EP1625338B1 - Wärmegedämmter behälter - Google Patents

Wärmegedämmter behälter Download PDF

Info

Publication number
EP1625338B1
EP1625338B1 EP04738481.3A EP04738481A EP1625338B1 EP 1625338 B1 EP1625338 B1 EP 1625338B1 EP 04738481 A EP04738481 A EP 04738481A EP 1625338 B1 EP1625338 B1 EP 1625338B1
Authority
EP
European Patent Office
Prior art keywords
vacuum insulation
container
temperature
interior
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04738481.3A
Other languages
English (en)
French (fr)
Other versions
EP1625338B2 (de
EP1625338A2 (de
Inventor
Joachim Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Va Q Tec AG
Original Assignee
Va Q Tec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33461829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1625338(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Va Q Tec AG filed Critical Va Q Tec AG
Priority to EP14004268.0A priority Critical patent/EP2876389B1/de
Priority to EP20156390.5A priority patent/EP3671078B1/de
Publication of EP1625338A2 publication Critical patent/EP1625338A2/de
Application granted granted Critical
Publication of EP1625338B1 publication Critical patent/EP1625338B1/de
Publication of EP1625338B2 publication Critical patent/EP1625338B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/063Walls defining a cabinet formed by an assembly of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • F25D2303/08221Fasteners or fixing means for the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/084Position of the cold storage material in relationship to a product to be cooled
    • F25D2303/0843Position of the cold storage material in relationship to a product to be cooled on the side of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/085Compositions of cold storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/804Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/36Visual displays

