EP1125045B1 - Kraftstoffeinspritzsystem für eine brennkraftmaschine - Google Patents

Kraftstoffeinspritzsystem für eine brennkraftmaschine Download PDF

Info

Publication number
EP1125045B1
EP1125045B1 EP00958195A EP00958195A EP1125045B1 EP 1125045 B1 EP1125045 B1 EP 1125045B1 EP 00958195 A EP00958195 A EP 00958195A EP 00958195 A EP00958195 A EP 00958195A EP 1125045 B1 EP1125045 B1 EP 1125045B1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
injection
injector
injection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00958195A
Other languages
English (en)
French (fr)
Other versions
EP1125045A1 (de
Inventor
Bernd Mahr
Martin Kropp
Hans-Christoph Magel
Wolfgang Otterbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1125045A1 publication Critical patent/EP1125045A1/de
Application granted granted Critical
Publication of EP1125045B1 publication Critical patent/EP1125045B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/16Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor characterised by the distributor being fed from a constant pressure source, e.g. accumulator or constant pressure positive displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0007Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/21Fuel-injection apparatus with piezoelectric or magnetostrictive elements

Definitions

  • the invention is based on a fuel injection system for an internal combustion engine according to the preamble of the claim 1.
  • Such a fuel injection system is, for example through EP 0 711 914 A1.
  • a valve body for example a nozzle needle
  • a closing force for example a closing force
  • the pressure at which fuel emerges from the nozzle chamber into the cylinder is referred to as the injection pressure
  • a system pressure is understood to mean the pressure under which fuel is available or is stored in the injection system.
  • a stroke-controlled fuel injection system is understood in the context of the invention that the opening and closing of the injection opening of an injector take place with the aid of a displaceable valve member due to the hydraulic interaction of the fuel pressures in a nozzle chamber and in a control chamber.
  • a displaceable valve member due to the hydraulic interaction of the fuel pressures in a nozzle chamber and in a control chamber.
  • this switchover being able to take place either centrally, ie before the fuel is distributed to the individual cylinders, or locally, ie for each cylinder individually.
  • a disadvantage of this known injection system is that initially all of the fuel must first be compressed to the higher system pressure level, then a part of the fuel back to the lower system pressure level.
  • a stroke-controlled injection system is known from WO 98 09068 A.
  • the fuel from a fuel tank to two different high system pressures each compressed by a pump and conveyed to a pressure accumulator.
  • a valve control can either use the higher or lower system pressure for a Injection can be directed into the nozzle space of an injector.
  • the fuel injection system according to the invention which is pressure-controlled or stroke-controlled can be, has the characteristic features of the to increase the efficiency Claim 1 on.
  • the lower amount of fuel according to the invention leads to the higher system pressure in addition to a higher degree of efficiency and less stress on the Pump components and, since the higher system pressure is not opposite Normal pressure, but only compared to the other high, however Sealing deeper system pressure is a better one Sealing and therefore less leakage.
  • a quantity-controlled two-stage high-pressure pump 2 delivers fuel 3 from a storage tank 4 at high pressure via a delivery line 5 into a central pressure accumulator 6 (high-pressure common rail), of which several, the number individual cylinders discharge corresponding high-pressure lines 7 to the individual injectors 8 (injection device) projecting into the combustion chamber of the internal combustion engine to be supplied. Only one of the injectors 8 is shown in FIG. 1a.
  • a system pressure of approximately 300 bar to 1800 bar can be stored in this pressure accumulator 6.
  • Another central pressure accumulator (low-pressure common rail) 9 is used to inject fuel with a lower system pressure for pre-injection and post-injection (HC enrichment for exhaust gas aftertreatment and soot reduction) as well as for displaying an injection process with a plateau (boat injection) discharge to the injectors 8 analogously to the high-pressure lines 10 .
  • the fuel is compressed to this lower system pressure of, for example, 300 bar and stored in the pressure accumulator 9.
  • the pressure generation is regulated to the higher system pressure up to approximately 1800 bar and stored in the pressure accumulator 6.
  • the injection takes place via a combined local fuel metering with the help of the injectors 8.
  • the injector 8 has a piston-shaped valve member 11 which is axially displaceable in a guide bore and has a conical valve sealing surface 12 at one end, with which it has a valve seat surface on the injector housing of the injector 8 interacts. Injection openings 13 are provided on the valve seat surface of the injector housing.
  • a nozzle chamber 14 and a control chamber 15 are formed within the guide bore.
  • the nozzle chamber 14 arises due to a reduction in the cross section of the valve member 11.
  • the nozzle chamber 14 and the control chamber 15 are continuously connected to one of the two pressure accumulators 6, 9 via pressure lines 16 and 17 and a 3/2-way valve 18 .
  • the nozzle chamber 14 continues through an annular gap between the valve member 11 and the guide bore up to the valve seat surface of the injector housing.
  • a pressure piece 22 to the control chamber 15 is limited.
  • the spring chamber 19 is connected to the storage tank 4 via a leakage line 21 for fuel return.
