EP1559797B1 - Procédé de fabrication d'une tôle d'acier à haute résistance - Google Patents

Procédé de fabrication d'une tôle d'acier à haute résistance Download PDF

Info

Publication number
EP1559797B1
EP1559797B1 EP05001139.4A EP05001139A EP1559797B1 EP 1559797 B1 EP1559797 B1 EP 1559797B1 EP 05001139 A EP05001139 A EP 05001139A EP 1559797 B1 EP1559797 B1 EP 1559797B1
Authority
EP
European Patent Office
Prior art keywords
steel sheet
cooling
hot
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05001139.4A
Other languages
German (de)
English (en)
Other versions
EP1559797A1 (fr
Inventor
Kohei c/o Intellectual Property Department Hasegawa
Saiji c/o Intellectual Property Department Matsuoka
Yasuhide c/o Intellectual Property Dept. Ishiguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of EP1559797A1 publication Critical patent/EP1559797A1/fr
Application granted granted Critical
Publication of EP1559797B1 publication Critical patent/EP1559797B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Definitions

  • the present invention relates to a method for manufacturing a high strength steel sheet most suitable for automobile body, reinforcements, wheels, and chassis parts and further for all kinds of machine structural parts.
  • a known response to the requirement is dual phase steel sheet structured by ferrite and martensite as the main phases, (the steel has several names of Dual Phase steel, DP steel, and composite structural steel). Owing to low yield ratio, (hereinafter referred to simply as YR), and high elongation, the dual phase steel sheet is superior in the press-formability such as draw-forming property and surface precision after press-forming (shape accuracy), thus the dual phase steel sheet drew attention as an automobile material, and the development thereof has been enhanced.
  • the dual phase micro-structure in a hot-rolled steel sheet is achieved during the cooling step after hot-rolling by transformation to polygonal ferrite much enough to enrich a solute element in the residual austenite, thus increasing in the quench-hardenability due to the transformation to martensite.
  • the technology emphasizes the control of precipitated amount of polygonal ferrite to form the micro-structure and to improve the mechanical characteristics. Accordingly, various development studies on the control of polygonal ferrite precipitation have been given.
  • Patent Documents 1 through 11 disclose methods combining with what is called the two-stage cooling process as a steel composition design.
  • the methods include the steps of: adding large amount of ferrite-stabilizing elements represented by Si, (and including P, Al, and the like); stopping cooling, in the cooling step after hot-rolling, at near A 1 temperature where the ferrite precipitation is accelerated; holding the temperature for about 10 seconds; and applying cooling again.
  • Patent Documents 12 through 15 disclose manufacturing methods to obtain desired steel sheet without adding the ferrite-stabilizing element. That is, the methods adopt a cooling-control pattern different from conventional method, for example, dividing the rapid cooling after finish-rolling into two stages.
  • Patent Documents 16 through 18 disclose methods to apply rapid cooling immediately after the hot-rolling.
  • Patent Document 16 adopts the above-method for a low Si steel.
  • Patent Documents 1 through 11 need to add excess Si, P, and Al, though they show favorable mechanical characteristics, thus they have problems of degradation in surf ace property caused by red-scale formation, degradation in coatability, and degradation in weldability. Consequently, their applications are limited.
  • the steel sheets manufactured by the methods according to Patent Documents 12 through 15 contain small amount of Si, P, and Al so that the cooling method in related art cannot fully progress the transformation from austenite to ferrite on the runout table after hot-rolling.
  • the volume percentage of polygonal ferrite becomes small, the volume percentage of martensite becomes large, and the polygonal ferrite grains become coarse by the same reason, which fails to attain adequate metallic micro-structure which is specified by the present invention.
  • the manufactured steel sheet shows higher than 0.6 of YR in the mechanical characteristics, which is an inferior characteristic.
  • YR is required to be 0.6 or less.
  • the method for manufacturing hot-rolled dual phase steel sheet according to the related art adopts either the addition of ferrite-stabilizing element (Si, P, Al, or the like) sacrificing the surface property and other features or the sacrification of mechanical characteristics.
  • ferrite-stabilizing element Si, P, Al, or the like
  • Patent Documents 16 and 17 do not consider YR and the metallic micro-structure to attain the YR.
  • Patent Document 18 is a technology to manufacture a high Si steel, the surface property of the steel sheet becomes poor. To improve the surface property, Si may be decreased. If, however, the Si content is decreased, no adequate metallic micro-structure is obtained, and the YR characteristic becomes poor. Both the YR and the surface property cannot be satisfied at a time.
  • the inventors of the present invention found a phenomenon which significantly enhances the fine ferrite formation compared with conventional two-stage cooling process, even without adding excess ferrite-stabilization elements, by beginning the ultra-rapid cooling at 150°C/s or higher cooling rate within 2 seconds after the hot-rolling, followed by holding the temperatures between 750°C and 600°C for a specified period of time.
  • the inventors of the present invention applied the finding to the manufacture of dual phase hot-rolled high strength steel sheet, and have perfected the present invention.
  • the present invention provides a method for manufacturing a high strength steel sheet as defined in claim 1.
  • high strength steel sheet referred to herein signifies a steel sheet having more than 590 MPa of tensile strength (TS), which TS values are suitable for the machine structural parts.
  • TS tensile strength
  • the present invention provides a method for manufacturing a high strength steel sheet having excellent formability and surface property.