Definitions

  • the invention relates to a thermally insulated container according to the preamble of claim 1.
  • thermally insulated containers are used, in particular, but by no means exclusively, for transport purposes in order to be able to transport temperature-sensitive goods, for example medicines, while maintaining narrow temperature tolerances.
  • a container wall is provided in generic containers, which completely encloses an interior in which the goods to be transported are arranged. At least one closable opening is provided in the container wall in order to be able to introduce the goods to be transported into the container.
  • vacuum insulation elements are used for insulation. These vacuum insulation elements have a very high thermal resistance with a relatively small layer thickness, so that for a given external volume there is a relatively large usable volume with sufficient thermal insulation. Due to the vacuum insulation elements, the heat flow is made more difficult both from the outside in and from the inside out, so that the goods to be transported are protected against both excessive heat and excessive cold.
  • Thermally insulated containers are known from the prior art, in which active cooling systems are used for additional cooling. For example, it is known that the interior of the container is tempered by means of an electrical air conditioning system. Systems are also known in which dry ice is evaporated and the resulting cold steam is used to cool the interior. The disadvantage of these actively cooled containers is that they are extremely sensitive to interference. If, for example, the electrical air conditioning system or the fan of the dry ice system is not supplied with sufficient electrical energy, one is Sufficient cooling is no longer guaranteed and the transported goods spoil.
  • the EP 1 291 300 A2 which forms the starting point of the present invention, discloses a thermally insulated container for transportation purposes.
  • the container has four side walls, a bottom and a lid, which completely enclose an interior. An opening of the container can be closed by means of the lid.
  • a side wall has an inner wall and an outer wall that form a pocket in which a vacuum insulation panel is arranged.
  • Another side wall has a pocket in which a preconditioned element with a phase change material is arranged.
  • the vacuum insulation panel has a multi-layer core, which is enclosed gas-tight by a flexible covering. The interior formed by the envelope through the gas-tight enclosure of the core is evacuated. With this container, the gas pressure inside the vacuum insulation panel cannot be checked.
  • the JP 08-068591 A shows a thermally insulated container with inner container and outer container and vacuum insulation elements arranged in between.
  • the vacuum insulation elements are connected to a gas pressure control system.
  • a line leads from each vacuum insulation element to the control system, which is located on the outside of the container.
  • At least one vacuum insulation element has an internal control system for checking the gas pressure in the interior of the vacuum insulation element.
  • metal platelets for example, can be arranged below the enveloping film, the internal gas pressure then being able to be derived by applying a temperature jump using suitable diagnostic devices in the area of the metal platelets.
  • the vacuum insulation element is installed behind the container wall, for example when using a double-walled container.
  • the control system for controlling the internal gas pressure in the vacuum insulation element is accessible.
  • the functionality of the built-in vacuum insulation element can be checked again at any time, in particular before loading, in order to avoid damage to the goods to be transported due to insufficient insulation, as can be caused, for example, by micro-leaks in the vacuum insulation element.
  • the inspection opening can be closed with a cover, which is preferably transparent, so that the control system located behind the cover can be viewed from the outside.
  • the invention is based on the basic idea of arranging passive melt storage elements in the container which are filled with a suitable melt storage material.
  • Such melt storage elements have the property that they can store or emit a certain amount of heat through phase transformation of the melt storage material. In other words, this means that the melt storage material in the melt storage element when heated, it melts until the entire supply of melt storage material has passed into the liquid phase. The thermal energy required for phase transformation of the melt storage material is thus stored in the melt storage material and does not lead to an increase in temperature. If the melt storage material is cooled in reverse, the melt storage material gradually solidifies and releases the stored amount of heat during this phase change. As a result, the melt storage elements buffer the heat flow according to their respective capacity until the capacity limits are reached.
  • melt storage material contains paraffin, for example, heat flow buffering in the temperature range above 0 ° C is made possible. If, on the other hand, a salt solution is contained in the melt storage material, the heat flow in the temperature range below 0 ° C can be buffered.
  • each melt storage material has an optimal buffering range depending on its respective melting point, it is particularly advantageous for certain applications if at least two different melt storage elements are provided in the container, each of which is filled with different melt storage materials. This combination of different melt storage materials in one container allows the buffering area to be spread out. It is particularly advantageous if the melt storage elements filled with different melt storage materials are arranged in several layers in the container.
  • melt storage elements In order to be able to check the readiness for use of the melt storage elements, for example after loading a container, it is advantageous if temperature measuring devices are provided on the melt storage elements with which the temperature of the melt storage element can be measured.
  • Known temperature sensors with displays, for example, which change color depending on the temperature, can be used for this purpose.
  • the construction of the vacuum insulation elements is basically arbitrary.
  • a base body is used for this purpose, which is enclosed in a gas-tight manner with a film.
  • the interior space formed by the film is evacuated in order to be able to achieve the desired insulation properties.
  • the base body itself gives the vacuum insulation element the required mechanical stability, and open-pore materials should be used to produce the base body in order to ensure sufficient evacuation.
  • foil-coated vacuum insulation elements these should preferably not have any protruding edge flaps made of foil, so that the butt joint between adjacent vacuum insulation elements can be made as narrow as possible.
  • the vacuum insulation elements can also be arranged in several layers one above the other or one behind the other.
  • the resulting heat flow resistance essentially results from the addition of the heat flow resistance of the individual layers.
  • the container can be designed in the manner of a transport container. If this transport container is also airworthy, temperature-sensitive goods, such as medicines such as vaccines in particular, can be transported over very long distances and long transport times within specified temperature tolerances.
  • the container can also be designed in the manner of a transport box with a removable lid.
  • transport boxes are particularly advantageous if the container is not to be transported back, but rather the container is disposed of after reaching the destination.
  • Foamed plastics are particularly suitable for producing the container wall of the transport box, since this material itself has a high heat flow resistance and is also available at very low cost.
  • a container 01 designed in the manner of a transport container is shown in perspective.
  • heat-sensitive goods for example medication, in particular vaccines
  • the base area of container 01 corresponds to the area of a standard pallet.
  • the container wall 02 of the container 01 consists of three rectangular side wall elements 03, a rectangular bottom element 04, a rectangular ceiling element 05 and a pivotably mounted door element 06.
  • the three side wall elements 03, the bottom element 04 and the ceiling element 05 are firmly connected to one another to form a rectangular interior 07 connected. After closing the door element 06, the interior 07 is enclosed on all sides and is insulated against the flow of heat through the container wall 02 by means of vacuum insulation elements, which are described in more detail below.
  • a locking element 08 is used to lock the door element 06, by actuating it in Fig. 1 Locking elements, not shown, can be unlocked or locked.
  • a seal can be attached to the closure member 08 in order to secure container 01 against unauthorized opening.
  • a lock for example a cylinder lock or a number lock, can also be provided on the closure member 08 in order to prevent unauthorized opening of the container 01.
  • guard rails 15 can be attached to the outside in particularly endangered areas.
  • the guardrails 15 can be made of sheet metal, for example.
  • the inside structure of the container 01 is off Fig. 2 seen.
  • Six melt storage elements 16 and 17 are arranged on the inside of each of the two side walls 03.
  • the melt storage elements 16 are filled with a paraffin-containing melt storage material, whereas the melt storage elements 17 contain a salt solution.
  • Fastening rails 18 are used to fasten the melt storage elements 16 and 17 (see also Fig. 3 ), which encompass the melt storage elements 16 and 17 in a form-fitting manner at the upper and lower edges, respectively. In this way, the melt storage elements 16 and 17 can be replaced simply by pushing them into the fastening rails 18 from the door side. After closing the door element 06, the melt storage elements 16 and 17 are fixed on the inside of the container wall 02. This type of attachment allows, in particular, the melt storage elements 16 and 17 to be assembled or disassembled without tools.
  • Inspection openings 19 are provided in each of the three side wall elements 03, the base element 04, the ceiling element 05 and the door element 06, the function of which will be explained in detail below.
  • a sealing lip 20 is fastened on the inside, with which the sealing joint between the door element 06 on the one hand and the edge of the two opposite side wall elements 03 or the edge of the ceiling element 05 and the floor element 04 is sealed after the door element 06 is closed.
  • Fig. 3 the container 01 is shown schematically in cross section from the front.
  • the flat, namely plate-shaped melt storage elements 16 and 17 are arranged parallel to the container wall 02 on the inside 21 of the container 01.
  • the container wall 02 itself is constructed with double walls from a dimensionally stable outer wall 22 and a likewise dimensionally stable inner wall 23.
  • the vacuum insulation elements 24 provided for insulation are arranged between this mechanically stable double wall comprising the outer wall 22 and the inner wall 23.
  • Shock protection elements 25 made of foamed plastic are provided between the vacuum insulation elements 24 and the outer wall 22.
  • the size relationships between the outer wall 22, inner wall 23, the vacuum insulation elements 24 and the shock protection elements 25 are shown in Fig. 3 only hinted at in principle.
  • the exact structure of the structure of the container wall 02 is off Fig. 4 seen.
  • FIG. 4 Perspective cross section through the container wall 02 shown shows that the outer wall 22 and the inner wall 23 are each made of a sandwich material.
  • an inner core layer 26 made of plywood and an inner core layer 27 made of foamed plastic are each covered on the outside by cover layers 28 made of fiber-reinforced plastic.
  • Fig. 5 A possible embodiment of dimensionally stable melt storage containers 29 is shown. By filling the container 29 with The different types of melt storage elements 16 and 17 can be made from a suitable melt storage material.
  • Fig. 6 the arrangement of the vacuum insulation panels 24 in a side wall 03 is shown as an example.
  • Four vacuum insulation elements 24 are arranged adjacent to one another in all side wall elements 03 and correspondingly also in floor element 04, in ceiling element 05 and in door element 06. This ensures that if a vacuum insulation element is damaged, for example caused by a micro leak, not all of the insulation in the corresponding container wall fails. Rather, even if a single vacuum insulation element fails, there is still sufficient insulation of the container 01 as a whole.
  • the flat vacuum insulation elements 24 designed in the manner of thermal insulation boards touch in butt joints 30. In order that as little heat as possible is transferred in the butt joints 30, an insulating material can be arranged in the butt joints 30.
  • vacuum insulation elements 24 should, if possible, not have any protruding film tabs, so that vacuum insulation elements 24 can be mounted in the butt joints 30 as tightly as possible.
  • a further layer of vacuum insulation elements can also be provided in the container wall 02, the butt joints 30 being offset from one another if possible in the case of a plurality of layers.
  • a control system 31 for checking the internal gas pressure is present on each vacuum insulation element 24.
  • the four control systems 31 of the four vacuum insulation elements 24 are each arranged adjacent to one another in the middle of the container wall, so that the four different control systems 31 are accessible through a single inspection opening 19.
  • Fig. 7 the inspection opening 19 is shown enlarged with the four control systems 31 arranged behind a cover 32.
  • the cover 32 is removed and a test head of a diagnostic device is placed on the control systems 31 hung up. Structure and function of the control system 31 and structure of the vacuum insulation elements 24 are off Fig. 8 seen.
  • the in Fig. 8 The cross section shown through the vacuum insulation elements 24 shows an open-pore base body 33 which is gas-tightly covered with a film 34.
  • the gas-tight interior 35 formed by the film 34 is evacuated in order to give the vacuum insulation element 24 the desired insulation properties.
  • the control system 31 which consists of a metal plate 36 and an intermediate layer 37, is placed on the inside of the film 34. A defined temperature jump can then be applied to the control system 31 with a test head 38, the internal gas pressure in the interior 35 being able to be derived from the signal response to the temperature jump.
  • the data storage device 10 is connected via a cable 12 to an internal temperature sensor for measuring the temperature in the interior 07 and to an external temperature sensor for measuring the ambient temperature surrounding the container 01.
  • the internal temperature and the external temperature are measured at regular time intervals and the measurement data obtained are stored in the data storage device 10 for documentation purposes.
  • the current inside temperature or the current outside temperature can be shown on a display 13 and can be read from the outside through the transparent cover 11.
  • a GPS receiver (not shown) can be connected to the data storage device 10 via a connection 14, so that the position data of the container 01 can be stored with the data storage device 10 for documentation purposes.
  • the function of the container 01 for temperature insulation should be based on the in 10 to 12 temperature curves shown are exemplified.
  • Fig. 10 a situation is schematically shown in which the container 01 is exposed to an outside temperature profile 39.
  • the corresponding change in the internal temperature in the interior 07 of the container 01 is indicated with the internal temperature profile 40.
  • the outside temperature profile 39 includes a temperature jump from 10 ° C to 30 ° C over a period of 6 hours.
  • This change in the outside temperature initially does not lead to a change in temperature in the interior 07, because the amounts of heat that are let through by the vacuum insulation elements 24 are buffered by the melt storage elements 16 and 17 by phase transformation of the melt storage material. Only after a time delay, when large amounts of the melt storage material have already undergone a phase change, does the interior temperature in the interior 07 rise very slowly.
  • a second outside temperature profile 41 and the resulting inside temperature profile 42 are plotted in the interior 07 of the container 01.
  • the outside temperature profile 41 immediately undergoes a negative temperature jump to just above 0 ° C.
  • the negative temperature jump also lasts 6 hours.
  • the negative temperature jump is also buffered by the melt storage elements 16 and 17, the melt storage elements regenerating again by lowering the temperature, so that a subsequent positive temperature jump can in turn be buffered without further notice.
  • a real outside temperature profile 43 and a resulting inside temperature profile 44 are plotted, which was recorded in a long-term test over 210 hours.
  • the different curves of the outside temperature profile 43 and the inside temperature profile 44 correspond to the different measuring points outside or inside the container 01 Fig. 11 immediately apparent, the inside temperature remains within a narrow temperature band despite considerable fluctuations in the outside temperature, so that temperature-sensitive goods in the interior of the container 07 are effectively protected against excessive temperature fluctuations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Packages (AREA)

