Vorrichtung und Verfahren zur Inspektion eines Objekts
Die vorliegende Erfindung betrifft ein Vorrichtung und ein Verfahren zur Inspektion eines Objekts, mit einem bezüglich einer Abbildungsoptik ausgebildeten Hellfeld-Beleuchtungsstrahlengang einer Hellfeld-Lichtquelle, mit einem bezüglich der Abbildungsoptik ausgebildeten Dunkelfeld- Beleuchtungsstrahlengang einer Dunkelfeld-Lichtquelle, wobei das Objekt mit der Abbildungsoptik auf mindestens einen Detektor abgebildet wird und wobei das Objekt von den beiden Lichtquellen simultan beleuchtet ist.
Geräte der gattungsbildenden Art sind seit geraumer Zeit bekannt. Insbesondere in der optischen Inspektionstechnik werden komplexe Strukturen auf flachen Substraten bildfeldweise inspiziert. Dies ist vor allem in der Halbleiterindustrie zur optischen Untersuchung strukturierter Oberflächen von Masken und Wafern der Fall. Hierbei sollen beispielsweise vorhandene Defekte detektiert oder klassifiziert werden. Als Defekte können beispielsweise Staubkörner, Blasen im Resist, Resistrückstände auf Wafern, Ausbrüche von Kanten oder Kratzer auftreten.
Als Vorrichtung kann beispielsweise ein Mikroskop mit einer Köhlerschen Hellfeldbeleuchtung dienen. So ist bezüglich des Mikroskopobjektivs - also der Abbildungsoptik und gegebenenfalls der wirksamen Detektorfläche - durch die Köhlersche Beleuchtung eine Hellfeldbeleuchtung gebildet. Eine Dunkelfeldbeleuchtung kann bei einem Mikroskop in bekannter Weise realisiert werden, beispielsweise durch den Einsatz eines Dunkelfeld- Mikroskopobjektivs. Bei einem solchen Objektiv wird das für die Dunkelfeldbeleuchtung dienende Licht zwischen der Abbildungsoptik für die Hellfeldabbildung und einem verspiegelt ausgebildeten Objektivgehäuse derart geleitet wird, dass es in einem Winkelbereich bzw. Aperturbereich auf das
Objekt auftrifft, der außerhalb der Numerischen Apertur der Abbildungsoptik für die Hellfeldabbildung liegt. Zur Festlegung des Hellfeld- bzw. Dunkelfeld- Beleuchtungsstrahlengangs ist gegebenenfalls die wirksame Detektionsfläche des Detektors bzw. der gesamte zwischen Objekt und Detektor verlaufende Detektionsstrahlengang zu berücksichtigen, insbesondere dann, wenn die Aperturbereiche des Hellfeld- und des Dunkelfeld-Beleuchtungsstrahlengangs nahezu aneinander grenzen.
Erfahrungsgemäß ist eine Detektion von erhöhten und vertieften Strukturen mit einer Hellfeldbeleuchtung allein nicht oder nur im begrenzten Maß möglich. Aus diesem Grund ist man dazu übergegangen, eine zusätzliche Inspektion durchzuführen, die mit Hilfe einer im Vorrichtung vorgesehenen Dunkelfeldbeleuchtung erfolgt. Diese Beleuchtungsart ist besonders für die Detektion der erhöhten und vertieften Strukturen geeignet, wobei es sich bei diesen Strukturen um defekte Strukturen handeln kann. Bei einer Dunkelfeldbeleuchtung bleiben planare Strukturen unsichtbar. Erhöhte Strukturen erscheinen hingegen kontrastreich als helle Linien auf dunklem Untergrund. Unregelmäßigkeiten in diesen Linien deuten auf mögliche Defekte hin.
Aus der DE 199 03 486 A1 ist ein Verfahren zur simultanen Hellfeld- und Dunkelfeldbeleuchtung bekannt, bei der mindestens eines der beiden Strahlenbündel über die Farbe - d.h. die Wellenlänge des Lichts -, die Polarisation oder die Modulation, d.h. Amplituden- oder Frequenzmodulation, kodiert ist. Die Trennung des Hellfeldbilds vom Dunkelfeldbild erfolgt mittels entsprechender Filter oder Detektoreinrichtungen.
Weiterhin sind aus den DT 2 021 784, DE 23 31 750 C3 und DE 37 14 830 A1 Beleuchtungseinrichtungen für Mikroskope bekannt, bei denen wahlweise zwischen einer Hellfeld- und einer Dunkelfeldbeleuchtung umgeschaltet werden kann. Hierbei ist keine simultane Hellfeld-Dunkelfeld-Beleuchtung vorgesehen.
Aus der EP 0 183 946 B1 ist eine kombinierte Hellfeld- und Dunkelfeldbeleuchtung mit zwei Lichtquellen bekannt, bei der eine
Umschaltung von Hellfeld- auf Dunkelfeldbeleuchtung über mechanische
Verschlüsse (Shutter) erfolgt, die jeweils einer Lichtquelle zugeordnet sind. Hierbei ist auch vorgesehen, dass beide Beleuchtungsarten gleichzeitig verwendet werden, also beide Shutter geöffnet sind. In diesen Modus wird allerdings das Dunkelfeldbild vom Hellfeldbild überstrahlt, so dass eine simultane Detektion eines Objekts mit beiden Beleuchtungsmodi nicht möglich ist.
