the arrangement of a respective throttle in each manifold.
  • the means for maintaining the fuel pressure is a pressure holding valve.
  • Back pressure valves are proven and mature components that can be used.
  • a throttle arranged in front of the injector-side inlet of the pressure holding valve. Even with the throttle positioned in front of the pressure-maintaining valve, the functional range of the pressure-maintaining valve is retained, although a pressure relief of the pressure-retaining valve is established in comparison to the prior art.
  • the throttle also results in a pressure relief of other system components, in particular the manifold, the actuator and the bellows.
  • the bellows is designed such that it can receive the axial stroke of the actuator for controlling the injector, in particular a piezoelectric actuator.
  • the bellows is firmly connected to the actuator and the actuator bore, so that a fluid-tight seal of the actuator module with respect to the other areas of the injector is achieved.
  • the means for maintaining the fuel pressure is an electric fuel pump.
  • Electric fuel pumps are known in the art and proven pumps that are designed in the tank of a motor vehicle in modular design, and are used in particular in internal combustion engines in order to supply sufficient fuel in all operating conditions.
  • a throttle is arranged in the collecting line in front of the electric fuel pump.
  • the scope of functions is also available without pressure-holding valve, so that no pressure-holding valve is required and thus costs can be saved.
  • the high-pressure connections of the injectors are supplied with fuel by at least one common rail, so that the advantages of the fuel injection system according to the invention also come into play in so-called common-rail injection systems.
  • the injectors each contain a piezoelectric element for controlling the injector and a hydraulic translator for the translation of the piezoelectric element stroke.
  • the piezoelectric element hub preferably via a hydraulic medium, in particular fuel, in a coupler space of the hydraulic translator to an injector needle transferable, wherein the coupler space is filled via the at least one throttle with the hydraulic medium.
  • Fig. 1 shows a schematic representation of a fuel injection system according to the prior art.
  • each cylinder 1 is associated with an injector (not shown), which has a low-pressure connection 2.
  • the low pressure ports 2 open into a manifold 3.
  • the manifold 3 is designed as an accumulator in which the pressure required on the low pressure side of the injector is maintained.
  • the manifold 3 is connected via a schematically illustrated pressure-holding valve 4 with the non-pressurized fuel return 5 in connection, so that in all injectors a same, is present above the ambient pressure fuel pressure.
  • the pressure holding valve opens only from a pressure of 10 bar, so that the fuel pressure in the manifold 3 is at least 10 bar.
  • Fig. 2 shows an inventive fuel injection system with electric fuel pump.
  • An only schematically indicated in Fig. 2 internal combustion engine 36 comprises six cylinders 1, which are each acted upon by a fuel injector 38 shown in more detail in Fig. 4 with high pressure fuel.
  • the fuel injectors shown in greater detail in FIG. 1 are arranged in the cylinder head region 37 of the internal combustion engine 36.
  • an electric fuel pump 6 is arranged in this embodiment of the invention as a means for maintaining the fuel pressure.
  • a throttle 7 located in the manifold 3 before the electric fuel pump 6, a throttle 7.
  • no pressure-holding valve is required to maintain the force pressure on the low pressure side of the injectors.
  • the electronic fuel pump 6 only needs to deliver fuel at a low pressure. For example, in the case of a cross section of the throttle 7 of 0.5 mm, a 5 bar electric fuel pump 6 is sufficient.
  • Fig. 3 shows a fuel injection system according to the invention with pressure-holding valve.
  • the internal combustion engine 36 may be configured, for example, as a 6-cylinder internal combustion engine, wherein the embodiment variant is shown as a 6-cylinder engine only by way of example. According to the design, internal combustion engines with four, five, eight or 10 or 12 cylinders can also be supplied with the fuel injection system proposed according to the invention.
  • a pressure-maintaining valve 8 is provided in this embodiment of the present invention as a means for maintaining the fuel pressure. Further, located in the manifold 3 before the pressure-holding valve 8, a throttle 7.
  • the pressure-maintaining valve 8 is depressurized, so that it may have a lower opening pressure.
  • a 5 bar pressure-maintaining valve is sufficient to maintain the required fuel pressure on the low-pressure side of the injectors.
  • the illustration according to FIG. 4 can be taken from a fuel injector which is connected to a high-pressure reservoir (common rail) and which can be actuated via an actuator designed as a piezoactuator.
  • a fuel injector which is connected to a high-pressure reservoir (common rail) and which can be actuated via an actuator designed as a piezoactuator.
  • the fuel injector 38 shown in Fig. 4 comprises a high pressure system 9 and a low pressure system 10.
  • the piezo-crystal stack 12 acts on an actuating piston 18.
  • the actuating piston 18 acts on a hydraulic booster 13.
  • the hydraulic booster 13 amplifies the only small stroke of the piezoelectric crystal stack 12 when current is supplied to the actuator 11.
  • the hydraulic booster 13 comprises an actuating piston 15 whose End face 16 protrudes into the hydraulic coupling chamber 14 of the hydraulic booster 13.
  • the piezoelectric crystal stack 12 of the actuator 11 and the coupling space 14 of the hydraulic booster 13 can be enclosed by a thin wall 43 as well as by a bellows 42, with which the relative movement of the piezoelectric crystal stack 12 during its energization and associated with this actuating piston 18 relative to the hydraulic coupling space 14 is made possible.
  • the manifold 3 extends to the means for maintaining the fuel pressure, which may be formed either as a pressure holding valve 8 or by the electric fuel pump 6 to the fuel supply of the internal combustion engine 36 according to the schematically indicated in Figures 2 and 3 embodiments or can be formed to act on a high pressure pump 34.
  • the throttle element 7 is added in the manifold 3, in which the respective low pressure ports 2 of the cylinder 1, starting from the fuel injectors 38 and the means 6, 8 for maintaining the fuel pressure in the system space 20, the throttle element 7 is added.