Description

  • Die Erfindung betrifft einen wärmegedämmten Behälter nach dem Oberbegriff des Anspruchs 1.
  • Solche wärmegedämmten Behälter werden insbesondere, jedoch keineswegs ausschließlich, für Transportzwecke genutzt, um temperaturempfindliche Waren, beispielsweise Medikamente, bei Einhaltung enger Temperaturtoleranzen befördern zu können. Dazu ist bei gattungsgemäßen Behältern eine Behälterwandung vorgesehen, die einen Innenraum, in dem das zu transportierende Gut angeordnet wird, vollständig umschließt. In der Behälterwandung ist zumindest eine verschließbare Öffnung vorgesehen, um das zu transportierende Gut in den Behälter einbringen zu können.
  • Um den Wärmefluss durch die Behälterwandung hindurch möglichst gering zu halten, werden Vakuumisolationselemente zur Isolation verwendet. Diese Vakuumisolationselemente haben einen sehr hohen Wärmedurchgangswiderstand bei relativ geringer Schichtdicke, so dass bei gegebenem Außenvolumen ein relativ großes Nutzvolumen bei ausreichender Wärmeisolation gegeben ist. Durch die Vakuumisolationselemente wird der Wärmefluss sowohl von außen nach innen als auch von innen nach außen erschwert, so dass die zu transportierende Ware sowohl gegen übermäßige Wärme als auch gegen übermäßige Kälte geschützt ist. Aus dem Stand der Technik sind wärmegedämmte Behälter bekannt, bei denen zur zusätzlichen Kühlung aktive Kühlsysteme eingesetzt werden. Beispielsweise ist es bekannt, dass der Innenraum des Behälters mittels einer elektrischen Klimatisierungsanlage temperiert wird. Auch sind Systeme bekannt, bei denen Trockeneis verdampft wird und der dabei entstehende kalte Dampf zur Kühlung des Innenraums eingesetzt wird. Diese aktiv gekühlten Behälter haben den Nachteil, dass sie außerordentlich empfindlich gegen Störungen sind. Wird beispielsweise die elektrische Klimaanlage oder der Ventilator der Trockeneisanlage nicht mit ausreichender elektrischer Energie versorgt, so ist eine ausreichende Kühlung nicht mehr gewährleistet und die transportierte Ware verdirbt.
  • Die EP 1 291 300 A2 , die den Ausgangspunkt der vorliegenden Erfindung bildet, offenbart einen wärmegedämmten Behälter für Transportzwecke. Der Behälter hat vier Seitenwände, einen Boden und einen Deckel, die einen Innenraum vollständig umschließen. Mittels des Deckels ist eine Öffnung des Behälters verschließbar. Eine Seitenwand weist eine Innenwand und eine Außenwand auf, die eine Tasche bilden, in der ein Vakuumisolationspaneel angeordnet ist. Eine andere Seitenwand weist eine Tasche auf, in der ein vorkonditioniertes Element mit einem Phasenübergangsmaterial angeordnet ist. Das Vakuumisolationspaneel hat einen mehrschichtigen Kern, der von einer flexiblen Umhüllung gasdicht umschlossen ist. Der von der Umhüllung durch das gasdichte Umschließen des Kerns gebildete Innenraum ist evakuiert. Bei diesem Behälter kann der Gasdruck im Innenraum des Vakuumisolationspaneels nicht kontrolliert werden.
  • Die JP 08-068591 A zeigt einen wärmegedämmten Behälter mit Innenbehälter und Außenbehälter und dazwischen angeordneten Vakuumisolationselementen. Die Vakuumisolationselemente sind an ein Gasdruck-Kontrollsystem angeschlossen. Von jedem Vakuumisolationselement führt eine Leitung zu dem Kontrollsystem, das außen an dem Behälter sitzt.
  • Ausgehend von diesem Stand der Technik ist es deshalb Aufgabe der vorliegenden Erfindung, einen wärmegedämmten Behälter vorzuschlagen, bei dem die Funktionstüchtigkeit der Vakuumisolationselemente jederzeit auch nach dem Einbau in den Behälter geprüft werden kann.
  • Diese Aufgabe wird durch einen Behälter nach der Lehre des Anspruchs 1 gelöst.
  • Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.
  • Die Isolationswirkung der Vakuumisolationselemente hängt maßgeblich davon ab, dass im Vakuumisolationselement ein ausreichend niedriger Innengasdruck herrscht. Je weiter der Innengasdruck im Vakuumisolationselement zunimmt, desto mehr Wärme wird durch das Vakuumisolationselement hindurchgeleitet. Um die Funktionstüchtigkeit der Vakuumisolationselemente jederzeit auch nach dem Einbau in den Behälter prüfen zu können, weist zumindest ein Vakuumisolationselement ein internes Kontrollsystem zur Kontrolle des Gasdruckes im Innenraum des Vakuumisolationselements auf. Dazu können unterhalb der Hüllfolie beispielsweise Metallplättchen angeordnet werden, wobei der Innengasdruck dann unter Einsatz geeigneter Diagnosegeräte im Bereich der Metallplättchen durch Aufbringung eines Temperatursprungs abgeleitet werden kann.
  • Vorgesehen ist, dass das Vakuumisolationselement hinter der Behälterwandung eingebaut ist, beispielsweise bei Verwendung eines doppelwandigen Behälters. Erfindungsgemäß ist in der Behälterwandung eine Revisionsöffnung vorhanden, durch die das Kontrollsystem zur Kontrolle des Innengasdrucks im Vakuumisolationselement zugänglich ist. Auf diese Weise kann die Funktionstüchtigkeit des eingebauten Vakuumisolationselements jederzeit, insbesondere vor dem Beladen, erneut geprüft werden, um Beschädigungen an dem zu transportierenden Gut durch unzureichende Isolation, wie sie beispielsweise durch Mikrolecks in dem Vakuumisolationselement verursacht sein kann, zu vermeiden.
  • Um die Beschädigung des Vakuumisolationselements durch Eindringen von Fremdkörpern auszuschließen, ist die Revisionsöffnung mit einer Abdeckung verschließbar, die vorzugsweise transparent ist, damit das hinter der Abdeckung befindliche Kontrollsystem von außen in Augenschein genommen werden kann.
  • Die Erfindung beruht auf dem Grundgedanken, im Behälter passive Schmelzspeicherelemente, die mit einem geeigneten Schmelzspeichermaterial gefüllt sind, anzuordnen. Derartige Schmelzspeicherelemente haben die Eigenschaft, dass sie eine bestimmte Wärmemenge durch Phasenumwandlung des Schmelzspeichermaterials speichern bzw. abgeben können. Dies bedeutet mit anderen Worten, dass das Schmelzspeichermaterial im Schmelzspeicherelement bei Erwärmung so lange schmilzt, bis der gesamte Vorrat an Schmelzspeichermaterial in die flüssige Phase übergegangen ist. Die zur Phasenumwandlung des Schmelzspeichermaterials erforderliche Wärmeenergie wird somit im Schmelzspeichermaterial gespeichert und führt nicht zu einer Temperaturerhöhung. Wird das Schmelzspeichermaterial umgekehrt abgekühlt, so erstarrt das Schmelzspeichermaterial nach und nach und gibt bei dieser Phasenumwandlung die gespeicherte Wärmemenge ab. Im Ergebnis puffern die Schmelzspeicherelemente somit entsprechend ihrer jeweiligen Kapazität den Wärmefluss bis zum Erreichen der Kapazitätsgrenzen ab.
  • Je nach Schmelzpunkt des Schmelzspeichermaterials ergeben sich andere Pufferungsbereiche zur Abpufferung des Wärmeflusses. Enthält das Schmelzspeichermaterial beispielsweise Paraffin, wird eine Wärmeflusspufferung im Temperaturbereich oberhalb von 0° C ermöglicht. Ist dagegen im Schmelzspeichermaterial beispielsweise eine Salzlösung enthalten, kann der Wärmefluss im Temperaturbereich unterhalb von 0° C abgepuffert werden.
  • Da jedes Schmelzspeichermaterial abhängig von seinem jeweiligen Schmelzpunkt einen optimalen Pufferungsbereich aufweist, ist es für bestimmte Anwendungen besonders vorteilhaft, wenn im Behälter zumindest zwei verschiedene Schmelzspeicherelemente vorgesehen sind, die jeweils mit unterschiedlichen Schmelzspeichermaterialien gefüllt sind. Durch diese Kombination von unterschiedlichen Schmelzspeichermaterialien in einem Behälter kann der Pufferungsbereich aufgespreizt werden. Dabei ist es besonders vorteilhaft, wenn die mit unterschiedlichen Schmelzspeichermaterialien gefüllten Schmelzspeicherelemente in mehreren Schichten im Behälter angeordnet sind.
  • Um die Einsatzbereitschaft der Schmelzspeicherelemente prüfen zu können, beispielsweise nach dem Beladen eines Behälters, ist es vorteilhaft, wenn an den Schmelzspeicherelementen Temperaturmesseinrichtungen vorgesehen sind, mit denen die Temperatur des Schmelzspeicherelements gemessen werden kann. Dazu können beispielsweise bekannte Temperatursensoren mit Displays Verwendung finden, die sich in Abhängigkeit der Temperatur verfärben.