Somit sind die aus dem Stand der Technik bekannten Beleuchtungssysteme entweder nicht zur simultanen Hellfeld- und Dunkelfeldbeleuchtung geeignet oder eine simultane Beleuchtung in beiden Modi ist zwar möglich, jedoch sind die damit gewonnenen Bilder nicht brauchbar oder nur mit erhöhtem Aufwand voneinander zu trennen.
Der vorliegenden Erfindung liegt daher die Aufgabe zu Grunde, ein Vorrichtung und ein Verfahren zu Inspektion eines Objekts derart anzugeben und weiterzubilden, dass eine simultane Detektion von Hellfeld- und Dunkelfeldbildern möglich ist, wobei auf aufwändige Filteroperationen verzichtet werden soll.
Die erfindungsgemäße Vorrichtung zur Inspektion eines Objekts löst die voranstehende Aufgabe durch die Merkmale des Patentanspruchs 1. Danach ist eine solche Vorrichtung dadurch gekennzeichnet, dass das zur Dunkelfeldbeleuchtung dienende Licht gepulst ist und dass die Pulsintensität des zur Dunkelfeldbeleuchtung dienenden Lichts um mindestens eine Größenordnung größer ist als die auf ein Pulsintervall bezogene Intensität des zur Hellfeldbeleuchtung dienenden kontinuierlichen Lichts.
Erfindungsgemäß ist zunächst erkannt worden, dass die Lichtausbeute bei einer Hellfeldbeleuchtung und einer Dunkelfeldbeleuchtung sehr unter- schiedlich ist. So wird bei einer Hellfeldbeleuchtung nahezu ausschließlich das am Objekt reflektierte Licht detektiert, wohingegen bei einer Dunkelfeldbeleuchtung nahezu ausschließlich das am Objekt gestreute Licht detektiert wird. Somit sind die Intensitätsverhältnisse bei einer simultanen Detektion sehr unterschiedlich, beispielsweise 100:1 oder 1000:1. In erfindungsgemäßer Weise wird daher die Pulsintensität des zur Dunkelfeldbeleuchtung dienenden Lichts um mindestens eine Größenordnung größer gewählt als die auf ein
Pulsintervall bezogene Intensität des zur Hellfeldbeleuchtung dienenden kontinuierlichen Lichts, und zwar bezogen auf die Intensitätsverhältnisse des Lichts der beiden Lichtquellen am Objekt bzw. in der Objektebene des Abbildungssystems. Hierdurch ist in besonders vorteilhafter Weise die Intensität des von der Dunkelfeldbeleuchtung am Objekt gestreuten Lichts vergleichbar oder zumindest in der gleichen Größenordnung zur Intensität des von der Hellfeldbeleuchtung am Objekt reflektierten Lichts, so dass an die Eigenschaften - z.B. den Dynamikbereich - eines oder mehrerer Detektoren keine erhöhten Anforderungen gestellt werden müssen.
In weiter erfindungsgemäßer Weise ist das zur Dunkelfeldbeleuchtung dienende Licht gepulst. Somit ist streng genommen eine simultane Beleuchtung durch die beiden Lichtquellen lediglich dann gegeben, wenn das gepulste Licht der Dunkelfeld-Lichtquelle das Objekt beleuchtet. Hierdurch ist jedoch in ganz besonders vorteilhafter Weise das Vorsehen von Shuttern in den Beleuchtungsstrahlengängen nicht erforderlich, da quasi kontinuierlich entweder nur eine Hellfeldbeleuchtung oder eine simultane Hellfeld- und Dunkelfeldbeleuchtung vorliegt. Insoweit können mit dem Detektor oder mit einem einen Detektor aufweisenden Detektorsystem kontinuierlich Objektbild- daten detektiert werden, wobei entsprechend der zeitlichen Abfolge der Beleuchtungsbedingungen lediglich Hellfeld-Bilder des Objekts und Hellfeld- Bilder zusammen mit Dunkelfeld-Bildern des Objekts detektiert bzw. ausgewertet werden können. Grundsätzlich kann die Pulsfolgefrequenz der Dunkelfeld-Lichtquelle an die Auslesecharakteristik des Detektors angepasst sein.
Als Dunkelfeld-Lichtquelle kann eine Lichtquelle verwendet werden, deren zu erbringende Lichtleistung bezogen auf einen kontinuierlichen Betrieb nicht 10 oder 1000 mal so hoch sein muss, wie die der kontinuierlich betriebenen Lichtquelle zur Hellfeldbeleuchtung. Die von der Dunkelfeld-Lichtquelle zu erbringende Lichtleistung bezieht sich auf die Leistung der einzelnen Pulse. Diese Lichtleistung ist erfindungsgemäß mindestens eine Größenordnung größer zu wählen, als die auf ein Pulsintervall bezogene Intensität des zur Hellfeldbeleuchtung dienenden kontinuierlichen Lichts. Erst durch diese hohe Intensität der Dunkelfeld-Lichtpulse ist das Dunkelfeld-Bild des Objekts bei
simultaner Hellfeld-beleuchtung ohne zusätzliche Fiter oder ähnlich separierende Detektionseinrichtungen, sondern direkt aus dem aufgenommenen Bild detektierbar. Demgegenüber waren bei den vorbekannten Vorrichtungen immer zusätzliche Filter, Demodulationsmittel etc.. erforderlich, um das Dunkelfeld-Bild von dem Hellfeld-Bild zu separieren. Geeignete Lichtquellen, die als Dunkelfeld-Lichtquellen verwendet werden können, sind in vorteilhafter Weise in großer Auswahl und zum Teil kostengünstig auf dem Markt erhältlich. So kann beispielsweise eine Xenon- Blitzlampe, ein Laser oder eine LED als Dunkelfeld-Lichtquellen eingesetzt werden.
