EP1561019A1 - Procede permettant de controler au moins trois capteurs destines a detecter une grandeur de mesure relative a un moteur a combustion - Google Patents

Procede permettant de controler au moins trois capteurs destines a detecter une grandeur de mesure relative a un moteur a combustion

Info

Publication number
EP1561019A1
EP1561019A1 EP03776812A EP03776812A EP1561019A1 EP 1561019 A1 EP1561019 A1 EP 1561019A1 EP 03776812 A EP03776812 A EP 03776812A EP 03776812 A EP03776812 A EP 03776812A EP 1561019 A1 EP1561019 A1 EP 1561019A1
Authority
EP
European Patent Office
Prior art keywords
sensor
sensors
internal combustion
combustion engine
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03776812A
Other languages
German (de)
English (en)
Inventor
Rainer Buck
Andreas Krautter
Dirk Foerstner
Michael Walter
Juergen Sojka
Matthias Stegmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10341454A external-priority patent/DE10341454A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1561019A1 publication Critical patent/EP1561019A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for checking at least three sensors, which detect a measured variable in the area of an internal combustion engine, according to the preamble of the independent claim.
  • exhaust gas aftertreatment systems are used in internal combustion engines which contain, for example, a catalytic converter, a particle filter or other components suitable for exhaust gas aftertreatment.
  • the components used often only work optimally in a certain temperature range. If the components have storage properties with respect to at least one exhaust gas component, monitoring of the loading condition with the exhaust gas component is generally necessary.
  • Temperature sensors are used to record the measured variable, which can be arranged both in the intake area, on the internal combustion engine itself and in the exhaust gas area.
  • Pressure sensors which can be used, for example, to determine the loading state of a particle filter, are used to record the measured variable.
  • the pressure sensors record the pressure difference that occurs at the particle filter, which is a measure of the loading condition.
  • Pressure sensors can be arranged in the intake area of the internal combustion engine.
  • a method for monitoring sensors has become known that detect a measured variable of an internal combustion engine.
  • These can be temperature sensors, pressure sensors or other sensors.
  • the individual sensor signals are compared with a reference signal, which is provided by another sensor, which is itself not included in the diagnosis.
  • the sensor, which is not included in the diagnosis is arranged at an installation location at which a comparatively low sensor load occurs, such as in the intake area, in which a temperature sensor is exposed to smaller temperature fluctuations than if it were used in the exhaust gas area.
  • Faulty sensors are identified by comparisons with predefined threshold values. If no error was detected in the previous method steps, a plausibility test is carried out at the end by forming differences between the sensors to be monitored and comparing them with threshold values.
  • the invention is based on the object of specifying a method for checking at least three sensors which record a measured variable in the area of an internal combustion engine and which provides a reliable result with a simple checking effort.
  • a measure for the sensor signal of the sensor to be checked in each case is compared with a reference signal, that the reference signal is obtained from at least some of the sensor signals of the sensors to be checked and that a sensor is identified as faulty on the basis of a comparison the measure for the sensor signal and the reference signal.
  • the method according to the invention initially has the advantage that all sensors are included in the diagnosis.
  • a further significant advantage is that a faulty sensor can be recognized immediately in the underlying check of at least three sensors with simple comparison operations.
  • the reference signal is formed from an average of a measure of the sensor signals of at least some of the sensors to be checked.
  • the measure enables a very simple provision of the reference signal.
  • An advantageous further development of this embodiment provides that the sensor signals are weighted with a predetermined factor each when averaging. The inclusion of a weighting factor enables the importance and the installation location of the individual sensors to be taken into account.
  • a simple check is possible in that a sensor is recognized as faulty if the difference between the measure for the sensor signal and the reference signal exceeds a predetermined threshold value.
  • the embodiment that the sensor whose measurement for the sensor signal is furthest from the reference signal is recognized as defective can nevertheless ensure reliable detection of a defective sensor.
  • a further development of the method according to the invention provides that the check is carried out in a stationary operating state or at a standstill or after a cold start of the internal combustion engine.
  • the development ensures that the sensor signals of the at least three sensors to be checked have at least approximately a stationary value, so that the check leads to a reliable statement.
  • the sensor signals During a standstill or after a cold start of the internal combustion engine, the sensor signals have a value that is predetermined by the ambient conditions. With temperature sensors, the sensor signals will largely reflect the ambient temperature.
  • the measure that the standstill of the internal combustion engine is detected a timer being provided that is started when a detected standstill and that the check is provided after a predetermined time, ensures that a steady state of the sensor signals when the internal combustion engine is at a standstill also actually exists.