  • In welcher Konstruktionsweise die Vakuumisolationselemente ausgebildet sind, ist grundsätzlich beliebig. Nach einer bevorzugten Ausführungsform wird dazu ein Grundkörper verwendet, der mit einer Folie gasdicht umschlossen ist. Der von der Folie gebildete Innenraum wird evakuiert, um dadurch die gewünschten Isolationseigenschaften realisieren zu können. Der Grundkörper selbst gibt dem Vakuumisolationselement die erforderliche mechanische Stabilität, wobei zur Herstellung des Grundkörpers offenporigen Werkstoffe verwendet werden sollten, um eine ausreichende Evakuierbarkeit zu gewährleisten.
  • Werden folienummantelte Vakuumisolationselemente verwendet, sollten diese vorzugsweise keine überstehenden Randlaschen aus Folie aufweisen, damit die Stoßfuge zwischen benachbarten Vakuumisolationselementen möglichst eng gestaltet werden kann.
  • Zur Erhöhung des Wärmeflusswiderstands können die Vakuumisolationselemente auch in mehreren Schichten übereinander oder hintereinander angeordnet werden. Der resultierende Wärmeflusswiderstand ergibt sich dabei im Wesentlichen aus der Addition des Wärmeflusswiderstands der einzelnen Schichten.
  • Nach einer ersten Ausführungsform der Erfindung kann der Behälter in der Art eines Transportcontainers ausgebildet sein. Ist dieser Transportcontainer zudem flugtauglich, können temperaturempfindliche Waren, beispielsweise Medikamente wie insbesondere Impfstoffe, über sehr weite Entfernungen und lange Transportzeiten innerhalb vorgegebener Temperaturtoleranzen transportiert werden.
  • Alternativ dazu kann der Behälter auch in der Art einer Transportbox mit abnehmbarem Deckel ausgebildet sein. Solche Transportboxen sind insbesondere dann von Vorteil, wenn ein Rücktransport des Behälters nicht vorgesehen ist, sondern der Behälter nach Erreichen des Ziels entsorgt wird.
  • Um die Kosten der Transportbox zu verringern, ist es denkbar, lediglich Teilbereiche der Behälterwandung der Transportbox, insbesondere Deckel und Boden der Transportbox, mit jeweils zumindest einem Vakuumisolationselement zu isolieren, da beispielsweise Deckel und Boden aufgrund ihrer großen Fläche die relativ größten Wärmemengen durchtreten lassen, wohingegen andere Teile der Behälterwandung von untergeordneter Bedeutung sind.
  • Zur Herstellung der Behälterwandung der Transportbox sind insbesondere geschäumte Kunststoffe geeignet, da dieses Material selbst einen hohen Wärmeflusswiderstand hat und zudem sehr preisgünstig verfügbar ist.
  • Durch Einbau von mehreren Vakuumisolationselementen in die verschiedenen Behälterwandungen wird eine verbesserte Schadensredundanz erreicht, da bei Beschädigung eines einzelnen Vakuumisolationselements die Isolationseigenschaften des Behälters nur relativ gering beeinflusst werden.
  • Eine Ausführungsform der Erfindung ist in den Zeichnungen schematisch dargestellt und wird nachfolgend beispielhaft erläutert.
  • Es zeigen:
  • Fig. 1
    einen Transportcontainer in perspektivischer Ansicht von außen;
    Fig. 2
    den Transportcontainer gemäß Fig. 1 mit geöffneter Tür in perspektivischer Ansicht;
    Fig. 3
    den Transportcontainer gemäß Fig. 1 im Querschnitt;
    Fig. 4
    die Behälterwandung des Transportcontainers gemäß Fig. 1 im perspektivischen Schnitt;
    Fig. 5
    die Schmelzspeicherelemente des Transportcontainers gemäß Fig. 1 in perspektivischer Ansicht;
    Fig. 6
    die Anordnung der Vakuumisolationselemente an einer Seitenwandung des Transportcontainers gemäß Fig. 1 in seitlicher Ansicht;
    Fig. 7
    eine Revisionsöffnung in einer Behälterwandung des Transportcontainers gemäß Fig. 1;
    Fig. 8
    ein Vakuumisolationselement des Transportcontainers gemäß Fig. 1 im Querschnitt;
    Fig. 9
    den Datenspeicher am Transportcontainer gemäß Fig. 1 in vergrößerter perspektivischer Ansicht;
    Fig. 10
    die Innentemperaturkurve im Innenraum des Transportcontainers gemäß Fig. 1 bei Aufbringung eines positiven Außentemperatursprungs;
    Fig. 11
    die Innentemperaturkurve im Innenraum des Transportcontainers gemäß Fig. 1 bei Aufbringung eines positiven und eines negativen Außentemperatursprungs;
    Fig. 12
    die Innentemperaturkurve im Innenraum des Transportcontainers gemäß Fig. 1 bei Durchlaufen eines Außentemperaturprofils.
  • In Fig. 1 ist ein in der Art eines Transportcontainers ausgebildeter Behälter 01 perspektivisch dargestellt. Im Behälter 01 können wärmesensible Güter, beispielsweise Medikamente, insbesondere Impfstoffe, über weite Strecken auch im Flugzeug transportiert werden. Die Grundfläche des Behälters 01 entspricht der Fläche einer Standardpalette.
  • Die Behälterwandung 02 des Behälters 01 besteht aus drei rechteckigen Seitenwandelementen 03, einem rechteckigen Bodenelement 04, einem rechteckigen Deckenelement 05 und einem schwenkbar gelagerten Türelement 06. Die drei Seitenwandelemente 03, das Bodenelement 04 und das Deckenelement 05 sind unter Bildung eines rechteckförmigen Innenraums 07 fest miteinander verbunden. Nach Schließen des Türelements 06 wird der Innenraum 07 allseitig umschlossen und ist gegen den Durchfluss von Wärme durch die Behälterwandung 02 mittels Vakuumisolationselementen, die nachfolgend näher beschrieben sind, isoliert.
  • Zum Verriegeln des Türelements 06 dient ein Verschlussorgan 08, durch dessen Betätigung in Fig. 1 nicht dargestellte Riegelelemente entriegelt bzw. verriegelt werden können. Am Verschlussorgan 08 kann ein Siegel angebracht werden, um den Behälter 01 gegen unbefugtes Öffnen zu sichern. Alternativ bzw. additiv dazu kann am Verschlussorgan 08 auch ein Schloss, beispielweise ein Zylinderschloss oder Nummernschloss, vorgesehen sein, um ein unbefugtes Öffnen des Behälters 01 auszuschließen.
  • An der Unterseite des Bodenelements 04 sind zwei Leisten 09 angebracht, durch die ein Zwischenraum zwischen dem Bodenelement 04 und der Aufstandsfläche gebildet wird. In diesen Zwischenraum können die Zinken eines Transportstaplers eingeschoben werden, um den Behälter 01 mit einem Stapler anheben und transportieren zu können. An der Oberseite des Türelements 06 ist in einer Vertiefung ein Datenspeichergerät 10 befestigt und wird nach außen hin von einer Abdeckung 11 geschützt (siehe auch Fig. 9). Zum Schutz der Behälterwandung 02 gegen das Eindringen von spitzen Gegenständen können an der Außenseite Schutzplanken 15 in besonders gefährdeten Bereichen angebracht werden. Die Schutzplanken 15 können beispielsweise aus einem Metallblech hergestellt sein.
  • Der innenseitige Aufbau des Behälters 01 ist aus Fig. 2 ersichtlich. An der Innenseite der beiden seitlichen Seitenwandungen 03 sind jeweils sechs Schmelzspeicherelemente 16 und 17 angeordnet. Die Schmelzspeicherelemente 16 sind dabei mit einem paraffinhaltigen Schmelzspeichermaterial gefüllt, wohingegen die Schmelzspeicherelemente 17 eine Salzlösung enthalten. Zur Befestigung der Schmelzspeicherelemente 16 und 17 dienen Befestigungsschienen 18 (siehe auch Fig. 3), die die Schmelzspeicherelemente 16 und 17 jeweils am oberen bzw. unteren Rand formschlüssig umgreifen. Auf diese Weise können die Schmelzspeicherelemente 16 und 17 einfach dadurch ausgewechselt werden, dass sie von der Türseite her in die Befestigungsschienen 18 eingeschoben werden. Nach Schließen des Türelements 06 sind die Schmelzspeicherelemente 16 und 17 an der Innenseite der Behälterwandung 02 fixiert. Diese Art der Befestigung erlaubt es insbesondere, die Schmelzspeicherelemente 16 und 17 ohne Werkzeug zu montieren bzw. zu demontieren.
  • In den drei Seitenwandelementen 03, dem Bodenelement 04, dem Deckenelement 05 und dem Türelement 06 sind jeweils Revisionsöffnungen 19 vorgesehen, deren Funktion nachfolgend noch detailliert erläutert wird.
