EP2464849B1 - Procédé et dispositif de diagnostic dynamique d'une sonde de gaz d'échappement - Google Patents

Procédé et dispositif de diagnostic dynamique d'une sonde de gaz d'échappement Download PDF

Info

Publication number
EP2464849B1
EP2464849B1 EP10737862.2A EP10737862A EP2464849B1 EP 2464849 B1 EP2464849 B1 EP 2464849B1 EP 10737862 A EP10737862 A EP 10737862A EP 2464849 B1 EP2464849 B1 EP 2464849B1
Authority
EP
European Patent Office
Prior art keywords
signal
calculated
exhaust gas
measured
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10737862.2A
Other languages
German (de)
English (en)
Other versions
EP2464849A1 (fr
Inventor
Peter Plonka
Alexander Bludau
Benedikt Feldmann
Thomas Steinert
Wolfgang Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2464849A1 publication Critical patent/EP2464849A1/fr
Application granted granted Critical
Publication of EP2464849B1 publication Critical patent/EP2464849B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Definitions

  • the invention relates to a method for dynamic diagnosis of an exhaust gas probe arranged in an exhaust gas duct of an internal combustion engine, the dynamic diagnosis being carried out after a change in a lambda value of the exhaust gas and on the basis of a comparison of a measured signal rise against an expected rise in the signal, wherein a set / actual comparison between a forming a target value computed O 2 signal and an actual value forming measured by the exhaust O 2 probe signal or is performed between signals derived from these signals, for the target / Actual comparison, a target value assigned to the respective operating point of the internal combustion engine is formed and then compared with the actual value, and a dynamic assessment of the exhaust gas probe is carried out on the basis of the target / actual comparison.
  • the invention further relates to a device for dynamic diagnosis of an exhaust gas probe arranged in an exhaust gas duct of an internal combustion engine, the output signal of which is fed to an engine control system and at least information of an input air mass and a fuel metering are connected as further input signals, the engine control system devices for determining a calculated O 2 signal from the information of the input air mass and the fuel metering.
  • the storage capacity of an exhaust gas cleaning system for oxygen is used to absorb oxygen in lean phases and to release it again in fat phases. This ensures that oxidizable harmful gas components of the exhaust gas can be converted.
  • An exhaust gas probe connected downstream of the exhaust gas cleaning system is used to monitor the oxygen storage capacity of the exhaust gas cleaning system. The oxygen storage capacity must be monitored as part of the on-board diagnosis, since it represents a measure of the convertibility of the exhaust gas cleaning system.
  • the exhaust gas cleaning system is initially filled with oxygen in a lean phase and then emptied with known lambdas in a rich phase with an exhaust gas taking into account the amount of exhaust gas that passes through, or the exhaust gas cleaning system is first emptied with oxygen in a rich phase and then with a lean phase Exhaust gas known Lambdas filled taking into account the amount of exhaust gas passing through.
  • the lean phase is ended when the exhaust gas probe connected downstream of the exhaust gas cleaning system detects the oxygen which can no longer be stored by the exhaust gas cleaning system.
  • a rich phase is also ended when the exhaust gas probe detects the passage of rich exhaust gas.
  • an output signal of the exhaust gas probe serves as additional information for a lambda control, which, however, is largely based on an output signal of a lambda probe arranged in front of the exhaust gas cleaning system.
  • the output signal of the exhaust gas probe slows down to changes in the exhaust gas composition and there may be deviations in the diagnosis of the exhaust gas cleaning system, which can lead to an incorrectly functioning exhaust gas cleaning system being incorrectly rated as functional. Dynamic monitoring of the exhaust gas probe is therefore given high priority.