  • Another measure that ensures that the stationary operating state, the standstill or the cold start of the internal combustion engine is present provides a comparison between a sensor signal of at least one selected sensor, which has a slow rate of change, and a sensor signal of a sensor to be tested.
  • the selected sensor is arranged on a component that has the greatest possible inertia with regard to the sensor signal.
  • a temperature sensor is a component with a high thermal capacity.
  • a further development of the method according to the invention provides that the sensor signal of a sensor identified as faulty is not taken into account when determining the reference signal.
  • the exclusion of the faulty sensor during further checks ensures that the reference signal is not falsified.
  • Another measure provides that a check is no longer carried out if the number of sensors identified as defective exceeds a predetermined number.
  • Fig. 1 shows a block diagram of an internal combustion engine and a controller and the
  • FIGS. 2-5 show flow diagrams of different configurations of a method according to the invention.
  • the internal combustion engine 100 is supplied with fresh air via an intake area 105.
  • the exhaust gases of internal combustion engine 100 pass through an exhaust gas area 110.
  • An exhaust gas aftertreatment system 115 is arranged in exhaust gas area 110. This can be a catalyst and / or a particle filter. Exhaust aftertreatment system 115 may have multiple catalysts for different
  • Contain pollutants or combinations of at least one catalyst and a particle filter Contain pollutants or combinations of at least one catalyst and a particle filter.
  • control unit 170 which contains at least one engine control unit 175 and an exhaust gas aftertreatment control unit 172.
  • the engine control unit 175 and the exhaust gas aftertreatment control unit 172 can also be arranged separately.
  • the engine control unit 175 applies control signals to a fuel metering system 180.
  • the engine control unit 175 and / or the exhaust gas aftertreatment control unit 172 provide signals for the other unit and / or further control units.
  • sensors are provided which supply the exhaust gas aftertreatment control unit 172 and the engine control unit 175 with signals.
  • a first sensor 191 provides a sensor signal S1 that characterizes the state of the fresh air.
  • a second sensor 191 provides a sensor signal S1 that characterizes the state of the fresh air.
  • a fourth sensor 194 provides a sensor signal S4 that characterizes the state of the exhaust gas aftertreatment system 115.
  • a fifth sensor 195 adjusts
  • Sensor signal S5 ready, which characterizes the state of the exhaust gases after the exhaust gas aftertreatment system 115. All five sensors 191, 192,
  • the measured variable is, for example, the temperature.
  • the measured variable can be the pressure.
  • Other measured variables such as acceleration or speed are also conceivable.
  • the method according to the invention for checking at least three sensors 191, 192, 193, 194, 195, which detect a measured variable in the area of internal combustion engine 100 works as follows:
  • the engine control 175 calculates a control signal to act upon the fuel metering system 180.
  • the fuel metering system 180 measures the corresponding amount of fuel
  • the toxic exhaust gas components formed during the combustion are converted into harmless components in one or more catalysts which are contained in the exhaust gas aftertreatment system 115.
  • a particle filter can be contained in the exhaust gas aftertreatment system 115 to remove the particles contained in the exhaust gas.
  • a catalytic converter works optimally in a certain temperature range.
  • a particle filter is also optimally regenerated in a certain temperature range.
  • the sensors 191, 192, 193, 194, 195 designed as temperature sensors detect the temperature at different points. With these sensors 191, 192, 193, 194, 195, the exhaust gas temperature of the internal combustion engine 100 can be set to a predetermined level
  • the sensors 191, 192, 193, 194, 195 designed as pressure sensors determined the pressures occurring in the intake area 105, on the internal combustion engine 100 and / or in the exhaust gas area 110.
  • the loading condition of the particle filter can be determined on the basis of the pressure difference that occurs.
  • the first sensor 191 arranged in the suction area 105 detects, for example, the air pressure, which can be taken into account when determining the air-fuel mixture.
  • a check of the correct functioning of the at least three sensors 191, 192, 193, 194, 195 ensures that the internal combustion engine 100 and in particular the exhaust gas aftertreatment system 115 work properly.
  • FIG. 2 shows a first embodiment according to the invention on the basis of a flow chart.
  • a first query 200 checks whether there are operating states in which a check is possible. Such operating conditions are in particular when the internal combustion engine 100 is in a stationary operating state, when the internal combustion engine 100 is switched off and is at a standstill, or when the internal combustion engine 100 has just been started and is still in the cold start phase.
  • An advantageous embodiment provides that the standstill of the internal combustion engine 100 is detected.
  • a timer provided emits a signal after a predetermined time has elapsed, and if it occurs, the internal combustion engine 100 can be assumed to be at a standstill for a sufficiently long time. If a starting process of the internal combustion engine 100 occurs after a sufficiently long standstill, one can
  • An advantageous embodiment which detects a stationary operating state, the standstill and / or the cold start of the internal combustion engine 100, provides that the sensor signal S1, S2, S3, S4, S5 of a selected sensor 191, 192, 193, 194, 195, which has a slow rate of change with which the sensor signal S1, S2, S3, S4, S5 of at least one other sensor 191, 192, 193, 194, 195 is compared.
  • the sensors 191, 192, 193, 194, 195 are temperature sensors