Im Konkreten ist die Pulsintensität des zur Dunkelfeldbeleuchtung dienenden Lichts 10 bis 10000 mal größer als die auf ein Pulsintervall bezogene Intensität des zur Hellfeldbeleuchtung dienenden kontinuierlichen Lichts. Da insbesondere die Intensität des am Objekt gestreuten Lichts von der Objekteigenschaft bzw. von der Eigenschaft der Objektoberfläche abhängt, kann das Intensitätsverhältnis der beiden Lichtquellen in Abhängigkeit des zu inspizieren Objekts, insbesondere der zu inspizierenden Art von Objekten gewählt werden, z.B. für Masken für die Halbleiterindustrie. Letztendlich wird man die Intensität der kontinuierlich arbeitenden Hellfeld-Lichtquelle zur Hellfeldbeleuchtung derart wählen, dass mit dem Detektor bzw. mit dem Detektorsystem hierbei ein optimaler Kontrast erzielbar ist. Sodann wird die Intensität der gepulsten Dunkelfeld-Lichtquelle derart gewählt, dass bei der Dunkelfeldbeleuchtung ebenfalls ein optimaler Kontrast erzielbar ist und dass die beiden, in den unterschiedlichen Beleuchtungsmodi detektierten Bilddaten relativ zueinander ein optimales Intensitätsverhältnis aufweisen.
In einer möglichen Ausführungsform der Vorrichtung emittiert die Dunkelfeld- Lichtquelle gepulstes Licht. In diesem Fall handelt es sich um eine Lichtquelle, die lediglich im gepulsten Betrieb arbeitet. Alternativ kann auch vorgesehen sein, dass die Dunkelfeld-Lichtquelle kontinuierliches Licht emittiert oder dass ein Teilstrahl der Hellfeld-Lichtquelle für die Hellfeldbeleuchtung für den Dunkelfeld-Beleuchtungsstrahlengang ausgekoppelt wird. Das kontinuierliche Licht wird dann mittels mindestens eines optischen Bauteils in einzelne Pulse unterteilt. Bei diesem optischen Bauteil kann es sich um einen Shutter, ein
rotierendes Shutterrad, einen elektrooptischen oder einen akustooptischen Modulator handeln, wobei das optische Bauteil im Dunkelfeld- Beleuchtungsstrahlengang angeordnet ist.
In einer ganz besonders bevorzugten Ausführungsform ist die Auslese- und/oder Auswertebereitschaft des Detektors und/oder des Detektions- systems mit der Pulsfolge des zur Dunkelfeldbeleuchtung dienenden Lichts synchronisiert. Durch diese Maßnahme können einerseits die Eigenschaften des Detektors und/oder des Detektionssystems auf die momentan vorherrschenden Beleuchtungsbedingungen adaptiert werden, so dass in vorteilhafter Weise beispielsweise ein Übersteuern des Detektors weitergehend verhindert werden kann. Andererseits können durch diese Maßnahme die Bilddaten des jeweiligen Beleuchtungsmodus mit Hilfe des Detektionssystems und/oder einem dem Detektionssystem nachgeschalteten Auswertesystem den einzelnen Beleuchtungsmodi zugeordnet werden, so dass eine gezielte Bilddatenauswertung erfolgen kann, die die jeweiligen Charakteristika der detektierten Bilder berücksichtigt.
Im Konkreten kann die Synchronisation anhand eines Pulsfolgesignals der Dunkelfeld-Lichtquelle oder anhand eines Steuersignals des optischen Bauteils erfolgen. Falls die gepulste Dunkelfeld-Lichtquelle einen Trigger- Ausgang aufweist, der ein entsprechendes Trigger-Signal ausgibt, wenn ein Lichtpuls emittiert wird, kann dieses Signal zur Synchronisation des Detektors bzw. des Detektionssystems genutzt werden. Alternativ hierzu wäre beispielsweise eine Synchronisation durch Detektion der Pulsfolge der Dunkelfeld-Lichtquelle anhand eines von der Dunkelfeld-Lichtquelle ausgeblendeten Teilstrahls möglich, der auf eine Photodiode geleitet wird. Das Ausgangssignal dieser Photodiode kann dann zur Synchronisation genutzt werden. Falls als Dunkelfeld-Lichtquelle eine kontinuierlich arbeitende Lichtquelle verwendet wird, und die Unterteilung dieses Lichts in einzelne Pulse mittels eines optischen Bauteils erfolgt, so kann als Synchronisationssignal für den Detektor und/oder für das Detektionssystem das Steuersignal des optischen Bauteils dienen. Weiterhin kann zur Synchronisation eine Verzögerungsschaltung vorgesehen sein, mit der
beispielsweise elektronische Laufzeitunterschiede oder zeitliche Offsets ausgleichbar sind.