  • Dynamic monitoring is the evaluation of the reaction speed of the exhaust gas probe to a changing O 2 concentration. Due to aging and contamination of the probe ceramic or the probe sleeve, there is the possibility that the O 2 concentration of the exhaust gas is measured with a considerable delay. Because of this, emission-relevant functions that require the lambda signal as an input variable would be operated with a delay. This can result in the emission limit values specified by the legislator (European authorities or CARB, EPA) being exceeded.
  • a method and an apparatus of the type mentioned at the outset are in the EP 1 074 718 A2 specified.
  • a measurement signal of a lambda probe arranged in the exhaust gas duct behind a catalytic converter is recorded within a predefinable diagnostic period, using a model for the Internal combustion engine determines a target signal of the lambda probe and forms a ratio of the measurement signal to the target signal in order to obtain a control value which is compared with a predefinable limit value.
  • Another known method for diagnosing an exhaust gas cleaning system also evaluates, for example, the ratio of the amplitudes of the output signals of the lambda probe arranged in front of the exhaust gas cleaning system and the downstream exhaust gas probe.
  • a functional exhaust gas cleaning system dampens the amplitude of a vibration of the oxygen content of the exhaust gas at the output of the internal combustion engine due to its storage capacity, so that the ratio of the amplitudes before and after the exhaust gas cleaning system gives a high value.
  • a slower reaction of the downstream exhaust gas probe also leads to a reduction in the amplitude of its output signal, as a result of which the oxygen storage capacity of the exhaust gas cleaning system is rated as too high. Under certain circumstances, an exhaust gas cleaning system that no longer meets the requirements can be wrongly classified as functioning correctly.
  • a dynamic diagnosis is made more difficult by the fact that the output signal of the exhaust gas probe depends on the start and end lambda value in the event of a rich-lean or lean-rich jump.
  • the exhaust gas cleaning system described above there is the influence of the exhaust gas cleaning system described above, to which the temperature and age of the exhaust gas cleaning system are added.
  • a method for dynamic diagnosis of an exhaust gas probe is in the DE 1 972 233.4 specified.
  • the exhaust gas probe is arranged in the exhaust gas behind an exhaust gas cleaning system.
  • the rate of change of an output signal of the exhaust gas probe which occurs, for example, after the start of a phase with overrun operation, is used as the assessment criterion.
  • the disadvantage here is that this method only works with a very high air mass flow (>> 50kg / h), since only then can the catalyst influence be neglected. In such operating conditions, however, undesirable conditions can arise when reinserting after the overrun phase.
  • Today's dynamic monitoring function calculates two O 2 threshold values for a valid load-thrust transition based on the measured O 2 concentration.
  • the measured rise time of the O 2 concentration from the first to the second threshold value is used as an evaluation criterion for the dynamic properties of the exhaust gas probe. If the measured rise time remains below a fixed threshold value, an intact message is issued, otherwise a defect is reported. This makes the lambda signal plausible in an operating range to be applied compared to a fixed value.
  • the disadvantage here is that a determination of the operating range depends on the component tolerances of the upstream components including sensors and actuators. Any drift in the component characteristics is not taken into account in fixed threshold values. Furthermore, with these fixed threshold values, only a restricted operating range for load changes can be used for dynamic diagnosis. Likewise, dynamic properties of the exhaust gas probe with fixed threshold values cannot always be correctly diagnosed, so that as a result a dynamically defective exhaust gas probe can be assessed as OK, which is massive against the background increased or increasing legal requirements for on-board diagnostics (OBD) can be regarded as critical.
  • OBD on-board diagnostics
  • the object relating to the method is achieved in that, during a load-push transition, a target / actual comparison between a calculated O 2 signal and an O 2 signal measured with the exhaust gas probe or between derived from these signals Signals are carried out.