  • the control chamber 15 has an inlet with a first throttle 28 and an outlet to a pressure relief line 25 with a second throttle 24 , which is controlled by a 2/2-way valve 26 , from the fuel pressure connection.
  • the nozzle chamber 14 continues through an annular gap between the valve member 11 and the guide bore up to the valve seat surface of the injector housing.
  • the pressure piece 22 is pressurized in the closing direction by the pressure in the control chamber 15.
  • the 2/2 and 3/2 way valves 18, 26 are made by electromagnets to open or close or to switch the Fuel lines 7 and 10 actuated.
  • the electromagnets are controlled by a control device that different Operating parameters (engine speed, ...) of the supply Monitor and process the internal combustion engine.
  • the respective pressure in the two pressure reservoirs 6, 9 can detected by means of pressure sensors and by means of a control device be kept constant.
  • the pressure in the control chamber 15 can be reduced, so that the pressure in the nozzle chamber 14 acting in the opening direction exceeds the pressure acting on the valve member 11 in the closing direction ,
  • the valve sealing surface 12 lifts off the valve seat surface and fuel is injected.
  • the relief process of the control chamber 15 and thus the stroke control of the valve member 11 can be influenced by the dimensioning of the throttle 24 and a further throttle 28 .
  • the end of the injection process is initiated by renewed actuation (closing) of the 2/2-way valve 26, which connects the control chamber 15 to the pressure line 17 again, so that a pressure builds up in the control chamber 15 again, the valve member 11 in the closing direction can move.
  • the 3/2-way valve 18 can also be a 2/2-way valve and a check valve to be replaced.
  • Piezo actuators are also used, which are necessary Temperature compensation and a possible force or have path translation.
  • Pressure accumulator for the two system pressures can also be used combined pressure accumulator (combined rail) provided his.
  • An outer pressure storage space encloses the lower system pressure an internal pressure storage space with the higher system pressure. In this way, minor occur Pressure gradients on a housing of the pressure storage spaces exposure to lower material loads and, for example the formation of an even higher pressure in the Allow high pressure storage space.
  • the 3/2-way valve 18 in the fuel injection system shown in FIG. 1 b is not arranged in the injector but instead outside the injector 8 a, for example in the region of the pressure accumulators 6, 9.
  • a smaller size of the injector 8a and an increased injection pressure can be achieved by utilizing wave reflections in the now longer pressure lines 16.
  • fuel is conveyed from a fuel tank 31 to the injectors 32 of four cylinders and from there via injection openings 33 into the combustion chamber 34 of the respective cylinder.
  • a quantity-controlled two-stage high-pressure pump 35 is used to generate two different, high system pressures.
  • the fuel In the first, lower pump stage, the fuel is compressed to a first high system pressure of approximately 300 bar, which is stored in a first pressure accumulator 36 (first rail).
  • first pressure accumulator 36 first rail
  • second, higher pump stage the fuel is compressed to a second, higher system pressure of approximately 300 bar to approximately 1800 bar and then stored in a second pressure accumulator 37 (second rail).
  • a control circuit with a pressure sensor is provided for each of the two pressure accumulators 36, 37.
  • the lower system pressure level can be used for the pre-injection and, if necessary, for the post-injection as well as for the main injection if a low injection pressure is required.
  • a 2/2-way valve 38 for the high pressure side is provided as the switching element for each cylinder or injector 32, the output of which from the low pressure side is provided by a check valve 39 (or by a third / 2-way valve) is disconnected.
  • a 3/2-way valve 40 the respectively prevailing pressure is then conducted via a line 41 into the nozzle chamber 42 of the injector 2, which is designed in a pressure-controlled manner. That is, its nozzle needle 43 , which seals the injection openings 33, is opened by the pressure prevailing in the nozzle chamber 32 against the action of a closing force.
  • an injection with a lower injection pressure takes place by energizing the 3/2-way valve 10.
  • a switch is then made for an injection with a high injection pressure, the check valve 39 causing an undesired return from the high pressure side to the Low pressure side prevented.
  • the 3/2-way valve 40 is switched to leakage 44 . This relieves on the one hand the line 41 and on the other hand the nozzle space 42, so that the spring-loaded nozzle needle 43 closes the injection openings 33 again.
  • valve arrangement formed from the two valves 38, 40 and the check valve 39 is located in the injector 32 in the exemplary embodiment in FIG. 2a, in the injection system shown in FIG. 2b this valve arrangement is outside the injector 32a , for example in the region of the pressure accumulator 36. 37 arranged. In this way, a smaller size of the injector 32a and an increased injection pressure can be achieved by utilizing wave reflections in the now longer injection line.
  • the two-stage high-pressure pump 35 shown in FIG. 2 is replaced by a high-pressure pump 35a which only feeds the first pressure accumulator 37 and a high-pressure pump 35b which only feeds the second pressure accumulator 36.
  • the 3/2-way valves can also each with a combination of two 2/2-way valves be replaced.
  • For switching the two system pressure levels is also an arrangement of 2/2-way valve and check valve possible with a given relief of the injector.

