EP1558449B1 - Verfahren zur herstellung von fälschungssicheren identifikationsmerkmalen - Google Patents

Verfahren zur herstellung von fälschungssicheren identifikationsmerkmalen Download PDF

Info

Publication number
EP1558449B1
EP1558449B1 EP03784094.9A EP03784094A EP1558449B1 EP 1558449 B1 EP1558449 B1 EP 1558449B1 EP 03784094 A EP03784094 A EP 03784094A EP 1558449 B1 EP1558449 B1 EP 1558449B1
Authority
EP
European Patent Office
Prior art keywords
layer
printing
optically transparent
spacer layer
metallic clusters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03784094.9A
Other languages
English (en)
French (fr)
Other versions
EP1558449A1 (de
Inventor
Friedrich Kastner
Martin Bergsmann
Harald Walter
Georg Bauer
Ralph Domnick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hueck Folien GmbH
Original Assignee
Hueck Folien GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31499787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1558449(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hueck Folien GmbH filed Critical Hueck Folien GmbH
Publication of EP1558449A1 publication Critical patent/EP1558449A1/de
Application granted granted Critical
Publication of EP1558449B1 publication Critical patent/EP1558449B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/435Marking by removal of material using electromagnetic radiation, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • B42D2033/10
    • B42D2033/18
    • B42D2033/30