  • dynamic processes can be taken into account more reliably than in the prior art, so that an improved selectivity is made possible, regardless of the operating point. This enables increased legal requirements with regard to on-board diagnostics to be met.
  • a preferred method variant provides that the O 2 signal is calculated from the air mass and the injection quantity.
  • the calculated O 2 signal and the measured O 2 signal are filtered by means of, for example, a low-pass filter for the target / actual comparison, and a calculated and filtered O 2 signal and a measured and filtered O 2 signal are formed therefrom, can be achieved that, for example, briefly occurring disturbances in the signal transmission or in the signal processing can have less of an effect on the diagnostic result, with which a more robust dynamic diagnosis can be achieved.
  • the dynamic properties of the exhaust gas probe can be analyzed directly. Compared to a pure evaluation of the rise time between the above-mentioned O 2 thresholds, the properties of the exhaust gas probe can also be reliably determined depending on the respective operating condition. Compared to an evaluation of an absolute change in the signal, the evaluation of this relative change is fundamentally less susceptible to interference with respect to possible offset influences within the evaluation system and the sensors or actuators involved.
  • the invention relates to a method according to claim 1 and an apparatus according to claim 10.
  • a setpoint value assigned to the respective operating point of the internal combustion engine is individually formed for the setpoint / actual comparison and then compared with the actual value. It can thus be achieved that within the scope of the application activity, dynamic diagnosis is not only possible in a restricted operating range, as has been the case up to now, but the range can be expanded significantly, so that the dynamic properties of the exhaust gas probe can be expanded over a wide range Operating range of the internal combustion engine can be determined.
  • dynamic diagnosis results from different operating areas can also be used for evaluation, for example to check the individual results for plausibility or to identify operating states in which a dynamic diagnosis should not take place. If, for example, an error occurs in the dynamics of the exhaust gas probe, a dynamic carryover of the signal will not only occur in the event of a load-push transition, but can also be demonstrated for load-push transitions in other operating areas.
  • a first and a second O 2 threshold value of the calculated O 2 signal are determined during the load-thrust transition based on the signal profile of the calculated and filtered O 2 signal. It is provided that the threshold value determination of the O 2 threshold values is carried out again with each load-push transition used for dynamic diagnosis. In a variant of the method it is further provided that in the case of a valid load-thrust transition, an O 2 threshold value of the measured O 2 signal is determined based on the measured O 2 signal, the calculation of which is identical to the calculation of the first O 2 signal. Threshold value of the calculated O 2 signal is carried out. A percentage identical threshold value is used as a basis for the respective signal swing.
  • this respective recalculation of the O 2 threshold values allows the O 2 threshold values to be adapted to the operating range in which the dynamic diagnosis takes place.
  • these variable O 2 threshold values compared to the predefined threshold values according to the prior art, an improved diagnosis can be achieved in the event of a drift in the component characteristics.
  • the driver's influence, caused by the accelerator pedal being released at different speeds can be avoided. This applies in particular to the compensation of the quantity gradient when changing over to overrun mode.
  • an O 2 gradient signal for the calculated value is integrated and the target value is derived from the result.
  • an integration period for the calculated O 2 signal can be determined.
  • an O 2 gradient signal for the measured value is integrated for the measured O 2 signal or for the calculated and filtered O 2 signal and the actual value is derived from the result.