  • the steel sheet manufactured by the present invention has low YR (0.6 or less) with high strength, high ductility, excellent press-formability, excellent surface property, and excellent spot weldability, thus the steel sheet can readily be applied to the automobile parts and machine structural parts. Since the high strength steel sheet can be manufactured by the conventional process for manufacturing mild steel sheet, and since the attained performance thereof is favorable without adding special elements, the manufacturing cost can be decreased. Accordingly, the method for manufacturing the high strength steel sheet according to the present invention is highly expected in practical uses in the future, and is expected to contribute to the conservation of global environment by the weight reduction of automobile and to the social development through the improvement of safety of automobile.
  • Figure 1 is a graph showing the relation between the yield ratio (YR) and the primary cooling rate.
  • the high strength steel sheet obtained by the method of the present invention has the composition as specified below, wherein the volume percentage of polygonal ferrite is 60% or more, the volume percentage of martensite ranges from 5 to 30%, and the mean grain size of polygonal ferrite ranges from 5 to 10 ⁇ m. These specifications are the most important conditions of the present invention. With the composition and micro-structure specified above, the high strength steel sheet having excellent formability and surface property can be obtained.
  • the high strength steel sheet can be manufactured by the sequential steps of: hot-rolling the steel at Ar3 pint or higher temperature; beginning cooling of the steel sheet within 2 seconds after the completion of hot-rolling;cooling thesteelsheet to temperatures between 750°C and 600°C at cooling rates of 150°C/s or more; holding the temperature of steel sheet in a range from 750°C to 600°C for 2 to 15 seconds; cooling the steel sheet at cooling rates of 20°C/s or more; and coiling the steel sheet at 400°C or below.
  • the beginning of cooling within 2 seconds after completing the hot-rolling, the ultra-rapid cooling at 150°C/s or higher cooling rate, and the holding in a temperature range from 750°C to 600°C are also critical conditions of the present invention.
  • Carbon is an important element to strengthen the martensitic phase.
  • the C content needs to be 0.05% or more. If, however, the C content exceeds 0.15%, austenite stabilizes, and the dual phase formation becomes difficult, which degrades the ductility. Accordingly, the C content is specified to a range from 0.05% to 0.15%. Regarding the spot weldability, the C content below 0.07% may degrade the tensile shear strength. If the C content exceeds 0.10%, the cross tension strength may decrease. Therefore, the C content is preferably in a range from 0.07 to 0.10%.
  • Silicon degrades the surface property by red scale and also degrades the coatability and weldability. If the Si content exceeds 0.5%, the bad influence of Si becomes significant. Consequently, the Si content is specified to 0.5% or less. If the application of steel sheet emphasizes the surface property, the Si content is preferably 0.25% or less. Since Si has an effect to increase the strength, the Si content is preferably 0.01% or more.
  • the P content exceeds 0.09%, the elongation is significantly degraded. Accordingly, the P content is specified to 0.09% or less. If the P content exceeds 0.06%, the toughness at welded section degrades to decrease the joint strength in some cases. Therefore, the P content is preferably 0.06% or less. Furthermore, the P content of 0.020% ormore enhances the formation of polygonal ferrite to decrease YR. Thus the P content is preferably 0.020% or more.
  • Sulfur is an impurity in the crude steel and degrades the formability and weldability of steel sheet as the base material. Accordingly, it is preferred to remove or reduce S in the steel making process as far as possible. Since, however, excess reduction of S increases the refining cost, the S content is specified to 0.01% or less, which level brings the S substantially harmless.
  • Nitrogen is an impurity in the crude steel and degrades the formability of steel sheet as the base material. Accordingly, it is preferred to remove or reduce N in the steel making process as far as possible. Since, however, excess reduction of N increases the refining cost, the N content is specified to 0.005% or less, which level brings the N substantially harmless.
  • Aluminum is added for deoxidization and for precipitating N as AlN. If the Al content is less than 0.01%, the effect of deoxidization and denitrification becomes insufficient. If the A1 content exceeds 0.1%, the effect of Al addition saturates, which is uneconomical. Consequently, the Sol.Al content is specified to a range from 0.01 to 0.1%.
  • the steel according to the present invention attains the desired characteristics by the addition of above essential elements. Adding to the essential elements, however, the steel according to the present invention may further include one or more element of Mo, Nb, Ti, B, and Cr at need for further increasing the strength. In that case, the respective contents of below 0.01%, 0.001%, 0.001%, 0.0003%, and 0.05% cannot give the satisfactory effect of addition. If the content of Mo, Nb, Ti, and B exceeds 0.3%, 0.05%, 0.1%, and 0.002%, respectively, the formation of dual phase micro-structure is hindered and the precipitation hardening becomes excessive so that the mechanical characteristics degrade (YR increases or elongation decreases). If the Cr content exceeds 0.49%, the performance of chemical conversion treatment degrades.
  • the Mo content is specified to a range from 0.01 to 0.3%, Nb from 0.001 to 0.05%, Ti from 0.001 to 0.1%, B from 0.0003 to 0.002%, and Cr from 0.05 to 0.49%.
  • the balance of the above composition is Fe and inevitable impurities.
  • O is preferably specified to 0.003% or less because O forms a non-metallic inclusion to degrade the quality.
  • the steel may further include trace elements which do not harm the function and use of the present invention, namely Ni, V, Cu, Sb, Sn, Mg, and REM within a range of 0.1% or less.
  • the volume percentage of polygonal ferrite is specified to 60% or more.
  • the volume percentage of polygonal ferrite is a critical condition to achieve the low YR characteristic which is a feature of the present invention. To attain 0.6 or lower YR, the volume percentage of polygonal ferrite is required to become 60% or more.