Definitions

  • the invention relates to a method for producing tamper-proof identification features, which have a color shift effect, caused by metallic clusters, which are separated by a defined transparent layer of a mirror layer.
  • WO 02/18155 a method for the counterfeit-proof marking of objects is known, wherein the article is applied with a mark consisting of an electromagnetic wave reflecting first layer on an electromagnetic wave transmissive inert layer having a defined thickness, whereupon said inert layer formed of metallic clusters third layer follows, is provided.
  • WO 01/53113 describes optically variable security elements which have an angle-dependent color shift effect, wherein the structure consists essentially of a reflector layer, a dielectric layer and an absorber layer.
  • WO 02/051646 A describes a decorative film which is constructed as a layer composite and has a transparent base film, a transparent cover layer and a transparent dielectric transparent layer arranged therebetween. Between the dielectric layer and the cover layer at least partially a metal layer is arranged.
  • the object of the invention is to provide a method for producing forgery-proof identification features on flexible materials, wherein the security against counterfeiting is given by a visible color change at different viewing angles (tilting effect), which should also be machine-readable. In the machine-read spectrum, the manufacturing process should be clearly coded.
  • the invention therefore provides a method for producing tamper-resistant identification features consisting of at least each an electromagnetic wave reflecting layer (2), an optically transparent spacer layer (3) and a layer formed by metallic clusters (4).
  • Suitable carrier substrates are preferably flexible plastic films, for example of PI, PP, MOPP, PE, PPS, PEEK, PEK, PEI, PSU, PAEK, LCP, PEN, PBT, PET, PA, PC, COC, POM, ABS, PVC ,
  • the carrier films preferably have a thickness of 5 to 700 .mu.m, preferably 8 to 200 .mu.m, more preferably 12 to 50 .mu.m.
  • metal foils for example Al, Cu, Sn, Ni, Fe or stainless steel foils having a thickness of 5-200 ⁇ m, preferably 10 to 80 ⁇ m, particularly preferably 20-50 ⁇ m, may also serve as the carrier substrate.
  • the films can also be surface-treated, coated or laminated, for example with plastics, or painted.
  • carrier substrates pulp-free or cellulose-containing paper, heat-activatable paper or composites with paper, for example composites with plastics having a basis weight of 20-500 g / m 2 , preferably 40-200 g / m 2 , may be used.
  • An electromagnetic wave reflecting layer is applied to the carrier substrate.
  • This layer may preferably be made of metals such as aluminum, gold, chromium, silver, copper, tin, platinum, nickel and their alloys, for example nickel / chromium, copper / aluminum and the like exist.
  • the electromagnetic wave reflecting layer may be applied all over or partially by known methods such as spraying, vapor deposition, sputtering, printing (gravure, flexographic, screen, digital printing), painting, roller coating and the like.
  • a method using a soluble paint for producing the partial metallization is particularly suitable.
  • a solvent-soluble paint application is applied to the carrier substrate, in a second step this layer optionally treated by means of an in-line plasma, corona or flame process and in a third step, a layer of the metal to be structured or
  • the paint application by means of a solvent, optionally combined with a mechanical action is removed.
  • the soluble application of paint can be carried out over the entire surface or partially, the application of the metal or the metal alloy takes place over the entire surface or partially.
  • the application of the paint can be done by any method, for example by gravure printing, flexographic printing, screen printing, digital printing and the like.
  • the paint or varnish used is soluble in a solvent, preferably water, but it is also possible to use a paint which is soluble in any solvent, for example in alcohol, esters and the like.
  • the paint or lacquer may be conventional compositions based on natural or artificial macromolecules.
  • the soluble color may be pigmented or unpigmented.
  • pigments all known pigments can be used. Particularly suitable are TiO 2 , ZnS, kaolin and the like.
  • the printed carrier substrate is optionally treated by means of an in-line plasma (low pressure or atmospheric plasma), corona or flame process.
  • High-energy plasma for example Ar or Ar / O 2 plasma, cleans the surface of toning residues of the printing inks.
  • the surface is activated.
  • terminal polar groups are generated on the surface. This improves the adhesion of metals and the like to the surface.
  • a thin metal or metal oxide layer can be applied as adhesion promoter, for example by sputtering or vapor deposition.
  • adhesion promoter particularly suitable are Cr, Al, Ag, Ti, Cu, TiO 2 , Si oxides or chromium oxides.
  • This adhesion promoter layer generally has a thickness of 0.1 nm-5 nm, preferably 0.2 nm-2 nm, particularly preferably 0.2 nm to 1 nm.
  • a partial electromagnetic wave reflecting layer can also be produced by a conventionally known etching method.
  • the thickness of the electromagnetic wave reflecting layer is preferably about 10 - 50 nm, but also higher or lower layer thicknesses are possible. If metal foils are used as the carrier substrate, the carrier substrate itself may already form the electromagnetic wave reflecting layer. The reflection of this layer for electromagnetic waves, in particular as a function of the thickness of the layer or the metal foil used, is preferably 10 -100%.
  • the following polymeric layer or layers can also be applied over the entire surface or partially.
  • the polymeric layers consist for example of paint or paint systems based on nitrocellulose, epoxy, polyester, rosin, acrylate, alkyd, melamine, PVA, PVC, isocyanate or urethane systems.
  • This polymeric layer essentially serves as a transparent spacer layer but, depending on the composition, may be absorbent in a particular spectral range.
  • this absorbing property can also be enhanced by the addition of a suitable chromophore.
  • a suitable spectral range can be selected.
  • the polymeric layer can additionally be made machine-readable.
  • a yellow AZO dye for example anilides; Rodural, Eosin, are used. The dye also changes the spectrum of the label in a characteristic manner.
  • this polymeric layer may show wetting effects, which leads to a characteristic macroscopic lateral structuring.
  • This structuring can be modified, for example, by modification of the surface energy of the layers, for example by plasma treatment, corona treatment, electron beam, ion beam treatment or by laser modification.
  • the polymeric layer has a defined thickness, preferably 10 nm to 3 ⁇ m, more preferably 100-1000 nm. If a plurality of polymeric layers are applied, they can each have different thicknesses.
  • the polymeric layer is applied by brushing, painting, casting, spraying, printing (screen, gravure, or digital printing) or roller coating.
  • the polymeric layer is applied in a process that allows the application of very homogeneous layer thicknesses over large areas. A homogeneous layer thickness is therefore necessary to ensure a uniform color appearance in the finished product.
  • the tolerances are not more than ⁇ 5%, preferably ⁇ ⁇ 2%.
  • Particularly suitable is a printing process, wherein the color or paint is applied from a temperature-controlled paint pan via a plunger cylinder and a transfer roller on the printing cylinder, wherein only the wells of the printing cylinder are filled with the paint or the paint substantially.
  • a squeegee excess paint or varnish is stripped off and optionally further dried by means of a blow bar.
  • the metallic clusters may consist, for example, of aluminum, gold, palladium, platinum, chromium, silver, copper, nickel and the like or their alloys, such as, for example, Au / Pd or Cr / Ni.
  • This cluster layer is deposited by sputtering (for example ion beam or magnetron) or evaporation (electron beam) from a solution or by adsorption.
  • the growth of the clusters and thus their shape and the optical properties can advantageously be influenced by adjusting the surface energy or the roughness of the underlying layer. This characteristically changes the spectra. This can be done for example by thermal treatment in the coating process or by preheating the substrate.
  • the shape and thus also the optical properties of the clusters can be influenced by adjusting the surface energy or the condensation coefficient of the metal on the underlying layer. These parameters can be achieved, for example, by treatment of the surface with oxidizing liquids, for example with Na hypochlorite or in a PVD or CVD process.
  • the cluster layer is preferably applied by sputtering.
  • the properties of the layer in particular the density and the structure, are set above all by the power density, the amount of gas used and its composition, the temperature of the substrate and the web speed.
  • the clusters When applied from the solution by wet-chemical methods, the clusters are prepared in solution in a first step, then the clusters are derivatized, concentrated and applied directly to the polymeric surface.
  • an inert polymer for example PVA, polymethyl methacrylate, nitrocellulose, polyester or urethane systems are admixed.
  • the mixture can then be subsequently a printing process, such as screen, flexo or preferably gravure printing methods are applied to the polymeric layer.
  • the thickness of the cluster layer is preferably 2 to 20 nm, particularly preferably 3 to 10 nm.
  • a protective layer can be applied by means of vacuum technology or printing technology.
  • the polymer layer is specifically structured by modifying the surface energy. Due to the color effect, the structures then appear very rich in contrast due to the subsequently applied cluster layer, making them easily recognizable to the eye. Therefore, such structuring creates an additional tamper-proof feature.
  • this structuring can be transformed by fingerprint algorithms into one-to-one codes, which are then machine-readable.
  • a structuring can be assigned to a defined numerical value, whereby markings having the same manufacturing parameters, ie having the same color effect, can be individualized.
  • the individual layer combinations can also be applied to separate substrates.
  • the electromagnetic wave reflecting layer and the polymeric spacer layer may be applied to a first substrate, which may for example be applied to a value document or incorporated into this value document.
  • the cluster layer can then be applied to a further substrate, which is optionally provided with an adhesive layer. By joining the two coated substrates then appears according to the key / lock principle, the characteristic color effect.
  • the carrier substrate may also already have one or more functional and / or decorative layers.
  • color or lacquer layers a wide variety of compositions can be used in each case.
  • the composition of the individual layers may in particular vary according to their purpose, depending on whether the individual layers serve exclusively decorative purposes or should be a functional layer or whether the layer should be both a decorative and a functional layer.
  • the layers to be printed may be pigmented or unpigmented.
  • pigments it is possible to use all known pigments, for example titanium dioxide, zinc sulfide, kaolin, ATO, FTO, ITO, aluminum, chromium oxides and silicon oxides, as well as colored pigments.
  • solvent-based coating systems and systems without solvents can be used.
  • Suitable binders are various natural or synthetic binders.
  • the functional layers may for example have certain electrical, magnetic, special chemical, physical and also optical properties.
  • Electrode properties such as conductivity, for example, graphite, carbon black, conductive organic or inorganic polymers.
  • Metal pigments for example, copper, aluminum, silver, gold, iron, chromium lead and the like
  • metal alloys such as copper-zinc or copper-aluminum or their sulfides or oxides, or amorphous or crystalline ceramic pigments such as ITO and the like may be added.