In einer bevorzugten Ausführungsform steht die optische Achse des Hellfeld- Beleuchtungsstrahlengangs im wesentlichen senkrecht zur Oberfläche des zu inspizierenden Objekts oder steht im wesentlichen senkrecht zur Objektebene der Abbildungsoptik. Diese Bedingung ist beispielsweise bei einem in Form eines Mikroskops ausgebildeten Inspektionssystems dadurch erfüllt, dass das Mikroskop ein Köhlersches Beleuchtungssystem aufweist, da hierbei die optische Achse des Hellfeld-Beleuchtungsstrahlengangs im wesentlichen senkrecht zur Objektebene der Abbildungsoptik steht. Falls mit dem Inspektionssystem Objekte mit im wesentlichen planaren Oberflächenstrukturen zu inspizieren sind - so beispielsweise Wafer oder Masken für die Halbleiterindustrie -, wird das zu inspizierende Objekt zweckmäßigerweise derart ausgerichtet und/oder positioniert sein, dass seine Oberfläche senkrecht zur optischen Achse des Hellfeld-Beleuchtungsstrahlengangs angeordnet ist. Bei der Inspektion von zumindest teilweise transparenten Masken für die Halbleiterindustrie ist auch eine Hellfeldbeleuchtung im Durchlichtmodus denkbar, wobei dann ebenfalls die optische Achse des Hellfeld-Beleuchtungsstrahlengangs im wesentlichen senkrecht zur Oberfläche des zu inspizierenden Objekts steht.
In einer andern Ausführungsform steht die optische Achse eines zwischen Objekt und Detektor verlaufenden Detektionsstrahlengangs im wesentlichen senkrecht zur Oberfläche des zu inspizierenden Objekts. Insoweit kann es sich hierbei um eine Anordnung des Detektionsstrahlengangs handeln, wie er beispielsweise bei einem konventionellen Mikroskop vorliegt. Der Hellfeld- Beleuchtungsstrahlengang kann somit bereichsweise mit dem Detektionsstrahlengang überlappen bzw. koaxial verlaufen.
Die optische Achse des Dunkelfeld-Beleuchtungsstrahlengangs kann zumindest bereichsweise koaxial zur optischen Achse des Hellfeld- Beleuchtungsstrahlengangs und/oder koaxial zur optischen Achse des Detektionsstrahlengangs angeordnet sein. Dies ist insbesondere dann der Fall, wenn bei einem als Mikroskop ausgebildeten Inspektionsgerät ein
Dunkelfeldobjektiv zum Einsatz kommt, wobei die Beleuchtungsstrahlengänge der beiden Lichtquellen ähnlich angeordnet sein können, wie es beispielsweise aus der EP 0 183 946 B1 bekannt ist.
In einer bevorzugten Ausführungsform weist die optische Achse des Dunkelfeld-Beleuchtungsstrahlengangs einen Winkel zwischen 5 und 90 Grad zur optischen Achse des Hellfeld-Beleuchtungsstrahlengangs und/oder zur optischen Achse des Detektionsstrahlengangs auf. Hierbei handelt es sich beispielsweise um eine Anordnung, wie sie aus Fig. 5 aus DE 199 03 486 A1 bekannt ist, wobei also der Dunkelfeld-Beleuchtungsstrahlengang sozusagen objektseitig am Mikroskopobjektiv vorbeigeführt wird. Hierbei kann in ganz besonders vorteilhafter Weise der Winkel zwischen der optischen Achse des Dunkelfeld-Beleuchtungsstrahlengangs und der optischen Achse des Hellfeld- Beleuchtungsstrahlengangs derart eingestellt werden, dass optimale Ergebnisse bei der Detektion der Bilder erzielt werden, die mit der Dunkelfeld- beleuchtung aufgenommen werden. Somit kann die Winkeleinstellung in Abhängigkeit der zu detektierenden Objektstrukturen zu verändern sein. Dies kann beispielsweise durch die optischen Komponenten des Dunkelfeld- Beleuchtungsstrahlengangs erreicht werden, gegebenenfalls kann auch die Beleuchtungsapertur der Dunkelfeldbeleuchtung variiert werden und somit eine weitere Anpassung an die zu detektierenden Objektstrukturen vorgenommen werden.
Grundsätzlich ist es denkbar, dass das Licht der Hellfeld-Lichtquelle und/oder der Dunkelfeld-Lichtquelle eine Kodierung aufweist. Hierbei wird die aus der DE 199 03 486 A1 bekannte Technologie mit der erfindungsgemäßen Vorrichtung kombiniert. Hierdurch können sich unter Umständen Vorteile bei der Bilddatenauswertung ergeben, wenn beispielsweise das gepulste Licht der Dunkelfeld-Lichtquelle eine Wellenlänge von 488 nm aufweist, das Licht der Hellfeld-Lichtquelle eine Wellenlänge von 365 nm aufweist und der Detektor eine Farb-CCD-Kamera umfasst. Dann können die detektierten Bilddaten bei der Datenauswertung allein hinsichtlich der Farbinformationen dem jeweiligen Beleuchtungsmodus zugeordnet werden. Ganz allgemein kann die Kodierung durch die Polarisation, Amplituden-, Frequenz-, Pulsfrequenzmodulation
und/oder durch die Selektion einer Wellenlänge oder eines Wellenlängenbereichs gebildet sein.