  • the polygonal ferrite is found in the ferritic phase, and is distinguished from the acicular ferrite in the morphology, and is limited to the one having 5 or lower ratio of maximum diameter to minimum diameter of the ferritic crystal grain.
  • the volume percentage of martensite is specified to a range from 5 to 30%. Similar with the volume percentage of polygonal ferrite, the volume percentage of martensite is an important condition of the present invention because the volume percentage thereof influences the strength, the ductility, and the low YR characteristic. If the volume percentage of martensite is less than 5%, the strength becomes low, and no low YR characteristic is attained. If the volume percentage of martensite exceeds 30%, the ductility degrades. Therefore, the volume percentage of martensite is specified to a range from 5 to 30%. To attain better low YR characteristic, the volume percentage of martensite is preferably in a range from 10 to 20%.
  • the residual micro-structure contains acicular ferrite, bainite, pearlite, and the like. The volume percentage of residual micro-structure is, however, not specifically limited because the respective volume percentages of polygonal ferrite and martensite within the above-specified range assure the effect of the present invention.
  • the mean grain size of polygonal ferrite is preferably specified to a range from 5 to 10 ⁇ m.
  • the elongation in tensile test is expressed by the sum of uniform elongation and local elongation. If the grain size of polygonal ferrite is less than 5 ⁇ m, the uniform elongation may decrease in some cases. If the grain size of polygonal ferrite exceeds 10 ⁇ m, the local elongation degrades, though the value of local elongation is within allowable range. Presumable reason of the phenomenon is the following. For a dual phase steel, if the grains become coarse, the deformation becomes nonuniform so that stress intensifies into a certain section, which enhances the generation of micro-cracks.
  • the high strength steel sheet according to the present invention is manufactured by the steps of: casting a slab prepared to have the chemical composition given above; applying hot-rolling to the slab, directly or heating thereof, at Ar3 point or higher temperature; beginning cooling the slab within 2 seconds after completing the hot-rolling to temperatures ranging from 750°C to 600°C at cooling rates of 150°C/s or more; holding the cooled slab at temperatures between 750°C and 600°C for 2 to 15 seconds; applying cooling to the temperature-held slab at cooling rates of 20°C/s or more; and coiling the cooled slab at temperatures of 400°C or below.
  • the method for casting the slab is not specifically limited.
  • hot-rolling may be done directly or may be done after reheating after cooling.
  • the hot-rolling is conducted at Ar3 point or higher temperature. If the hot-rolling is done below the Ar3 point, the hot-rolling proceeds in the dual phase region of ferrite and austenite, which hinders the formation of polygonal ferrite, increases YR, and decreases the ductility.
  • the cooling begins within 2 seconds to cool the steel to a temperature range from 750°C to 600°C, which is the holding temperature range, at cooling rates of 150°C/s or more.
  • the primary cooling which is given immediately after the hot-rolling is the most important condition to attain the effect of the present invention, (the effect of low YR attained by the enhancement of polygonal ferrite formation).
  • the holding step at temperatures of from 750°C to 600°C succeeding to the primary cooling allows the fine transformed polygonal ferrite to be drastically enhanced.
  • the primary cooling rate is preferably 200°C/s or more. If the primary cooling rate exceeds 1000°C/s, the metallic micro-structure becomes nonuniform within the sheet thickness range, and the mechanical characteristics may degrade. Accordingly, the primary cooling rate is preferably 1000°C/s or less, and more preferably 700°C/s or less.
  • the steel After completing the primary cooling, the steel is held to a temperature range from 750°C to 600°C for 2 to 15 seconds. If the temperature range for holding the steel is above 750°C, the driving force of ferrite transformation becomes small, and no transformation enhancement effect is attained. If the temperature range therefor is below 600°C, the ferrite transformation which is controlled by the diffusion of Fe atoms delays, and satisfactory polygonal ferrite formation cannot be attained. If the holding time is less than 2 seconds, the ferrite transformation time is not sufficient, which fails to attain the low YR characteristic. If the holding time exceeds 15 seconds, the pearlite formation begins to degrade the mechanical characteristics.
  • the secondary cooling is conducted at cooling rates of 20°C/s or more, and the coiling of the steel sheet is done at temperatures of 400°C or below.
  • the cooling rate in the secondary cooling is required to be 20°C/s or more to suppress the formation of pearlite and bainite during cooling. If the secondary cooling rate exceeds 1000°C/s, the metallic micro-structure becomes nonuniform within the sheet thickness range, and the mechanical characteristics may degrade. Therefore, the secondary cooling rate is preferably 1000°C/s or less.
  • the coiling temperature is required to be 400°C or below to prevent the formation of pearlite and bainite after coiling, to form martensite, and to attain the target of 0.6 or lower YR. Furthermore, to prevent the fluctuations of strength within the coil, the coiling temperature is preferably 300°C or below, and more preferably 200°C or below. If the coiling temperature becomes below 0°C, the cooling by water becomes difficult so that the coiling temperature is preferably 0°C or above.
  • a skin pass rolling may further be applied for shape-correction.
  • various surface treatments such as hot-dip galvanization and electro-galvanization may be applied to the high strength steel sheet according to the present invention as the base material.