  • the sensor signal of the sensor 191, 192, 193, 194, 195 which detects the temperature of the medium which has the greatest heat capacity is used.
  • it is preferably the second sensor 192 that detects the temperature of the fuel metering system 180. This configuration determines whether the entire device is in a steady state, which is in a steady operating state, the standstill or when the internal combustion engine 100 is cold started. It is irrelevant whether the sensor 191, 192, 193,
  • 194, 195 has a high thermal capacity per se or the medium, the temperature of which is recorded.
  • a stationary operating state, a standstill or a cold start of the internal combustion engine 100 is present when the difference between the sensor signal of the selected sensor 191, 192, 193, 194, 195 and the at least one other sensor 191, 192, 193, 194, 195 is one falls below the predetermined threshold.
  • a further development of this embodiment provides that the sensor signals of two selected sensors 191, 192, 193, 194, 195, which are slow Have rate of change, are used for comparison. It is sufficient here if at least one difference fulfills the criterion.
  • an average value M of a measure is determined in a first function block 210
  • Sensor signals S1, S2, S3, S4, S5 of the sensors 191, 192, 193, 194, 195 to be checked are formed.
  • the mean value M is the reference signal.
  • a weighting of the individual sensor signals S1, S2, S3, S4, S5 is preferably provided when averaging. The weighting is taken into account with the correction factors K1, K2, K3, K4, K5. With the weighting, it is possible to take into account the importance of the individual sensors 191, 192, 193, 194, 195 and / or the installation location.
  • the differences Dn of the individual sensor signals Sn are based on those determined in the first function block 210
  • the individual differences Dn are compared with a threshold value SW.
  • the difference Dn that exceeds the threshold value SW leads to the sensor 191, 192, 193, 194, 195, which is likely to be faulty.
  • FIG. 1 An alternative embodiment is shown in FIG. First, the determination of the differences Dn between the individual sensor signals Sn and the mean value M is again provided in the second function block 220.
  • the maximum difference Max Dn is determined in a subsequent third function block 240.
  • the advantage of this alternative embodiment is that a faulty sensor 191, 192, 193, 194, 195, the sensor signal S1, S2, S3, S4, S5 of which can falsify the mean value M determined in the first function block 210, does not result in the
  • the reference signal is obtained from a measure of a sensor signal S1, S2, S3, S4, S5 from a single sensor 191, 192, 193, 194, 195 to be checked.
  • the reference signal is identical to the sensor signal S1, S2, S3, S4, S5. This case is shown in Figure 4.
  • the exemplary embodiment according to FIG. 4 is shown limited to checking three sensors 191, 192, 193.
  • a second difference D2 between the sensor signal S1 of the first sensor 191 and the sensor signal S3 of the third sensor 193 is determined.
  • the subsequent query 530 checks whether the first difference D1 is greater than a first
  • Threshold value is SW1. If this is the case, a further query 540 checks whether the second difference D2 is greater than a second threshold value SW2. If this is not the case, the first sensor S1 is recognized as faulty in a function block 560. If it is determined in query 540 that the second difference D2 is greater than the second threshold value SW2, then the second sensor S2 is recognized as faulty in a function block 262.
  • a query 550 checks whether the second difference D2 is greater than the second threshold value SW2. If this is the case, then in one Function block 264 the third sensor S3 recognized as faulty. If the differences D1, D2 are smaller than the threshold values SW1 and SW2, it is recognized in a function block 266 that there is no error.
  • threshold values SW1 and SW2 assume the same value. However, it can also be provided that the threshold values SW1, SW2 can assume different values.
  • the reference signal is also obtained from a measure of a sensor signal S1, S2, S3, S4, S5 from a single sensor 191, 192, 193, 194, 195 to be checked.
  • the reference signal is identical to the sensor signal S1, S2, S3, S4, S5. This case is shown in Figure 5.
  • this exemplary embodiment according to FIG. 5 is also shown limited to the checking of three sensors 191, 192, 193.
  • the difference between the exemplary embodiment according to FIGS. 4 and 5 lies in the fact that, in the exemplary embodiment according to FIG. 5, the differences D1, D2, D3 are formed between all sensor signals S1, S2, S3. The amount of deviation between the individual sensor signals S1, S2, S3 is determined in each case.
  • S3 can be assigned. If two differences are greater than the threshold value SW1, then the sensor S1, S2, S3 is recognized as faulty, which in both calculations of the
  • an error can not only be recognized, it can also be assigned to a specific sensor S1, S2, S3.
  • the first query 200 it is checked again, as in the previous exemplary embodiments, whether a stationary operating state, a standstill or a cold start
  • a first difference Dl is formed between the first and second sensor signals S1, S2.
  • the amount of the difference is preferably also formed here.
  • a second difference D2 is formed, which is the amount of the difference between the first and the third Sensor signal S1, S3 corresponds.
  • a third difference D3 is formed, which corresponds to the amount of the deviation between the second and third sensor signals S2, S3.
  • Threshold is SWl. If this is the case, a query 445 checks whether the second difference D2 is greater than a threshold value SW2. If this is the case, the first sensor 191 is incorrectly recognized in function block 260. If this is not the case, a query 448 checks whether the third difference D3 is greater than a threshold value SW3. If this is the case, the second sensor is in the function block