Description

Stand der Technik
Die Erfindung geht aus von einem Kraftstoffeinspritzsystem für eine Brennkraftmaschine nach der Gattung des Patentanspruchs 1.
Ein derartiges Kraftstoffeinspritzsystem ist beispielsweise durch die EP 0 711 914 A1 bekanntgeworden.
Zum besseren Verständnis der nachfolgenden Beschreibung werden zunächst einige Begriffe näher erläutert: Bei einem druckgesteuerten Kraftstoffeinspritzsystem wird durch den im Düsenraum eines Injektors herrschenden Kraftstoffdruck ein Ventilkörper (z.B. eine Düsennadel) gegen die Wirkung einer Schließkraft aufgesteuert und so die Einspritzöffnung für eine Einspritzung des Kraftstoffes freigegeben. Der Druck, mit dem Kraftstoff aus dem Düsenraum in den Zylinder austritt, wird als Einspritzdruck bezeichnet, während unter einem Systemdruck der Druck verstanden wird, unter dem Kraftstoff im Einspritzsystem zur Verfügung steht bzw. bevorratet ist. Unter einem hubgesteuerten Kraftstoffeinspritzsystem wird im Rahmen der Erfindung verstanden, daß das Öffnen und Schließen der Einspritzöffnung eines Injektors mit Hilfe eines verschieblichen Ventilglieds aufgrund des hydraulischen Zusammenwirkens der Kraftstoffdrücke in einem Düsenraum und in einem Steuerraum erfolgen. Bei einer kombinierten Kraftstoffzumessung wird zwischen verschiedenen Einspritzdrücken geschaltet und nur ein gemeinsames Ventil zur Zumessung des Kraftstoffes verwendet, wobei dieses Umschalten entweder zentral, d.h. vor der Kraftstoffverteilung auf die einzelnen Zylinder, oder lokal, d.h. für jeden Zylinder einzeln, erfolgen kann.
Bei dem aus der EP 0 711 914 A1 bekannten druckgesteuerten Einspritzsystem wird mit Hilfe einer Hochdruckpumpe Kraftstoff auf einen ersten hohen Systemdruck von etwa 1200 bar komprimiert und in einem ersten Druckspeicher gespeichert. Weiterhin wird der unter Hochdruck stehende Kraftstoff auch in einen zweiten Druckspeicher gefördert, in welchem durch Regelung seiner Kraftstoffzufuhr mittels eines 2/2-Wegventils ein zweiter hoher Systemdruck von ca. 400 bar aufrechterhalten wird. Über eine Ventilsteuereinheit wird entweder der tiefere oder höhere Systemdruck in den Düsenraum eines Injektors geleitet. Dort wird durch den Druck ein federbelasteter Ventilkörper von seinem Ventilsitz abgehoben, so dass Kraftstoff aus der Düsenöffnung austreten kann.
Nachteilig bei diesem bekannten Einspritzsystem ist, dass zunächst der gesamte Kraftstoff erst auf das höhere Systemdruckniveau komprimiert werden muss, um dann einen Teil des Kraftstoffs wieder auf das tiefere Systemdruckniveau zu entlasten.
Weiterhin ist aus der WO 98 09068 A ein hubgesteuertes Einspritzsystem bekannt, bei dem Kraftstoff aus einem Kraftstofftank auf zwei unterschiedliche hohe Systemdrücke jeweils mittels einer Pumpe verdichtet und jeweils in einen Druckspeicher gefördert wird. Über eine Ventilsteuerung kann entweder der höhere oder tiefere Systemdruck für eine Einspritzung in den Düsenraum eines Injektors geleitet werden.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzsystem, das druckgesteuert oder hubgesteuert sein kann, weist zur Erhöhung des Wirkungsgrades die kennzeichnenden Merkmale des Patentanspruchs 1 auf.
Erfindungsgemäß wird vorgeschlagen, nur den Kraftstoff für den einen Druckspeicher auf das höhere Systemdruckniveau zu komprimieren, während der Kraftstoff für den anderen Druckspeicher nur auf das tiefere Systemdruckniveau komprimiert wird.
Die erfindungsgemäß geringere Kraftstoffmenge auf dem höheren Systemdruck führt außer zu einem höheren Wirkungsgrad auch zu einer geringeren Beanspruchung der Pumpenbestandteile und, da der höhere Systemdruck nicht gegenüber Normaldruck, sondern nur gegenüber dem anderen hohen, aber tieferen Systemdruck abzudichten ist, zu einer besseren Abdichtung und damit zu geringerer Leckage.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung sind der Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.