  • Slabs having respective chemical compositions given in Table 1 were prepared by continuous casting. They were cooled, then heated to temperatures from 1100°C to 1300°C, and were treated by final rolling at temperatures in a range from Ar3 point to 850°C to obtain steel sheets having thicknesses of from 1.6 to 3.2 mm. Within 1 second after completing the final rolling, cooling began on the steel sheets to conduct the primary cooling to a temperature range from 680°C to 720°C at cooling rates from 300 to 500°C/s. After that, the steel sheets were held at the temperature range for 7 to 12 seconds. Then, the steel sheets were cooled at cooling rates from 25 to 30°C/s, and were coiled at 350°C or lower temperature to obtain the respective hot-rolled steel sheets. As for Steel No.
  • the mechanical characteristics were determined by the test per JIS Z2241 with a JIS No. 5 Tensile Test sample (prepared by cutting the steel sheet lateral to the rolling direction).
  • the surface property was determined by visual observation in terms of presence/absence of red scale.
  • spot weldability spot-welding was given under a condition to form a nugget having the size of (5 x sheet thickness (mm)), and then the peal test using a chisel was applied to break the sheet to observe the fracture mode.
  • Table 2 shows that all the steels according to the present invention, (Example steels), have excellent mechanical characteristics (YR ⁇ 0.6), and give favorable surface property and weldability.
  • Steel Nos. 12 and 17 gave somewhat degraded surface property owing to slightly high Si content. However, Steel Nos. 12 and 17 were judged to be at a level of raising no significant problem in practical use.
  • Steel No. 1 which is a comparative example had low C content, outside the range of the present invention, so that the hardness of martensite was unsatisfactory, which increased the YR value.
  • Steel Nos. 4 and 5 had the volume percentage of polygonal ferrite or the volume percentage of martensite outside the range of the present invention so that they failed to form favorable dual phase micro-structure and they gave high YR value.
  • Steel No. 9 had large C content outside the range of the present invention so that the ferrite formation delayed to fail in attaining favorable dualphase micro-structure, and resulted in high YR value, as well as degrading the spot weldability.
  • Steel No. 13 had large Si content outside the range of the present invention so that red scale was generated to give poor surface property.
  • Steel No. 14 had small Mn content outside the range of the present invention so that the austenite became instable andthe pearlite was generated, thus giving high YRvalue.
  • Steel No. 16 had large Mn content outside the range of the present invention so that the amount of formed polygonal ferrite became small, and the YR value became high.
  • Steel No. 18 had large P content outside the range of the present invention so that the spot weldability significantly degraded.
  • Example 1 For each of thus obtained hot-rolled steel sheets, the mechanical characteristics, the surface property, and the spot weldability were evaluated. The result is given in Table 4. The evaluation methods were the same with those in Example 1.
  • Table 4 Classfication Symbol Volume percentage of polygonal ferrite (%) Volume percentage of martensite (%) Grain size of polygonal ferrite ( ⁇ m) Mechanical characteristics YP (MPa) TS (MPa) EI (%) YR
  • Example A 75 10 8 341 620 30.6 0.55
  • Example B 75 10 9 342 610 31.1 0.56
  • Example C 80 10 10 354 610 31.1 0.58 Comparative example D 50 10 13 447 630 30.2 0.71 Comparative example E 40 5 15 488 650 29.2 0.75
  • Example F 80 10 9 365 640 29.7 0.57
  • Example G 75 10 7 330 600 31.7 0.55
  • Example steels have excellent mechanical characteristics (YR ⁇ 0.6). All the Example steels showed favorable surface property and spot weldability within the range of Example 2.
  • Symbol D which is a comparative example had a long period between the completion of rolling and the beginning of primary cooling, outside the range of the present invention, thus ferrite was formed irregularly before beginning the cooling, which resulted in unfavorable dual phase micro-structure and high YR value.
  • Symbol E had low primary cooling rate outside the range of the present invention so that ferrite was formed irregularly before beginning the cooling, which resulted in unfavorable dual phase micro-structure and high YR value.
  • Symbol I had high temperature of stopping the primary cooling outside the range of the present invention so that the formation of ferrite during the succeeding holding step became insufficient, which resulted in unfavorable dual phase micro-structure and high YR value.
  • Symbol M had low temperature of stopping the primary cooling outside the range of the present invention so that the formation of ferrite during the succeeding holding step became insufficient, which resulted in unfavorable dual phase micro-structure and high YRvalue.
  • Symbol N had insufficient holding time after the primary cooling outside the range of the present invention so that the formation of ferrite became insufficient, which resulted in unfavorable dual phase micro-structure and high YR value.
  • Symbol Q had long holding time after the primary cooling outside the range of the present invention so that pearlite was formed during holding step, which resulted in unfavorable dual phase micro-structure and high YR value.
  • Symbol R had low secondary cooling rate outside the range of the present invention so that bainite was formed during cooling step, which resulted in unfavorable dual phase micro-structure and high YR value.
  • Symbol W had high coiling temperature outside the range of the present invention so that bainite was formed after coiling, which resulted in unfavorable dual phase micro-structure and high YR value.
  • Figure 1 shows the relation between YR and the primary cooling rate for Steel No. 2.
  • the figure shows that favorable characteristics giving low YR value is attained at 150°C/s or higher primary cooling rate, which is the range of the present invention.
  • Symbol D failed to attain favorable result because the time before the primary cooling was 5 seconds, which is outside the range of the present invention.
  • the steel sheet manufactured by a method according to the present invention has excellent press-formability and excellent surface property, the steel is also applicable to formed parts which emphasize the appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Claims (5)