  • doped or non-doped semiconductors such as, for example, silicon, germanium or ion conductors such as amorphous or crystalline metal oxides or metal sulfides can also be used as an additive.
  • to adjust the electrical properties of the layer polar or partially polar Compounds such as surfactants or non-polar compounds such as silicone additives or hygroscopic or non-hygroscopic salts are used or added.
  • paramagnetic, diamagnetic and also ferromagnetic substances such as iron, nickel and cobalt or their compounds or salts (for example oxides or sulfides) can be used.
  • the optical properties of the layer can be visualized by visible dyes or pigments, luminescent dyes or pigments which fluoresce or phosphoresce in the visible, in the UV range or in the IR range, effect pigments, such as liquid crystals, pearlescent, bronzes and / or heat-sensitive Influence colors or pigments. These can be used in all possible combinations.
  • phosphorescent pigments can also be used alone or in combination with other dyes and / or pigments.
  • Various properties can also be combined by adding various additives mentioned above.
  • colored and / or conductive magnetic pigments All mentioned conductive additives can be used.
  • conductive additives can be used.
  • dyeing of magnetic pigments it is possible to use all known soluble and non-soluble dyes or pigments.
  • a brown magnetic ink can be adjusted to metallic, for example silvery, by adding metals in their color shade.
  • insulator layers can be applied.
  • insulators for example, organic substances and their derivatives and compounds, such as paint and coating systems, such as epoxy, polyester, rosin, acrylate, alkyd, melamine, PVA, PVC, isocyanate, Urethane systems that can be radiation-curing, for example, by heat or UV radiation suitable.
  • the thickness of the functional layer is 0.001 to 50 ⁇ m, preferably 0.1 to 20 ⁇ m.
  • multilayer structures can be produced which have different properties in the layers applied one above the other.
  • different properties of the individual layers for example layers having different conductivity, magnetizability, optical properties, absorption behavior and the like, it is possible to produce structures for security elements with several precise authenticity features, for example.
  • the layers can be present on the substrate over the entire surface or partially already, or can be applied.
  • the process steps can be repeated as often as desired, wherein, for example, in full-surface application of a functional layer of the paint can be omitted if necessary.
  • the coated film produced in this way can also be protected by a protective lacquer layer or further refined, for example, by laminating or the like.
  • the product can be applied with a sealable adhesive, such as a hot or cold seal adhesive to the appropriate substrate, or embedded in paper for security papers by conventional methods, for example.
  • a sealable adhesive such as a hot or cold seal adhesive
  • sealants can be equipped with visible or visible in UV light, fluorescent, phosphorescent or laser and IR radiation absorbing features to increase the security against counterfeiting. These features may also be present in the form of patterns or characters or show color effects, in principle any number of colors, preferably 1 to 10 colors or color mixtures, are possible.
  • the carrier substrate may be removed after application or remain on the product in one-sided coating.
  • the carrier film may optionally be specially equipped on the uncoated side, for example, scratch-resistant, antistatic and the like. The same applies to a possible lacquer layer on the carrier substrate.
  • the layer structure can be set in a transferable or non-transferable manner, if appropriate with a transfer lacquer layer, which may optionally have a diffraction structure, for example a hologram structure.
  • the structure according to the invention can also be applied inversely to the carrier material, with a layer formed of metallic clusters, which are produced by means of a vacuum-technical method, on a carrier substrate is prepared from solvent-based systems and then one or more partial and / or full-surface polymeric layers of defined thickness are applied and then a partial or full-surface electromagnetic wave reflecting layer is applied to the spacer layer.
  • the first layer (2) can also be a layer formed of metallic clusters, which is based on a carrier (1) is applied.
  • the carrier (1) can be the carrier substrate to be marked.
  • the inert spacer layer is designated by (3).
  • the metallic clusters (4) are expediently made, for example, from copper.
  • Fig. 3 to 5 is provided for further processing of the counterfeit-proof marked carrier substrate adhesive or lamination with (6). The change in the reflected light which produces the characteristic color spectrum in comparison with the incident light is visualized in an arrow in these two figures by means of the gray scale profile.
  • a made of metallic clusters third layer (4) is applied.
  • the second layer (3) is applied to a mirror layer (2).
  • the mirror layer is applied to a carrier substrate (1).
  • the third layer (4) formed of metallic clusters is applied first, then the second layer (3), then the mirror layer (2) and finally the adhesive or lamination layer (6).
  • marks is only the optically transparent formed second layer (3) on the electromagnetically reflecting first layer (2) and this applied to a carrier substrate (1).
  • the marking is initially not visible.
  • the markings are only visible when they are brought into contact with a substrate (5) on the surface of which the third layer (4) formed of metallic clusters is applied. This in turn produces a color effect that can be observed through the substrate (5).
  • the carrier substrate (5) is expediently made of a transparent material, for example of plastic such as polyethylene terephthalate polycarbonate, polyurethane, polyethylene, polypropylene, polyacrylate, polyvinyl chloride, polyepoxide.
  • coated support materials produced according to the invention can be used as security features in data carriers, value documents, labels, labels, seals, in packaging, textiles and the like.
  • the sol (almost pH neutral, hardly any salt) is rebuffered by adding 5 ml of 1 M sodium carbonate solution (pH 9.6). Only sufficiently protected clusters remain in solution and do not precipitate.
  • the sol can be concentrated by centrifugation or binds directly after application to the nitrocellulose coated surface. With a suitable choice of Nitrocellulose layer thickness develop after drying of the excess water strong surface dyeings.
  • the sol after concentration, is added by a factor of 10 small amounts (e.g., 5%) of a neutral polymer (e.g., PVA).
  • PVA neutral polymer
  • the colloids are dry randomly oriented with the polymer in a very thin layer. There are observed as in Example 1c) characteristic colors.
  • a Cu layer with a thickness of 4 nm is sputtered onto a web-shaped carrier substrate, which is already provided with a mirror layer and a nitrocellulose layer as a transparent spacer layer.
  • the sputtering is carried out by means of a magnetron plasma source with a power of 20 W / cm 2 at 25 ° C using Ar with a partial pressure of 5 x 10 -3 mbar as a process gas.
  • the speed of the web is 0.5m / s.
  • the Cu layer shows pronounced island growth.
  • the islands with a mean diameter of a few nm correspond to the clusters in the wet-chemical process. Significantly different characteristic color spectra are observed.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Credit Cards Or The Like (AREA)
  • Physical Vapour Deposition (AREA)
  • Printing Methods (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung fälschungssicherer Identifikationsmerkmale, die einen Farbkippeffekt, bewirkt durch metallische Cluster, die über eine definierte transparente Schicht von einer Spiegelschicht getrennt sind, aufweisen.
  • Aus WO 02/18155 ist ein Verfahren zur fälschungssicheren Markierung von Gegenständen bekannt, wobei der Gegenstand mit einer Markierung bestehend aus einer elektromagnetische Wellen reflektierenden ersten Schicht auf die eine für elektromagnetische Wellen durchlässige inerte Schicht mit einer definierten Dicke aufgebracht wird, worauf auf diese inerte Schicht eine aus metallischen Clustern gebildete dritte Schicht folgt, versehen wird.
    WO 01/53113 beschreibt optisch variable Sicherheitselemente, die einen winkelabhängigen Farbkippeffekt aufweisen, wobei der Aufbau im Wesentlichen aus einer Reflektorschicht, einer dielektrischen Schicht und einer Absorberschicht besteht.
    WO 02/051646 A ) beschreibt eine Dekorfolie, die als Schichtverbund aufgebaut ist und eine transparente Basisfolie, eine transparente Deckschicht und eine dazwischen angeordnete transparente dielektrische transparente Schicht aufweist. Zwischen der dielektrischen Schicht und der Deckschicht ist zumindest partiell eine Metallschicht angeordnet.
  • Aufgabe der Erfindung ist es ein Verfahren zur Herstellung von fälschungssicheren Identifikationsmerkmalen auf flexiblen Materialien bereitzustellen, wobei die Fälschungssicherheit durch eine sichtbare Farbänderung unter verschiedenen Betrachtungswinkeln (Kippeffekt), die auch maschinenlesbar sein soll, gegeben ist. Im maschinell ausgelesenen Spektrum soll das Herstellungsverfahren eindeutig codiert werden.
  • Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von fälschungssicheren Identifikationsmerkmalen bestehend aus jeweils mindestens einer elektromagnetische Wellen reflektierenden Schicht (2), einer optisch transparent ausgebildeten Abstandsschicht (3) und einer Schicht gebildet von metallischen Clustem (4).
  • Die weiteren wesentlichen Merkmale der Erfindung sind in den unabhängigen Ansprüchen 1 bis 3 definiert.
  • Als Trägersubstrat kommen vorzugsweise flexible Kunststofffolien, beispielsweise aus PI, PP, MOPP, PE, PPS, PEEK, PEK, PEI, PSU, PAEK, LCP, PEN, PBT, PET, PA, PC, COC, POM, ABS, PVC in Frage. Die Trägerfolien weisen vorzugsweise eine Dicke von 5 - 700 µm, bevorzugt 8 - 200 µm, besonders bevorzugt 12 - 50 µm auf.
    Ferner können als Trägersubstrat auch Metallfolien, beispielsweise Al-, Cu-, Sn-, Ni-, Fe- oder Edelstahlfolien mit einer Dicke von 5 - 200 µm, vorzugsweise 10 bis 80 µm, besonders bevorzugt 20 - 50 µm dienen. Die Folien können auch oberflächenbehandelt, beschichtet oder kaschiert, beispielsweise mit Kunststoffen, oder lackiert sein.
    Ferner können als Trägersubstrate auch zellstofffreies oder zellstoffhaltiges Papier, thermoaktivierbares Papier oder Verbunde mit Papier, beispielsweise Verbunde mit Kunststoffen mit einem Flächengewicht von 20 - 500 g/m2, vorzugsweise 40 - 200 g/m2, verwendet werden.
  • Auf das Trägersubstrat wird eine elektromagnetische Wellen reflektierende Schicht aufgebracht. Diese Schicht kann vorzugsweise aus Metallen, wie beispielsweise Aluminium, Gold, Chrom, Silber, Kupfer, Zinn, Platin, Nickel und deren Legierungen, beispielsweise Nickel/Chrom, Kupfer/Aluminium und dergleichen bestehen.
  • Die elektromagnetische Wellen reflektierende Schicht kann vollflächig oder partiell durch bekannte Verfahren, wie Sprühen, Bedampfen, Sputtern, Drucken (Tief-, Flexo-, Sieb-, Digitaldruck), Lackieren, Walzenauftragsverfahren und dergleichen aufgebracht werden.
  • Zur partiellen Aufbringung eignet sich besonders ein Verfahren unter Verwendung eines löslichen Farbauftrags zur Herstellung der partiellen Metallisierung. Dabei wird in einem ersten Schritt auf dem Trägersubstrat ein in einem Lösungsmittel löslicher Farbauftrag aufgebracht, in einem zweiten Schritt diese Schicht gegebenenfalls mittels eines Inline-Plasma-, Corona- oder Flammprozesses behandelt und in einem dritten Schritt eine Schicht des zu strukturierenden Metalls bzw. der Metalllegierung aufgebracht, worauf in einem vierten Schritt der Farbauftrag mittels eines Lösungsmittels, gegebenenfalls kombiniert mit einer mechanischen Einwirkung, entfernt wird.
    Der lösliche Farbauftrag kann vollflächig oder partiell erfolgen, die Aufbringung des Metalls bzw. der Metalllegierung erfolgt vollflächig oder partiell.