  • the integration time for the calculated O 2 signal is used as the integration time of the measured O 2 signal.
  • a starting time of the integration of a trigger time point is used, which is determined when the measured O 2 signal or the measured and filtered O 2 signal of the O 2 -threshold of the measured O exceeds 2 signal.
  • the integrals thus calculated for the setpoint and the actual value take into account in particular the dynamic effects and are also robust against offsets and short-term signal interference.
  • the actual value and the setpoint can then be related to each other for dynamic diagnosis, and a dynamic assessment of the exhaust gas probe can be derived from the result, the integral for the actual value decreasing compared to the integral for the setpoint as the dynamic deteriorates.
  • the dynamic assessment is carried out by direct comparison between the absolute O 2 gradient signal for the calculated value and the absolute O 2 gradient signal for the measured value. It can also be provided, for example, that the dynamic assessment is carried out by direct Comparison of the time profiles of the calculated O 2 signal and the measured O 2 signal or the filtered O 2 signals is carried out. Both variants also meet the requirements for a reproducible selectivity of dynamic monitoring, but are less complex and can therefore be used in simplified OBD units.
  • FIG 1 shows schematically as an example the technical environment in which the inventive method for dynamic diagnosis of an exhaust gas probe 17 can be used.
  • Air is supplied to an internal combustion engine 10 via an air supply 11 and its mass is determined using an air mass meter 12.
  • the air mass meter 12 can be designed as a hot film air mass meter.
  • the exhaust gas of the internal combustion engine 10 is discharged via an exhaust gas duct 18, an exhaust gas cleaning system 16 being provided behind the internal combustion engine 10 in the flow direction of the exhaust gas.
  • an engine control 14 which, on the one hand, supplies fuel to the internal combustion engine 10 via a fuel metering 13 and, on the other hand, the signals of the air mass meter 12 and a lambda probe 15 arranged in the exhaust gas duct 18 and one arranged in the exhaust gas discharge line 18 Exhaust gas probe 17 are supplied.
  • the lambda probe 15 determines an actual lambda value of a fuel-air mixture supplied to the internal combustion engine 10; it can be designed as a broadband lambda probe.
  • the exhaust gas probe 17 determines the exhaust gas composition after the exhaust gas purification system 16.
  • the exhaust gas probe 17 can be designed as a jump probe.
  • timing diagrams 20 are shown, in which a course of different signal values 21 of the exhaust gas probe 17 or signals derived therefrom are shown via a time axis 24 in a load-overrun change.
  • the timing diagrams 20 show, by way of example, that initially a rich phase 22 is assumed and then the exhaust gas composition changes as a result of the load-thrust change, such that lean exhaust gas with an increased O 2 concentration reaches the exhaust gas probe 17. Compared to the fat phase 22, this time range is referred to as the lean phase 23.
  • other transitions for dynamic diagnostics could also be used, in which the lambda value of the exhaust gas probe 17 changes.
  • FIG 2 shows the time course of a calculated O 2 signal 26, which is based on the fuel participating in the combustion of the internal combustion engine 10 and the determined atmospheric oxygen. Both variables can be determined from the signals from the air mass meter 12 and the fuel metering 13 Figure 1 be derived. In the example shown, this signal increases when there is a change in load-thrust. At the same time, an injection quantity 35 is reduced, which is predetermined via the fuel metering 13. In addition to the course of the calculated O 2 signal 26, the course of a calculated and filtered O 2 signal 28 is shown, which no longer exhibits short-term fluctuations compared to the unfiltered calculated O 2 signal 26 or which are significantly reduced. Building on this, an O 2 gradient curve 30 is calculated for the calculated O 2 signal 26.
  • a first O 2 threshold value of the calculated O 2 signal 32 and a second O 2 threshold value of the calculated O 2 signal 33 are calculated based on the calculated and filtered O 2 signal 28 .