  1. Procédé de fabrication d'une tôle d'acier à haute résistance comprenant les étapes consistant à :
    couler une ébauche constituée sensiblement en masse de 0,05 % à 0,15 % de C, 0,5 % ou moins de Si, 1,00 % à 2,00 % de Mn, 0,09 % ou moins de P, 0,01 % ou moins de S, 0,005 % ou moins de N, 0,01 % à 0,1 % de Sol.Al et contenant en outre de manière facultative au moins un élément choisi dans le groupe constitué de 0,01 % à 0,3 % de Mo, 0,001 % à 0,05 % de Nb, 0,001 % à 0,1 % de Ti, 0,0003 % à 0,002 % de B et 0,05 % à 0,49 % de Cr et le complément étant du Fe et des impuretés inévitables ;
    laminer à chaud l'ébauche coulée, directement ou en la chauffant à une température de point d'Ar3 ou au-dessus afin de former une tôle d'acier laminée à chaud ;
    une étape de refroidissement primaire consistant à refroidir la tôle d'acier laminée à chaud à une vitesse de refroidissement de 150 °C/s ou plus jusqu'à une température allant de 750 °C à 600 °C, en commençant à la refroidir dans les 2 secondes qui suivent la fin du laminage à chaud ;
    maintenir la tôle d'acier refroidie à une température comprise entre 750 °C et 600 °C pendant 2 à 15 secondes ;
    une étape de refroidissement secondaire consistant à refroidir la tôle d'acier maintenue à la température à une vitesse de refroidissement de 20 °C/s ou plus ; et
    enrouler la tôle d'acier refroidie à une température d'enroulement de 400 °C ou moins, dans laquelle la feuille d'acier présente une microstructure à deux phases, dans laquelle le pourcentage en volume de ferrite polygonal est de 60 % ou plus, le pourcentage en volume de martensite est compris entre 5 % et 30 % et la granulométrie moyenne du ferrite polygonal est comprise entre 5 µm et 10 µm.
  2. Procédé selon la revendication 1, dans lequel la vitesse de refroidissement à l'étape de refroidissement primaire est comprise entre 150 °C/s et 1000 °C/s.
  3. Procédé selon la revendication 2, dans lequel la vitesse de refroidissement à l'étape de refroidissement primaire est comprise entre 200 °C/s et 700 °C/s.
  4. Procédé selon la revendication 1, dans lequel la vitesse de refroidissement à l'étape de refroidissement secondaire est comprise entre 20 °C/s et 1000 °C/s.
  5. Procédé selon la revendication 1, dans lequel la température de d'enroulement est comprise entre 0 °C et 400 °C.
EP05001139.4A 2004-01-29 2005-01-20 Procédé de fabrication d'une tôle d'acier à haute résistance Ceased EP1559797B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004020843 2004-01-29
JP2004020843 2004-01-29
JP2004326545 2004-11-10
JP2004326545A JP4470701B2 (ja) 2004-01-29 2004-11-10 加工性および表面性状に優れた高強度薄鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
EP1559797A1 EP1559797A1 (fr) 2005-08-03
EP1559797B1 true EP1559797B1 (fr) 2013-06-05