Abstract

L'invention concerne un procédé permettant de contrôler au moins trois capteurs (191, 192, 193, 194, 195) destinés à détecter une grandeur de mesure relative à un moteur à combustion (100). Une valeur du signal (S1, S2, S3, S4, S5) de chaque capteur à contrôler (191, 192, 193, 194, 195) est comparée avec un signal de référence (M, S1, S2, S3, S4, S5) obtenu à partir d'au moins une partie des signaux (S1, S2, S3, S4, S5) des capteurs à contrôler (191, 192, 193, 194, 195). Un capteur (191, 192, 193, 194, 195) est considéré défectueux en fonction du résultat de la comparaison de la valeur du signal (S1, S2, S3, S4, S5) avec le signal de référence (M, S1, S2, S3, S4, S5). Ledit signal de référence (M, S1, S2, S3, S4, S5) est par exemple calculé à partir d'une moyenne (M) des valeurs des signaux (S1, S2, S3, S4, S5) d'au moins une partie des capteurs à contrôler (191, 192, 193, 194, 195), les différents signaux (S1, S2, S3, S4, S5) pouvant être pondérés individuellement au moyen de facteurs de correction (K1, K2, K3, K4, K5) lors du calcul de cette moyenne. Lesdits capteurs (191, 192, 193, 194, 195) sont par exemple des capteurs de température ou de pression qui peuvent être disposés dans une zone d'admission (105) du moteur à combustion (100), sur le moteur à combustion (100) même, dans une zone d'échappement (110) et/ou dans un système de traitement des gaz d'échappement (115).
EP03776812A 2002-10-23 2003-10-20 Procede permettant de controler au moins trois capteurs destines a detecter une grandeur de mesure relative a un moteur a combustion Withdrawn EP1561019A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10249344 2002-10-23
DE10249344 2002-10-23
DE10341454 2003-09-09
DE10341454A DE10341454A1 (de) 2002-10-23 2003-09-09 Verfahren zur Überprüfung wenigstens dreier Sensoren, die eine Messgröße im Bereich einer Brennkraftmaschine erfassen
PCT/DE2003/003517 WO2004040104A1 (fr) 2002-10-23 2003-10-20 Procede permettant de controler au moins trois capteurs destines a detecter une grandeur de mesure relative a un moteur a combustion