  • the low-pressure connection 2 may be formed, for example, as a screw 17, so that at the prevailing within the system pressure chamber 20 pressures a leak-free Seal between the system space 20 and in the low pressure port 2 is ensured.
  • the hydraulic booster 13 includes a housing 44 which limits the hydraulic coupling space 14.
  • the housing 44 is supported on the one hand via a coil spring on a support disc received on the actuator piston 18 of the actuator 11 and on the other hand biased by a further helical spring on a support disc which is received on the actuating piston 15.
  • the diameter of the actuating piston 18 is dimensioned larger than the diameter of the actuating piston 15, so that a hydraulic pressure transmission is achieved by interposition of the hydraulic coupling chamber 14.
  • the actuating piston 15 acts on a guide piston 23.
  • the guide piston 23 in turn is guided in a discharge channel 22 which is provided in the housing 39 of the fuel injector 38.
  • About the drain passage 22 of the system space 20 and the control chamber 24 are connected to each other.
  • the closing element 19 is in the illustration of FIG. 4 in its closed position, i. its closing element seat 21 provided, which is formed at the discharge point of the drain passage 22 into the control chamber 24.
  • the spring element 26, which may be a plate spring, is supported on an end face 29 of a needle-shaped injection valve member 27.
  • the control chamber 24 is always acted upon by a high-pressure line, which is connected to one of the high-pressure ports 40 of a high-pressure accumulator 31 (common rail), with high-pressure fuel.
  • the high-pressure accumulator 31 in turn is acted upon via a supply line 32 via a high pressure pump 34 with fuel under high pressure and stores it.
  • the high-pressure pump 34 can be preceded by an electric fuel pump 6 acting as a prefeed pump.
  • the system space 20 of the fuel injector 38 on its low-pressure side 10 may be limited on the one hand by a thin-walled wall 43, on the other hand, the system space 20 may also be sealed by a bellows 42.
  • the formation of a limitation of the system space 20 via a deformable bellows 42 advantageously offers the possibility of compensating elongations during energization of the actuator 11 due to a longitudinal expansion of the piezoelectric crystal stack 12 while at the same time maintaining the sealing effect.
  • the hydraulic coupling space 14 is filled.
  • the direct injection internal combustion engine fuel injection system shown in FIG. 1 includes a pressure holding valve 8 on the low pressure side 10 of the fuel injector 38.
  • the pressure level necessary for filling the hydraulic coupling chamber 14 can be applied via the pressure-maintaining valve 8.
  • the pressure level on the low-pressure side 10 of the fuel injector 38 in the system space 20 is such that a filling of the hydraulic coupling chamber 14 via the gaps between the housing 44 and the actuating piston 18 on the one hand and on the gap between the actuating piston 15 and the housing 44th the pressure translator 13 on the other hand can be done.
  • low load points prevail after the throttle 7 only the low pressures that can be generated by the pressure holding valve, whereby the substantial relief of the low pressure side 10 of the fuel injector 38 is achieved.
  • With the dimensioning of the throttle diameter of the throttle point 7, or the opening pressure of the pressure holding valve 8 - in this configuration of a fuel injection system - can be adjusted if necessary, the required for the filling of the hydraulic coupling chamber 14 via the system space 20 pressure.
  • a throttle point 7 is also formed in the manifold 3, in which all low-pressure ports 2 of the fuel injectors 38 open.
  • the throttle body 7 is located at the confluence of all low-pressure connections 2 in the manifold 3 in front of the input end 41 serving as a feed pump electric fuel pump 6.
  • the electric fuel pump 6 delivers fuel from the fuel tank 35 and the second fuel supply line 6.1 to the high-pressure pump 34.
  • the high-pressure pump 34 in turn acted upon the high-pressure accumulator 31 (common rail) via the supply line 32 with fuel under very high pressure.
  • the fuel level is in the range between about 1500 and 1600 bar.
  • the pressure in the system space 20 for filling the hydraulic coupling chamber 14 can be changed by the guide gaps, if necessary.
  • the electric fuel pump 6 assigned to the fuel tank serves as an advance delivery unit for the high-pressure pump 34, which is not designed to be self-priming.
  • the supply line 6.1 branches off in this case from the fuel line, which is assigned to the fuel tank 35, and leads to the high-pressure pump 34th
  • the setting of the opening pressure of the pressure holding valve 8 and the delivery pressure of the electric fuel pump 6 different filling pressures for filling the hydraulic coupling chamber 14 of the hydraulic booster 13 as required, can be preset.
  • both an electric fuel pump 6 and a pressure holding valve 8 with respect to its pressure load in high load points of the internal combustion engine 36 are mechanically relieved, which has a significant relief of the low pressure system 10 of the fuel injector 38 result.
  • the pressure-maintaining valve 8 and the electric fuel pump 6 can therefore be made smaller in terms of their strength.
  • the proposed solution according to the invention avoids the use of additional mechanical components which are to be manufactured or moved, as a result of which adjusting operations can also be dispensed with on these additional inner parts to be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Technisches Gebiet
  • Bei der Speichereinspritzung oder "Common-Rail-Einspritzung" sind Druckerzeugung und Einspritzung entkoppelt. Der Einspritzdruck wird unabhängig von der Motordrehzahl und der Einspritzmenge erzeugt und steht im "Rail" - dem Kraftstoffspeicher - für die Einspritzung bereit. Einspritzzeitpunkt und Einspritzmenge werden im elektronischen Steuergerät berechnet und von einem Injektor an jedem Motorzylinder umgesetzt. Der Injektor hat die Aufgabe, Spritzbeginn und Einspritzmenge einzustellen.
  • Neben der Ansteuerung des Injektors über ein Piezoelement ist die Ansteuerung des Injektors über ein Magnetventil bekannt. Während bei Magnetventilen ausreichend große Ventilhübe zur Verwendung des Magnetventils als Steuerventil erzeugt werden können, sind bei einer Steuerung eines Injektors mit einem Piezoelement zusätzliche Maßnahmen zu treffen. Dies hat den Grund, dass mit einem Piezoelement nur ein sehr geringer Hub erzeugbar ist, welcher bezüglich der Länge des Piezoelements im Promillebereich liegt. Dieser geringe Hub muss für die Betätigung des Stellventils beim kontinuierlichen Betrieb des Injektors transformiert werden. Zu diesem Zweck wird beispielsweise ein hydraulischer Übersetzer verwendet.