Zeichnung
Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzsystems sind in der Zeichnung schematisch dargestellt und in der nachfolgenden Beschreibung erläutert. Es zeigen:
Fig. 1a
ein hubgesteuertes Kraftstoffeinspritzsystem mit einer zweistufigen Hochdruckpumpe für zwei Druckspeicher und mit einer kombinierten Kraftstoffzumessung im Injektor;
Fig. 1b
ein hubgesteuertes Kraftstoffeinspritzsystem mit einer zweistufigen Hochdruckpumpe für zwei Druckspeicher und mit einer kombinierten Kraftstoffzumessung außerhalb des Injektors;
Fig. 2a
ein druckgesteuertes Kraftstoffeinspritzsystem mit einer zweistufigen Hochdruckpumpe für zwei Druckspeicher und mit einer kombinierten Kraftstoffzumessung im Injektor;
Fig. 2b
ein druckgesteuertes Kraftstoffeinspritzsystem mit einer zweistufigen Hochdruckpumpe für zwei Druckspeicher und mit einer kombinierten Kraftstoffzumessung außerhalb des Injektors;
Fig. 3
ein druckgesteuertes Kraftstoffeinspritzsystem mit einer zweistufigen Hochdruckpumpe für zwei Druckspeicher und mit einer kombinierten zentralen Kraftstoffzumessung; und
Fig. 4
ein nicht erfindungsgemäß druckgesteuertes Kraftstoffeinspritzsystem mit zwei jeweils von einer Hochdruckpumpe gespeisten Druckspeichern und mit einer kombinierten zentralen Kraftstoffzumessung.
Beschreibung der Ausführungsbeispiele
Bei dem in Fig. 1a dargestellten Ausführungsbeispiel eines hubgesteuerten Kraftstoffeinspritzsystems 1 fördert eine mengengeregelte zweistufige Hochdruckpumpe 2 Kraftstoff 3 aus einem Vorratstank 4 mit hohem Druck über eine Förderleitung 5 in einen zentralen Druckspeicher 6 (Hochdruck-Common-Rail), von dem mehrere, der Anzahl einzelner Zylinder entsprechende Hochdruckleitungen 7 zu den einzelnen, in den Brennraum der zu versorgenden Brennkraftmaschine ragenden Injektoren 8 (Einspritzeinrichtung) abführen. In Fig. 1a ist lediglich einer der Injektoren 8 eingezeichnet. In diesem Druckspeicher 6 kann ein Systemdruck von ca. 300 bar bis 1800 bar gelagert werden. Zur Einspritzung von Kraftstoff mit einem tieferen Systemdruck zur Vor- und Nacheinspritzung (HC-Anreicherung zur Abgasnachbehandlung und zur Rußreduktion) sowie zur Darstellung eines Einspritzverlaufs mit Plateau (Bootinjektion) wird ein weiterer zentraler Druckspeicher (Niederdruck-Common-Rail) 9 verwendet, von dem analog zu den Hochdruckleitungen 10 zu den Injektoren 8 abführen. In der ersten Stufe der Hochdruckpumpe 2 wird der Kraftstoff auf diesen tieferen Systemdruck von z.B. 300 bar komprimiert und in dem Druckspeicher 9 gespeichert. In der zweiten Stufe der Hochdruckpumpe 2 wird die Druckerzeugung auf den höheren Systemdruck bis zu ca. 1800 bar geregelt und in dem Druckspeicher 6 gespeichert.
Die Einspritzung erfolgt über eine kombinierte lokale Kraftstoff-Zumessung mit Hilfe der Injektoren 8. Der Injektor 8 weist ein in einer Führungsbohrung axial verschiebbares kolbenförmiges Ventilglied 11 mit einer konischen Ventildichtfläche 12 an seinem einen Ende auf, mit der es mit einer Ventilsitzfläche am Injektorgehäuse des Injektors 8 zusammenwirkt. An der Ventilsitzfläche des Injektorgehäuses sind Einspritzöffnungen 13 vorgesehen. Innerhalb der Führungsbohrung sind ein Düsenraum 14 und ein Steuerraum 15 ausgebildet. Der Düsenraum 14 entsteht aufgrund einer Querschnittsverringerung des Ventilglieds 11. Der Düsenraum 14 und der Steuerraum 15 sind über Druckleitungen 16 und 17 und ein 3/2-Wege-Ventil 18 ständig mit einem der beiden Druckspeicher 6, 9 durchgängig verbunden. Der Düsenraum 14 setzt sich über einen Ringspalt zwischen dem Ventilglied 11 und der Führungsbohrung bis an die Ventilsitzfläche des Injektorgehäuses fort.