Family

ID=34656285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05001139.4A Ceased EP1559797B1 (fr) 2004-01-29 2005-01-20 Procédé de fabrication d'une tôle d'acier à haute résistance

Country Status (8)

Country Link
US (2) US20050173031A1 (fr)
EP (1) EP1559797B1 (fr)
JP (1) JP4470701B2 (fr)
KR (1) KR100673424B1 (fr)
CN (1) CN100439542C (fr)
AU (1) AU2005200300C1 (fr)
CA (1) CA2493523C (fr)
TW (1) TWI277658B (fr)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442268B2 (en) 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
US7959747B2 (en) 2004-11-24 2011-06-14 Nucor Corporation Method of making cold rolled dual phase steel sheet
US8337643B2 (en) 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
US9999918B2 (en) 2005-10-20 2018-06-19 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US9149868B2 (en) 2005-10-20 2015-10-06 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US10071416B2 (en) 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
JP4476923B2 (ja) * 2005-12-15 2010-06-09 株式会社神戸製鋼所 衝突吸収性と母材靭性に優れた鋼板
CN100348767C (zh) * 2005-12-27 2007-11-14 东北大学 一种抗拉强度715~795MPa级双相钢板及制造方法
CN1330785C (zh) * 2005-12-27 2007-08-08 东北大学 一种抗拉强度1000MPa级复相钢板及制造方法
JP2009524743A (ja) * 2006-01-26 2009-07-02 アルヴェーディ、ジョヴァンニ 冷間圧延鋼板の特徴を備えた熱延二相鋼板
JP4518029B2 (ja) * 2006-02-13 2010-08-04 住友金属工業株式会社 高張力熱延鋼板とその製造方法
US11155902B2 (en) * 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
CN100435987C (zh) * 2006-11-10 2008-11-26 广州珠江钢铁有限责任公司 一种基于薄板坯连铸连轧流程采用Ti微合金化工艺生产700MPa级高强耐候钢的方法
EP2180075B1 (fr) * 2007-08-01 2017-05-03 Kabushiki Kaisha Kobe Seiko Sho Tôle d'acier de résistance élevée présentant une excellente aptitude à la flexion et une excellente résistance à la fatigue
MX2010003835A (es) 2007-10-10 2010-05-13 Nucor Corp Acero estructurado metalografico complejo y metodo para manufacturarlo.
KR100957944B1 (ko) 2007-12-28 2010-05-13 주식회사 포스코 신장플랜지성 및 용접성이 우수한 고강도 열연강판,열연산세강판 및 그 제조방법
JP5365217B2 (ja) * 2008-01-31 2013-12-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5194858B2 (ja) * 2008-02-08 2013-05-08 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
KR101079529B1 (ko) * 2008-12-24 2011-11-03 주식회사 포스코 표면특성이 우수한 고강도 고연성 열연강판 및 그 제조방법
US20110277886A1 (en) 2010-02-20 2011-11-17 Nucor Corporation Nitriding of niobium steel and product made thereby
JP4998755B2 (ja) 2009-05-12 2012-08-15 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
CN102596481B (zh) * 2009-07-31 2015-04-15 高周波热炼株式会社 焊接构造构件及焊接方法
JP5744575B2 (ja) 2010-03-29 2015-07-08 新日鐵住金ステンレス株式会社 複相組織ステンレス鋼鋼板および鋼帯、製造方法
JP5884148B2 (ja) * 2010-04-16 2016-03-15 Jfeスチール株式会社 耐塗膜剥離性に優れた厚鋼板およびその製造方法
RU2457912C2 (ru) * 2010-11-01 2012-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства горячекатаных низколегированных листов
RU2449843C1 (ru) * 2010-11-01 2012-05-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства горячекатаных высокопрочных низколегированных листов
JP5842515B2 (ja) 2011-09-29 2016-01-13 Jfeスチール株式会社 熱延鋼板およびその製造方法
JP5365673B2 (ja) 2011-09-29 2013-12-11 Jfeスチール株式会社 材質均一性に優れた熱延鋼板およびその製造方法
WO2013051714A1 (fr) 2011-10-06 2013-04-11 新日鐵住金株式会社 Tôle d'acier, et procédé de fabrication de celle-ci
JP5953952B2 (ja) * 2011-11-30 2016-07-20 Jfeスチール株式会社 耐衝突性に優れた鋼材およびその製造方法
KR101678511B1 (ko) * 2012-03-07 2016-11-22 제이에프이 스틸 가부시키가이샤 열간 프레스용 강판, 그의 제조 방법 및, 그것을 이용한 열간 프레스 부재의 제조 방법
CN102719755A (zh) * 2012-05-31 2012-10-10 攀钢集团攀枝花钢铁研究院有限公司 高强度高成型性能的汽车结构用热轧酸洗板及其生产方法
CN102732794B (zh) * 2012-05-31 2014-08-06 攀钢集团攀枝花钢铁研究院有限公司 一种含Cr汽车结构用热轧酸洗板及其生产方法
CN102912235B (zh) * 2012-10-29 2014-11-12 武汉钢铁(集团)公司 抗拉强度590MPa级热轧双相钢及其制造方法
CN105102653B (zh) * 2013-03-29 2018-05-08 杰富意钢铁株式会社 氢用钢结构物、储氢容器及氢用管道的制造方法
EP3196326B1 (fr) * 2014-09-17 2020-05-13 Nippon Steel Corporation Tôle d'acier laminée à chaud
PL3260566T3 (pl) * 2015-02-20 2020-08-24 Nippon Steel Corporation Blacha stalowa cienka walcowana na gorąco
WO2016132549A1 (fr) 2015-02-20 2016-08-25 新日鐵住金株式会社 Tôle d'acier laminée à chaud
MX2017008622A (es) 2015-02-20 2017-11-15 Nippon Steel & Sumitomo Metal Corp Hoja de acero laminada en caliente.
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
WO2016135898A1 (fr) 2015-02-25 2016-09-01 新日鐵住金株式会社 Feuille ou plaque d'acier laminée à chaud
US20180030557A1 (en) * 2015-03-06 2018-02-01 Jfe Steel Corporation High-strength electric resistance welded steel pipe and method for producing the same
WO2017006144A1 (fr) 2015-07-09 2017-01-12 Arcelormittal Acier pour trempe à la presse et pièce trempée à la presse fabriquée à partir d'un tel acier
RU2605037C1 (ru) * 2015-11-20 2016-12-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства высокопрочной горячекатаной стали
CN109563580A (zh) 2016-08-05 2019-04-02 新日铁住金株式会社 钢板及镀覆钢板
CN109563586B (zh) 2016-08-05 2021-02-09 日本制铁株式会社 钢板及镀覆钢板
EP3476962B1 (fr) * 2016-08-10 2020-09-16 JFE Steel Corporation Tôle d'acier mince, et procédé de fabrication de celle-ci
KR102236852B1 (ko) * 2018-11-30 2021-04-06 주식회사 포스코 우수한 저항복비 및 저온인성 특성을 가지는 구조용강 및 그 제조방법
CN109576581A (zh) * 2018-11-30 2019-04-05 宝山钢铁股份有限公司 一种高表面质量、低屈强比热轧高强度钢板及制造方法
KR20240077000A (ko) * 2022-11-24 2024-05-31 주식회사 포스코 저망간 강재 및 이의 제조방법