  • Stand der Technik
  • Im Stand der Technik werden Steuer- und Leckagemengen des oder der Injektoren über einen drucklosen Kraftstoffrücklauf abgeführt und in den Kraftstofftank eingespeist. Bei manchen Injektoren für Dieselmotoren muss das Lecköl im Injektor jedoch einen definierten Druck haben. Zu diesen Injektoren zählen piezogesteuerte Common-Rail-Injektoren. Bei diesen Injektoren ist zwischen Piezoaktor und Steuerventil ein hydraulischer Koppler angeordnet, der den Stellweg des Piezoaktors vergrößert. Dazu ist ein Kopplerraum vorhanden, dessen Befüllung einen definierten, über dem Umgebungsdruck liegenden Lecköldruck erfordert.
  • Aus DE-A 199 52 513 ist ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit mindestens einem Injektor, der oder die mit einem drucklosen Kraftstoffrücklauf verbunden sind, bekannt. Zwischen dem oder den Injektoren und dem Kraftstoffrücklauf sind Mittel zum Aufrechterhalten eines Lecköldrucks in dem oder den Injektoren vorhanden. Insbesondere sind die Mittel zum Aufrechterhalten eines Lecköldrucks in dem oder in den Injektoren eines oder mehrerer Druckhalteventile.
  • DE-A 101 04 634 bezieht sich auf ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit mehreren Injektoren, wobei die Injektoren je einen Hochdruckanschluss und je einen Niederdruckanschluss aufweisen, wobei die Niederdruckanschlüsse in eine Sammelleitung münden, mit einem zwischen Sammelleitung und einem drucklosen Kraftstoffrücklauf angeordneten Druckhalteventil, wobei die Sammelleitung als Druckspeicher ausgebildet ist.
  • Bei diesen Kraftstoffeinspritzsystemen nach dem Stand der Technik ist die Druckbelastung des Druckhalteventils zum Halten des Druckes auf der Niederdruckseite der Injektoren mit bis zum 20 bar sehr hoch. Ebenso wird die Sammelleitung (Rücklauf-Rail) sowie der Aktor und ein gegebenenfalls vorhandener Balg durch diesen Druck hohen Belastungen ausgesetzt.
  • Darstellung der Erfindung
  • Das erfindungsgemäße Kraftstoffeinspritzsystem vermeidet die im Stand der Technik auftretenden Nachteile und ermöglicht eine Druckentlastung von mehren Systemkomponenten, insbesondere des Aktors und/oder der Sammelleitung und/oder des Druckhalteventils und/oder des Balgs. Vorteilhaft ist ferner, dass das erfindungsgemäße Kraftstoffeinspritzsystem für Common-Rail-Systeme einsetzbar ist, bei denen entweder mindestens ein Druckhalteventil oder mindestens eine Elektrokraftstoffpumpe den Injektor-Kopplerraum zur Befüllung unter einen dafür notwendigen Druck setzt. Dabei kann gegebenenfalls das Druckhalteventil entfallen und sich daraus eine Kostenersparnis ergeben, wobei der Funktionsumfang auch ohne Druckhalteventile beibehalten wird. Weitere Vorteile des erfindungsgemäßen Kraftstoffeinspritzsystems sind, dass keine zusätzlich bewegten Innenteile benötigt werden und somit Verschleiß und ein hoher Fertigungsaufwand vermieden werden. Ferner sind keine zusätzlichen Einstellvorgänge gegenüber dem Kraftstoffeinspritzsystem nach dem Stand der Technik erforderlich.
  • Diese Vorteile werden erfindungsgemäß erreicht durch ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit mehreren Injektoren, wobei die Injektoren je einen Hochdruckanschluss und je einen Niederdruckanschluss aufweisen, wobei die Niederdruckanschlüsse in mindestens eine Sammelleitung münden, mit einem zwischen der Sammelleitung und einem drucklosen Kraftstoffrücklauf angeordneten Mittel zum Aufrechterhalten des Kraftstoffdrucks, wobei zwischen dem Niederdruckanschluss jedes Injektors und dem Mittel zum Aufrechterhalten des Kraftstoffdrucks mindestens eine Drossel angeordnet ist.
  • Durch die mindestens eine Drossel ist gewährleistet, dass sich der auf der Niederdruckseite des Injektors notwendige Druck in hohen Lastpunkten einstellt. Bei kleinen Lastpunkten gewährleistet dies das Mittel zum Aufrechterhalten des Kraftstoffdrucks. Da durch die Drossel die hohen Drücke dargestellt werden, werden nach der Drossel nur noch die geringen Drücke des Mittels zum Aufrechterhalten des Kraftstoffdruckes benötigt, was dann auch die wesentliche Entlastung des gesamten Niederdrucksystems bewirkt.
  • Neben den oben aufgeführten Vorteilen hat das erfindungsgemäße Kraftstoffeinspritzsystem den weiteren Vorteil, dass der Fertigungsanspruch für die mindestens eine Drossel sehr gering ist.
  • Bei einer Variante der Erfindung ist vorgesehen, dass alle Injektoren über ihre Niederdruckanschlüsse mit einer gemeinsamen Sammelleitung verbunden sind. Dabei kann zwischen der Sammelleitung und dem jeweiligen Injektor eine Verbindungsleitung vorhanden sein, um die Sammelleitung kurz und von einfacher Geometrie gestalten zu können. In der Variante des erfindungsgemäßen Kraftstoffeinspritzsystems mit einer einzigen Sammelleitung für alle Injektoren genügt es, eine Drossel zwischen dem Niederdruckanschluss des Injektors und dem Mittel zum Aufrechterhalten des Kraftstoffdrucks, insbesondere in der gemeinsamen Sammelleitung, vorzusehen.
  • Bei einer anderen Ausgestaltung der Erfindung sind mehrere Sammelleitungen vorgesehen. Beispielsweise kann jeweils einer Zylinderbank eines V-Motors eine eigene Sammelleitung zugeordnet sein. Dies Ausführungsform des erfindungsgemäßen Kraftstoffeinspritzsystems hat gegebenenfalls Vorteile hinsichtlich des benötigten Bauraums und der Kosten für die Verbindung der Niederdruckanschlüsse der Injektoren mit der jeweiligen Sammelleitung. Der Einsatz mehrerer voneinander unabhängiger Sammelleitungen erfordert die Anordnung mindestens einer Drossel pro Sammelleitung zwischen dem Niederdruckanschluss des jeweiligen Injektors und des jeweiligen Mittels zum Aufrechterhalten des Kraftstoffdrucks, insbesondere die Anordnung jeweils einer Drossel in jeder Sammelleitung.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Mittel zum Aufrechterhalten des Kraftstoffdrucks ein Druckhalteventil. Druckhalteventile sind bewährte und ausgereifte Komponenten, auf die zurückgegriffen werden kann. Vorzugsweise wird bei dem erfindungsgemäßen Kraftstoffeinspritzsystem mit Druckhalteventil eine Drossel vor dem injektorseitigen Eingang des Druckhalteventils angeordnet. Auch mit der vor dem Druckhalteventil positionierten Drossel bleibt der Funktionsumfang des Druckhalteventils erhalten, wobei sich jedoch eine Druckentlastung des Druckhalteventils im Vergleich zum Stand der Technik einstellt. Durch die Drossel ergibt sich ferner eine Druckentlastung weiterer Systemkomponenten, insbesondere der Sammelleitung, des Aktors und des Balgs.