In einem Federraum 19 greift koaxial zu einer Ventilfeder 20 ferner an dem Ventilglied 11 ein Druckstück 22 an, das mit seiner der Ventildichtfläche 12 abgewandten Stirnseite 23 den Steuerraum 15 begrenzt. Der Federraum 19 ist über eine Leckageleitung 21 zur Kraftstoffrückführung mit dem Vorratstank 4 verbunden. Der Steuerraum 15 hat vom Kraftstoffdruckanschluß her einen Zulauf mit einer ersten Drossel 28 und einen Ablauf zu einer Druckentlastungsleitung 25 mit einer zweiten Drossel 24, die durch ein 2/2-Wege-Ventil 26 gesteuert wird. Der Düsenraum 14 setzt sich über einen Ringspalt zwischen dem Ventilglied 11 und der Führungsbohrung bis an die Ventilsitzfläche des Injektorgehäuses fort. Über den Druck im Steuerraum 15 wird das Druckstück 22 in Schließrichtung druckbeaufschlagt.
Die 2/2- und 3/2-Wege-Ventile 18, 26 werden von Elektromagneten zum Öffnen oder Schließen bzw. zum Umschalten der Kraftstoffleitungen 7 und 10 betätigt. Die Elektromagnete werden von einem Steuergerät angesteuert, das verschiedene Betriebsparameter (Motordrehzahl, ....) der zu versorgenden Brennkraftmaschine überwachen und verarbeiten kann. Der jeweilige Druck in den beiden Druckspeichern 6, 9 kann mittels Drucksensoren erfaßt und mittels einer Regeleinrichtung konstant gehalten werden.
Bei Betätigung (Öffnen) des 2/2-Wege-Ventils 26 kann der Druck im Steuerraum 15 abgebaut werden, so daß in der Folge der in Öffnungsrichtung auf das Ventilglied 11 wirkende Druck im Düsenraum 14 den in Schließrichtung auf das Ventilglied 11 wirkenden Druck übersteigt. Die Ventildichtfläche 12 hebt von der Ventilsitzfläche ab und Kraftstoff wird eingespritzt. Dabei läßt sich der Entlastungsvorgang des Steuerraums 15 und somit die Hubsteuerung des Ventilglieds 11 über die Dimensionierung der Drossel 24 und einer weiteren Drossel 28 beeinflussen. Das Ende des Einspritzvorgangs wird durch erneutes Betätigen (Schließen) des 2/2-Wege-Ventils 26 eingeleitet, das den Steuerraum 15 wieder mit der Druckleitung 17 verbindet, so daß sich im Steuerraum 15 wieder ein Druck aufbaut, der das Ventilglied 11 in Schließrichtung bewegen kann.
Das 3/2-Wege-Ventil 18 kann auch durch ein 2/2-Wege-Ventil und ein Rückschlagventil ersetzt werden. Generell können anstelle von mittels Elektromagneten betätigten Ventilen auch Piezostellelemente verwendet werden, die einen notwendigen Temperaturausgleich und eine eventuelle Kraft- bzw. Wegübersetzung besitzen. Anstelle zweier separater Druckspeicher für die beiden Systemdrücke kann auch ein kombinierter Druckspeicher (kombiniertes Rail) vorgesehen sein. Dabei umschließt ein äußerer Druckspeicherraum mit dem tieferen Systemdruck einen inneren Druckspeicherraum mit dem höheren Systemdruck. Auf diese Weise treten geringe Druckgradienten auf, die ein Gehäuse der Druckspeicherräume geringeren Materialbelastungen aussetzen und beispielsweise die Ausbildung eines noch höheren Druckes im Hochdruckspeicherraum zulassen.
Im Gegensatz zum Ausführungsbeispiel der Fig. 1a ist dem in Fig. 1b gezeigten Kraftstoffeinspritzsystem das 3/2-Wege-Ventil 18 nicht im Injektor, sondern außerhalb des Injektors 8a, z.B. im Bereich der Druckspeicher 6, 9 angeordnet. So läßt sich eine kleinere Baugröße des Injektors 8a und durch Ausnutzung von Wellenreflexionen in der nun längeren Druckleitungen 16 ein erhöhter Einspritzdruck erreichen.
Bei dem in Fig. 2a dargestellten druckgesteuerten Einspritzsystem wird Kraftstoff aus einem Kraftstofftank 31 zu den Injektoren 32 von vier Zylindern und von dort über Einspritzöffnungen 33 in den Brennraum 34 des jeweiligen Zylinders gefördert. Dabei wird eine mengengeregelte zweistufige Hochdruckpumpe 35 zur Erzeugung von zwei unterschiedlichen, hohen Systemdrücken verwendet. In der ersten, tieferen Pumpstufe wird der Kraftstoff auf einen ersten hohen Systemdruck von ca. 300 bar komprimiert, der in einem ersten Druckspeicher 36 (erstes Rail) gespeichert wird. Mit der zweiten, höheren Pumpstufe wird der Kraftstoff auf einen zweiten höheren Systemdruck von ca. 300 bar bis ca. 1800 bar komprimiert und dann in einem zweiten Druckspeicher 37 (zweites Rail) gespeichert. Für beide Druckspeicher 36, 37 ist jeweils ein Regelkreis mit einem Drucksensor vorgesehen. Das tiefere Systemdruckniveau kann für die Voreinspritzung und je nach Bedarf auch für die Nacheinspritzung verwendet werden, sowie auch für die Haupteinspritzung, wenn ein geringer Einspritzdruck erforderlich ist.