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465118A (en) * 1977-11-04 1979-05-25 Nippon Kokan Kk <Nkk> Manufacture of high strength hot rolled steel sheet
JPS55110733A (en) * 1979-02-19 1980-08-26 Nippon Kokan Kk <Nkk> Manufacture of cold-rolled high tensile steel having excellent strength-ductility balance
US4296919A (en) * 1980-08-13 1981-10-27 Nippon Steel Corporation Apparatus for continuously producing a high strength dual-phase steel strip or sheet
JPS57137426A (en) * 1981-02-20 1982-08-25 Kawasaki Steel Corp Production of low yield ratio, high tensile hot rolled steel plate by mixed structure
JPH0774377B2 (ja) * 1989-10-07 1995-08-09 新日本製鐵株式会社 耐久疲労性に優れた加工用熱延高強度鋼板の製造方法
JPH0826407B2 (ja) * 1991-02-28 1996-03-13 日本鋼管株式会社 伸びフランジ性に優れた高強度熱延鋼板の製造方法
US5213634A (en) * 1991-04-08 1993-05-25 Deardo Anthony J Multiphase microalloyed steel and method thereof
JP2840479B2 (ja) * 1991-05-10 1998-12-24 株式会社神戸製鋼所 疲労強度と疲労亀裂伝播抵抗の優れた高強度熱延鋼板の製造方法
JP3276258B2 (ja) * 1995-01-20 2002-04-22 株式会社神戸製鋼所 化成処理性及び加工性の良好な高強度熱延鋼板及びその製造方法
FR2735147B1 (fr) * 1995-06-08 1997-07-11 Lorraine Laminage Tole d'acier laminee a chaud a haute resistance et haute emboutissabilite renfermant du titane, et ses procedes de fabrication.
JPH0949026A (ja) * 1995-08-07 1997-02-18 Kobe Steel Ltd 強度−伸びバランス及び伸びフランジ性にすぐれる高強度熱延鋼板の製造方法
JP3538990B2 (ja) * 1995-08-31 2004-06-14 Jfeスチール株式会社 耐衝撃性に優れる高張力熱延鋼板およびその製造方法
JPH09170048A (ja) * 1995-12-15 1997-06-30 Kobe Steel Ltd 疲労特性と穴拡げ性に優れた加工用高強度熱延鋼板
JP3253880B2 (ja) * 1996-12-27 2002-02-04 川崎製鉄株式会社 成形性と耐衝突特性に優れる熱延高張力鋼板およびその製造方法
JPH11279693A (ja) * 1998-03-27 1999-10-12 Nippon Steel Corp 焼付硬化性に優れた良加工性高強度熱延鋼板とその製造方法
DE19911287C1 (de) * 1999-03-13 2000-08-31 Thyssenkrupp Stahl Ag Verfahren zum Erzeugen eines Warmbandes
DE19936151A1 (de) * 1999-07-31 2001-02-08 Thyssenkrupp Stahl Ag Höherfestes Stahlband oder -blech und Verfahren zu seiner Herstellung
WO2001023625A1 (fr) * 1999-09-29 2001-04-05 Nkk Corporation Tole d'acier et son procede de fabrication
JP3873579B2 (ja) * 2000-06-09 2007-01-24 Jfeスチール株式会社 高加工性熱延鋼板の製造方法
JP3879381B2 (ja) * 1999-09-29 2007-02-14 Jfeスチール株式会社 薄鋼板および薄鋼板の製造方法
EP1227167B1 (fr) * 2000-01-24 2006-01-18 JFE Steel Corporation Tole d'acier zingue par immersion a chaud et procede de production correspondant
JP4193315B2 (ja) * 2000-02-02 2008-12-10 Jfeスチール株式会社 延性に優れ降伏比の低い高強度薄鋼板および高強度亜鉛めっき薄鋼板ならびにそれらの製造方法
JP4313507B2 (ja) 2000-08-23 2009-08-12 新日本製鐵株式会社 自動車客室構造部品用高強度鋼板とその製造方法
CA2387322C (fr) * 2001-06-06 2008-09-30 Kawasaki Steel Corporation Tole d'acier a ductilite elevee possedant des proprietes superieures de formabilite sous pressage et de vieillissement par ecrouissage, et methode de fabrication dudit produit
KR20070087240A (ko) * 2001-06-15 2007-08-27 신닛뽄세이테쯔 카부시키카이샤 고강도 알루미늄계 합금 도금 강판의 열간 프레스 방법
KR100437930B1 (ko) * 2001-10-18 2004-07-09 스미토모 긴조쿠 고교 가부시키가이샤 가공성 및 형상정확도가 우수한 강판 및 이를 제조하는 방법
JP3912181B2 (ja) * 2002-03-28 2007-05-09 Jfeスチール株式会社 深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板およびその製造方法
JP3870840B2 (ja) * 2002-05-23 2007-01-24 Jfeスチール株式会社 深絞り性と伸びフランジ性に優れた複合組織型高張力冷延鋼板およびその製造方法
DE50205631D1 (de) * 2002-09-11 2006-04-06 Thyssenkrupp Stahl Ag Ferritisch/martensitischer Stahl mit hoher Festigkeit und sehr feinem Gefüge