  • Der Balg ist derart ausgebildet, dass er den Axialhub des Aktors zur Steuerung des Injektors, insbesondere eines Piezoaktors, aufnehmen kann. Hierbei ist der Balg fest mit dem Aktor und der Aktorbohrung verbunden, so dass eine fluiddichte Abdichtung des Aktormoduls gegenüber den anderen Bereichen des Injektors erreicht wird.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist das Mittel zum Aufrechterhalten des Kraftstoffdruckes eine Elektrokraftstoffpumpe. Elektrokraftstoffpumpen sind im Stand der Technik bekannte und bewährte Pumpen, die im Tank eines Kraftfahrzeuges in Modulbauweise ausgeführt, angeordnet sind und die insbesondere bei Verbrennungskraftmaschinen eingesetzt werden, um diesen in allen Betriebszuständen ausreichend Kraftstoff zuzuführen. Vorzugsweise ist bei dem erfindungsgemäßen Kraftstoffeinspritzsystem mit Elektrokraftstoffpumpe eine Drossel in der Sammelleitung vor der Elektrokraftstoffpumpe angeordnet. Bei dieser Variante der vorliegenden Erfindung ist der Funktionsumfang auch ohne Druckhalteventil vorhanden, so dass kein Druckhalteventil erforderlich ist und somit Kosten eingespart werden können.
  • Bei einer Variante der Erfindung werden die Hochdruckanschlüsse der Injektoren von mindestens einem Common-Rail mit Kraftstoff versorgt, so dass die Vorteile des erfindungsgemäßen Kraftstoffeinspritzsystems auch bei so genannten Common-Rail-Einspritzsystemen zum Tragen kommen.
  • In Ergänzung der Erfindung ist vorgesehen, dass die Injektoren jeweils ein Piezoelement zur Steuerung des Injektors und einen hydraulischen Übersetzer zur Übersetzung des Piezoelement-Hubes enthalten. Über dieser Ausgestaltung der Erfindung ist der Piezoelement-Hub vorzugsweise über ein Hydraulikmedium, insbesondere Kraftstoff, in einem Kopplerraum des hydraulischen Übersetzers auf eine Injektornadel übertragbar, wobei der Kopplerraum über die mindestens eine Drossel mit dem Hydraulikmedium befüllbar ist. Durch die im erfindungsgemäßen Kraftstoffeinspritzsystem vorhandene mindestens eine Drossel zwischen dem Niederdruckanschluss des Injektors und dem Mittel zum Aufrechterhalten des Kraftstoffdrucks (insbesondere dem Druckhalteventil oder der Elektrokraftstoffpumpe) stellt sich der zur Befüllung des Kopplerraums notwendige Druck in hohen Lastpunkten ein. Bei kleinen Lastpunkten gewährleistet dies das Druckhalteventil bzw. die Elektrokraftstoffpumpe. Da durch die Drossel die hohen Kopplerbefüllungsdrücke dargestellt werden, werden nach der Drossel nur nach die geringen Drücke des Druckhalteventils bzw. der Elektrokraftstoffpumpe benötigt, was dann auch die wesentliche Entlastung des gesamten Niederdrucksystems bewirkt. Mit der Wahl des Drosseldurchmessers, des Druckhalteventil-Öffnungsdrucks bzw. des Drucks des Elektrokraftstoffpumpe kann im Bedarfsfall der Druck für die Kopplerfüllung appliziert werden.
  • Zeichnung
  • Anhand der Zeichnung wird die Erfindung nachstehend näher erläutert.
  • Es zeigen:
    • Fig. 1 eine schematische Darstellung eines Kraftstoffeinspritzsystems gemäß dem Stand der Technik,
    • Fig. 2 ein erfindungsgemäßes Kraftstoffeinspritzsystem mit Elektrokraftstoffpumpe,
    • Fig. 3 ein erfindungsgemäßes Kraftstoffeinspritzsystem mit Druckhalteventil und
    • Fig. 4 einen Schnitt durch einen Kraftstoffinjektor, der über einen Hochdrucksammelraum (Common Rail) mit unter hohem Druck stehenden Kraftstoff beaufschlagt ist und durch einen als Piezoaktor ausgebildeten Aktor angesteuert wird.
    Ausführungsvarianten
  • Fig. 1 zeigt eine schematische Darstellung eines Kraftstoffeinspritzsystems nach dem Stand der Technik.
  • Dabei handelt es sich um ein Kraftstoffeinspritzsystem mit sechs Zylindern 1, die schematisch als Kreise dargestellt sind. Jedem Zylinder 1 ist jeweils ein (nicht dargestellter) Injektor zugeordnet, der einen Niederdruckanschluss 2 aufweist. Die Niederdruckanschlüsse 2 münden in eine Sammelleitung 3. Dabei ist die Sammelleitung 3 als Druckspeicher ausgebildet, in dem der auf der Niederdruckseite des Injektors benötigte Druck gehalten wird. Die Sammelleitung 3 steht über ein schematisch dargestelltes Druckhalteventil 4 mit dem drucklosen Kraftstoffrücklauf 5 in Verbindung, so dass in allen Injektoren ein gleicher, über dem Umgebungsdruck liegender Kraftstoffdruck vorhanden ist. Beispielsweise öffnet sich das Druckhalteventil erst ab einem Druck von 10 bar, so dass der Kraftstoffdruck in der Sammelleitung 3 mindestens 10 bar beträgt.
  • Fig. 2 zeigt ein erfindungsgemäßes Kraftstoffeinspritzsystem mit Elektrokraftstoffpumpe.
  • Eine in Fig. 2 nur schematisch angedeutete Verbrennungskraftmaschine 36 umfasst sechs Zylinder 1, die jeweils über einen in Fig. 4 näher dargestellten Kraftstoffinjektor 38 mit unter hohem Druck stehenden Kraftstoff beaufschlagt werden. Die in Fig. näher dargestellten Kraftstoffinjektoren werden im Zylinderkopfbereich 37 der Verbrennungskraftmaschine 36 angeordnet. Zwischen der Sammelleitung 3 und dem drucklosen Kraftstoffrücklauf 5, der mit einem Kraftstofftank 35 eines Fahrzeugs in Verbindung steht, ist in dieser Ausführungsvariante der Erfindung als Mittel zum Aufrechterhalten des Kraftstoffdruckes eine Elektrokraftstoffpumpe 6 angeordnet. Ferner befindet sich in der Sammelleitung 3 vor der Elektrokraftstoffpumpe 6 eine Drossel 7. Bei dieser Kombination von Drossel 7 und Elektrokraftstoffpumpe 6 wird kein Druckhalteventil benötigt, um den Kraftdruck auf der Niederdruckseite der Injektoren aufrechtzuerhalten. Ferner muss die Elektronikkraftstoffpumpe 6 nur Kraftstoff mit einem geringen Druck fördern. Beispielsweise genügt bei einem Querschnitt der Drossel 7 von 0,5 mm eine 5 bar-Elektrokraftstoffpumpe 6.
  • Fig. 3 zeigt ein erfindungsgemäßes Kraftstoffeinspritzsystem mit Druckhalteventil.
  • Die Verbrennungskraftmaschine 36 kann z.B. als 6-Zylinderverbrennungskraftmaschine ausgestaltet sein, wobei die Ausführungsvariante als 6-Zylindermotor nur beispielhaft dargestellt ist. Entsprechend der Auslegung können mit dem erfindungsgemäß vorgeschlagenen Kraftstoffeinspritzsystem auch Verbrennungskraftmaschinen mit vier, fünf, acht oder 10 bzw. 12 Zylindern versorgt werden. Zwischen der Sammelleitung 3 und dem drucklosen Kraftstoffrücklauf 5, der in den Kraftstofftank 35 eines Kraftfahrzeugs mündet, ist in dieser Ausführungsform der vorliegenden Erfindung als Mittel zum Aufrechterhalten des Kraftstoffdrucks ein Druckhalteventil 8 vorgesehen. Ferner befindet sich in der Sammelleitung 3 vor dem Druckhalteventil 8 eine Drossel 7. Bei dieser Kombination von Drossel 7 und Druckhalteventil 8 wird das Druckhalteventil 8 druckentlastet, so dass es einen geringeren Öffnungsdruck aufweisen kann. Beispielsweise genügt bei einer Drossel 7 mit einem Querschnitt von 0,5 mm ein 5 bar-Druckhalteventil, um den erforderlichen Kraftstoffdruck auf der Niederdruckseite der Injektoren aufrechtzuerhalten.
  • Der Darstellung gemäß Fig. 4 ist ein Kraftstoffinjektor entnehmbar, der mit einem Hochdruckspeicherraum (Common Rail) in Verbindung steht und welcher über einen als Piezoaktor ausgeführten Aktor betätigbar ist.