  • Die Aufbringung des Farbauftrags kann durch ein beliebiges Verfahren, beispielsweise durch Tiefdruck, Flexodruck, Siebdruck, Digitaldruck und dergleichen erfolgen. Die verwendete Farbe bzw. der verwendete Lack ist in einem Lösungsmittel, vorzugsweise in Wasser löslich, es kann jedoch auch eine in jedem beliebigen Lösungsmittel, beispielsweise in Alkohol, Estern und dergleichen lösliche Farbe verwendet werden. Die Farbe bzw. der Lack können übliche Zusammensetzungen auf Basis von natürlichen oder künstlichen Makromolekülen sein. Die lösliche Farbe kann pigmentiert oder nicht pigmentiert sein. Als Pigmente können alle bekannten Pigmente verwendet werden. Besonders geeignet sind TiO2, ZnS, Kaolin und dergleichen.
  • Anschließend wird das bedruckte Trägersubstrat gegebenenfalls mittels eines Inline-Plasma- (Niederdruck- oder Atmosphärenplasma-), Corona- oder Flammprozesses behandelt. Durch energiereiches Plasma, beispielsweise Ar- oder Ar/O2-Plasma wird die Oberfläche von Tonungsresten der Druckfarben gereinigt.
  • Gleichzeitig wird die Oberfläche aktiviert. Dabei werden endständige polare Gruppen an der Oberfläche erzeugt. Dadurch wird die Haftung von Metallen und dergleichen an der Oberfläche verbessert.
  • Gegebenenfalls kann gleichzeitig mit der Anwendung der Plasma- bzw. Corona- oder Flammbehandlung oder im Anschluss daran, eine dünne Metall- oder Metalloxidschicht als Haftvermittler, beispielsweise durch Sputtern oder Aufdampfen aufgebracht werden. Besonders geeignet sind dabei Cr, Al, Ag, Ti, Cu, TiO2, Si-Oxide oder Chromoxide. Diese Haftvermittlerschicht weist im allgemeinen eine Dicke von 0,1 nm - 5nm, vorzugsweise 0,2 nm - 2nm, besonders bevorzugt 0,2 nm bis 1 nm auf.
  • Dadurch wird die Haftung der partiell oder vollflächig aufgebrachten elektromagnetische Wellen reflektierenden Metall- bzw. Metalllegierungsschicht weiter verbessert.
  • Eine partielle, elektromagnetische Wellen reflektierende Schicht kann aber auch durch ein übliches bekanntes Ätzverfahren hergestellt werden.
  • Die Dicke der elektromagnetische Wellen reflektierenden Schicht beträgt vorzugsweise etwa 10 - 50 nm, wobei aber auch höhere bzw. geringere Schichtdicken möglich sind.
    Werden Metallfolien als Trägersubstrat verwendet, so kann das Trägersubstrat selbst bereits die elektromagnetische Wellen reflektierende Schicht bilden. Vorzugsweise beträgt die Reflexion dieser Schicht für elektromagnetische Wellen, insbesondere in Abhängigkeit von der Dicke der Schicht bzw. der verwendeten Metallfolie 10 -100%.
  • Die darauf folgende polymere Schicht bzw. die polymeren Schichten können ebenfalls vollflächig oder partiell aufgebracht werden.
    Die polymeren Schichten bestehen beispielsweise aus Farb- oder Lacksystemen auf Basis von Nitrocellulose, Epoxy-, Polyester-, Kolophonium-, Acrylat-, Alkyd-, Melamin-, PVA-, PVC-, Isocyanat- oder Urethansystemen.
  • Diese polymere Schicht dient im wesentlichen als transparente Abstandsschicht, kann aber je nach Zusammensetzung in einem bestimmten Spektralbereich absorbierend sein. Gegebenenfalls kann diese absorbierende Eigenschaft auch durch Beimengung eines geeigneten Chromophors verstärkt werden. Durch die Auswahl verschiedener Chromophore kann ein geeigneter Spektralbereich ausgewählt werden. Dadurch kann neben dem Kippeffekt auch die polymere Schicht zusätzlich maschinenlesbar gestaltet werden. So kann beispielsweise im blauen Spektralbereich (im Bereich von etwa 400 nm) ein gelber AZO-Farbstoff, beispielsweise Anilide; Rodural, Eosin, eingesetzt werden. Der Farbstoff verändert darüber hinaus das Spektrum der Markierung in charakteristischer Weise.
  • Diese polymere Schicht kann, in Abhängigkeit von der Qualität der Adhäsion auf der Trägerbahn bzw. einer gegebenenfalls darunter liegenden Schicht Entnetzungseffekte zeigen, was zu einer charakteristischen, makroskopischen lateralen Strukturierung führt.
    Diese Strukturierung lässt sich beispielsweise durch Modifikation der Oberflächenenergie der Schichten, beispielsweise durch Plasmabehandlung, Coronabehandlung, Elektronen-, Ionenstrahlbehandlung oder durch Lasermodifikation gezielt verändern.
    Ferner ist es möglich eine Haftvermittlerschicht mit bereichsweise unterschiedlicher Oberflächenenergie aufzubringen.
  • Die polymere Schicht weist eine definierte Dicke, vorzugsweise 10 nm bis 3 µm, besonders bevorzugt 100 - 1000 nm auf. Werden mehrere polymere Schichten aufgebracht, können diese jeweils unterschiedliche Dicken aufweisen.
  • Die polymere Schicht wird durch Aufstreichen, Lackieren, Gießen, Sprühen, Drucken (Siebdruck-, Tiefdruck- Flexodruck, oder Digitaldruckverfahren) oder Walzenauftragsverfahren aufgebracht.
  • Die polymere Schicht wird in einem Verfahren aufgebracht, das die Aufbringung sehr homogener Schichtdicken über große Flächen erlaubt. Eine homogene Schichtdicke ist deshalb erforderlich um im fertigen Produkt eine gleichmäßige Farberscheinung zu gewährleisten. Die Toleranzen betragen nicht mehr als ± 5%, vorzugsweise ≤ ±2%.
  • Besonders geeignet ist dabei ein Druckverfahren, wobei die Farbe oder der Lack aus einer temperaturgeregelten Lackwanne über einen Tauchzylinder und eine Übertragswalze auf den Druckzylinder aufgebracht wird, wobei im wesentlichen nur die Vertiefungen des Druckzylinders mit der Farbe oder dem Lack gefüllt werden. Mittels einer Rakel wird überschüssige Farbe oder Lack abgestreift und gegebenenfalls mittels einer Blasleiste weiter abgetrocknet.
  • Auf die polymere Schicht wird anschließend eine Schicht gebildet aus metallischen Cluster aufgebracht. Die metallischen Cluster können beispielsweise aus Aluminium, Gold, Palladium, Platin, Chrom, Silber, Kupfer, Nickel und dergleichen oder deren Legierungen, wie beispielsweise Au/Pd oder Cr/Ni bestehen.
    Diese Clusterschicht wird durch Sputtern (beispielsweise Ionenstrahl oder Magnetron) oder Verdampfen (Elektronenstrahl) aus einer Lösung oder durch Adsorption aufgebracht.
  • Bei der Herstellung der Clusterschicht in Vakuumprozessen kann vorteilhafterweise das Wachstum der Cluster und damit deren Form sowie die optischen Eigenschaften durch Einstellung der Oberflächenenergie oder der Rauhigkeit der darunterliegenden Schicht beeinflusst werden. Dies verändert in charakteristischer Weise die Spektren. Dies kann beispielsweise durch thermische Behandlung im Beschichtungsprozess oder durch Vorheizen des Substrats erfolgen.
    So kann zum Beispiel die Form und damit auch die optischen Eigenschaften der Cluster durch Einstellung der Oberflächenenergie bzw. des Kondensationskoeffizienten des Metalls auf der darunterliegenden Schicht beeinflusst werden.
    Diese Parameter können beispielsweise durch Behandlung der Oberfläche mit oxidierenden Flüssigkeiten, beispielsweise mit Na-Hypochlorit oder in einem PVD oder CVD-Prozess erfolgen.
  • Die Clusterschicht wird vorzugsweise mittels Sputtern aufgebracht. Dabei werden die Eigenschaften der Schicht, insbesondere die Dichte und die Struktur, vor allem durch die Leistungsdichte, die verwendete Gasmenge und deren Zusammensetzung, die Temperatur des Substrats und die Bahngeschwindigkeit eingestellt.
  • Beim Aufbringen aus der Lösung mittels nasschemischer Verfahren werden in einem ersten Schritt die Cluster in Lösung hergestellt, anschließend die Cluster derivatisiert, aufkonzentriert und direkt auf die polymere Oberfläche aufgebracht.
  • Zur Aufbringung mittels drucktechnischer Verfahren werden nach dem Aufkonzentrieren der Cluster geringe Mengen eines inerten Polymers, beispielsweise PVA, Polymethylmethacrylat, Nitrocellulose-, Polyester-oder Urethansysteme zugemischt. Die Mischung kann dann anschließend mittels eines Druckverfahrens, beispielsweise Sieb-, Flexo- oder vorzugsweise Tiefdruckverfahren auf die polymere Schicht aufgebracht werden.
  • Die Dicke der Clusterschicht beträgt vorzugsweise 2 - 20 nm, besonders bevorzugt 3-10 nm.
  • Zusätzlich kann darüber eine Schutzschicht mit vakuumtechnischen oder drucktechnischen Verfahren aufgebracht werden.
  • In einer bevorzugten Ausführungsform wird die Polymerschicht durch Modifikation der Oberflächenenergie gezielt strukturiert.
    Die Strukturen erscheinen dann durch die anschließend aufgebrachte Clusterschicht aufgrund des Farbeffekts sehr kontrastreich, wodurch sie für das Auge leicht erkennbar sind. Daher wird durch eine solche Strukturierung ein zusätzliches fälschungssicheres Merkmal erzeugt.
  • Ferner kann diese Strukturierung durch Fingerprint-Algorithmen in eineindeutige Codes verwandelt werden, die dann maschinell auslesbar sind.
    Dadurch kann eine Strukturierung einem definierten Zahlenwert zugeordnet werden, wobei Markierungen mit gleichen Herstellparametem, d.h. mit gleichem Farbeffekt, individualisierbar werden.
  • Zur Anwendung insbesondere als Sicherheitsmerkmal können die einzelnen Schichtkombinationen auch auf getrennten Substraten aufgebracht werden.
    So kann beispielsweise die elektromagnetische Wellen reflektierende Schicht und die polymere Abstandsschicht auf einem ersten Substrat aufgebracht sein, das beispielsweise auf ein Wertdokument aufgebracht oder in dieses Wertdokument eingebracht sein kann. Auf ein weiteres Substrat kann dann die Clusterschicht aufgebracht sein, die gegebenenfalls mit einer Klebeschicht versehen ist. Durch Zusammenfügen der beiden beschichteten Substrate erscheint dann nach dem Schlüssel/Schloss-Prinzip der charakteristische Farbeffekt.
  • Das Trägersubstrat kann auch bereits eine oder mehrere funktionelle und/oder dekorative Schichten aufweisen.
    Als solche Farb- bzw. Lackschichten können jeweils verschiedenste Zusammensetzungen verwendet werden. Die Zusammensetzung der einzelnen Schichten kann insbesondere nach deren Aufgabe variieren, je nach dem ob die einzelnen Schichten ausschließlich Dekorationszwecken dienen oder eine funktionelle Schicht sein sollen oder ob die Schicht sowohl eine Dekorationsals auch eine funktionelle Schicht sein soll.
  • Die zu druckenden Schichten können pigmentiert oder nicht pigmentiert sein. Als Pigmente können alle bekannten Pigmente, wie beispielsweise Titandioxid, Zinksulfid, Kaolin, ATO, FTO, ITO, Aluminium, Chrom- und Siliciumoxide als auch farbige Pigmente verwendet werden. Dabei sind lösungsmittelhaltige Lacksysteme als auch Systeme ohne Lösungsmittel verwendbar.
    Als Bindemittel kommen verschiedene natürliche oder synthetische Bindemittel in Frage.
  • Die funktionellen Schichten können beispielsweise bestimmte elektrische, magnetische, spezielle chemische, physikalische und auch optische Eigenschaften aufweisen.
  • Zur Einstellung elektrischer Eigenschaften, beispielsweise Leitfähigkeit können beispielsweise Graphit, Ruß, leitfähige organische oder anorganische Polymere. Metallpigmente (beispielsweise Kupfer, Aluminium, Silber, Gold, Eisen, Chrom Blei und dergleichen), Metallegierungen wie Kupfer-Zink oder Kupfer- Aluminium oder deren Sulfide oder Oxide, oder auch amorphe oder kristalline keramische Pigmente wie ITO und dergleichen zugegeben werden. Weiters können auch dotierte oder nicht dotierte Halbleiter wie beispielsweise Silicium, Germanium oder Ionenleiter wie amorphe oder kristalline Metalloxide oder Metallsulfide als Zusatz verwendet werden. Ferner können zur Einstellung der elektrischen Eigenschaften der Schicht polare oder teilweise polare Verbindungen, wie Tenside oder unpolare Verbindungen wie Silikonadditive oder hygroskopische oder nicht hygroskopische Salze verwendet oder zugesetzt werden.
  • Zur Einstellung der magnetischen Eigenschaften können paramagnetische, diamagnetische und auch ferromagnetische Stoffe, wie Eisen, Nickel und Cobalt oder deren Verbindungen oder Salze (beispielsweise Oxide oder Sulfide) verwendet werden.
  • Die optischen Eigenschaften der Schicht lassen sich durch sichtbare Farbstoffe bzw. Pigmente, lumineszierende Farbstoffe bzw. Pigmente, die im sichtbaren, im UV-Bereich oder im IR-Bereich fluoreszieren bzw. phosphoreszieren, Effektpigmente, wie Flüssigkristalle, Perlglanz, Bronzen und/oder wärmeempfindliche Farben bzw. Pigmente beeinflussen. Diese sind in allen möglichen Kombinationen einsetzbar. Zusätzlich können auch phosphoreszierende Pigmente allein oder in Kombination mit anderen Farbstoffen und/oder Pigmenten eingesetzt werden.
  • Es können auch verschiedene Eigenschaften durch Zufügen verschiedener oben genannter Zusätze kombiniert werden. So ist es möglich angefärbte und/oder leitfähige Magnetpigmente zu verwenden. Dabei sind alle genannten leitfähigen Zusätze verwendbar.
    Speziell zum Anfärben von Magnetpigmenten lassen sich alle bekannten löslichen und nicht löslichen Farbstoffe bzw. Pigmente verwenden. So kann beispielsweise eine braune Magnetfarbe durch Zugabe von Metallen in ihrem Farbton metallisch, z.B. silbrig eingestellt werden.