Als Hellfeld-Lichtquelle kann eine Weißlichtquelle dienen, vorzugsweise eine Gleichstromlampe. Üblicherweise werden für Inspektionsvorrichtungen zur Inspektion von Wafern und Masken für die Halbleiterindustrie Xenon-, Quecksilberdampf-Hochdrucklampen oder andere Bogenlampen im Gleichstrombetrieb eingesetzt, wobei entsprechende Farbfilter oder Reflexionsfilter alle bis auf eine Wellenlänge des Emissionssprektrums der Lichtquelle herausfiltern können, die dann zur Objektbeleuchtung verwendet wird. Ebenso sind Laser oder LED's (Light-Emitting-Diode) denkbar, die kontinuierliches Licht emittieren.
Die Dunkelfeld-Lichtquelle kann eine Xenon-Blitzlampe, ein Laser oder eine LED bzw. LED-Anordnung ausgebildet sein, wobei die Dunkelfeld-Lichtquelle gepulstes Licht emittiert. Die Pulsdauern der Pulse der zu verwendenden Dunkelfeld-Lichtquelle liegen üblicherweise in einem Bereich von 1 ms bis 0,01 ms, vorzugsweise jedoch bei 0,1 ms. Die Pulsleistung der einzelnen Pulse liegt hierbei typischerweise in der Größenordnung von 1 Watt.
Der Detektor umfasst in einer bevorzugten Ausführungsform eine CCD- Kamera, wobei eine Monochrom- und/oder eine Farb-CCD-Kamera zum Einsatz kommen kann. Bei einer Monochrom-CCD-Kamera ist im Allgemeinen die Ortsauflösung höher als bei einer Farb-CCD-Kamera. Insbesondere bei Inspektionsvorrichtungen und bei Koordinaten-Messvorrichtungen zur Inspektion bzw. Vermessung von Koordinaten von Wafern und Masken der Halbleiterindustrie, wo eine hohe Ortsauflösung gefordert ist, kommt bevorzugt eine Monochrom-CCD-Kamera zum Einsatz. Insbesondere die CCD-Kamerasteuerung kann mit dem Pulsfolgesignal der Dunkelfeld- Lichtquelle bezüglich des Detektions- bzw. Ausleseverhaltens der CCD- Kamera synchronisiert werden.
Grundsätzlich ist die er indungsgemäße Vorrichtung mit einem Steuerrechner gekoppelt. Dieser Steuerrechner steuert üblicherweise nicht nur eine automatische Bilddatenaufnahme mehrerer automatisch zu inspizierender
Objekte, sondern weist auch eine Speichereinheit auf, auf der die detektierten Objektdaten oder extrahierten Messergebnisse abgespeichert und/oder ausgewertet werden.
In verfahrensmäßiger Hinsicht wird die eingangs genannte Aufgabe durch die Merkmale des nebengeordneten Patentanspruchs 17 gelöst. Demgemäß wird bei dem Verfahren zur Inspektion eines Objekts das Objekt einerseits mit einer Hellfeld-Lichtquelle zur Hellfeldbeleuchtung und andererseits mit einer Dunkelfeld-Lichtquelle zur Dunkelfeldbeleuchtung simultan beleuchtet und das Objekt wird mit einer Abbildungsoptik auf mindestens einen Detektor abgebildet. Das erfindungsgemäße Verfahren zur Inspektion eines Objekts ist dadurch gekennzeichnet, dass das zur Dunkelfeldbeleuchtung dienende Licht gepulst wird, wobei die Pulsintensität des zur Dunkelfeldbeleuchtung dienenden Lichts um mindestens eine Größenordnung größer ist als die auf ein Pulsintervall bezogene Intensität des zur Hellfeldbeleuchtung dienenden ungepulsten Lichts.
Vorzugsweise wird das erfindungsgemäße Verfahren zum Betrieb einer Vorrichtung nach einem der Patentansprüche 1 bis 16 eingesetzt. Zur Vermeidung von Wiederholungen wird diesbezüglich auf den voran- gegangenen Teil der Beschreibung verwiesen.