Also Published As

Publication number Publication date
CA2493523A1 (fr) 2005-07-29
AU2005200300C1 (en) 2008-03-06
AU2005200300A1 (en) 2005-08-18
TW200530409A (en) 2005-09-16
EP1559797A1 (fr) 2005-08-03
US20050173031A1 (en) 2005-08-11
JP2005240172A (ja) 2005-09-08
CN1648277A (zh) 2005-08-03
KR20050077757A (ko) 2005-08-03
JP4470701B2 (ja) 2010-06-02
CA2493523C (fr) 2009-01-27
US20090223607A1 (en) 2009-09-10
AU2005200300B2 (en) 2007-05-03
TWI277658B (en) 2007-04-01
CN100439542C (zh) 2008-12-03
KR100673424B1 (ko) 2007-01-24

Similar Documents

Publication Publication Date Title
EP1559797B1 (fr) Procédé de fabrication d&#39;une tôle d&#39;acier à haute résistance
EP1918396B1 (fr) Feuille d&#39;acier à forte résistance à la traction et son procédé de production
EP2415893B1 (fr) Feuille d&#39;acier excellente en termes de maniabilité et son procédé de production
EP2290111B1 (fr) Feuille d&#39;acier double phase et son procédé de fabrication
EP1227167B1 (fr) Tole d&#39;acier zingue par immersion a chaud et procede de production correspondant
EP3464665B1 (fr) Procédé de fabrication d&#39;une feuille d&#39;acier laminée à froid et revenue
EP3719162A1 (fr) Matériau en acier à haute résistance ayant une excellente résistance à la fissuration induite par l&#39;hydrogène et une ténacité à l&#39;impact à basse température et son procédé de fabrication
KR102020407B1 (ko) 고항복비형 고강도 강판 및 이의 제조방법
EP3828301B1 (fr) Tôle d&#39;acier à haute résistance présentant une excellente propriété de résistance aux chocs et son procédé de fabrication
JP2002256375A (ja) アレスト特性に優れた鋼板およびその製法
KR100903546B1 (ko) 형상 동결성과 성형후의 내구피로특성이 우수한 고장력열연강판 및 그 제조방법
JP2005213566A (ja) 加工性、表面性状および板平坦度に優れた高強度薄鋼板およびその製造方法
EP3964600A1 (fr) Feuille d&#39;acier très haute résistance offrant une excellente ouvrabilité de cisaillement et son procédé de fabrication
EP3231886A2 (fr) Tôle d&#39;acier biphasé ayant une excellente formabilité et son procédé de fabrication
JP3458416B2 (ja) 耐衝撃性に優れた冷延薄鋼板およびその製造方法
JP2001064728A (ja) 溶接性及び歪時効後の靭性に優れた60キロ級高張力鋼の製造方法
JP2001064725A (ja) 溶接性及び歪時効後の靭性に優れた60キロ級高張力鋼の製造方法
EP3901312B1 (fr) Feuille d&#39;acier laminée à chaud à haute résistance présentant une excellente aptitude au façonnage, et son procédé de fabrication
CN111465710B (zh) 高屈强比型高强度钢板及其制造方法
EP3730634B1 (fr) Tôle d&#39;acier laminée à chaud possédant une excellente durabilité et son procédé de fabrication
JP2001064727A (ja) 溶接性及び歪時効後の靭性に優れた60キロ級高張力鋼の製造方法
JP2001064723A (ja) 溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法
JP2003089847A (ja) 伸びフランジ加工性に優れた熱延鋼板および溶融亜鉛めっき鋼板とそれらの製造方法
EP4033001A1 (fr) Tôle d&#39;acier ayant un excellent allongement uniforme et un excellent taux d&#39;écrouissage, et son procédé de production
EP4186991A1 (fr) Feuille d&#39;acier présentant une excellente formabilité et un excellent taux d&#39;écrouissage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20100630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ISHIGURO, YASUHIDE C/O INTELLECTUAL PROPERTY DEPT.

Inventor name: MATSUOKA, SAIJI C/O INTELLECTUAL PROPERTY DEPARTME

Inventor name: HASEGAWA, KOHEI C/O INTELLECTUAL PROPERTY DEPARTME

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005039860

Country of ref document: DE

Effective date: 20130801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005039860

Country of ref document: DE

Effective date: 20140306

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181213

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190108

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005039860

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131