  • Ferner können beispielsweise Isolatorschichten aufgebracht werden. Als Isolatoren sind beispielsweise organische Substanzen und deren Derivate und Verbindungen, beispielsweise Farb- und Lacksysteme, z.B. Epoxy-, Polyester-, Kolophonium-, Acrylat-, Alkyd-, Melamin-, PVA-, PVC-, Isocyanat-, Urethansysteme, die strahlungshärtend sein können, beispielsweise durch Wärme- oder UV-Strahlung, geeignet.
  • Diese Schichten können durch bekannte Verfahren, beispielsweise durch Bedampfen, Sputtern, Drucken (beispielsweise Tief-, Flexo-, Sieb-, Digitaldruck und dergleichen), Sprühen, Galvanisieren, Walzenauftragsverfahren und dergleichen aufgebracht werden. Die Dicke der funktionellen Schicht beträgt 0,001 bis 50 µm, vorzugsweise 0,1 bis 20 µm.
  • Durch ein- oder mehrmalige Wiederholung eines oder mehrerer beschriebener Verfahrensschritte können Multilayer-Aufbauten hergestellt werden, die in den übereinander aufgebrachten Schichten unterschiedliche Eigenschaften aufweisen. Es ist dabei möglich durch Kombination von verschiedenen Eigenschaften der einzelnen Schichten, beispielsweise Schichten mit unterschiedlicher Leitfähigkeit, Magnetisierbarkeit, optischen Eigenschaften, Absorptionsverhalten und dergleichen, Aufbauten zum Beispiel für Sicherheitselemente mit mehreren präzisen Echtheitsmerkmalen herzustellen.
  • Die Schichten können jeweils vollflächig oder partiell bereits auf dem Substrat vorhanden sein, bzw. aufgebracht werden.
  • Dabei können die Verfahrensschritte beliebig oft wiederholt werden, wobei beispielsweise bei vollflächiger Aufbringung einer funktionellen Schicht der Farbauftrag gegebenenfalls entfallen kann.
  • Es können aber auch beispielsweise in bekannten Direktmetallisierungsverfahren oder in Metallisierungsverfahren mit Ätzen partielle Metallschichten bzw. in bekannten Mehrfarben-Druckverfahren weitere Schichten aufgebracht werden.
  • Gegebenenfalls kann die so hergestellte beschichtete Folie auch noch durch eine Schutzlackschicht geschützt werden oder beispielsweise durch Kaschieren oder dergleichen weiterveredelt werden.
  • Gegebenenfalls kann das Produkt mit einem siegelfähigen Kleber, beispielsweise einem Heiß- oder Kaltsiegelkleber auf das entsprechende Trägermaterial appliziert werden, oder beispielsweise bei der Papierherstellung für Sicherheitspapiere durch übliche Verfahren in das Papier eingebettet werden.
  • Diese Siegelkleber können mit sichtbaren oder im UV-Licht sichtbaren, fluoreszierenden, phosphoreszierenden oder Laser- und IR-Strahlung absorbierenden Merkmalen zur Erhöhung der Fälschungssicherheit ausgestattet sein. Diese Merkmale können auch in Form von Mustern oder Zeichen vorhanden sein oder farbliche Effekte zeigen, wobei im Prinzip beliebig viele Farben, vorzugsweise 1 bis 10 Farben oder Farbmischungen, möglich sind.
  • Das Trägersubstrat kann bei einseitiger Beschichtung nach der Anwendung entfernt werden oder am Produkt verbleiben. Dabei kann die Trägerfolie gegebenenfalls auf der nicht beschichteten Seite besonders ausgerüstet werden, beispielsweise kratzfest, antistatisch und dergleichen. Gleiches gilt für eine etwaige Lackschicht auf dem Trägersubstrat.
  • Ferner kann der Schichtaufbau transferierbar oder nicht transferierbar eingestellt werden, gegebenenfalls mit einer Transferlackschicht, die gegebenenfalls eine Diffraktionsstruktur, beispielsweise eine Hologrammstruktur aufweisen kann, versehen sein.
  • Der erfindungsgemäße Aufbau kann auch invers auf dem Trägermaterial aufgebracht werden, wobei auf ein Trägersubstrat eine Schicht gebildet aus metallischen Clustern, die mittels eines vakuumtechnischen Verfahrens oder aus lösungsmittelbasierten Systemen hergestellt wird und anschließend eine oder mehrere partielle und/oder vollflächige polymere Schichten definierter Dicke aufgebracht werden und darauf eine partielle oder vollflächige elektromagnetische Wellen reflektierende Schicht auf die Abstandschicht, aufgebracht wird.
  • In den Fig. 1 - 6 sind Beispiele für erfindungsgemäße Sicherheitsmerkmale dargestellt.
    Darin bedeuten 1 das Trägersubstrat, 2 die elektromagnetische Wellen reflektierende erste Schicht, 3 die transparente Schicht, 4 die aus metallischen Clustern aufgebaute Schicht, 5 ein optisch transparentes Substrat, 6 eine Klebe- bzw. Laminierschicht.
    • Fig. 1 zeigt eine schematische Querschnittsansicht einer ersten ständig sichtbaren Markierung auf einem Trägersubstrat,
    • Fig. 2 eine schematische Querschnittsansicht einer nicht ständig sichtbaren ersten Markierung auf einem Trägersubstrat sowie einem zum Nachweis bzw.
    • zur Sichtbarmachung geeigneten zweiten Trägersubstrat,
    • Fig. 3 eine schematische Querschnittsansicht einer ständig sichtbaren ersten laminier- oder klebbaren Markierung,
    • Fig. 4 eine schematische Querschnittsansicht einer weiteren ständig sichtbaren zweiten laminier- oder klebbaren Markierung.
    • Fig. 5 eine schematische Querschnittsansicht einer nicht ständig sichtbaren ersten laminier oder klebbaren Markierung sowie einem zum Nachweis bzw.
    • zur Sichtbarmachung geeigneten zweiten Trägersubstrat.
    • Fig. 6 ein im large-scale kontinuierlich beschichtetes fälschungssicher markiertes Trägersubstrat, welches teilweise auf Rollen aufgewickelt ist
  • Bei den in den Fig. 1 bis 5 gezeigten Markierungen ist eine elektromagnetische Wellen reflektierende erste Schicht mit (2) bezeichnet. Es kann sich dabei um eine dünne Schicht aus z.B. Aluminium handeln. Die erste Schicht (2) kann aber auch eine aus metallischen Clustern gebildete Schicht sein, welche auf einem Träger (1) aufgebracht ist. Bei dem Träger (1) kann es sich um das zu markierende Trägersubstrat handeln. Die inerte Abstandschicht ist mit (3) bezeichnet. Die metallischen Cluster (4) sind zweckmäßigerweise z.B. aus Kupfer hergestellt.
    In den Fig. 3 bis 5 ist die zur Weiterverarbeitung des fälschungssicher markierten Trägersubstrats vorgesehene Klebe- oder Laminierschicht mit (6) benannt. Die das charakteristische Farbspektrum erzeugende Änderung des reflektierten Lichts im Vergleich zum einfallenden Licht ist in diesen beiden Fig. mittels des Graustufenverlaufs in einem Pfeil visualisiert.
  • Bei den in den Fig. 1 und 3 gezeigten Markierungen ist auf der zweiten Schicht (3) eine aus metallischen Clustern hergestellte dritte Schicht (4) aufgebracht. Die zweite Schicht (3) ist dabei auf einer Spiegelschicht (2) aufgebracht. Ferner ist in Fig. 1 und 3 die Spiegelschicht auf einem Trägersubstrat (1) aufgebracht.
  • In der Fig. 4 wird auf einem Trägersubstrat (1) zuerst die aus metallischen Clustern gebildete dritte Schicht (4), dann die zweite Schicht (3), dann die Spiegelschicht (2) und zuletzt die Klebe- oder Laminierschicht (6) aufgebracht.
  • Bei den in Fig. 2 und 5 gezeigten Markierungen ist lediglich die optisch transparent ausgebildete zweite Schicht (3) auf der elektromagnetisch reflektierenden ersten Schicht (2) und diese auf einem Trägersubstrat (1) aufgebracht. Die Markierung ist zunächst nicht sichtbar. Die Markierungen sind erst dann sichtbar, wenn sie mit einem Substrat (5) in Kontakt gebracht werden, auf dessen Oberfläche die aus metallischen Clustern gebildete dritte Schicht (4) aufgebracht ist. Es entsteht dann wiederum eine Farbwirkung, die durch das Substrat (5) beobachtbar ist. Das Trägersubstrat (5) ist zweckmäßigerweise aus einem transparenten Material, z.B. aus Kunststoff wie Polyethylenterephatalat Polycarbonat, Polyurethan, Polyethylen, Polypropylen, Polyacrylat, Polyvinylchlorid, Polyepoxid, hergestellt.
  • Die Funktion der Markierung ist folgende:
    • Bei einer Einstrahlung von Licht aus einer Lichtquelle, wie einer Glühbirne, einem Laser, einer Leuchtstoffröhre, einer Halogenlampe, im speziellen einer Xenonlampe, auf eine der in Fig. 1, 3 und 4 gezeigten Markierungen wird dieses Licht an der ersten Schicht (2) reflektiert. Durch eine Wechselwirkung des reflektierten Lichts mit der aus der metallischen Clustern gebildeten dritten Schicht (4) wird ein Teil des eingestrahlten Lichts absorbiert. Das reflektierte Licht weist ein von mehreren Parametern, wie z.B. den optischen Konstanten des Schichtaufbaus, abhängiges, charakteristisches Spektrum auf. Die Markierung erscheint farbig. Die Färbung dient als fälschungssicherer Nachweis für die Echtheit der Markierung. Der so erhaltene Farbeindruck ist winkelabhängig und kann sowohl mit dem bloßen Auge als auch mit einem im Reflexionsmodus arbeitenden Lesegerät, vorzugsweise ein Spektralphotometer, identifiziert werden. Ein solches Photometer kann beispielsweise die Färbung der Oberflächen aus zwei verschiedenen Winkeln erfassen. Dies geschieht entweder mittels eines Detektors dadurch, dass zwei Lichtquellen verwendet werden, welche entsprechend angeschaltet werden und der Detektor entsprechend verkippt wird, oder dadurch dass zwei Photometer die aus zwei verschiedenen Winkeln beleuchtete Probe aus den beiden entsprechenden Winkeln vermessen.
  • Hinsichtlich der für die Erzeugung der Wechselwirkungen einzuhaltenden Parameter wird auf die US 5,611,998 , die WO 98/48275 sowie die WO 99/47702 und WO 02/18155 verwiesen.
  • Die erfindungsgemäß hergestellten beschichteten Trägermaterialien können als Sicherheitsmerkmale in Datenträgern, Wertdokumenten, Labels, Etiketten, Siegeln, in Verpackungen, Textilien und dergleichen verwendet werden.
  • Beispiele: Beispiel 1: Herstellung der Clusterschicht mittels nasschemischer Verfahren: a) Synthese von 14 nm Gold Clustern
  • 100 ml aqua dest werden in einem 250 ml Kolben zum Sieden erhitzt. Unter starkem Rühren werden zuerst 4 ml 1 % triNatriumCitrat in aqua dest und dann 1 ml 1 % TetraChloroGoldsäure in aqua dest zugegeben. Innerhalb von 5 min verändert sich die Farbe des Reaktionsansatzes von nahezu farblos über Dunkelviolett zu Kirsch-Rot. Danach wird die Wärmezufuhr unterbunden und der Ansatz ca. 10 min weiter gerührt. Die Analyse des resultierenden Sols mit dem Transmissionselektronenmikroskop zeigt sphärische Partikel eines mittleren Durchmessers von 14 nm. Die Größenverteilung der Cluster ist eng (cv < 20%). Das Wellenlängen-Maximum der optischen Absorption liegt bei 518 nm.
  • b) Derivatisierung der Gold Cluster:
  • Zu 100 ml Gold Sol entsprechend der obigen Synthese wird unter starkem Rühren 1 ml einer 1%igen Lösung von BSA (Bovines Serum Albumin) in aqua dest gegeben. Die Lösung verfärbt sich leicht von Kirsch-Rot in ein dunkleres Rot. Das Maximum der optischen Absorption bleibt erhalten. Die Absorption im Wellenlängenbereich von 550 nm und höher nimmt zu. Im Transmissionselektronenmikroskop sind definierte Abstände zwischen den Partikeln erkennbar.
  • c) Anbindung der Gold Cluster auf einer Oberfläche aus Nitrocellulose:
  • Das Sol (nahezu pH neutral, kaum Salz) wird durch Zugabe von 5 ml 1 M Natrium-Carbonat-Lösung (pH 9,6) umgepuffert. Nur ausreichend geschützte Cluster bleiben in Lösung und präzipitieren nicht. Das Sol kann durch Zentrifugation aufkonzentriert werden oder bindet direkt nach Aufbringung an die mit Nitrocellulose beschichtete Oberfläche. Bei geeigneter Wahl der Nitrocellulose- Schichtdicke bilden sich nach Abtrocknen des überschüssigen Wassers starke Oberflächenfärbungen aus.
  • Beispiel 2: Herstellung der Clusterschicht mittels drucktechnischer Verfahren
  • Dem Sol werden nach Aufkonzentrierung um einen Faktor 10 geringe Mengen (z.B. 5%) eines neutralen Polymers (z.B. PVA) beigemengt. Dadurch wird ein Verdrucken mit herkömmlichen Tiefdruckzylindern möglich. Die Kolloide trocken zufällig orientiert mit dem Polymer in einer sehr dünnen Schicht ein. Es werden wie in Beispiel 1c) charakteristische Farben beobachtet.
  • Beispiel 3: Herstellung der Clusterschicht mittels eines vakuumtechnischen Verfahrens
  • Unter Hochvakuumbedingungen (Basisdruck p<1x10-3 mbar) wird auf ein bahnförmiges Trägersubstrat, das bereits mit einer Spiegelschicht und einer Nitrocelluloseschicht als transparente Abstandsschicht versehen ist, eine Cu-Schicht mit einer Dicke von 4 nm aufgesputtert.
  • Das Sputtern erfolgt mittels einer Magnetron-Plasma-Quelle mit einer Leistung von 20W/cm2 bei 25°C unter Verwendung von Ar mit einem Partialdruck von 5 x 10-3 mbar als Prozessgas. Die Geschwindigkeit der Bahn beträgt 0,5m/s. Unter diesen Bedingungen zeigt die Cu- Schicht ein ausgeprägtes Inselwachstum. Die Inseln mit einem mittleren Durchmesser von wenigen nm entsprechen den Clustern im nasschemischen Verfahren.
    Es werden deutlich andere charakteristische Farbspektren beobachtet.