In ganz besonders bevorzugter Weise erfolgt die Objektinspektion automatisch. So kann auf einem der Vorrichtung zugeordneten Steuerrechner ein Programm ablaufen, wonach unterschiedliche vorgegebene Bereiche des Objekts detektiert werden. Hierzu kann die Vorrichtung mit einem Positionierungssystem gekoppelt sein, welches das Objekt relativ zur Abbildungsoptik positioniert und vorzugsweise ebenfalls vom Steuerrechner angesteuert wird. Weiterhin ist denkbar, mehrere Objekte automatisch der Vorrichtung zuzuführen - beispielsweise über einen Beladeroboter - und Objekt für Objekt jeweils bereichsweise vollautomatisch zu detektieren. Der Steuerrechner kann weiterhin ein Programmmodul umfassen, mit dem die detektierten Bilddaten hinsichtlich möglicher Defekte des jeweiligen Objekts ausgewertet werden können. Hierbei können im Allgemeinen Methoden der Digitalen Bildverarbeitung eingesetzt werden, wobei ein Vergleich der
detektierten Objektbereiche mit einem bekannten Kalibrierungsobjekt vorgesehen sein kann. Zur Dokumentation bzw. Protokollierung der erkannten Defekte können die entsprechenden Bildbereiche des jeweiligen Objekts oder lediglich deren Koordinaten auf der Speichereinheit des Steuerrechners abgespeichert werden.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die den Patentansprüchen 1 und 17 nachgeordneten Patentansprüche und andererseits auf die nachfolgende Erläuterung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Zeichnung zu verweisen. In Verbindung mit der Erläuterung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Zeichnung werden auch im Allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert. In der Zeichnung zeigen:
Fig. 1 eine schematische Darstellung eines ersten Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung,
Fig. 2 eine schematische Darstellung eines zweiten Ausführungs- beispiels einer erfindungsgemäßen Vorrichtung,
Fig. 3a eine schematische Darstellung eines Diagramms des zeitlichen
Verlaufs der Lichtintensitäten des Beleuchtungslichts der Hellfeld-Lichtquelle und der Dunkelfeld-Lichtquelle am Ort des Objekts bei dem Ausführungsbeispiel aus Fig. 2,
Fig. 3b eine schematische Darstellung eines Diagramms des zeitlichen
Verlaufs der Lichtintensitäten des am Objekt reflektierten und gestreuten Lichts der Hellfeld-Lichtquelle und der Dunkelfeld- Lichtquelle am Ort des Detektors bei dem Ausführungsbeispiel aus Fig. 2,
Fig. 3c eine schematische Darstellung eines Diagramms des zeitlichen
Verlaufs der Lichtintensitäten des am Objekt reflektierten und gestreuten Lichts der Hellfeld-Lichtquelle und der Dunkelfeld- Lichtquelle am Ort des Detektors bei dem Ausführungsbeispiel aus Fig. 2, wobei ein anderes Objekt detektiert wurde und
Fig. 4 eine schematische Darstellung eines Diagramms eines zeitlichen Verlaufs eines Lichtpulses der Dunkelfeld-Lichtquelle und einem Detektionsintervall des Detektors.
Die Fig. 1 und 2 zeigen in einer schematischen Darstellung eine Vorrichtung 1 zur Inspektion eines Objekts 2. Bei dieser Vorrichtung 1 handelt es sich um eine optische Inspektionsvorrichtung, mit dem Masken und Wafer für die Halbleiterindustrie insbesondere auf Defekte untersucht werden können. Die Vorrichtung 1 weist einen bezüglich einer Abbildungsoptik 3 ausgebildeten Hellfeld-Beleuchtungsstrahlengang 4 einer Hellfeld-Lichtquelle 5 auf. Bezüglich der Abbildungsoptik 3 ist weiterhin ein Dunkelfeld-Beleuchtungsstrahlengang 6 einer Dunkelfeld-Lichtquelle 7 vorgesehen. Das Objekt 2 wird mit der Abbildungsoptik 3 auf einen Detektor 8 abgebildet, wobei der Dektektionsstrahlengang 9 vom Objekt 2 zum Detektor 8 verläuft. Das Objekt 2 wird von den beiden Lichtquellen 5 und 7 simultan beleuchtet.
Erfindungsgemäß ist das zur Dunkelfeldbeleuchtung dienende Licht der Dunkelfeld-Lichtquelle 7 gepulst. In Fig. 3a ist in einem schematischen Diagramm der Logarithmus der Lichtintensitäten der beiden Lichtquellen 5 und 7 (Ig I) in willkürlichen Einheiten als Funktion der Zeit t gezeigt. Hierbei bezieht sich der zeitliche Intensitätsverlauf auf den am Objekt 2 vorliegenden Beleuchtungsintensitätsverlauf des Lichts der beiden Lichtquellen 5 und 7. Der Einfachheit halber ist der zeitliche Intensitätsverlauf 10 lediglich eines Lichtpulses der Dunkelfeld-Lichtquelle 7 gezeigt. Der zeitliche Intensitätsverlauf der Hellfeld-Lichtquelle 5 ist mit dem Bezugszeichen 11 gezeigt. Die Hellfeld-Lichtquelle 5 emittiert kontinuierliches Licht einer konstanten Intensität. Dem Diagramm aus Fig. 3a zeigt, dass die Pulsintensität 11 des zur Dunkelfeldbeleuchtung dienenden Lichts um circa zwei Größenordnung größer ist als die auf das Pulsintervall bezogene
Intensität 12 des zur Hellfeldbeleuchtung dienenden kontinuierlichen Lichts. Somit ist die Pulsintensität 11 des zur Dunkelfeldbeleuchtung dienenden Lichts in diesem Ausführungsbeispiel ungefähr 100 mal größer als die auf ein Pulsintervall bezogene Intensität 12 des zur Hellfeldbeleuchtung dienenden kontinuierlichen Lichts. Dies hat den Vorteil, dass das Dunkelfeld-Bild ohne zusätzliche Hilfsmittel, wie z.B. Filter , von dem Hellfeldbild separiert werden kann, da es direkt auf dem Detektor 8 heller erscheint als das Hellfeld-Bild selbst.