  • Der in Fig. 4 dargestellte Kraftstoffinjektor 38 umfasst ein Hochdrucksystem 9 sowie ein Niederdrucksystem 10. Die Betätigung des Kraftstoffinjektors 38 erfolgt über einen Aktor 11, der in der Darstellung gemäß Fig. 4 mit einem schematisch angedeuteten Piezo-Kristallstapel 12 versehen ist, welcher sich bei Bestromung längt. Der Piezo-Kristallstapel 12 wirkt auf einen Stellkolben 18. Der Stellkolben 18 beaufschlagt einen hydraulischen Übersetzer 13. Der hydraulische Übersetzer 13 verstärkt den nur geringen Hub des Piezo-Kristallstapels 12 bei Bestromung des Aktors 11. Der hydraulische Übersetzer 13 umfasst einen Betätigungskolben 15, dessen Stirnfläche 16 in den hydraulischen Kopplungsraum 14 des hydraulischen Übersetzers 13 hineinragt. Der Piezo-Kristallstapel 12 des Aktors 11 und der Kopplungsraum 14 des hydraulischen Übersetzers 13 können sowohl von einer dünnen Wand 43 als auch von einem Faltenbalg 42 umschlossen sein, mit welchen die Relativbewegung des Piezo-Kristallstapels 12 bei dessen Bestromung und des mit diesem verbundenen Stellkolbens 18 relativ zum hydraulischen Kopplungsraum 14 ermöglicht wird.
  • Bei Einsatz eines Faltenbalges 42 wird einerseits eine Relativbewegung des Piezo-Kristallstapels 12 zum hydraulischen Kopplungsraum 14, der in das Gehäuse des Kraftstoffinjektors 31 integriert ist und andererseits eine Abdichtung zwischen den relativ zueinander bewegbaren Komponenten 12 und 14 erreicht. Der hydraulische Kopplungsraum 14 ist von einem Gehäuse 44 umschlossen, und mit dem Kopplungsraumdruck pK beaufschlagt. Von einem Systemraum 20, welcher sowohl den Piezo-Kristallstapel 12 als auch den hydraulischen Übersetzer 13, 44 umschließt, erstreckt sich der Niederdruckanschluss 2 zur Sammelleitung 3. In die Sammelleitung 3 münden gemäß der Darstellung in den Figuren 2 und 3 die jeweiligen Niederdruckanschlüsse 2 der weiteren Zylinder 1 der Verbrennungskraftmaschine 36. Die Sammelleitung 3 erstreckt sich zu dem Mittel zum Aufrechterhalten des Kraftstoffdruckes, welches gemäß den in den Figuren 2 und 3 schematisch angedeuteten Ausführungsvarianten entweder als ein Druckhalteventil 8 ausgebildet sein kann oder durch die Elektrokraftstoffpumpe 6 zur Kraftstoffversorgung der Verbrennungskraftmaschine 36 oder zur Beaufschlagung einer Hochdruckpumpe 34 gebildet werden kann. In der Sammelleitung 3, in welche die jeweiligen Niederdruckanschlüsse 2 der Zylinder 1, ausgehend von den Kraftstoffinjektoren 38 münden und den Mitteln 6, 8 zum Aufrechterhalten des Kraftstoffdruckes im Systemraum 20 ist das Drosselelement 7 aufgenommen. Der Niederdruckanschluss 2 kann zum Beispiel als eine Verschraubung 17 ausgebildet sein, so dass bei den innerhalb des Systemdruckraumes 20 herrschenden Drücken eine leckagefreie Abdichtung zwischen dem Systemraum 20 und in dem Niederdruckanschluss 2 gewährleistet ist.
  • Gemäß der Darstellung in Fig.4 umfasst der hydraulische Übersetzer 13 ein Gehäuse 44, welches den hydraulischen Kopplungsraum 14 begrenzt. Das Gehäuse 44 stützt sich einerseits über eine Schraubenfeder an einer am Stellkolben 18 des Aktors 11 aufgenommenen Stützscheibe ab und das andererseits über eine weitere Schraubenfeder vorgespannt an einer Stützscheibe, die am Betätigungskolben 15 aufgenommen ist. Der Durchmesser des Stellkolbens 18 ist größer bemessen als der Durchmesser des Betätigungskolbens 15, so dass eine hydraulische Druckübersetzung durch Zwischenschaltung des hydraulischen Kopplungsraums 14 erreicht wird. Der Betätigungskolben 15 wirkt auf einen Führungskolben 23. Der Führungskolben 23 seinerseits ist in einem Ablaufkanal 22 geführt, welcher im Gehäuse 39 des Kraftstoffinjektors 38 vorgesehen ist. Über den Ablaufkanal 22 sind der Systemraum 20 sowie der Steuerraum 24 miteinander verbunden. Der Ablaufkanal 22, der den Systemraum 20 sowie den Steuerraum 24 miteinander verbindet, wird über ein Schließelement 19 verschlossen bzw. freigegeben. Das Schließelement 19 ist in der Darstellung gemäß Fig. 4 in seine Schließstellung, d.h. seinen Schließelementsitz 21 gestellt, welcher an der Mündungsstelle des Ablaufkanals 22 in den Steuerraum 24 ausgebildet ist. An einer Stirnseite ist das beispielsweise halbkugelförmig ausbildbare Schließelement 19 über ein Federelement 26 vorgespannt. Das Federelement 26, bei es sich um eine Tellerfeder handeln kann, stützt sich auf einer Stirnseite 29 eines nadelförmig ausgebildeten Einspritzventilglieds 27 ab. Der Steuerraum 24 ist über eine Hochdruckleitung, die an einem der Hochdruckanschlüsse 40 eines Hochdrucksammelraums 31 (Common Rail) angeschlossen ist, stets mit unter hohem Druck stehenden Kraftstoff beaufschlagt. Der Hochdrucksammelraum 31 wird seinerseits über eine Versorgungsleitung 32 über eine Hochdruckpumpe 34 mit unter hohem Druck stehendem Kraftstoff beaufschlagt und speichert diesen. Der Hochdruckpumpe 34 kann- je nach Konfiguration des Einspritzsystems der Verbrennungskraftmaschine 36 - eine als Vorförderpumpe wirkende Elektrokraftstoffpumpe 6 vorgeschaltet sein.
  • Der Systemraum 20 des Kraftstoffinjektors 38 auf dessen Niederdruckseite 10 kann einerseits durch eine dünnwandig ausgebildete Wand 43 begrenzt sein, andererseits kann der Systemraum 20 auch durch einen Faltenbalg 42 abgedichtet sein. Insbesondere die Ausbildung einer Begrenzung des Systemraums 20 über einem verformbaren Faltenbalg 42 bietet in vorteilhafter Weise die Möglichkeit, Längungen bei Bestromung des Aktors 11 aufgrund einer Längenausdehnung des Piezo-Kristallstapels 12 auszugleichen unter gleichzeitiger Aufrechterhaltung der Abdichtwirkung. Über den im Systemraum 20 herrschenden Druck erfolgt eine Befüllung des hydraulischen Kopplungsraums 14. Zwischen dem Gehäuse 44, welches den hydraulischen Kopplungsraum 14 umschließt, und dem Betätigungskolben 15 sowie dem Stellkolben 18 sind Spalte ausgebildet, über welche das Kraftstoffvolumen auf der Niederdruckseite 10 des Kraftstoffinjektors 38 auch zur Erstbefüllung des hydraulischen Kopplungsraums 14 in diesen eintritt.
  • Zunächst wird der Fall betrachtet, indem das in Fig. dargestellte Kraftstoffeinspritzsystem für direkt einspritzende Verbrennungskraftmaschinen ein Druckhalteventil 8 auf der Niederdruckseite 10 des Kraftstoffinjektors 38 umfasst.