Claims (11)

  1. Verfahren zur Herstellung von fälschungssicheren Identifikationsmerkmalen bestehend aus jeweils mindestens einer elektromagnetische Wellen reflektierenden Schicht (2), einer optisch transparent ausgebildeten Abstandsschicht (3) und einer Schicht gebildet von metallischen Clustern (4), wobei auf ein Trägersubstrat (1) partiell oder vollflächig eine elektromagnetische Wellen reflektierende Schicht (2), auf diese elektromagnetische Wellen reflektierende Schicht die optisch transparent ausgebildete inerte Abstandsschicht (3) partiell oder vollflächig aufgebracht wird und auf diese optisch transparent ausgebildete Abstandsschicht eine Schicht gebildet aus metallischen Clustern (4) aufgebracht wird, dadurch gekennzeichnet, dass die Schicht aus metallischen Clustern (4) mittels eines vakuumtechnischen Verfahrens durch Sputtern oder Verdampfen oder aus lösungsmittelbasierten Systemen mittels eines nasschemischen oder drucktechnischen Verfahrens aufgebracht wird, und die optisch transparente Abstandsschicht (3) aus mindestens einer polymeren Schicht definierter Dicke gebildet wird, die durch Aufstreichen, Lackieren, Gießen, Sprühen, Drucken, beispielsweise Siebdruck-, Tiefdruck-, Flexodruck-, oder Digitaldruckverfahren, oder ein Walzenauftragsverfahren aufgebracht wird, wobei eine homogene Schichtdicke mit einer Toleranz von ± 5% erreicht wird.
  2. Verfahren zur Herstellung von fälschungssicheren Identifikationsmerkmalen bestehend aus jeweils mindestens einer elektromagnetische Wellen reflektierenden Schicht (2), einer optisch transparent ausgebildeten inerten Abstandsschicht (3) und einer Schicht gebildet von metallischen Clustern (4), wobei auf ein Trägersubstrat (1) eine Schicht gebildet aus metallischen Clustern (4), auf diese Schicht, gebildet aus metallischen Clustern, die optisch transparent ausgebildete inerte Abstandsschicht (3) partiell oder vollflächig aufgebracht wird und auf diese optisch transparent ausgebildete inerte Abstandsschicht (3) partiell oder vollflächig die elektromagnetische Wellen reflektierende Schicht aufgebracht (2) wird, dadurch gekennzeichnet, dass die Schicht aus metallischen Clustern (4) mittels eines vakuumtechnischen Verfahrens durch Sputtern oder Verdampfen oder aus lösungsmittelbasierten Systemen mittels eines nasschemischen oder drucktechnischen Verfahrens aufgebracht wird, und die optisch transparente Abstandsschicht (3) aus mindestens einer polymeren Schicht definierter Dicke gebildet wird, die durch Aufstreichen, Lackieren, Gießen, Sprühen, Drucken, beispielsweise Siebdruck-, Tiefdruck-, Flexodruck-, oder Digitaldruckverfahren, oder ein Walzenauftragsverfahren aufgebracht wird, wobei eine homogene Schichtdicke mit einer Toleranz von ± 5% erreicht wird.
  3. Verfahren zur Herstellung von fälschungssicheren Identifikationsmerkmalen bestehend aus jeweils mindestens einer elektromagnetische Wellen reflektierenden Schicht (2), einer optisch transparent ausgebildeten inerten Abstandsschicht (3) und einer Schicht gebildet von metallischen Clustern (4), wobei auf ein erstes Trägersubstrat (1) eine elektromagnetische Wellen reflektierende Schicht (2) aufgebracht wird, auf diese elektromagnetische Wellen reflektierende Schicht (2) eine optisch transparent ausgebildete inerte Abstandsschicht (3) aufgebracht wird und auf ein zweites transparentesTrägersubstrat (5) eine Schicht gebildet aus metallischen Clustern aufgebracht wird, dadurch gekennzeichnet, dass erst durch Verbindung der beiden so beschichteten Trägersubstrate derart, dass die Schicht gebildet aus metallischen Clustern (4) mit der Abstandsschicht (3) verbunden wird, das fälschungssichere Identifikationsmerkmal entsteht, bzw. nachgewiesen werden kann und die Schicht aus metallischen Clustern (4) mittels eines vakuumtechnischen Verfahrens durch Sputtern oder Verdampfen oder aus lösungsmittelbasierten Systemen mittels eines nasschemischen oder drucktechnischen Verfahrens aufgebracht wird, und die optisch transparente Abstandsschicht (3) aus mindestens einer polymeren Schicht definierter Dicke gebildet wird, und die durch Aufstreichen, Lackieren, Gießen, Sprühen, Drucken, beispielsweise Siebdruck-, Tiefdruck-, Flexodruck-, oder Digitaldruckverfahren, oder ein Walzenauftragsverfahren aufgebracht wird, wobei eine homogene Schichtdicke mit einer Toleranz von ± 5% erreicht wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass auf die Schicht gebildet aus metallischen Clustern (4) eine Schutzschicht aufgebracht wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die elektromagnetische Wellen reflektierende Schicht (2) oder die Schicht gebildet aus metallischen Clustern (4), auf die die aus mindestens einer polymeren Schicht definierter Dicke bestehende optisch transparent ausgebildete inerte Abstandsschicht (3) aufgebracht wird, durch Behandlung mit oxidierenden Flüssigkeiten oder durch einen PVD- oder CVD-Prozess modifiziert ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die aus mindestens einer polymeren Schicht definierter Dicke bestehende optisch transparent ausgebildete inerte Abstandsschicht (3) durch Entnetzungseffekte strukturiert ist.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Entnetzungsstrukturen der strukturierten aus mindestens einer polymeren Schicht definierter Dicke bestehenden optisch transparent ausgebildeten Abstandsschicht (3) mittels Fingerprint-Algorithmen in eineindeutige Codes übergeführt werden.
  8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass die aus mindestens einer polymeren Schicht definierter Dicke bestehende optisch transparent ausgebildete Abstandsschicht (3) durch Behandlung mit Na-Hypochlorit, durch einen PVD- oder CVD-Prozess modifiziert ist.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die aus mindestens einer polymeren Schicht definierter Dicke bestehende optisch transparent ausgebildete polymere Abstandsschicht (3) einen Chromophor enthält.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass auf das oder die Trägersubstrate (1, 5) weitere funktionelle und/oder dekorative Schichten aufgebracht werden.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das oder die Trägersubstrate mit einem Heißsiegellack (6) versehen werden.
EP03784094.9A 2002-08-06 2003-07-28 Verfahren zur herstellung von fälschungssicheren identifikationsmerkmalen Expired - Lifetime EP1558449B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0119102A AT413360B (de) 2002-08-06 2002-08-06 Verfahren zur herstellung von fälschungssicheren identifikationsmerkmalen
AT11912002 2002-08-06
PCT/EP2003/008327 WO2004014663A1 (de) 2002-08-06 2003-07-28 Verfahren zur herstellung von fälschungssicheren identifikationsmerkmalen