Zum Umschalten zwischen dem tieferen und dem höheren Systemdruck (kombinierte Druckzumessung) ist für jeden Zylinder bzw. Injektor 32 jeweils als Schaltelement ein 2/2-Wegventil 38 für die Hochdruckseite vorgesehen, dessen Ausgang von der Niederdruckseite durch ein Rückschlagventil 39 (oder durch ein 3/2-Wegventil) abgekoppelt ist. Über ein 3/2-Wegventil 40 wird dann der jeweils anstehende Druck über eine Leitung 41 in den Düsenraum 42 des Injektors 2 geleitet, der in einer druckgesteuerten Funktionsweise ausgeführt ist. D.h., seine die Einspritzöffnungen 33 abdichtende Düsennadel 43 wird durch den im Düsenraum 32 herrschenden Druck gegen die Wirkung einer Schließkraft aufgesteuert. Eine Einspritzung mit tieferem Einspritzdruck erfolgt im gezeigten Ausführungsbeispiel durch Bestromen des 3/2-Wegventils 10. Durch Bestromen des 2/2-Wegventils 38 wird dann für eine Einspritzung mit hohem Einspritzdruck umgeschaltet, wobei das Rückschlagventil 39 einen ungewollten Rücklauf von der Hochdruckseite in die Niederdruckseite verhindert. Am Ende der Einspritzung wird das 3/2-Wegventil 40 auf Leckage 44 geschaltet. Dadurch wird einerseits die Leitung 41 und andererseits der Düsenraum 42 entlastet, so daß die federbelastete Düsennadel 43 die Einspritzöffnungen 33 wieder verschließt.
Während sich im Ausführungsbeispiel der Fig. 2a die aus den beiden Ventilen 38, 40 und dem Rückschlagventil 39 gebildete Ventilanordnung im Injektor 32 befindet, ist bei dem in Fig. 2b gezeigten Einspritzsystem diese Ventilanordnung außerhalb des Injektors 32a, z.B. im Bereich der Druckspeicher 36, 37 angeordnet. So läßt sich eine kleinere Baugröße des Injektors 32a und durch Ausnutzung von Wellenreflexionen in der nun längeren Einspritzleitung ein erhöhter Einspritzdruck erreichen.
Bei dem in Fig. 3 gezeigten Einspritzsystem kann zwischen den beiden Systemdruckniveaus zentral über ein erstes 3/2-Wegventil 45 (oder über ein 2/2-Wegventil und ein Rückschlagventil) umgeschaltet werden und dann der jeweilige Druck zentral über ein zweites 3/2-Wegventil 46 an eine zentrale Verteilereinrichtung 47 geleitet werden, die den Kraftstoff über Leitungen 48 auf die Injektoren 32 der einzelnen Zylinder zur Einspritzung verteilt. Eine Einspritzung mit dem tieferen Systemdruck erfolgt bei diesem Ausführungsbeispiel durch Bestromen beider 3/2-Wegventils 45, 46, die Einspritzung mit dem höheren Systemdruck durch Bestromen nur des zweiten 3/2-Wegventils 46. Am Ende der Einspritzung wird das zweite 3/2-Wegventils 46 auf Leckage 49 geschaltet und damit die jeweilige Leitung 48 über eine zwischen Verteilereinrichtung 47 und Injektor 32 vorgesehene Ventilanordnung aus Rückschlagventil 50 und Drossel 51 entlastet.
Bei dem nicht erfindungsgemäßes Beispiel der Fig. 4 ist die in Fig. 2 gezeigte zweistufige Hochdruckpumpe 35 durch eine allein den ersten Druckspeicher 37 speisende Hochdruckpumpe 35a und eine allein den zweiten Druckspeicher 36 speisende Hochdruckpumpe 35b ersetzt.
Für die Ventile können sowohl Magnetaktoren als auch Piezoaktoren, die ein schnelleres Schalten der Ventile ermöglichen, verwendet werden. Auch können die 3/2-Wegventile jeweils durch eine Kombination aus zwei 2/2-Wegventilen ersetzt werden. Zum Schalten der beiden Systemdruckniveaus ist auch eine Anordnung aus 2/2-Wegventil und Rückschlagventil bei gegebener Entlastbarkeit des Injektors möglich.