  • Wird bei einem solcherart konfigurierten Kraftstoffeinspritzsystem für direkt einspritzende Verbrennungskraftmaschinen 36 der Steuerraum 24 über die Bestromung des Aktors 11 druckentlastet, strömt aus dem Steuerraum 24 Kraftstoff über den Ablaufkanal 22 in den Systemraum 20 über. Vom Systemraum 20 aus strömt das aus dem Steuerraum 24 abgesteuerte Kraftstoffvolumen über den Anschluss 17 in den Niederdruckanschluss 2 über. Sämtliche Niederdruckanschlüsse 2 der Kraftstoffinjektoren 38 münden in die Sammelleitung 3. Die weiteren Kraftstoffinjektoren 38 der Verbrennungskraftmaschine 36 sind in Fig. 4 nur schematisch angedeutet. In der Sammelleitung 3 ist die Drossel 7 vor dem injektorseitigen Eingang 41 des Druckhalteventils 8 aufgenommen. Durch die Drosselstelle 7 in der Sammelleitung 3 kann in vorteilhafter Weise gewährleistet werden, dass sich der zur Befüllung des hydraulischen Kopplungsraums 14 notwendige Druck in hohen Lastpunkten einstellt. Bei niedrigen Lastpunkten hingegen kann das zur Befüllung des hydraulischen Kopplungsraums 14 notwendige Druckniveau über das Druckhalteventil 8 aufgebracht werden. Bei niedrigen Lastpunkten ist das Druckniveau auf der Niederdruckseite 10 des Kraftstoffinjektors 38 im Systemraum 20 so bemessen, dass eine Befüllung des hydraulischen Kopplungsraums 14 über die Spalte zwischen dem Gehäuse 44 und dem Stellkolben 18 einerseits sowie über den Spalt zwischen dem Betätigungskolben 15 und dem Gehäuse 44 des Druckübersetzers 13 andererseits erfolgen kann. In niedrigen Lastpunkten herrschen nach der Drossel 7 nur noch die geringen Drücke, die durch das Druckhalteventil erzeugbar sind, wodurch die wesentliche Entlastung der Niederdruckseite 10 des Kraftstoffinjektors 38 erreicht wird. Mit der Dimensionierung des Drosseldurchmessers der Drosselstelle 7, oder des Öffnungsdrucks des Druckhalteventils 8 - in dieser Konfiguration eines Kraftstoffeinspritzsystems - kann im Bedarfsfall der für die Befüllung des hydraulischen Kopplungsraums 14 über den Systemraum 20 erforderlich Druck eingestellt werden.
  • In der oben beschriebenen Ausführungsvariante eines Kraftstoffeinspritzsystems für Verbrennungskraftmaschinen erfolgt die Förderung von Kraftstoff aus dem Kraftstofftank 35 zu Hochdruckpumpe 34, in der eine Kompression des Kraftstoffs auf einen sehr hohen Druck von etwa 1500 bar und mehr erfolgt, über eine erste Kraftstoffzuleitung 8.1.
  • Ist gemäß einer Variante eines Kraftstoffeinspritzsystems eine Elektrokraftstoffpumpe 6, welches in diesem Fall das Mittel zum Halten des Druckes darstellt, vorgesehen, so erfolgt bei einer Druckentlastung des Steuerraums 24 durch Bestromung des Aktors 11 ein Abströmen von Kraftstoffvolumen aus dem Steuerraum 24 in den Systemraum 20 analog zur oben dargestellten Ausführungsvariante eines Kraftstoffsystems mit Druckhalteventil 8. Vom Systemraum 20 strömt der Kraftstoff über den Anschluss 17 in den Niederdruckanschluss 2, was für sämtliche Kraftstoffinjektoren 38 gilt, die entsprechend der Zylinderzahl der mit Kraftstoff zu versorgenden Verbrennungskraftmaschine 36 an dieser vorgesehen sind. In diesem Falle ist in der Sammelleitung 3, in welche sämtliche Niederdruckanschlüsse 2 der Kraftstoffinjektoren 38 münden, ebenfalls eine Drosselstelle 7 ausgebildet. Die Drosselstelle 7 befindet an der Mündungsstelle sämtlicher Niederdruckanschlüsse 2 in die Sammelleitung 3 vor dem eingangsseitigen Ende 41 der als Vorlaufförderpumpe dienenden Elektrokraftstoffpumpe 6. Die Elektrokraftstoffpumpe 6 fördert Kraftstoff aus dem Kraftstofftank 35 und über die zweite Kraftstoffzuleitung 6.1 zur Hochdruckpumpe 34. Die Hochdruckpumpe 34 wiederum beaufschlagt den Hochdrucksammelraum 31 (Common Rail) über die Versorgungsleitung 32 mit unter sehr hohem Druck stehenden Kraftstoff. Das Kraftstoffniveau liegt im Bereich zwischen etwa 1500 und 1600 bar.
  • In diesem Falle wird durch die Drosselstelle 7 bei hohen Lastpunkten erreicht, dass sich aufgrund des im Systemraum 10 herrschenden Druckes eine Befüllung des hydraulischen Kopplungsraums 14 über die Leckspalte zwischen dem Verdrängerkolben 18 und dem Gehäuse 44 bzw. dem Betätigungskolben 15 und dem Gehäuse 44 einstellt. Bei kleinen Lastpunkten kann der zur Befüllung des Kopplers notwendige Druck durch die als Vorförderaggregat dienende Elektrokraftstoffpumpe 6 aufrechterhalten werden. Dadurch herrschen nach der Drosselstelle 7 nur noch die geringen Drücke der Elektrokraftstoffpumpe, die etwa zwischen 3 und 8 bar liegen können. Dadurch lässt sich eine wesentliche Entlastung der Niederdruckseite 10 des Kraftstoffinjektors 10 erreichen. Durch die Wahl des Durchmessers der Drosselstelle 7 in der Sammelleitung 3 bzw. des Förderdrucks der Elektrokraftstoffpumpe 6 kann im Bedarfsfall der Druck im Systemraum 20 zur Befüllung des hydraulischen Kopplungsraums 14 durch dessen Führungsspalte verändert werden. Wird eine Elektrokraftstoffpumpe 6 zusammen mit einer Hochdruckpumpe 34 eingesetzt, so dient die dem Kraftstofftank zugeordnete Elektrokraftstoffpumpe 6 als Vorförderaggregat für die Hochdruckpumpe 34, die nicht selbstansaugend ausgebildet ist. Die Versorgungsleitung 6.1 zweigt in diesem Falle von der Kraftstoffleitung, die dem Kraftstofftank 35 zugeordnet ist, ab und führt zur Hochdruckpumpe 34.
  • Durch die Auslegung des Drosseldurchmessers der Drossel 7 in der Sammelleitung 3, der Einstellung des Öffnungsdruckes des Druckhalteventils 8 bzw. des Förderdrucks der Elektrokraftstoffpumpe 6 können unterschiedliche Befülldrücke zur Befüllung des hydraulischen Kopplungsraums 14 des hydraulischen Übersetzers 13 je nach Erfordernis, voreingestellt werden.
  • Durch die erfindungsgemäß vorgeschlagene Aufnahme einer Drosselstelle 7 in der Sammelleitung 3 kann sowohl eine Elektrokraftstoffpumpe 6 als auch ein Druckhalteventil 8 hinsichtlich seiner Druckbelastung in hohen Lastpunkten der Verbrennungskraftmaschine 36 mechanisch entlastet werden, was eine wesentliche Entlastung des Niederdrucksystems 10 des Kraftstoffinjektors 38 zur Folge hat. Das Druckhalteventil 8 sowie die Elektrokraftstoffpumpe 6 können daher hinsichtlich ihrer Festigkeit kleiner dimensioniert werden. Insbesondere wird durch die erfindungsgemäß vorgeschlagene Lösung vermieden, zusätzlich zu fertigende bzw. zu bewegende mechanische Komponenten einzusetzen, wodurch auch Einstellvorgänge an diesen zusätzlich vorzusehenden Innenteilen entfallen können.
  • Bezugszeichenliste
  • 1
    Zylinder
    2
    Niederdruckanschluss
    3
    Sammelleitung
    4
    Druckhalteventil
    5
    Kraftstoffrücklauf
    6
    Elektrokraftstoffpumpe
    6.1
    erste Versorgungsleitung
    7
    Drossel
    8
    Druckhalteventil
    8.1
    zweite Versorgungsleitung
    9
    Hochdrucksystem Kraftstoffinjektor
    10
    Niederdrucksystem Kraftstoffinjektor
    11
    Aktor
    12
    Piezo-Kristallstapel
    13
    hydraulischer Übersetzer
    14
    hydraulischer Kopplungsraum
    pK
    Kopplungsraumdruck
    15
    Betätigungskolben
    16
    Stirnfläche Betätigungskolben
    17
    Anschluss
    18
    Stellkolben
    19
    Schließelement
    20
    Systemraum
    21
    Schließelement-Sitz
    22
    Ablaufkanal
    23
    Führungskolben
    24
    Steuerraum
    25
    Steuerraum-Zulauf
    26
    Federelement
    27
    Einspritzventilglied
    29
    Stirnseite Einspritzventilglied
    31
    Hochdrucksammelraum (Common Rail)
    32
    Versorgungsleitung
    34
    Hochdruck-Pumpe
    35
    Kraftstofftank
    36
    Verbrennungskraftmaschine
    37
    Zylinderkopfbereich
    38
    Kraftstoffinjektor
    39
    Gehäuse
    40
    Hochdruckanschlüsse
    41
    injektorseitiger Eingang von 6, 8
    42
    Faltenbalg
    43
    Wandung
    44
    Gehäusekopplungsraum