  • Am Außenumfang des Türelements 06 ist innenseitig eine Dichtlippe 20 befestigt, mit der nach Schließen des Türelements 06 die Trennfuge zwischen dem Türelement 06 einerseits und dem Rand der zwei gegenüberliegenden Seitenwandelemente 03 bzw. dem Rand des Deckenelements 05 und des Bodenelements 04 abgedichtet wird.
  • In Fig. 3 ist der Behälter 01 im Querschnitt von vorne schematisch dargestellt. Die flächigen, nämlich plattenförmigen Schmelzspeicherelemente 16 und 17 sind parallel zur Behälterwandung 02 auf der Innenseite 21 des Behälters 01 angeordnet. Die Behälterwandung 02 selbst ist doppelwandig aus einer formstabilen Außenwandung 22 und einer ebenfalls formstabilen Innenwandung 23 aufgebaut. Zwischen dieser mechanisch stabilen Doppelwand aus Außenwandung 22 und Innenwandung 23 sind die zur Isolation vorgesehenen Vakuumisolationselemente 24 angeordnet. Zwischen den Vakuumisolationselementen 24 und der Außenwandung 22 sind Stoßschutzelemente 25 aus geschäumtem Kunststoff vorgesehen. Die Größenverhältnisse zwischen Außenwandung 22, Innenwandung 23, den Vakuumisolationselementen 24 und den Stoßschutzelementen 25 sind in Fig. 3 nur im Prinzip angedeutet. Die genaue Struktur des Aufbaus der Behälterwandung 02 ist aus Fig. 4 ersichtlich.
  • Der in Fig. 4 dargestellte perspektivische Querschnitt durch die Behälterwandung 02 zeigt, dass die Außenwandung 22 und die Innenwandung 23 jeweils aus einem Sandwichmaterial hergestellt sind. In diesem Sandwichmaterial werden eine innere Kernschicht 26 aus Sperrholz und eine innere Kernschicht 27 aus geschäumtem Kunststoff jeweils außenseitig von Deckschichten 28 aus faserverstärktem Kunststoff bedeckt.
  • In Fig. 5 ist eine mögliche Ausführungsform von formstabilen Schmelzspeicherbehältern 29 dargestellt. Durch Befüllung der Behälter 29 mit einem geeigneten Schmelzspeichermaterial können die verschiedenen Typen von Schmelzspeicherelementen 16 und 17 hergestellt werden.
  • In Fig. 6 ist die Anordnung der Vakuumisolationspaneele 24 in einer Seitenwandung 03 beispielhaft dargestellt. Jeweils vier Vakuumisolationselemente 24 sind in allen Seitenwandelementen 03 und entsprechend auch im Bodenelement 04, im Deckenelement 05 und im Türelement 06 zueinander benachbart angeordnet. Dadurch ist gewährleistet, dass bei Beschädigung eines Vakuumisolationselements, beispielsweise verursacht durch ein Mikroleck, nicht die gesamte Isolation in der entsprechenden Behälterwandung ausfällt. Vielmehr ist auch bei Ausfall eines einzelnen Vakuumisolationselements immer noch eine ausreichende Isolation des Behälters 01 insgesamt gegeben. Die flächigen, in der Art von Wärmedämmplatten ausgebildeten Vakuumisolationselemente 24 berühren sich in Stoßfugen 30. Damit möglichst wenig Wärme in den Stoßfugen 30 übertragen wird, kann in den Stoßfugen 30 ein Dämmmaterial angeordnet werden. Außerdem sollten die Vakuumisolationselemente 24 nach Möglichkeit keine überstehenden Folienlaschen aufweisen, damit Vakuumisolationselemente 24 in den Stoßfugen 30 möglichst enganliegend montiert werden können. Zur Erhöhung des Wärmedurchflusswiderstands kann außerdem noch eine weitere Schicht von Vakuumisolationselementen in der Behälterwandung 02 vorgesehen sein, wobei bei mehreren Schichten die Stoßfugen 30 nach Möglichkeit gegeneinander versetzt sein sollten.
  • An jedem Vakuumisolationselement 24 ist ein Kontrollsystem 31 zur Kontrolle des Innengasdrucks vorhanden. Die vier Kontrollsysteme 31 der vier Vakuumisolationselemente 24 sind dabei jeweils benachbart zueinander in der Mitte der Behälterwandung angeordnet, damit die vier verschiedenen Kontrollsysteme 31 durch eine einzige Revisionsöffnung 19 hindurch zugänglich sind.
  • In Fig. 7 ist die Revisionsöffnung 19 mit den vier hinter einer Abdeckung 32 angeordneten Kontrollsystemen 31 vergrößert dargestellt. Zur Kontrolle des Innengasdrucks in den Vakuumisolationselementen 24 wird die Abdeckung 32 abgenommen und ein Prüfkopf eines Diagnosegeräts auf die Kontrollsysteme 31 aufgelegt. Aufbau und Funktion des Kontrollsystems 31 und Struktur der Vakuumisolationselemente 24 sind aus Fig. 8 ersichtlich.
  • Der in Fig. 8 dargestellte Querschnitt durch die Vakuumisolationselemente 24 zeigt einen offenporigen Grundkörper 33, der gasdicht mit einer Folie 34 umspannt ist. Der von der Folie 34 gebildete gasdichte Innenraum 35 wird evakuiert, um dem Vakuumisolationselement 24 die gewünschten Isolationseigenschaften zu geben. Zur Prüfung des Innengasdrucks im Innenraum 35 des Vakuumisolationselements 24 wird an der Innenseite der Folie 34 das Kontrollsystem 31 platziert, das aus einem Metallplättchen 36 und einer Zwischenlage 37 besteht. Mit einem Prüfkopf 38 kann dann ein definierter Temperatursprung auf das Kontrollsystem 31 aufgebracht werden, wobei aus der Signalantwort auf den Temperatursprung der Innengasdruck im Innenraum 35 ableitbar ist.
  • Wie aus Fig. 9 ersichtlich, ist das Datenspeichergerät 10 über ein Kabel 12 mit einem Innentemperatursensor zu Messung der Temperatur im Innenraum 07 und mit einem Außentemperatursensor zur Messung der den Behälter 01 umgebenden Umgebungstemperatur verbunden. In regelmäßigen Zeitabständen werden die Innentemperatur und die Außentemperatur gemessen und die dabei anfallenden Messdaten im Datenspeichergerät 10 zu Dokumentationszwecken abgespeichert. An einem Display 13 kann die aktuelle Innentemperatur bzw. die aktuelle Außentemperatur angezeigt und von außen durch die transparente Abdeckung 11 abgelesen werden. Über einen Anschluss 14 kann ein nicht dargestellter GPS-Empfänger an das Datenspeichergerät 10 angeschlossen werden, so dass die Positionsdaten des Behälters 01 mit dem Datenspeichergerät 10 zu Dokumentationszwecken gespeichert werden können.
  • Die Funktion des Behälters 01 zur Temperaturisolation soll anhand der in Fig. 10 bis Fig. 12 dargestellten Temperaturkurven beispielhaft erläutert werden.
  • In Fig. 10 ist eine Situation schematisch dargestellt, in der der Behälter 01 einem Außentemperaturprofil 39 ausgesetzt ist. Die entsprechende Änderung der Innentemperatur im Innenraum 07 des Behälters 01 ist mit dem Innentemperaturprofil 40 angetragen. Das Außentemperaturprofil 39 beinhaltet einen Temperatursprung von 10° C auf 30° C über eine Dauer von 6 Stunden. Diese Änderung der Außentemperatur führt im Innenraum 07 zunächst zu keiner Temperaturänderung, weil die Wärmemengen, die durch die Vakuumisolationselemente 24 durchgelassen werden, von den Schmelzspeicherelementen 16 bzw. 17 durch Phasenumwandlung des Schmelzspeichermaterials abgepuffert werden. Erst nach einer Zeitverzögerung, wenn große Mengen des Schmelzspeichermaterials bereits eine Phasenumwandlung durchlaufen haben, steigt die Innentemperatur im Innenraum 07 sehr langsam an.
  • Aus Fig. 11 ist ein zweites Außentemperaturprofil 41 und das daraus resultierende Innentemperaturprofil 42 im Innenraum 07 des Behälters 01 angetragen. Das Außentemperaturprofil 41 durchläuft nach dem positiven Temperatursprung auf 30° C unmittelbar danach einen negativen Temperatursprung auf knapp über 0° C. Auch der negative Temperatursprung dauert 6 Stunden. Auch der negative Temperatursprung wird durch die Schmelzspeicherelemente 16 und 17 abgepuffert, wobei sich die Schmelzspeicherelemente durch die Absenkung der Temperatur wiederum regenerieren, so dass ein anschließender positiver Temperatursprung wiederum ohne Weiteres abgepuffert werden kann.
  • In Fig. 12 sind ein reales Außentemperaturprofil 43 und ein daraus resultierendes Innentemperaturprofil 44 angetragen, das in einem Langzeitversuch über 210 Stunden protokolliert wurde. Die unterschiedlichen Kurven des Außentemperaturprofils 43 und des Innentemperaturprofils 44 entsprechen den verschiedenen Messpunkten außerhalb bzw. innerhalb des Behälters 01. Wie aus Fig. 11 unmittelbar ersichtlich, bleibt die Innentemperatur trotz erheblicher Schwankungen der Außentemperatur innerhalb eines schmalen Temperaturbands, so dass temperaturempfindliche Waren im Innenraum des Behälters 07 wirksam vor übermäßigen Temperaturschwankungen geschützt sind.