Claims (3)

  1. Kraftstoffeinspritzsystem (1; 30) mit mindestens zwei unterschiedlichen, hohen Systemdrücken für eine Brennkraftmaschine,
    mit einem ersten zentralen Druckspeicher (9; 36) für den tieferen Systemdruck und mit einem von einer Hochdruckpumpe gespeisten zweiten zentralen Druckspeicher (6; 37) für den höheren Systemdruck, wobei beide Druckspeicher (6, 9; 36, 37) leitungsmäßig mit dem Injektor (8; 8a; 32) eines jeden Zylinders verbunden sind,
    dadurch gekennzeichnet, dass eine zweistufige Hochdruckpumpe (2; 35) vorgesehen ist, von deren tieferer Stufe der erste Druckspeicher (9; 36) und von deren höherer Stufe der zweite Druckspeicher (6; 37) gespeist werden.
  2. Kraftstoffeinspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass der Injektor (8; 8a) hubgesteuert ist.
  3. Kraftstoffeinspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass der Injektor (32) druckgesteuert ist.
EP00958195A 1999-08-20 2000-08-02 Kraftstoffeinspritzsystem für eine brennkraftmaschine Expired - Lifetime EP1125045B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19939424A DE19939424A1 (de) 1999-08-20 1999-08-20 Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE19939424 1999-08-20
PCT/DE2000/002550 WO2001014710A1 (de) 1999-08-20 2000-08-02 Kraftstoffeinspritzsystem für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1125045A1 EP1125045A1 (de) 2001-08-22
EP1125045B1 true EP1125045B1 (de) 2004-11-24

Family

ID=7918959

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00958195A Expired - Lifetime EP1125045B1 (de) 1999-08-20 2000-08-02 Kraftstoffeinspritzsystem für eine brennkraftmaschine

Country Status (6)

Country Link
US (1) US6499465B1 (de)
EP (1) EP1125045B1 (de)
JP (1) JP2003507636A (de)
AT (1) ATE283424T1 (de)
DE (2) DE19939424A1 (de)
WO (1) WO2001014710A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10112432A1 (de) * 2001-03-15 2002-09-19 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE10122245A1 (de) * 2001-05-08 2002-12-12 Bosch Gmbh Robert Leckagereduzierter druckgesteuerter Kraftstoffinjektor
DE10123775B4 (de) * 2001-05-16 2005-01-20 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen, insbesondere Common-Rail-Injektor, sowie Kraftstoffsystem und Brennkraftmaschine
JP4013529B2 (ja) * 2001-11-16 2007-11-28 三菱ふそうトラック・バス株式会社 燃料噴射装置
DE10205185A1 (de) * 2002-02-08 2003-08-21 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1378660A3 (de) * 2002-07-04 2004-01-21 Delphi Technologies, Inc. Kraftstoffsystem
JP4096652B2 (ja) * 2002-07-30 2008-06-04 三菱ふそうトラック・バス株式会社 増圧型燃料噴射装置
US7219655B2 (en) * 2003-02-28 2007-05-22 Caterpillar Inc Fuel injection system including two common rails for injecting fuel at two independently controlled pressures
DE102004010760A1 (de) * 2004-03-05 2005-09-22 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit Nadelhubdämpfung
FR2894632B1 (fr) * 2005-12-14 2011-06-24 Renault Sas Systeme d'injection de carburant
US20080047527A1 (en) * 2006-08-25 2008-02-28 Jinhui Sun Intensified common rail fuel injection system and method of operating an engine using same
CN102364079B (zh) * 2011-11-21 2013-02-06 哈尔滨工程大学 柴油机多级蓄压分级增压可配置式燃油喷射系统
EP2669503A1 (de) * 2012-05-29 2013-12-04 Delphi Technologies Holding S.à.r.l. Kraftstoffeinspritzdüse
US10982635B2 (en) * 2012-05-29 2021-04-20 Delphi Technologies Ip Limited Fuel injector and method for controlling the same
RU2531163C2 (ru) * 2013-07-15 2014-10-20 Погуляев Юрий Дмитриевич Способ управления подачей топлива и устройство управления подачей топлива
US20170298887A1 (en) * 2016-04-13 2017-10-19 Cummins Inc. Systems and methods for controlling fuel injection into a plurality of fuel rails