  • an O 2 signal 27 measured with the exhaust gas probe 17 is converted into a measured and filtered O 2 signal 29, the course of which is also shown here.
  • An O 2 gradient signal 30, 31 for the calculated value and the measured value is determined from the measured and filtered O 2 signal 29 and the calculated and filtered O 2 signal 28.
  • an O 2 threshold value of the measured O 2 signal 34 is generated based on the measured O 2 signal 27.
  • its calculation is identical to the calculation of the first O 2 threshold value of the calculated O 2 signal 32.
  • a point in time of the threshold value calculation 25 can be determined by the signal rise of the calculated O 2 signal 26.
  • the courses of the different signal values 21 are shown in FIG Figure 3 and the Figure 4 very different and can already be used for dynamic diagnosis of the exhaust gas probe 17.
  • a comparison of the calculated and the measured O 2 signal 26, 27 shows, for example, that with a new exhaust gas probe 17 ( Figure 3 ) the course of the measured O 2 signal 27 follows the course of the calculated O 2 signal 26 relatively closely.
  • the rise in the measured O 2 signal 27 in the case of an aged, inert exhaust gas probe 17 ( Figure 4 ) staggered in time, the increase due to the inertia being less than in the course of the calculated O 2 signal 26.
  • a similar behavior can be seen when comparing the filtered O 2 signals 28, 29.
  • the O 2 gradient signals 30, 31 for the calculated and measured O 2 signal 26, 27 show the difference even more clearly.
  • the absolute level of the O 2 gradient signal 31 is significantly lower in an old, inert exhaust gas probe 17 than in a new exhaust gas probe 17.
  • a percentage threshold value 39 is specified for the first O 2 threshold value of the calculated O 2 signal 32.
  • the second O 2 threshold value of the calculated O 2 signal 33 is also predetermined accordingly, the percentage threshold value 39 differing from the first.
  • the determination is carried out accordingly for the O 2 threshold value of the measured O 2 signal 34.
  • the basis is the same percentage threshold value 39 as was used when determining the first O 2 threshold value of the calculated O 2 signal 32.
  • the time of threshold calculation 25 is specified from the beginning of the drop in injection quantity 35.
  • Figures 6 and 7 show the evaluation scheme of a preferred method variant, wherein in Figure 6 the evaluation on a new exhaust gas probe 17 and in Figure 7 the evaluation on an old, inert exhaust gas probe 17 is shown.
  • the calculated O 2 signal 26 during the time from reaching the first O 2 threshold value of the calculated O 2 signal 32 until reaching the second O 2 threshold value of the calculated O 2 Signal 33 integrates the O 2 gradient signal 30 for the calculated value and a setpoint value from the result of the integral formation 42 is derived.
  • an integration period for the calculated O 2 signal 40 can be determined.
  • the O 2 gradient signal 31 for the measured value is integrated for the measured O 2 signal 27 and an actual value 43 is derived from the result.
  • the integration time for the calculated O 2 signal 40 is used as the integration time of the measured O 2 signal 41.
  • a trigger time 44 is used as the start time for the integration of the O 2 gradient signal 31 for the measured value, which is determined when the measured O 2 signal 27 exceeds the O 2 threshold value of the measured O 2 signal 34.
  • the integrals thus calculated for the target value 42 and the actual value 43 can now be used for quantitative dynamic diagnosis.
  • the ratios of the desired and actual values 42, 43 derived from the integrals can assume different values depending on the inertia of the exhaust gas probe 17 and can be used directly as a measure of the dynamics of the exhaust gas probe 17.
  • Figure 7 is, for example, the area ratio of the two areas for the target and actual values 42, 43 compared to the area ratio in Figure 6 relatively small.
  • the respective filtered O 2 signals 28, 29 can also be evaluated, as described above.
  • the method according to the invention allows dynamic diagnostics to be carried out with a higher selectivity compared to the prior art, regardless of the operating point. This enables increased legal requirements with regard to on-board diagnostics to be met.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (10)