Claims (5)

  1. Wärmegedämmter Behälter (01), insbesondere für Transportzwecke,
    mit einer Behälterwandung (02), die einen Innenraum (07) vollständig umschließt, wobei die Behälterwandung (02) eine verschließbare Öffnung aufweist, über die der Innenraum (07) von außen zugänglich ist,
    mit zumindest einem Vakuumisolationselement (24) in der Behälterwandung (02), durch das der Innenraum (07) gegen einen Wärmeaustausch isoliert ist, und
    mit zumindest einem passiven Schmelzspeicherelement (16; 17), das mit einem Schmelzspeichermaterial gefüllt ist,
    wobei das zumindest eine Vakuumisolationselement (24) einen Grundkörper (33) aus einem offenporigen Werkstoff aufweist, der von einer Folie (34) gasdicht umschlossen ist, wobei der von der Folie (34) durch das gasdichte Umschließen des Grundkörpers (33) gebildete Innenraum (35) evakuiert ist,
    dadurch gekennzeichnet,
    dass das zumindest eine Vakuumisolationselement (24) ein internes Kontrollsystem (31) zur Kontrolle des Gasdruckes im Innenraum (35) des Vakuumisolationselementes (24) aufweist,
    dass in der Behälterwandung (02) eine Revisionsöffnung (19) vorhanden ist, durch die das Kontrollsystem (31) zur Kontrolle des Innengasdruckes im Vakuumisolationselement (24) zugänglich ist, und
    dass die Revisionsöffnung (19) mit einer Abdeckung (32) verschließbar ist.
  2. Behälter nach Anspruch 1, dadurch gekennzeichnet,
    dass in der Behälterwandung vier Vakuumisolationselemente (24) benachbart zueinander angeordnet sind,
    dass die vier Kontrollsysteme (31) der vier Vakuumisolationselemente (24) jeweils benachbart zueinander in der Mitte der entsprechenden Behälterwandung (02) angeordnet sind und
    dass die Revisionsöffnung (19) so angeordnet ist, dass die vier Kontrollsysteme (31) durch eine einzige Revisionsöffnung (19) hindurch zugänglich sind.
  3. Behälter nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Folie (34) des Vakuumisolationselements (24) keine überstehenden Randlaschen aufweist.
  4. Behälter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Vakuumisolationselement (24) eine Schichtdicke von 5 mm bis 100 mm aufweist.
  5. Behälter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass an zumindest einem Schmelzspeicherelement (16; 17) eine Temperaturmesseinrichtung, insbesondere ein sich in Abhängigkeit der Temperatur verfärbender Temperatursensor, vorgesehen ist, mit dem die Temperatur des Schmelzspeicherelements (16; 17) messbar ist.
EP04738481.3A 2003-05-19 2004-05-05 Wärmegedämmter behälter Expired - Lifetime EP1625338B2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14004268.0A EP2876389B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter Behälter
EP20156390.5A EP3671078B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter behälter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10322764A DE10322764A1 (de) 2003-05-19 2003-05-19 Container mit Vakuumisolation und Schmelzspeichermaterialien
PCT/DE2004/000953 WO2004104498A2 (de) 2003-05-19 2004-05-05 Wärmegedämmter behälter

Related Child Applications (4)

Application Number Title Priority Date Filing Date
EP14004268.0A Division-Into EP2876389B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter Behälter
EP14004268.0A Division EP2876389B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter Behälter
EP20156390.5A Division-Into EP3671078B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter behälter
EP20156390.5A Division EP3671078B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter behälter

Publications (3)

Publication Number Publication Date
EP1625338A2 EP1625338A2 (de) 2006-02-15
EP1625338B1 true EP1625338B1 (de) 2020-02-12
EP1625338B2 EP1625338B2 (de) 2023-04-12

Family

ID=33461829

Family Applications (3)

Application Number Title Priority Date Filing Date
EP04738481.3A Expired - Lifetime EP1625338B2 (de) 2003-05-19 2004-05-05 Wärmegedämmter behälter
EP20156390.5A Expired - Lifetime EP3671078B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter behälter
EP14004268.0A Revoked EP2876389B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter Behälter

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP20156390.5A Expired - Lifetime EP3671078B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter behälter
EP14004268.0A Revoked EP2876389B1 (de) 2003-05-19 2004-05-05 Wärmegedämmter Behälter

Country Status (4)