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2907279A1 (de) 1979-02-24 1980-08-28 Inst Motorenbau Prof Huber E V Kraftstoffeinspritzsystem fuer verbrennungsmotoren
US4421088A (en) * 1980-07-03 1983-12-20 Lucas Industries Limited Fuel system for compression ignition engine
DE3618447A1 (de) * 1986-05-31 1987-12-03 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung fuer brennkraftmaschinen
DE3634962A1 (de) * 1986-10-14 1988-04-21 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung fuer brennkraftmaschinen, insbesondere fuer dieselmotoren
AT408133B (de) * 1990-06-08 2001-09-25 Avl Verbrennungskraft Messtech Einspritzsystem für brennkraftmaschinen
US5357929A (en) * 1993-09-29 1994-10-25 Navistar International Transportation Corp. Actuation fluid pump for a unit injector system
GB9422864D0 (en) * 1994-11-12 1995-01-04 Lucas Ind Plc Fuel system
US6112721A (en) * 1996-08-29 2000-09-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection device
AT2960U3 (de) * 1998-07-02 1999-11-25 Avl List Gmbh Brennkraftmaschine mit direkter einspritzung

Also Published As

Publication number Publication date
DE19939424A1 (de) 2001-03-08
ATE283424T1 (de) 2004-12-15
WO2001014710A1 (de) 2001-03-01
JP2003507636A (ja) 2003-02-25
US6499465B1 (en) 2002-12-31
EP1125045A1 (de) 2001-08-22
DE50008747D1 (de) 2004-12-30

Similar Documents

Publication Publication Date Title
EP1125049B1 (de) Kombiniertes hub-/druckgesteuertes kraftstoffeinspritz verfahren und -system für eine brennkraftmaschine
EP1125046B1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine mit einer Druckübersetzungseinheit
EP1078160B1 (de) Kraftstoffeinspritzeinrichtung
EP1123462B1 (de) Kraftstoffeinspritzeinrichtung
EP1125058B1 (de) Kraftstoffeinspritzsystem für eine brennkraftmaschine
EP1125045B1 (de) Kraftstoffeinspritzsystem für eine brennkraftmaschine
DE10065103C1 (de) Kraftstoffeinspritzeinrichtung
DE19939420B4 (de) Kraftstoffeinspritzverfahren und -system für eine Brennkraftmaschine
EP2147207A1 (de) Kraftstoffeinspritzsystem mit druckverstärkung
EP1125054B1 (de) Verfahren und vorrichtung zur durchführung einer kraftstoffeinspritzung
EP1123463B1 (de) Kraftstoffeinspritzsystem für eine brennkraftmaschine
EP1273797A2 (de) Kraftstoffeinspritzeinrichtung
EP1121527B1 (de) Kraftstoffeinspritzeinrichtung
WO2004040118A1 (de) Kraftstoffeinspritzeinrichtung mit druckübersetzer und fördermengenreduziertem niederdruckkreis
DE19939425B4 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
EP1125047A1 (de) Kraftstoffeinspritzeinrichtung
EP1397593B1 (de) Kraftstoffeinspritzeinrichtung mit druckverstärker
DE102007021326A1 (de) Druckverstärkungssystem für mindestens einen Kraftstoffinjektor
EP1354133B1 (de) Kraftstoffeinspritzvorrichtung
EP1392965B1 (de) Druckverstärker einer kraftstoffeinspritzeinrichtung
EP1125044B1 (de) Kraftstoffeinspritzsystem für eine brennkraftmaschine
WO2002055869A1 (de) Hubgesteuerte kraftstoffeinspritzeinrichtung
DE10133490A1 (de) Kraftstoffeinspritzeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20010903

17Q First examination report despatched

Effective date: 20031230

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20041124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041124

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041124

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041124

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50008747

Country of ref document: DE

Date of ref document: 20041230

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050306

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20041124

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050825

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: ROBERT *BOSCH G.M.B.H.

Effective date: 20050831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141024

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50008747

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301