  1. Procédé de diagnostic dynamique d'une sonde de gaz d'échappement (17) disposée dans un canal de gaz d'échappement (18) d'un moteur à combustion interne (10), le diagnostic dynamique étant effectué après une modification d'une valeur lambda des gaz d'échappement et sur la base d'une comparaison entre une augmentation de signal mesurée par rapport à une augmentation calculée attendue du signal, une comparaison consigne/réel entre un signal dérivé d'un signal d'O2 calculé (26), qui forme une valeur de consigne, et un signal dérivé d'un signal d'O2 mesuré (27) avec la sonde de gaz d'échappement (17), qui forme une valeur réelle, étant effectuée, pour la comparaison consigne/réel, une valeur de consigne (42) associée au point de fonctionnement respectif du moteur à combustion interne (10) étant formée individuellement et ensuite comparée avec la valeur réelle (43) et une évaluation dynamique de la zone de gaz d'échappement ayant lieu en s'appuyant sur la comparaison consigne/réel, caractérisé en ce que la comparaison consigne/réel est réalisée lors d'une transition charge-poussée, en ce que pour la comparaison consigne/réel, le signal d'O2 calculé (26) et le signal d'O2 mesuré (27) sont filtrés et un signal d'O2 calculé et filtré (28) ainsi qu'un signal d'O2 mesuré et filtré (29) sont formés à partir de ceux-ci, et en ce que des signaux de gradient d'O2 (30, 31) du signal d'O2 calculé (26) et du signal d'O2 mesuré (27) ou des signaux d'O2 filtrés (28, 29) sont déterminés et utilisés pour la comparaison consigne/réel, en ce qu'une première et une deuxième valeur de seuil d'O2 du signal d'O2 calculé (32, 33) sont déterminées lors de la transition charge-poussée en se basant sur le tracé de signal du signal d'O2 calculé et filtré (28) et en ce que pour le signal d'O2 calculé (26) ou pour le signal d'O2 calculé et filtré (28), le signal de gradient d'O2 (30) pour la valeur calculée est intégré pendant la durée entre le moment où la première valeur de seuil d'O2 du signal d'O2 calculé (32) est atteinte et le moment où la deuxième valeur de seuil d'O2 du signal d'O2 calculé (33) est atteinte, et la valeur de consigne (42) est dérivée du résultat.
  2. Procédé selon la revendication 1, caractérisé en ce que le calcul du signal d'O2 (26) est effectué à partir de la masse d'air et de la quantité injectée.
  3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que dans le cas d'une transition charge-poussée valide, une valeur de seuil d'O2 du signal d'O2 mesuré (34) est déterminée en s'appuyant sur le signal d'O2 mesuré (27), son calcul étant réalisé de manière identique au calcul de la première valeur de seuil d'O2 du signal d'O2 calculé (32).
  4. Procédé selon la revendication l'une des revendications 1 à 3, caractérisé en ce que la détermination de valeur de seuil des valeurs de seuil d'O2 (32, 33, 34) est de nouveau effectuée à chacune des transitions charge-poussée utilisées pour le diagnostic dynamique.
  5. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'une durée d'intégration pour le signal d'O2 calculé (40) est en plus déterminée.
  6. Procédé selon la revendication 5, caractérisé en ce que pour le signal d'O2 mesuré (27) ou pour le signal d'O2 mesuré et filtré (29), le signal de gradient d'O2 (31) pour la valeur mesurée est intégré et la valeur réelle (43) est dérivée du résultat, la durée d'intégration utilisée du signal d'O2 mesuré (41) étant la durée d'intégration pour le signal d'O2 calculé (40) et l'instant de début de l'intégration un instant de déclenchement (44), l'instant de déclenchement (44) étant déterminé lorsque le signal d'O2 mesuré (29) ou le signal d'O2 mesuré et filtré (28) dépasse la valeur de seuil d'O2 du signal d'O2 mesuré (34).
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour le diagnostic dynamique, la valeur réelle (43) et la valeur de consigne (42) sont mises en relation l'une avec l'autre, et l'évaluation dynamique de la sonde de gaz d'échappement (17) est dérivée du résultat.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'évaluation dynamique est effectuée par comparaison directe entre le signal de gradient d'O2 (30) absolu pour la valeur calculée et le signal de gradient d'O2 (31) absolu pour la valeur mesurée.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'évaluation dynamique est effectuée par comparaison directe entre les tracés dans le temps du signal d'O2 calculé (26) et du signal d'O2 mesuré (27) ou des signaux d'O2 filtrés (28, 29).
  10. Dispositif de diagnostic dynamique d'une sonde de gaz d'échappement disposée dans un canal de gaz d'échappement (18) d'un moteur à combustion interne, caractérisé en ce que le dispositif est conçu pour mettre en œuvre un procédé selon l'une des revendications précédentes.
EP10737862.2A 2009-08-10 2010-07-22 Procédé et dispositif de diagnostic dynamique d'une sonde de gaz d'échappement Active EP2464849B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009028367A DE102009028367A1 (de) 2009-08-10 2009-08-10 Verfahren und Vorrichtung zur Dynamik-Diagnose einer Abgas-Sonde
PCT/EP2010/060634 WO2011018317A1 (fr) 2009-08-10 2010-07-22 Procédé et dispositif de diagnostic dynamique d’une sonde de gaz d’échappement