Country Link
US (1) US20070051734A1 (de)
EP (3) EP1625338B2 (de)
DE (1) DE10322764A1 (de)
WO (1) WO2004104498A2 (de)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322764A1 (de) 2003-05-19 2004-12-30 Va-Q-Tec Ag Container mit Vakuumisolation und Schmelzspeichermaterialien
DE102006045471A1 (de) * 2006-09-26 2008-04-03 Va-Q-Tec Ag Verfahren zur Bestimmung des Gasdruckes in evakuierten Körpern
WO2009035661A1 (en) 2007-09-11 2009-03-19 Cold Chain Technologies, Inc. Insulated pallet shipper and methods of making and using the same
US7823394B2 (en) * 2007-11-02 2010-11-02 Reflect Scientific, Inc. Thermal insulation technique for ultra low temperature cryogenic processor
DE102009004353A1 (de) * 2009-01-08 2010-07-15 SCHÜCO International KG Vorrichtung und Verfahren zur Raumtemperierung und thermischen Raumkonditionierung
US20100200599A1 (en) * 2009-02-10 2010-08-12 Robert Molthen Vacuum insulated container
TW201205267A (en) * 2010-07-26 2012-02-01 Wistron Corp Detecting device capable of economizing electricity and detecting method thereof
FR2974353B1 (fr) * 2011-04-19 2014-06-13 Emball Iso Dispositif de conditionnement isotherme pour produits thermosensibles
US20130255306A1 (en) * 2012-03-27 2013-10-03 William T. Mayer Passive thermally regulated shipping container employing phase change material panels containing dual immiscible phase change materials
US9038403B2 (en) * 2012-04-02 2015-05-26 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
DE102012022398B4 (de) * 2012-11-16 2019-03-21 delta T Gesellschaft für Medizintechnik mbH Modularer Isolierbehälter
DE102012025192A1 (de) 2012-12-10 2014-06-12 Va-Q-Tec Ag Verfahren und Vorrichtung zur Vorkonditionierung von Latentwärmespeicherelementen
DE202013001161U1 (de) 2012-12-11 2013-03-28 Va-Q-Tec Ag Flaschenkühler und Latentwärmespeicherelement für einen Flaschenkühler
DE102013002555A1 (de) 2012-12-18 2014-06-18 Va-Q-Tec Ag Verfahren und Vorrichtung zur Vorkonditionierung von Latentwärmespeicherelementen
FR3001721A1 (fr) * 2013-02-05 2014-08-08 Sofrigam Systeme et procede pour garantir le respect de conditions de temperature pour des produits transportes dans une caisse isotherme.
WO2015149159A1 (en) * 2014-04-04 2015-10-08 Sunwell Engineering Company Limited A storage unit for maintaining a generally constant temperature
DE102014007987A1 (de) 2014-05-30 2015-12-03 Va-Q-Tec Ag Transportbehältersystem
DE202014004515U1 (de) 2014-05-30 2015-09-03 Va-Q-Tec Ag Transportbehältersystem
GB2530077A (en) 2014-09-12 2016-03-16 Peli Biothermal Ltd Thermally insulated containers
DE202014008489U1 (de) 2014-10-27 2016-01-28 Va-Q-Tec Ag Kastenförmiger Transportbehälter
DE102014015770A1 (de) 2014-10-27 2016-04-28 Va-Q-Tec Ag Kastenförmiger Transportbehälter
DE202014008814U1 (de) 2014-11-07 2016-02-11 Va-Q-Tec Ag Transportbehälter
DE102014016393A1 (de) 2014-11-07 2016-05-12 Va-Q-Tec Ag Transportbehälter
DE202015004047U1 (de) 2015-06-10 2016-09-14 Va-Q-Tec Ag Wärmesolierender Korpus für ein Kühlgerät sowie Kühlgerät mit einem wärmeisolierenden Korpus
DE102015007277A1 (de) 2015-06-10 2016-12-15 Va-Q-Tec Ag Wärmeisolierender Korpus für ein Kühlgerät sowie Kühlgerät mit einem wärmeisolierenden Korpus
EP3341665A4 (de) * 2015-09-11 2019-05-01 The Sure Chill Company Limited Tragbare kühlvorrichtung
US10583978B2 (en) 2015-10-06 2020-03-10 Cold Chain Technologies, Llc Pallet cover compromising one or more temperature-control members and kit for use in making the pallet cover
US11964795B2 (en) 2015-10-06 2024-04-23 Cold Chain Technologies, Llc Device comprising one or more temperature-control members and kit for use in making the device
US10604326B2 (en) 2015-10-06 2020-03-31 Cold Chain Technologies, Llc. Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover
CA3001052C (en) * 2015-10-06 2020-04-28 Cold Chain Technologies, Inc. Thermally insulated shipping system for pallet-sized payload, methods of making and using the same, and kit for use therein
US11591133B2 (en) 2015-10-06 2023-02-28 Cold Chain Technologies, Llc Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover
DE202016001097U1 (de) 2016-01-28 2017-05-02 Va-Q-Tec Ag Transportbehältersystem
EP3228960A1 (de) 2016-04-08 2017-10-11 ROTTER, Thomas Vakuumisolationselement, vakuumisolationsverpackung und vakuumisolationskiste
JP6925106B2 (ja) * 2016-07-19 2021-08-25 富士フイルム富山化学株式会社 搬送装置
JP6870985B2 (ja) * 2016-12-28 2021-05-12 旭ファイバーグラス株式会社 真空断熱材
DE102017000622B4 (de) 2017-01-25 2023-10-26 Va-Q-Tec Ag Verfahren zum Präparieren eines Transportbehälters
NL2018588B1 (en) * 2017-03-28 2018-03-26 Turtle B V Flight case suited to transport musical instruments
CA3065758C (en) 2017-05-09 2022-10-18 Cold Chain Technologies, Llc Shipping system for storing and/or transporting temperature-sensitive materials
US11511928B2 (en) 2017-05-09 2022-11-29 Cold Chain Technologies, Llc Shipping system for storing and/or transporting temperature-sensitive materials
FR3076285B1 (fr) * 2018-01-03 2021-01-15 Sofrigam Dispositif et procede pour garantir un releve de temperature fiable dans une caisse thermo-isolante.
US10935299B2 (en) * 2018-06-13 2021-03-02 Cedric Davis Quick freeze cooler
DE202018104488U1 (de) * 2018-08-03 2018-08-14 Va-Q-Tec Ag Pallettencontainer zum Transport von temperaturempfindlichen Gütern
DE202018104807U1 (de) 2018-08-21 2018-08-28 Va-Q-Tec Ag Vakuumgedämmter Stapelbehälter für den temperaturgeführten Transport von Nahrungsmitteln
DE202018106306U1 (de) 2018-11-06 2018-11-13 Va-Q-Tec Ag Temperierbarer Container mit Vakuumisolationselementen
US11137190B2 (en) 2019-06-28 2021-10-05 Cold Chain Technologies, Llc Method and system for maintaining temperature-sensitive materials within a desired temperature range for a period of time
US20210403224A1 (en) * 2020-06-24 2021-12-30 World Courier Management Limited Packaging system for transporting temperature-sensitive products
DE202020104675U1 (de) 2020-08-12 2020-09-30 Va-Q-Tec Ag Transportcontainer zum temperaturgeführten Transport von temperatursensiblen Gütern
US20220081200A1 (en) * 2020-09-11 2022-03-17 Sonoco Development, Inc. Passive Temperature Controlled Packaging System as a ULD
WO2022170309A1 (en) * 2021-02-03 2022-08-11 Peli Biothermal Llc Passive thermally controlled condition-in-place shipping container

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091842A (en) 1977-07-28 1978-05-30 The Dow Chemical Company Resealable sealing assembly for inspection port hole
US4351271A (en) 1980-09-04 1982-09-28 Paul Mueller Company Refrigerated receiver
US4845959A (en) 1988-06-27 1989-07-11 Fort Valley State College Fruits and vegetables precooling, shipping and storage container
CA2166199A1 (en) 1993-06-28 1995-01-05 David D. Barton Access plug flange
US5518033A (en) 1994-09-19 1996-05-21 Sepco Industries Vessel inspection plug and method of installing same in vessel
US5520220A (en) 1995-08-29 1996-05-28 Barton; David D. Access mounting flange for cold temperature chemical processing equipment
US5522216A (en) 1994-01-12 1996-06-04 Marlow Industries, Inc. Thermoelectric refrigerator
JPH10292984A (ja) 1997-04-18 1998-11-04 Hitachi Ltd 冷蔵庫
FR2762899A1 (fr) 1997-05-02 1998-11-06 Applic Gaz Sa Contenant portatif a usage refrigerant, par exemple glaciere
WO1999003757A1 (en) 1997-07-17 1999-01-28 Henry Berberat Storage tank vault
US5865346A (en) 1997-01-07 1999-02-02 Del Zotto; William M. Self-contained fueling system and method
US5924302A (en) 1997-03-27 1999-07-20 Foremost In Packaging Systems, Inc. Insulated shipping container
US6062040A (en) 1996-08-30 2000-05-16 Vesture Corporation Insulated chest and method
WO2000040908A1 (en) 1999-01-07 2000-07-13 Unilever Plc Freezer cabinet
EP1134041A1 (de) 1999-02-18 2001-09-19 Kyowa Co., Ltd. Thermischer zersetzer für abfälle
DE10058566A1 (de) 2000-08-03 2002-02-21 Va Q Tec Ag Folienumhüllter, evakuierter Wärmedämmkörper und Herstellungsverfahren für diesen
WO2002064445A1 (en) 2001-02-15 2002-08-22 Creative Packaging Services Pty Ltd Temperature retaining container
US20030041793A1 (en) 1999-05-26 2003-03-06 Insulated Shipping Containers, Inc. Method and apparatus for the evaluation of vacuum insulation panels
EP1291300A2 (de) * 2001-09-05 2003-03-12 Energy Storage Technologies, Inc. Mehrschichtiges Material für Vakuumisolationspaneel und Behälter mit einem solchen Vakuumisolationspaneel
DE10158441A1 (de) 2001-11-29 2003-06-18 Va Q Tec Ag Gasdrucksensor für folienumhüllte Vakuumdämmpaneele
DE10215213C1 (de) 2002-04-06 2003-09-11 Va Q Tec Ag Vorrichtung und Verfahren zur Messung des Gasdruckes in evakuierten Dämmplatten