Publications (1)

Publication Number Publication Date
EP1561019A1 true EP1561019A1 (fr) 2005-08-10

Family

ID=32231860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03776812A Withdrawn EP1561019A1 (fr) 2002-10-23 2003-10-20 Procede permettant de controler au moins trois capteurs destines a detecter une grandeur de mesure relative a un moteur a combustion

Country Status (4)

Country Link
US (1) US7275425B2 (fr)
EP (1) EP1561019A1 (fr)
JP (1) JP4490913B2 (fr)
WO (1) WO2004040104A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4165448B2 (ja) * 2004-05-12 2008-10-15 トヨタ自動車株式会社 内燃機関の異常検出装置
JP4172594B2 (ja) * 2005-08-25 2008-10-29 本田技研工業株式会社 温度センサの故障判定装置
DE102005049120B4 (de) * 2005-10-14 2007-05-24 Audi Ag Verfahren zur Plausibilitätskontrolle der Abstellzeit eines Kraftfahrzeuges mit einer Brennkraftmaschine
DE102005054735B4 (de) * 2005-11-17 2019-07-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP4192973B2 (ja) * 2006-07-05 2008-12-10 トヨタ自動車株式会社 内燃機関用吸気温センサの異常診断装置
JP4247843B2 (ja) * 2006-09-01 2009-04-02 本田技研工業株式会社 温度検出装置の異常判定装置
US7677075B2 (en) * 2006-09-29 2010-03-16 General Electric Company Methods and apparatus for evaluating sensors and/or for controlling operation of an apparatus that includes a sensor
US7588368B2 (en) * 2006-12-20 2009-09-15 Cummins Inc. System for diagnosing temperature sensor operation in an exhaust gas aftertreatment system
US7555411B2 (en) * 2007-01-31 2009-06-30 Gm Global Technology Operations, Inc. Method and apparatus to monitor a temperature sensing device
US7771113B2 (en) * 2007-06-29 2010-08-10 Cummins Filtration Ip, Inc Sensor rationality diagnostic
DE102007042227A1 (de) * 2007-09-05 2009-03-12 Robert Bosch Gmbh Verfahren zur Bestimmung einer Abgastemperatur einer Brennkraftmaschine
DE102007056559A1 (de) * 2007-11-23 2009-05-28 Robert Bosch Gmbh Verfahren zum Überwachen von Temperatursensoren eines Pulswechselrichters und entsprechende Steuervorrichtung
US8655624B2 (en) * 2008-06-11 2014-02-18 Fluke Corporation System and method for objective self-diagnosis of measurement device calibration condition
DE102008042605B4 (de) * 2008-10-06 2019-12-05 Robert Bosch Gmbh Verfahren zum Überprüfen der Funktionstüchtigkeit mindestens eines Einspritzventils
US8359178B2 (en) * 2009-03-04 2013-01-22 Honeywell International Inc. Method and apparatus for identifying erroneous sensor outputs
FR2954952B1 (fr) * 2010-01-04 2012-02-03 Peugeot Citroen Automobiles Sa Procede de diagnostic fonctionnel d'un capteur de suie
JP5531776B2 (ja) * 2010-05-24 2014-06-25 日産自動車株式会社 温度センサの故障診断装置
GB2482004A (en) * 2010-07-14 2012-01-18 Influx Measurements Ltd Monitoring apparatus
CN102121876B (zh) * 2010-12-17 2012-11-07 杭州银轮科技有限公司 一种模拟柴油机排气的后处理装置试验台
JP5447491B2 (ja) 2011-11-23 2014-03-19 株式会社デンソー 燃圧センサ異常診断装置
US20130204508A1 (en) * 2012-02-08 2013-08-08 GM Global Technology Operations LLC System and method for controlling an engine
US9970372B2 (en) * 2014-02-14 2018-05-15 Ford Global Technologies, Llc Method of diagnosing an exhaust gas sensor
GB2513249A (en) * 2014-03-14 2014-10-22 Daimler Ag Method for checking a multi sensor system of a vehicle
CN105089756B (zh) * 2014-05-19 2017-08-04 财团法人车辆研究测试中心 气体互感现象分析系统及其分析方法
EP3152408A1 (fr) 2014-07-16 2017-04-12 Siemens Aktiengesellschaft Procédé de validation d'un capteur étudié et machine correspondante
DE102014214452B3 (de) * 2014-07-23 2015-06-11 Continental Automotive Gmbh Verfahren und Vorrichtung zur Detektion eines fehlerhaften Raildrucksensors
EP3206093A1 (fr) 2016-02-09 2017-08-16 Siemens Aktiengesellschaft Détection de défaillance d'un capteur de température dans des systèmes de turbines.
GB201612159D0 (en) 2016-07-13 2016-08-24 Rolls Royce Plc Sensor fault detection method
AT521736B1 (de) * 2018-09-27 2022-04-15 Avl List Gmbh Verfahren zur Funktionsüberprüfung einer Temperatursensor-Anordnung
DE102022105077A1 (de) * 2022-03-03 2023-09-07 Volkswagen Aktiengesellschaft Verfahren zur Bestimmung eines Funktionskriteriums eines Messwertgebers eines Kraftfahrzeuges