Publications (2)

Publication Number Publication Date
EP2464849A1 EP2464849A1 (fr) 2012-06-20
EP2464849B1 true EP2464849B1 (fr) 2020-04-01

Family

ID=42983453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10737862.2A Active EP2464849B1 (fr) 2009-08-10 2010-07-22 Procédé et dispositif de diagnostic dynamique d'une sonde de gaz d'échappement

Country Status (5)

Country Link
US (1) US8646324B2 (fr)
EP (1) EP2464849B1 (fr)
CN (1) CN102472186B (fr)
DE (1) DE102009028367A1 (fr)
WO (1) WO2011018317A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088296A1 (de) * 2011-12-12 2013-06-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Dynamiküberwachung von Gas-Sensoren
DE102012204353A1 (de) * 2012-03-20 2013-09-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung von Gas-Sensoren
DE102013201734A1 (de) * 2013-02-04 2014-08-07 Robert Bosch Gmbh Verfahren zum Betreiben einer Lambdasondenanordnung im Abgassystem einer Brennkraftmaschine
JP5983879B2 (ja) 2013-06-26 2016-09-06 トヨタ自動車株式会社 内燃機関の診断装置
DE102013216223A1 (de) * 2013-08-15 2015-02-19 Robert Bosch Gmbh Universell einsetzbare Steuer- und Auswerteeinheit insbesondere zum Betrieb einer Lambdasonde
DE102015205049A1 (de) * 2015-03-20 2016-09-22 Robert Bosch Gmbh Verfahren zum Betreiben eines Lambdareglers einer Brennkraftmaschine, Vorrichtung zur Durchführung des Verfahrens, Steuergeräteprogramm sowie Steuergerät-Programmprodukt
DE102018208861A1 (de) * 2018-06-06 2019-12-12 Robert Bosch Gmbh Verfahren zum Plausibilisieren eines Sensorsignals
DE102018209609A1 (de) * 2018-06-14 2019-12-19 MTU Aero Engines AG Inspektionsverfahren und System
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
DE102020210878A1 (de) * 2020-08-28 2022-03-03 Volkswagen Aktiengesellschaft Verfahren zur Dynamikdiagnose eines Sensors im Frischluft- oder Abgastrakt von Brennkraftmaschinen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1972233U (de) 1967-07-28 1967-11-09 Burger Eisenwerke Ag Heizkessel mit brauchwasserbereiter.
JPH08177575A (ja) 1994-12-28 1996-07-09 Nippondenso Co Ltd 内燃機関の空燃比制御装置の自己診断装置
DE19722334B4 (de) 1997-05-28 2011-01-05 Robert Bosch Gmbh Abgassondendiagnoseverfahren und -vorrichtung
DE19936355A1 (de) 1999-08-03 2001-02-08 Volkswagen Ag Verfahren zur Plausibilitätsprüfung von Motorgrößen und Sensorgrößen unter Verwendung einer stetigen Lambda-Sonde
JP4320778B2 (ja) * 2004-08-23 2009-08-26 株式会社デンソー 空燃比センサの異常診断装置
DE102006041477A1 (de) 2006-09-05 2008-03-06 Robert Bosch Gmbh Verfahren zur Dynamik-Diagnose einer Abgas-Sonde
DE102008006631A1 (de) 2008-01-29 2009-07-30 Volkswagen Ag Verfahren zur Diagnose eines Sauerstoffsensors sowie ein Verfahren zur Korrektur einer Diagnose eines Katalysators
DE102008001121A1 (de) * 2008-04-10 2009-10-15 Robert Bosch Gmbh Verfahren zur Diagnose einer im Abgassystem einer Brennkraftmaschine angeordneten Abgassonde und Vorrichtung zur Durchführung des Verfahrens
JP4835704B2 (ja) * 2009-02-23 2011-12-14 トヨタ自動車株式会社 酸素センサの異常判定装置
US8145409B2 (en) * 2009-03-26 2012-03-27 Ford Global Technologies, Llc Approach for determining exhaust gas sensor degradation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2464849A1 (fr) 2012-06-20
WO2011018317A1 (fr) 2011-02-17
CN102472186A (zh) 2012-05-23
US8646324B2 (en) 2014-02-11
DE102009028367A1 (de) 2011-02-17
US20120222474A1 (en) 2012-09-06