Die in den Fig. 3b und 3c gezeigten zeitlichen Intensitätsverläufe entsprechen der am Detektor 8 vorliegenden Lichtintensität einerseits des am Objekt 2 reflektierten Lichts der Hellfeld-Lichtquelle 5 und andererseits des am Objekt 2 gestreuten Lichts der Dunkelfeld-Lichtquelle 7. In den Diagrammen der Fig. 3b und 3c sind somit die Lichtintensitäten des am Objekt reflektierten bzw. gestreuten Lichts der beiden Lichtquellen 5 und 7 in willkürlichen Einheiten als Funktion der Zeit t gezeigt. Bei dem in Fig. 3c gezeigten zeitlichen Intensitätsverlauf liegt der Detektion ein anderes Objekt zugrunde, als es bei dem detektierten zeitlichen Intensitätsverlauf aus Fig. 3b der Fall war. Den Fig. 3b und 3c ist entnehmbar, dass die beiden Objekte sich hinsichtlich der Intensität des Streulichtanteils an den Objektoberflächen unterscheiden.
Die in Fig. 2 gezeigte Dunkelfeld-Lichtquelle 7 ist eine Bogenlampe, die gepulstes Licht emittiert. Die in Fig. 1 gezeigte Dunkelfeld-Lichtquelle 7 ist ebenfalls eine Bogenlampe, die jedoch kontinuierliches Licht einer konstanten Intensität emittiert. Das Licht der Dunkelfeld-Lichtquelle 7 aus Fig. 1 wird nach Kollimation mittels einer Linse 12 mithilfe eines in Form eines rotierenden Shutterrads ausgebildeten optischen Bauteils 13 in einzelne Pulse unterteilt. Das Shutterrad rotiert um die Rotationsachse 14 und weist umfangsmäßig angeordnete, lichtdurchlässige Bereiche auf, durch welche das Licht der Dunkelfeld-Lichtquelle 7 passieren kann. Ein beispielsweise kreisförmiger Bereich wird durch die Blende 15 ausgeblendet, so dass im weiteren Verlauf des Dunkelfeld-Beleuchtungsstrahlengangs 6 lediglich ein ringförmiger Beleuchtungsquerschnitt vorliegt.
Die Auslese- und Auswertebereitschaft des Detektors 8 und des dem Detektor 8 nachgeordneten Detektionssystems 16 ist mit der Pulsfolge des zur Dunkelfeldbeleuchtung dienenden Lichts der Dunkelfeld-Lichtquelle 7 synchronisiert. Die Synchronisationsleitung 17 verbindet in Fig. 1 das optische Bauteil 13 mit dem Detektionssystem 16. In Fig. 2 verbindet die Synchronisationsleitung 17 die Dunkelfeld-Lichtquelle 7 aus Fig. 2 mit dem Detektionssystem 16. Zur Synchronisation wird jeweils von dem optischen Bauteil 13 aus Fig. 1 und der Dunkelfeld-Lichtquelle 7 aus Fig. 2 ein Trigger- Signal zu Verfügung gestellt. Das Trigger-Signal des optischen Bauteils 13 kann beispielsweise mittels einer nicht eingezeichneten Lichtschranke generiert werden. Die Dunkelfeld-Lichtquelle 7 aus Fig. 2 erzeugt aufgrund ihrer inneren Steuerung ein Trigger-Signal. Der Detektor 8 ist mit dem nachgeordneten Detektionssystem 16 mittels der Steuer- und Ausleseleitung 32 verbunden. Zur Synchronisation ist zusätzlich eine Verzögerungsschaltung 18 vorgesehen, deren Offset bzw. Verzögerungswert einstellbar verändert werden kann.
In Fig. 4 ist in einem schematischen Diagramm der zeitliche Intensitätsverlauf 10 eines Lichtpulses gezeigt, der eine durch die beiden Pfeile angedeutete Halbwertsbreite von kleiner 0,1 ms aufweist. Das von t1 bis t3 verlaufende Zeitintervall 19 kennzeichnet die Dauer, in der der Detektor 8 in Auslesebereitschaft für das am Objekt gestreute Licht der Dunkelfeld- Lichtquelle 7 ist. Hierbei liegt idealerweise der Zeitpunkt t2 mittig zwischen den Anfangs- und Endwerten t1 und t3 des Zeitfensters 19, wobei der Zeitpunkt t2 die Mitte des Lichtpulses kennzeichnet.
Im folgenden wird auf die geometrische Anordnung der optischen Strahlengänge eingegangen. Der Hellfeld-Beleuchtungsstrahlengang 4 in den Fig. 1 und 2 verläuft von der Hellfeld-Lichtquelle 5 über den Strahlteiler 20 zum Objekt 2. Das Licht der Hellfeld-Lichtquelle 5 wird am Strahlteiler 20 zum größten Teil in Richtung Abbildungsoptik 3 reflektiert.
Der Dunkelfeld-Beleuchtungsstrahlengang 6 in Fig. 1 verläuft von der Dunkelfeld-Lichtquelle 7 zunächst zum Strahlteiler 21 , an dem das Licht der Dunkelfeld-Lichtquelle 7 in einem verspiegelten Bereich - gezeigt in
durchgezogene Linien - in Richtung der Abbildungsoptik 3 reflektiert wird. Lediglich schematisch ist dargestellt, wie das am Strahlteiler 21 reflektierte Licht der Dunkelfeld-Lichtquelle 7 koaxial außerhalb des Hellfeld- Beleuchtungsstrahlengangs 4 in Richtung des Objekts 2 geführt wird, wobei der Einfachheit halber auf die Einzeichnung einer hierfür erforderlichen Fokussierungsoptik verzichtet wurde. Der Mittelbereich des Strahlteilers 21 ist transparent - strichpunktiert eingezeichnet -, so dass das Licht der Hellfeld- Lichtquelle 5 und das am Objekt 2 gestreute bzw. reflektierte Licht im Hellfeld- Beleuchtungsstrahlengang 4 bzw. im Detektionsstrahlengang 9 den Strahlteiler 21 in diesem Bereich passieren kann.