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058975A (en) 1975-12-08 1977-11-22 General Electric Company Gas turbine temperature sensor validation apparatus and method
JPS57168039A (en) * 1981-04-09 1982-10-16 Nissan Motor Co Ltd Idling determination device for internal combustion engine
DE3145333A1 (de) * 1981-11-14 1983-05-26 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zum pruefen von temperaturfuehlern
JPS58114196A (ja) * 1981-12-28 1983-07-07 株式会社東芝 センサ群の異常診断方法
JPS5960364U (ja) * 1982-10-15 1984-04-20 株式会社ボッシュオートモーティブ システム 内燃機関用運転制御装置
JPS63153422A (ja) * 1986-12-18 1988-06-25 Mitsubishi Heavy Ind Ltd センサ故障検出装置
JPH0524033Y2 (fr) * 1987-03-16 1993-06-18
JPH01120294U (fr) * 1988-02-08 1989-08-15
JPH01307807A (ja) * 1988-06-07 1989-12-12 Toshiba Corp 検出器検査方法
JPH081148B2 (ja) * 1988-11-30 1996-01-10 富士重工業株式会社 エンジンのスロットル弁全閉状態検出装置
DE69010991T2 (de) * 1989-05-25 1994-11-17 Honda Motor Co Ltd Verfahren zur Fehlererkennung bei einem Ventilzeitsteuerungssystem für eine innere Verbrennungskraftmaschine.
JP3225693B2 (ja) * 1993-06-16 2001-11-05 株式会社明電舎 センサ相互診断方法
AU2293895A (en) * 1994-09-19 1996-04-09 Georgia Tech Research Corporation Poultry environmental control systems and methods
JPH09217647A (ja) * 1996-02-13 1997-08-19 Unisia Jecs Corp 吸気圧センサの診断装置
DE19612455C2 (de) * 1996-03-28 1999-11-11 Siemens Ag Verfahren zum Ermitteln eines Solldrehmoments an der Kupplung eines Kraftfahrzeugs
JPH1019614A (ja) * 1996-06-28 1998-01-23 Omron Corp マルチセンサシステムの診断方法及び装置
JP3769083B2 (ja) * 1996-10-07 2006-04-19 本田技研工業株式会社 アイドル回転数制御装置の故障判定装置
JPH10115534A (ja) * 1996-10-11 1998-05-06 Yamatake Honeywell Co Ltd センサ診断方法及び装置
JP3340330B2 (ja) * 1996-11-12 2002-11-05 株式会社ユニシアジェックス エンジンにおける酸素センサの劣化診断装置
JP3713849B2 (ja) * 1996-11-21 2005-11-09 日産自動車株式会社 スロットル開度検出装置
DE19823280C1 (de) * 1998-05-25 1999-11-11 Siemens Ag Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine während des Starts
JP4166354B2 (ja) * 1999-02-09 2008-10-15 本田技研工業株式会社 温度センサの故障診断装置
DE19954177A1 (de) * 1999-11-10 2001-05-23 Bosch Gmbh Robert Verfahren zur Prüfung der Funktionsfähigkeit und/oder zum Abgleichen eines Abgastemperatursensors
DE10112139A1 (de) * 2001-03-14 2002-09-19 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Sensors
JP2003286888A (ja) * 2002-03-27 2003-10-10 Honda Motor Co Ltd 温度センサの異常を検出する車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004040104A1 *