Publications (2)

Publication Number Publication Date
EP1558449A1 EP1558449A1 (de) 2005-08-03
EP1558449B1 true EP1558449B1 (de) 2016-01-06

Family

ID=31499787

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03784094.9A Expired - Lifetime EP1558449B1 (de) 2002-08-06 2003-07-28 Verfahren zur herstellung von fälschungssicheren identifikationsmerkmalen

Country Status (9)

Country Link
US (1) US8067056B2 (de)
EP (1) EP1558449B1 (de)
AT (1) AT413360B (de)
AU (1) AU2003253348A1 (de)
CA (1) CA2494961C (de)
ES (1) ES2564043T3 (de)
HU (1) HUE027104T2 (de)
RU (1) RU2297918C2 (de)
WO (1) WO2004014663A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3233516B1 (de) 2014-12-15 2020-06-03 Hueck Folien Gesellschaft m.b.H. Sicherheitselement mit farbkippeffekt und fluoreszierenden merkmalen

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337331A1 (de) 2003-08-12 2005-03-17 Giesecke & Devrient Gmbh Sicherheitselement mit Dünnschichtelement
DE102004042187B4 (de) 2004-08-31 2021-09-09 Infineon Technologies Ag Chipkartenmodul für eine kontaklose Chipkarte mit Sicherheitsmarkierung
AT503714A2 (de) * 2005-12-13 2007-12-15 Hueck Folien Ges Mbh Sicherheitselemente und sicherheitsmerkmale mit metallisch erscheinenden farbeffekten
US8070186B2 (en) 2006-05-31 2011-12-06 Cabot Corporation Printable reflective features formed from multiple inks and processes for making them
DE102006027263A1 (de) * 2006-06-09 2007-12-13 Identif Gmbh Substrat mit Schichtabfolge zur Erzeugung eines in Abhängigkeit des Blickwinkels sich ändernden Farbeindrucks
AT505452A1 (de) * 2007-04-16 2009-01-15 Hueck Folien Gmbh Fälschungssicheres identifikationsmerkmal
DE102007030017A1 (de) * 2007-06-29 2009-01-08 Matthias Lydike Kennzeichnen von Textilien
DE102007061979A1 (de) * 2007-12-21 2009-06-25 Giesecke & Devrient Gmbh Sicherheitselement
GEP20135974B (en) * 2008-04-02 2013-11-25 Sicpa Holding Sa Identification and authentication by liquid crystal material markings usage
EP2127899A1 (de) 2008-05-15 2009-12-02 Hueck Folien Ges.m.b.H. Taktiles Sicherheitselement
ES2559858T3 (es) 2008-08-25 2016-02-16 Hueck Folien Ges.M.B.H. Elemento de seguridad, que puede verificarse sin ayuda auxiliar
CN101730417B (zh) * 2008-10-31 2013-06-05 深圳富泰宏精密工业有限公司 壳体及其制作方法
CN101735678B (zh) * 2008-11-21 2013-01-09 鸿富锦精密工业(深圳)有限公司 彩色涂层及采用其的电子产品
AT507647B1 (de) * 2008-12-11 2011-06-15 Hueck Folien Gmbh Transparentes sicherheitselement
UY32530A (es) 2009-04-02 2010-10-29 Sicpa Holding Sa Identificación y autenticación usando marcados de material de cristal liquido polimérico
AT509928A2 (de) 2010-05-26 2011-12-15 Hueck Folien Gmbh Sicherheitselement mit lichtleiterstrukturen
AT510220B1 (de) 2010-07-19 2013-07-15 Hueck Folien Gmbh Sicherheitselement mit einer optisch variablen schicht
ES2441352T3 (es) 2011-10-04 2014-02-04 Hueck Folien Ges.M.B.H. Elemento de seguridad con efecto de cambio de color, método para su fabricación y su utilización
DE102011088154A1 (de) 2011-12-09 2013-06-13 CFC Europe GmbH Schichtförmiges Produkt, insbesondere zur Verstärkung von optischen Effekten, und Verfahren zu seiner Herstellung
DE102012018434A1 (de) 2012-09-18 2014-03-20 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement mit zusätzlichem Auf-/Durchsichtseffekt
TW201522101A (zh) * 2013-07-10 2015-06-16 Sicpa Holding Sa 唯一識別符及有關此唯一識別符之高安全裝置
AT515670B1 (de) * 2014-06-23 2015-11-15 Hueck Folien Gmbh Sicherheitselement mit modifiziertem Farbkippeffekt
JP6874275B2 (ja) * 2016-04-04 2021-05-19 凸版印刷株式会社 情報表示媒体及び情報表示媒体付き物品
RU2628378C1 (ru) * 2016-09-29 2017-08-16 Акционерное общество "ГОЗНАК" Ценный документ, защищённый от подделки, и способ определения его подлинности
AT523690B1 (de) 2020-03-16 2022-03-15 Hueck Folien Gmbh Flächiges Sicherheitselement mit optischen Sicherheitsmerkmalen

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639069A (en) 1982-06-30 1987-01-27 Teijin Limited Optical laminar structure
US4705300A (en) 1984-07-13 1987-11-10 Optical Coating Laboratory, Inc. Thin film optically variable article and method having gold to green color shift for currency authentication
US4856857A (en) 1985-05-07 1989-08-15 Dai Nippon Insatsu Kabushiki Kaisha Transparent reflection-type
DE4017220A1 (de) 1990-05-29 1991-01-31 Tvg Thermo Vac Entwicklungs Gm Verfahren zur herstellung eines mehrfarbigen schichtensystems auf kunststoff- folien
US5278590A (en) 1989-04-26 1994-01-11 Flex Products, Inc. Transparent optically variable device
US5611998A (en) 1994-04-12 1997-03-18 Avl Medical Instruments Ag Optochemical sensor and method for production
WO1998048275A1 (de) 1997-04-22 1998-10-29 Thomas Schalkhammer Cluster verstärkter optischer sensor
WO2000034395A1 (en) 1998-12-07 2000-06-15 Flex Products, Inc. Bright metal flake based pigments
WO2001003945A1 (en) 1999-07-08 2001-01-18 Flex Products, Inc. Diffractive surfaces with color shifting backgrounds
AT407165B (de) 1999-03-23 2001-01-25 Thomas Dr Schalkhammer Dünnschichtaufbau zur farbgebung metallischer oberflächen
WO2001053113A1 (en) 2000-01-21 2001-07-26 Flex Products, Inc. Optically variable security devices
WO2002000445A1 (en) 2000-06-28 2002-01-03 De La Rue International Limited Optically variable security device
WO2002018155A2 (de) 2000-08-29 2002-03-07 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Verfahren zur fälschungssicheren markierung von gegenständen und fälschungssichere markierung
WO2002031214A1 (de) 2000-10-09 2002-04-18 Hueck Folien Metallisierte folie und verfahren zu deren herstellung sowie deren anwendung
WO2002051646A1 (de) 2000-12-22 2002-07-04 Ovd Kinegram Ag Dekorfolie
WO2003016073A1 (de) 2001-08-16 2003-02-27 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Fälschungssichere markierung für gegenstände und verfahren zur identifizierung einer solchen markierung
DE10208036A1 (de) 2001-08-16 2003-08-21 November Ag Molekulare Medizin Fälschungssichere Markierung für Gegenstände und Verfahren zur Identifizierung einer solchen Markierung
WO2003095227A1 (de) 2002-05-14 2003-11-20 Leonhard Kurz Gmbh & Co. Kg Optisch variables element mit partiellem transparentem element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286286A (en) * 1991-05-16 1994-02-15 Xerox Corporation Colorless fast-drying ink compositions for printing concealed images detectable by fluorescence
JPH10100573A (ja) 1996-09-30 1998-04-21 Toppan Printing Co Ltd 偽造防止用紙及び偽造防止印刷物
DE10035451C2 (de) * 2000-07-19 2002-12-05 November Ag Molekulare Medizin Verfahren und Vorrichtung zur Identifizierung einer Polymersequenz
US6498110B2 (en) * 2001-03-05 2002-12-24 Micron Technology, Inc. Ruthenium silicide wet etch
US7322530B2 (en) * 2001-08-16 2008-01-29 November Aktiengesellschaft Gesellschaft Fur Molekulare Medizin Forgery-proof marking for objects and method for identifying such a marking