CN102472186B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
EP2464849B1 (fr) Procédé et dispositif de diagnostic dynamique d'une sonde de gaz d'échappement
DE102008042549B4 (de) Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE102007005680B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP2791493B1 (fr) Procédé et dispositif permettant de surveiller la dynamique des capteurs de gaz
DE102012211687B4 (de) Verfahren und Steuereinheit zur Erkennung eines Spannungsoffsets einer Spannungs-Lambda-Kennlinie
DE102011085115B4 (de) Verfahren und Vorrichtung zur Adaption einer Lambdaregelung
DE102013201734A1 (de) Verfahren zum Betreiben einer Lambdasondenanordnung im Abgassystem einer Brennkraftmaschine
DE102005032456A1 (de) Verfahren zur Dynamikdiagnose einer Abgassonde
EP1718853A1 (fr) Procede permettant de determiner la charge effective en oxygene d'un catalyseur a trois voies d'un moteur a combustion interne a regulation lambda
DE102005016075A1 (de) Verfahren zur Diagnose einer dem Abgaskatalysator einer Brennkraftmaschine zugeordneten Lambdasonde
DE102005002237A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102009045376A1 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102009054935B4 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102010028852B4 (de) Verfahren und Vorrichtung zur Diagnose eines Abgasreinigungssystems für eine Brennkraftmaschine
EP1960642B1 (fr) Procede de diagnostic pour un catalyseur situe dans la zone des gaz d'echappement d'un moteur a combustion interne et dispositif permettant la mise en oeuvre du dit procede
DE102005062116A1 (de) Verfahren zur Überwachung eines Abgasnachbehandlungssystems
DE102008023893B4 (de) Verfahren zum Diagnostizieren der Funktionsfähigkeit einer Sprungsonde
DE102006022383B4 (de) Verfahren zur Signalauswertung eines Partikelsensors
DE102013200573A1 (de) Verfahren und Vorrichtung zur aktiven Diagnose von Komponenten einer Abgasreinigungsanlage einer Brennkraftmaschine
WO2013029878A1 (fr) Procédé et dispositif de diagnostic dynamique d'une sonde de gaz d'échappement
DE102006011894A1 (de) Verfahren zur Korrektur eines von einem Lambdasensor bereitgestellten Signals
DE102012200032A1 (de) Verfahren und Vorrichtung zur Dynamik-Diagnose von Sensoren
DE102011121099B4 (de) Verfahren zum Betreiben einer Abgasreinigungseinrichtung sowie entsprechende Abgasreinigunseinrichtung
DE102005058524A1 (de) Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
DE102005059450A1 (de) Diagnose eines Sauerstoffsensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180627

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1251638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016560

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200724

Year of fee payment: 11

Ref country code: FR

Payment date: 20200727

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200729

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016560

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210112

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200722

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200722

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1251638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200722

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 15