Also Published As

Publication number Publication date
US20060137436A1 (en) 2006-06-29
US7275425B2 (en) 2007-10-02
JP2006504113A (ja) 2006-02-02
JP4490913B2 (ja) 2010-06-30
WO2004040104A1 (fr) 2004-05-13

Similar Documents

Publication Publication Date Title
WO2004040104A1 (fr) Procede permettant de controler au moins trois capteurs destines a detecter une grandeur de mesure relative a un moteur a combustion
EP1228301B1 (fr) Procede pour controler le pot catalytique de gaz d'echappement d'un moteur a combustion interne
EP1992935B1 (fr) Procédé de fonctionnement d'un capteur à particules disposé en aval après un filtre à particules et dispositif d'exécution du procedée
DE102007062794B4 (de) Verfahren und Vorrichtung zur Detektion einer Undichtigkeit in einem Abgasabschnitt eines Verbrennungsmotors
EP1192340B1 (fr) Procede pour la verification d'un pot d'echappement catalytique a trois voies d'un moteur a combustion interne
EP3717757A1 (fr) Procédé pour faire fonctionner une installation de retraitement des gaz d'échappement d'un moteur à combustion interne et installation de retraitement des gaz d'échappement
WO2018177897A1 (fr) Procédé et produit de programme informatique pour le diagnostic d'un filtre à particules
DE102014209840A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
DE102009000286A1 (de) Überwachung eines Partikelgrenzwerts im Abgas einer Brennkraftmaschine
EP1426575A1 (fr) Procédé et dispositif de surveillance d'un système de traitement des gaz d'échappement
DE10340844B4 (de) Vorrichtung und Verfahren zur Fehlerbestimmung bei einem Luftströmungssensor
EP1039287A1 (fr) Procédé de détection de ratés nuisibles pour le catalysateur et provoquant une degradation des gaz d'échappement dans des moteurs à combustion
DE10112138A1 (de) Verfahren und Vorrichtung zur Überwachung eines Signals
DE102008038677A1 (de) Verfahren und Vorrichtung zum Diagnostizieren eines Abgaskatalysators
WO2016058775A1 (fr) Procédé de surveillance du système d'air secondaire dans un système d'épuration des gaz d'échappement d'un moteur à combustion interne
DE10341454A1 (de) Verfahren zur Überprüfung wenigstens dreier Sensoren, die eine Messgröße im Bereich einer Brennkraftmaschine erfassen
DE102005034270A1 (de) Verfahren zur Diagnose eines im Abgasbereich einer Brennkraftmaschine angeordneten Differenzdrucksensors und Vorrichtung zur Durchführung des Verfahrens
DE102011089503A1 (de) Diagnoseverfahren für einen in einem Abgasstrom eines Verbrennungsmotors angeordneten Partikelfilter
DE102007003547B4 (de) Verfahren zur Diagnose eines eine Abgasbehandlungsvorrichtung enthaltenden Abgasbereichs einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102004048136A1 (de) Verfahren zur Diagnose eines in einem Abgasbereich einer Brennkraftmaschine angeordneten NOx-Sensors und Vorrichtung zur Durchführung des Verfahrens
DE102016200158A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
EP1180210B2 (fr) Procede et dispositif pour commander un moteur a combustion interne equipe d'un systeme de retraitement des gaz d'echappement
EP1960642B1 (fr) Procede de diagnostic pour un catalyseur situe dans la zone des gaz d'echappement d'un moteur a combustion interne et dispositif permettant la mise en oeuvre du dit procede
DE102004051747A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE10145863A1 (de) Verfahren/Vorrichtung zur Überwachung eines Drucksignals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20110202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160503