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639069A (en) 1982-06-30 1987-01-27 Teijin Limited Optical laminar structure
US4705300A (en) 1984-07-13 1987-11-10 Optical Coating Laboratory, Inc. Thin film optically variable article and method having gold to green color shift for currency authentication
US4856857A (en) 1985-05-07 1989-08-15 Dai Nippon Insatsu Kabushiki Kaisha Transparent reflection-type
US5278590A (en) 1989-04-26 1994-01-11 Flex Products, Inc. Transparent optically variable device
DE4017220A1 (de) 1990-05-29 1991-01-31 Tvg Thermo Vac Entwicklungs Gm Verfahren zur herstellung eines mehrfarbigen schichtensystems auf kunststoff- folien
US5611998A (en) 1994-04-12 1997-03-18 Avl Medical Instruments Ag Optochemical sensor and method for production
WO1998048275A1 (de) 1997-04-22 1998-10-29 Thomas Schalkhammer Cluster verstärkter optischer sensor
WO2000034395A1 (en) 1998-12-07 2000-06-15 Flex Products, Inc. Bright metal flake based pigments
AT407165B (de) 1999-03-23 2001-01-25 Thomas Dr Schalkhammer Dünnschichtaufbau zur farbgebung metallischer oberflächen
WO2001003945A1 (en) 1999-07-08 2001-01-18 Flex Products, Inc. Diffractive surfaces with color shifting backgrounds
WO2001053113A1 (en) 2000-01-21 2001-07-26 Flex Products, Inc. Optically variable security devices
WO2002000445A1 (en) 2000-06-28 2002-01-03 De La Rue International Limited Optically variable security device
WO2002018155A2 (de) 2000-08-29 2002-03-07 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Verfahren zur fälschungssicheren markierung von gegenständen und fälschungssichere markierung
WO2002031214A1 (de) 2000-10-09 2002-04-18 Hueck Folien Metallisierte folie und verfahren zu deren herstellung sowie deren anwendung
WO2002051646A1 (de) 2000-12-22 2002-07-04 Ovd Kinegram Ag Dekorfolie
WO2003016073A1 (de) 2001-08-16 2003-02-27 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Fälschungssichere markierung für gegenstände und verfahren zur identifizierung einer solchen markierung
DE10208036A1 (de) 2001-08-16 2003-08-21 November Ag Molekulare Medizin Fälschungssichere Markierung für Gegenstände und Verfahren zur Identifizierung einer solchen Markierung
WO2003095227A1 (de) 2002-05-14 2003-11-20 Leonhard Kurz Gmbh & Co. Kg Optisch variables element mit partiellem transparentem element

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"?Untersuchungen über den Aufbau aufgedampfter Metallschichten mittels Übermikroskop und Elektroneninterferenzen", HASS, COLLOID & POLYMER SCIENCE, vol. 100, no. 2, 1942, pages 230 - 242
LEITNER, AUSSENEGG ET AL.: "Optical properties of a metal island film close to a smooth metal surface", APPLIED OPTICS, vol. 32, no. 1, 1993, pages 102 - 110, XP002574134
RÖMPP LEXIKON, CHEMIE, 1999, pages 4204
VAN RENESSE, ?OPTICAL DOCUMENT SECURITY, 1998, pages 289 - 322

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3233516B1 (de) 2014-12-15 2020-06-03 Hueck Folien Gesellschaft m.b.H. Sicherheitselement mit farbkippeffekt und fluoreszierenden merkmalen

Also Published As

Publication number Publication date
AU2003253348A1 (en) 2004-02-25
CA2494961A1 (en) 2004-02-19
WO2004014663A1 (de) 2004-02-19
CA2494961C (en) 2012-06-26
AT413360B (de) 2006-02-15
EP1558449A1 (de) 2005-08-03
AU2003253348A8 (en) 2004-02-25
ATA11912002A (de) 2005-07-15
HUE027104T2 (en) 2016-08-29
US20060147640A1 (en) 2006-07-06
RU2005106243A (ru) 2005-08-27
RU2297918C2 (ru) 2007-04-27
ES2564043T3 (es) 2016-03-17
US8067056B2 (en) 2011-11-29

Similar Documents

Publication Publication Date Title
EP1558449B1 (de) Verfahren zur herstellung von fälschungssicheren identifikationsmerkmalen
EP1716007B1 (de) Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt
EP2851194B1 (de) Sicherheitselement, insbesondere Sicherheitsetikett
EP1291463A1 (de) Verfahren zur Herstellung einer selektiv metallisierten Folie, und dessen Produkte
CN1860034B (zh) 安全单元
EP3233516A1 (de) Sicherheitselement mit farbkippeffekt und fluoreszierenden merkmalen, verfahren zu dessen herstellung und dessen verwendung
EP1356952B1 (de) Beschichtetes Trägersubstrat mit beidseitig unterschiedlichen optischen und/oder fluoreszierenden Merkmalen
AT502319B1 (de) Substrate mit vorzugsweise transferierbaren schichten und/oder oberflächenstrukturen, verfahren zu deren herstellung und deren verwendung
EP1584647B1 (de) Folienmaterial mit optischen merkmalen
EP1871616A2 (de) Sicherheitselement mit räumlich aufgelöster magnetischer codierung, verfahren und vorrichtung zu dessen herstellung und dessen verwendung
EP1318016A1 (de) Verfahren zur Herstellung von registergenau gedruckten Multilayer-Aufbauten, nach diesem Verfahren hergestellte Produkte und deren Verwendung
AT500871A1 (de) Sicherheitselemente mit visuell erkennbaren und maschinenlesbaren merkmalen
EP1488935B1 (de) Verfahren zur Herstellung eines Sicherheitselements
AT504631B1 (de) Folienmaterial insbesondere für sicherheitselemente
EP1500521A2 (de) Sicherheitselemente mit maschinenlesbaren Merkmalen und Farbeffekten
EP3486092B1 (de) Verfahren zum herstellen eines sicherheitselementes
AT503712A2 (de) Codierte optisch aktive sicherheitselemente und sicherheitsmerkmale
EP1559540A1 (de) Transferierbares Folienmaterial
EP1647921A1 (de) Datenträger mit individualisiertem optisch variablen Element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERGSMANN, MARTIN

Inventor name: WALTER, HARALD

Inventor name: DOMNICK, RALPH

Inventor name: BAUER, GEORG

Inventor name: KASTNER, FRIEDRICH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WALTER, HARALD

Inventor name: BERGSMANN, MARTIN

Inventor name: KASTNER, FRIEDRICH

Inventor name: BAUER, GEORG

Inventor name: DOMNICK, RALPH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOMNICK, RALPH

Inventor name: WALTER, HARALD

Inventor name: KASTNER, FRIEDRICH

Inventor name: BAUER, GEORG

Inventor name: BERGSMANN, MARTIN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WALTER, HARALD

Inventor name: DOMNICK, RALPH

Inventor name: BERGSMANN, MARTIN

Inventor name: BAUER, GEORG

Inventor name: KASTNER, FRIEDRICH

17Q First examination report despatched

Effective date: 20071018

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAUER, GEORG

Inventor name: DOMNICK, RALPH

Inventor name: BERGSMANN, MARTIN

Inventor name: KASTNER, FRIEDRICH

Inventor name: WALTER, HARALD

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B42D 25/00 20140101ALI20140325BHEP

Ipc: B42D 15/00 20060101AFI20140325BHEP

INTG Intention to grant announced

Effective date: 20140414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

19U Interruption of proceedings before grant

Effective date: 20120321

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20151102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HUECK FOLIEN GES.M.B.H

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 768528

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315396

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2564043

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160317

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E027104

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160720

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 50315396

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160721

Year of fee payment: 14

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: GIESECKE & DEVRIENT GMBH

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20160720

Year of fee payment: 14

Ref country code: SE

Payment date: 20160720

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160715

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160728

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50315396

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170724

Year of fee payment: 15

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20170819

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170801

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200605

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200604

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200605

Year of fee payment: 18

Ref country code: IT

Payment date: 20200618

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315396

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 768528

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210728

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210728

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210728