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313993A (en) 1980-04-14 1982-02-02 Mcglory Joseph J Laminated insulation
JPS63188481U (de) * 1987-05-22 1988-12-02
SE9100649L (sv) 1991-03-05 1992-05-25 Eurotainer Ab Transportbehaallare foer temperaturkaensliga varor
JPH04302978A (ja) * 1991-03-28 1992-10-26 Matsushita Refrig Co Ltd 蓄冷型保冷庫
JPH0868591A (ja) * 1994-08-29 1996-03-12 Toshiba Corp 断熱箱体
US5875599A (en) * 1995-09-25 1999-03-02 Owens-Corning Fiberglas Technology Inc. Modular insulation panels and insulated structures
US5669233A (en) 1996-03-11 1997-09-23 Tcp Reliable Inc. Collapsible and reusable shipping container
US7253731B2 (en) 2001-01-23 2007-08-07 Raymond Anthony Joao Apparatus and method for providing shipment information
US5950450A (en) * 1996-06-12 1999-09-14 Vacupanel, Inc. Containment system for transporting and storing temperature-sensitive materials
JPH10239199A (ja) 1997-02-28 1998-09-11 Toshiba Corp 真空度測定装置
US5899088A (en) * 1998-05-14 1999-05-04 Throwleigh Technologies, L.L.C. Phase change system for temperature control
US6065314A (en) 1998-05-22 2000-05-23 Nicholson; John W. Lock for freight containers
US6244458B1 (en) 1998-07-09 2001-06-12 Thermo Solutions, Inc. Thermally insulated container
US6209343B1 (en) * 1998-09-29 2001-04-03 Life Science Holdings, Inc. Portable apparatus for storing and/or transporting biological samples, tissues and/or organs
EP1045079B1 (de) * 1999-04-12 2007-10-03 Isuzu Motors Limited Wärmedämmendes Mauerelement und Verfahren zu dessen Herstellung
DE10015876A1 (de) * 2000-03-30 2001-10-11 Jobst H Kerspe Vakuum-Isolations-Element
JP2002264717A (ja) * 2001-03-12 2002-09-18 Isuzu Motors Ltd 保冷車のボディ
DE10148587C1 (de) * 2001-03-19 2002-11-28 Hans Zucker Gmbh & Co Kg Isolierende Komponente für wechselbar temperierfähiges Behältnis
US6718776B2 (en) 2001-07-10 2004-04-13 University Of Alabama In Huntsville Passive thermal control enclosure for payloads
JP2003106760A (ja) * 2001-09-27 2003-04-09 Mitsubishi Corp 高断熱複合パネル及びそれを用いた構造体
DE10243120A1 (de) 2002-09-17 2004-03-25 N. Romijn B.V. Transportbehälter für temperaturempfindliche Güter
DE10322764A1 (de) 2003-05-19 2004-12-30 Va-Q-Tec Ag Container mit Vakuumisolation und Schmelzspeichermaterialien

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091842A (en) 1977-07-28 1978-05-30 The Dow Chemical Company Resealable sealing assembly for inspection port hole
US4351271A (en) 1980-09-04 1982-09-28 Paul Mueller Company Refrigerated receiver
US4845959A (en) 1988-06-27 1989-07-11 Fort Valley State College Fruits and vegetables precooling, shipping and storage container
CA2166199A1 (en) 1993-06-28 1995-01-05 David D. Barton Access plug flange
US5522216A (en) 1994-01-12 1996-06-04 Marlow Industries, Inc. Thermoelectric refrigerator
US5518033A (en) 1994-09-19 1996-05-21 Sepco Industries Vessel inspection plug and method of installing same in vessel
US5520220A (en) 1995-08-29 1996-05-28 Barton; David D. Access mounting flange for cold temperature chemical processing equipment
US6062040A (en) 1996-08-30 2000-05-16 Vesture Corporation Insulated chest and method
US5865346A (en) 1997-01-07 1999-02-02 Del Zotto; William M. Self-contained fueling system and method
US5924302A (en) 1997-03-27 1999-07-20 Foremost In Packaging Systems, Inc. Insulated shipping container
JPH10292984A (ja) 1997-04-18 1998-11-04 Hitachi Ltd 冷蔵庫
FR2762899A1 (fr) 1997-05-02 1998-11-06 Applic Gaz Sa Contenant portatif a usage refrigerant, par exemple glaciere
WO1999003757A1 (en) 1997-07-17 1999-01-28 Henry Berberat Storage tank vault
WO2000040908A1 (en) 1999-01-07 2000-07-13 Unilever Plc Freezer cabinet
EP1134041A1 (de) 1999-02-18 2001-09-19 Kyowa Co., Ltd. Thermischer zersetzer für abfälle
US20030041793A1 (en) 1999-05-26 2003-03-06 Insulated Shipping Containers, Inc. Method and apparatus for the evaluation of vacuum insulation panels
DE10058566A1 (de) 2000-08-03 2002-02-21 Va Q Tec Ag Folienumhüllter, evakuierter Wärmedämmkörper und Herstellungsverfahren für diesen
WO2002064445A1 (en) 2001-02-15 2002-08-22 Creative Packaging Services Pty Ltd Temperature retaining container
EP1291300A2 (de) * 2001-09-05 2003-03-12 Energy Storage Technologies, Inc. Mehrschichtiges Material für Vakuumisolationspaneel und Behälter mit einem solchen Vakuumisolationspaneel
DE10158441A1 (de) 2001-11-29 2003-06-18 Va Q Tec Ag Gasdrucksensor für folienumhüllte Vakuumdämmpaneele
DE10215213C1 (de) 2002-04-06 2003-09-11 Va Q Tec Ag Vorrichtung und Verfahren zur Messung des Gasdruckes in evakuierten Dämmplatten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Vakuumdämmung", BINE PROJEKTINFO, April 2001 (2001-04-01), pages 1 - 4, XP055756219, Retrieved from the Internet <URL:http://www.bine.info/fileadmin/content/Publikationen/Projekt-Infos/2001/Projekt-Info_04-2001/projekt_0401internetx.pdf>

Also Published As

Publication number Publication date
EP1625338B2 (de) 2023-04-12
WO2004104498A3 (de) 2005-03-31
US20070051734A1 (en) 2007-03-08
EP1625338A2 (de) 2006-02-15
EP3671078A1 (de) 2020-06-24
EP2876389B1 (de) 2018-01-10
WO2004104498A2 (de) 2004-12-02
EP2876389A1 (de) 2015-05-27
DE10322764A1 (de) 2004-12-30
EP3671078B1 (de) 2024-02-14

Similar Documents

Publication Publication Date Title
EP1625338B1 (de) Wärmegedämmter behälter
DE3843287C2 (de)
EP2943414B1 (de) Modularer isolierbehälter und verfahren zum betreiben eines solchen
EP3687922B1 (de) Transportbehälter
EP2041502B1 (de) Transportbehälter zur kühlhaltung von gefrorenem gut
DE69533667T2 (de) Palettenbasiertes gekühltes transportsystem
WO2016062894A1 (de) Thermoisolierter transportbehälter mit an den wänden anliegender thermoisolierung sowie wandaufbau eines derartigen behälters
DE10206109C1 (de) Verpackung zum Transport von thermisch empfindlichen Produkten
DE102007008351A1 (de) Selbstkühlender Transportbehälter
DE3915925A1 (de) Behaelter zum temperierten und klimatisierten transport verderblicher gueter
DE202020103635U1 (de) Haltesystem und Transportsystem
DE102010007686A1 (de) Vorrichtung zur Einstellung tiefkalter Temperaturen
DE202010011159U1 (de) Kühlbox
WO2008037451A2 (de) Verfahren und vorrichtung zur bestimmung des gasdruckes in evakuierten körpern
DE20301839U1 (de) Wärmedämmbehältnis mit Vakuumdämmplatten
DE102004053113A1 (de) Tragbarer wärmeisolierter Transportbehälter
DE102006040697B3 (de) Betriebs-, Lager- und Transportbehälter für IT-Geräte
EP3293468B1 (de) Kühltransportbehältnis
EP1915045B1 (de) Betriebs-, Lager- und Transportbehälter für IT-Geräte
DE102010018515A1 (de) Wandelement für die Wärmedämmung von Gebäudefassaden und Verfahren zu seiner Herstellung
WO2011060933A1 (de) Temperaturindikator für die optische anzeige einer temperatur unterhalb der raumtemperatur
DE202023000101U1 (de) Anordnung zur Isolation und Temperierung jeweils wenigstens eines Bereichs einer Wand, eines Bodens und/oder einer Decke eines Kühlcontainers
DE202009010384U1 (de) Kiste zum Transport von Proben
DE2360032A1 (de) Verfahren zur erzeugung tiefer temperaturen in pruefkammern bei hochleistungspruefungen von geraeten
DE102016002472A1 (de) Isoliereinsatz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUHN, JOACHIM

17Q First examination report despatched

Effective date: 20090213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004015849

Country of ref document: DE

Owner name: VA-Q-TEC AG, DE

Free format text: FORMER OWNER: VA-Q-TEC AG, 97080 WUERZBURG, DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VA-Q-TEC AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015849

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004015849

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PELICAN BIOTHERMAL LLC

Effective date: 20201112

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

RIC2 Information provided on ipc code assigned after grant

Ipc: F25D 23/06 20060101ALI20220214BHEP

Ipc: F25D 3/06 20060101AFI20220214BHEP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20230412

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004015849

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 20

Ref country code: FR

Payment date: 20230525

Year of fee payment: 20

Ref country code: DE

Payment date: 20230519

Year of fee payment: 20

Ref country code: CH

Payment date: 20230605

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004015849

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240504