Claims (10)

  1. Kraftstoffeinspritzsystem für Brennkraftmaschinen mit mehreren Kraftstoffinjektoren (38), wobei die Kraftstoffinjektoren (38) je einen Hochdruckanschluss (40) und je einen Niederdruckanschluss (2) aufweisen und die Niederdruckanschlüsse (2) in mindestens eine Sammelleitung (3) münden, und die Kraftstoffinjektoren (8) über einen piezoelektrischen Aktor (11) betätigbar sind, mit einem zwischen der Sammelleitung (3) und einem drucklosen Kraftstoffrücklauf (5), (35) angeordneten Mittel (6, 8) zum Aufrechterhalten des Kraftstoffdruckes und der Kraftstoffinjektor (38) einen Systemraum (20) enthält, in der ein zur Befüllung eines hydraulischen Kopplungsraums (14) geeignetes Druckniveau herrscht, dadurch gekennzeichnet, dass zwischen der Mündung der Niederdruckanschlüsse (2) der Kraftstoffinjektoren in die Sammelleitung (3) und dem injektorseitigen Eingang (41) des Mittels (6, 8) zum Aufrechterhalten des Kraftstoffdrucks in der Sammelleitung (3) eine Drossel (7) angeordnet ist.
  2. Kraftstoffeinspritzsystem gemäß Anspruch 1, dadurch gekennzeichnet, dass das Mittel zum Aufrechterhalten des Kraftstoffdrucks auf der Niederdruckseite als Druckhalteventil (8) ausgeführt ist.
  3. Kraftstoffeinspritzsystem gemäß Anspruch 1, dadurch gekennzeichnet, dass das Mittel zum Aufrechterhalten des Kraftstoffdruckes auf der Niederdruckseite durch eine Elektrokraftstoffpumpe (6) dargestellt wird.
  4. Kraftstoffeinspritzsystem gemäß Anspruch 1, dadurch gekennzeichnet, dass die Hochdruckanschlüsse (40) der Kraftstoffinjektoren (38) von mindestens einem Hochdrucksammelraum (31) mit unter hohem Druck stehenden Kraftstoff beaufschlagt sind.
  5. Kraftstoffeinspritzsystem gemäß Anspruch 1, dadurch gekennzeichnet, dass der Hub des Piezoaktors (11, 12) über ein Hydraulikmedium, insbesondere Kraftstoff, mittels eines hydraulischen Kopplerraums (14) des hydraulischen Übersetzers (13) auf ein Einspritzventilglied (27) übertragbar ist, wobei der hydraulische Kopplerraum (14) über die mindestens eine Drossel (7) mit dem Hydraulikmedium befüllbar ist.
  6. Kraftstoffeinspritzsystem gemäß Anspruch 1, dadurch gekennzeichnet, dass sich in höheren Lastbereichen einer Verbrennungskraftmaschine (36) über die Drossel (7) in der Sammelleitung (3) ein Kopplungsraumdruck pK aufrecht erhalten lässt.
  7. Kraftstoffeinspritzsystem gemäß der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der zur Befüllung des hydraulischen Kopplungsraums (14) erforderliche Druck bei kleinen Lastpunkten der Verbrennungskraftmaschine (36) durch das Druckhalteventil (8) oder die Elektrokraftstoffpumpe (6) aufrechterhalten wird.
  8. Kraftstoffeinspritzsystem gemäß Anspruch 1, dadurch gekennzeichnet, dass die Erstbefüllung des hydraulischen Kopplungsraums (14) über Leckspalte zwischen einem Betätigungskolben (15) und einem Gehäuse (44) und/oder über Leckspalte zwischen einem Stellkolben (18) und dem Gehäuse (44) erfolgt, wobei das Gehäuse (44) vom Systemraum (20) umschlossen ist.
  9. Kraftstoffinjektor gemäß Anspruch 3, dadurch gekennzeichnet, dass die Elektrokraftstoffpumpe (6) auf der Niederdruckseite (10) des Kraftstoffinjektors (38) einer Hochdruckpumpe (34) vorgeschaltet ist.
  10. Kraftstoffinjektor gemäß Anspruch 2, dadurch gekennzeichnet, dass das Druckhalteventil (8) in der Sammelleitung (3) einem Kraftstofftank (35) vorgeschaltet ist.
EP04724527A 2003-05-22 2004-03-31 Kraftstoffeinspritzsystem für brennkraftmaschinen Expired - Lifetime EP1642021B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323177A DE10323177A1 (de) 2003-05-22 2003-05-22 Kraftstoffeinspritzsystem für Brennkraftmaschinen
PCT/DE2004/000665 WO2004111431A1 (de) 2003-05-22 2004-03-31 Kraftstoffeinspritzsystem für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1642021A1 EP1642021A1 (de) 2006-04-05
EP1642021B1 true EP1642021B1 (de) 2007-08-29