Der Dunkelfeld-Beleuchtungsstrahlengang 6 in Fig. 1 verläuft von der Dunkelfeld-Lichtquelle 7 zum Objekt 2, und zwar zunächst über die Einkoppeloptik 22, die das Licht der Dunkelfeld-Lichtquelle 7 in den Lichtleiter 23 einkoppelt. Das aus dem Lichtleiter 23 austretende Licht wird mit der Fokussierungsoptik 24 in den Fokusbereich der Abbildungsoptik 3 auf das Objekt 2 fokussiert.
Den Fig. 1 und 2 ist entnehmbar, dass die optische Achse 25 des Hellfeld- Beleuchtungsstrahlengangs 4 zwischen Strahlteiler 20 und Objekt 2 senkrecht zur Oberfläche 26 des zu inspizierenden Objekts 2 steht. Zugleich ist die optische Achse 25 des Hellfeld-Beleuchtungsstrahlengangs 4 senkrecht zur Objektebene der Abbildungsoptik 3 angeordnet, die mit der der Abbildungsoptik 3 zugewandten Oberfläche 26 des Objekts 2 zusammenfällt und daher nicht gesondert eingezeichnet ist. Die optische Achse 27 des zwischen Objekt 2 und Detektor 8 verlaufenden Detektionsstrahlengangs 9 steht ebenfalls senkrecht zur Oberfläche 26 des zu inspizierenden Objekts 2 und senkrecht zur Objektebene der Abbildungsoptik 3.
Die optische Achse 28 des Dunkelfeld-Beleuchtungsstrahlengangs 6 in Fig. 1 ist zwischen Strahlteiler 21 und Objekt 2 koaxial zur optischen Achse 25 des Hellfeld-Beleuchtungsstrahlengangs 4 und koaxial zur optischen Achse 27 des Detektionsstrahlengangs 9.
In Fig. 2 ist gezeigt, dass die optische Achse 28 des Dunkelfeld- Beleuchtungsstrahlengangs 6 einen Winkel 29 - angedeutet durch den bogenförmigen Doppelpfeil - zur optischen Achse 25 des Hellfeld- Beleuchtungsstrahlengangs 4 und zur optischen Achse 27 des Detektions- Strahlengangs 9 aufweist.
Die Hellfeld-Lichtquelle 5 ist eine Gleichstromlampe. Der Detektor 8 ist eine CCD-Kamera.
Das Detektionssystem 16 umfasst auch einen - nicht getrennt eingezeichneten - Steuerrechner, mit dem die einzelnen Komponenten der Vorrichtung 1 angesteuert werden. Insbesondere wird mittels eines auf dem Steuerrechner ablaufenden Programms die Objektinspektion automatisch durchgeführt. Hierzu ist das Detektionssystem 16 der Vorrichtung 1 über eine Leitung 31 mit einem Positionierungssystem 30 gekoppelt, das ebenfalls vom Steuerrechner angesteuert wird und das Objekt 1 positioniert. Das Positionierungssystem 30 positioniert das Objekt 2 entlang der Richtung, die mit dem Doppelpfeil in den Fig. 1 und 2 beim Positionierungssystem 30 gezeigt ist. Weiterhin ist eine Objektpositionierung in die beiden entgegengesetzten Richtungen senkrecht dazu vorgesehen, das heißt, aus der Zeichenebene der Fig. 1 und 2 heraus.
Abschließend sei darauf hingewiesen, dass die voranstehend erörterten Ausführungsbeispiele lediglich zur Beschreibung der beanspruchten Lehre dienen, diese jedoch nicht auf die Ausführungsbeispiele einschränken.
Bezugszeichenliste
Vorrichtung Objekt Abbildungsoptik Hellfeld-Beleuchtungsstrahlengang Hellfeld-Lichtquelle Dunkelfeld-Beleuchtungsstrahlengang Dunkelfeld-Lichtquelle Detektor Dektektionsstrahlengang zeitlicher Intensitätsverlauf eines Lichtpulses von (7) zeitlicher Intensitätsverlauf des Lichts von (5) Linse optisches Bauteil, rotierendes Shutterrad Rotationsachse von (13) Blende Detektionssystem Synchronisationsleitung Verzögerungsschaltung Zeitintervall Strahlteiler
1 Strahlteiler 2 Einkoppeloptik 3 Lichtleiter 4 Fokussierungsoptik 5 optische Achse von (4) 6 zu inspizierende Oberfläche von (2) 7 optische Achse von (9) 8 optische Achse von (6) 9 Winkel zwischen (27) und (28) 0 Positionsierungssystem 1 Leitung zwischen (16) und (30) 2 Steuer- und Ausleseleitung
11 Pulsintensität eines Lichtpulses von (7) am Ort des Objekts
12 Intensität des Lichts von (5) am Ort des Objekts t1 Beginn des Zeitintervalls (19) t2 Mitte des Lichtpulses t3 Ende des Zeitintervalls (19)