Family

ID=33441154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04724527A Expired - Lifetime EP1642021B1 (de) 2003-05-22 2004-03-31 Kraftstoffeinspritzsystem für brennkraftmaschinen

Country Status (9)

Country Link
US (1) US7270114B2 (de)
EP (1) EP1642021B1 (de)
JP (1) JP4532495B2 (de)
KR (1) KR101016133B1 (de)
CN (1) CN100394022C (de)
AT (1) ATE371810T1 (de)
DE (2) DE10323177A1 (de)
ES (1) ES2289503T3 (de)
WO (1) WO2004111431A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060555A1 (de) * 2004-12-16 2006-06-22 Robert Bosch Gmbh Vorrichtung zur Ermittlung der Kraftstoffrücklaufmenge eines Injektors einer Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
DE102005033634A1 (de) * 2005-07-19 2007-01-25 Robert Bosch Gmbh Hochdruck-Kraftstoffpumpe für ein Kraftstoff-Einspritzsystem einer Brennkraftmaschine
DE102006061690A1 (de) 2006-12-28 2008-07-03 Robert Bosch Gmbh Druckhalteventil mit Membranelement
DE102007052092B4 (de) * 2007-10-31 2011-06-01 Continental Automotive Gmbh Verfahren und Kraftstoffsystem zum Steuern der Kraftstoffzufuhr für eine Brennkraftmaschine
DE102008001743A1 (de) 2008-05-14 2009-11-19 Robert Bosch Gmbh Kraftstoffeinspritzsystem
JP5099034B2 (ja) * 2009-02-12 2012-12-12 株式会社デンソー 燃料噴射弁
GB201117160D0 (en) * 2011-10-05 2011-11-16 Rolls Royce Goodrich Engine Control Systems Ltd Fuel system
US11280306B1 (en) 2021-01-15 2022-03-22 Caterpillar Inc. Fuel injector having dry-running protection valve and fuel system using same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625192A (en) * 1969-12-12 1971-12-07 Allis Chalmers Mfg Co Fuel injection nozzle with hydraulic valve-closing means
DE2500644C2 (de) * 1975-01-09 1988-07-07 Klöckner-Humboldt-Deutz AG, 5000 Köln Kraftstoffeinspritzventil für Brennkraftmaschinen
DE2801976A1 (de) * 1978-01-18 1979-07-19 Bosch Gmbh Robert Kraftstoffeinspritzsystem
JPS57167256U (de) * 1981-04-16 1982-10-21
DE3516456A1 (de) * 1985-05-08 1986-11-13 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
US5487508A (en) * 1994-03-31 1996-01-30 Caterpillar Inc. Injection rate shaping control ported check stop for a fuel injection nozzle
DE19629646C2 (de) * 1996-07-23 1998-09-10 Wolf Gmbh Richard Verfahren und Vorrichtung zur automatischen Identifikation von Komponenten medizinischer Gerätesysteme
KR100354216B1 (ko) 1996-08-29 2003-02-20 미쯔비시 지도샤 고교 가부시끼가이샤 연료분사장치
DE19941703A1 (de) * 1999-09-02 2001-03-08 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1138907B1 (de) * 2000-04-01 2006-10-04 Robert Bosch GmbH Kraftstoffeinspritzsystem
DE10104634A1 (de) 2001-02-02 2002-09-19 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen mit verbesserter Druckversorgung der Injektoren
DE10113654A1 (de) * 2001-03-21 2002-09-26 Bosch Gmbh Robert Kraftsotffeinspritzeinrichtung für Brennkraftmaschinen
JP2003021017A (ja) * 2001-07-10 2003-01-24 Bosch Automotive Systems Corp 蓄圧式燃料噴射装置
DE10145620B4 (de) * 2001-09-15 2006-03-02 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
DE10154802A1 (de) * 2001-11-08 2003-05-22 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10158951A1 (de) * 2001-12-03 2003-06-12 Daimler Chrysler Ag Mit Druckübersetzung arbeitendes Einspritzsystem
JP4244683B2 (ja) * 2002-06-24 2009-03-25 トヨタ自動車株式会社 内燃機関の燃料噴射装置
JP2005069135A (ja) * 2003-08-26 2005-03-17 Toyota Motor Corp 燃料噴射装置

Also Published As

Publication number Publication date
US7270114B2 (en) 2007-09-18
DE10323177A1 (de) 2004-12-09
KR101016133B1 (ko) 2011-02-17
KR20060006970A (ko) 2006-01-20
JP2007500817A (ja) 2007-01-18
ATE371810T1 (de) 2007-09-15
CN100394022C (zh) 2008-06-11
US20070012293A1 (en) 2007-01-18
JP4532495B2 (ja) 2010-08-25
ES2289503T3 (es) 2008-02-01
WO2004111431A1 (de) 2004-12-23
EP1642021A1 (de) 2006-04-05
CN1795326A (zh) 2006-06-28
DE502004004822D1 (de) 2007-10-11

Similar Documents

Publication Publication Date Title
EP1714025B1 (de) Kraftstoffinjektor mit direktgesteuertem einspritzventilglied
EP1688611B1 (de) Kraftstoffinjektor mit direkter Nadelsteuerung für eine Brennkraftmaschine
EP1440237B1 (de) Ventil zum steuern von flüssigkeiten
EP1613856B1 (de) Servoventilangesteuerter kraftstoffinjektor mit druckübersetzer
EP1756415B1 (de) Kraftstoffinjektor mit variabler aktorübersetzung
WO2001014724A1 (de) Kraftstoffeinspritzeinrichtung
EP1520099B1 (de) Druckübersetzer kraftstoffinjektor mit schnellem druckabbau bei einspritzende
WO2002044540A2 (de) Kraftstoffeinspritzeinrichtung mit modularem aufbau
EP1125054B1 (de) Verfahren und vorrichtung zur durchführung einer kraftstoffeinspritzung
EP1379775A1 (de) Ventil zum steuern von flüssigkeiten
EP1509694B1 (de) Hochdruckspeicher für kraftstoffeinspritzsysteme mit integriertem druckregelventil
DE10024268A1 (de) Vorrichtung zur Benzindirekteinspritzung in einer Kolbenbrennkraftmaschine
EP1613855B1 (de) Kraftstoffinjektor mit leckagefreiem servoventil
EP1125045B1 (de) Kraftstoffeinspritzsystem für eine brennkraftmaschine
EP1584814B1 (de) Servoventilangesteuerter Kraftstoffinjektor
EP1864017A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
EP1651862B1 (de) Schaltventil für einen kraftstoffinjektor mit druckübersetzer
EP1556605B1 (de) Kraftstoffeinspritzeinrichtung mit druckübersetzer und fördermengenreduziertem niederdruckkreis
EP1642021B1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
EP1558843B1 (de) Kraftstoff-einspritzeinrichtung für brennkraftmaschinen
EP1682769B1 (de) Kraftstoffinjektor mit mehrteiligem, direktgesteuertem einspritzventilglied
EP1872008B1 (de) Zweistufig öffnender kraftstoffinjektor
WO2005015000A1 (de) Schaltventil mit druckausgleich für einen kraftstoffinjektor mit druckverstärker
EP1983186B1 (de) Druckausgeglichenes Stellelement
EP1595074A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004004822

Country of ref document: DE

Date of ref document: 20071011

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071101

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2289503

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080530

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071129

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080301

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230315

Year of fee payment: 20

Ref country code: GB

Payment date: 20230323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 20

Ref country code: ES

Payment date: 20230414

Year of fee payment: 20

Ref country code: DE

Payment date: 20230524

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004004822

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240401

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240330

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG