EP1527352A1 - Element capteur gmr et son utilisation - Google Patents

Element capteur gmr et son utilisation

Info

Publication number
EP1527352A1
EP1527352A1 EP03787612A EP03787612A EP1527352A1 EP 1527352 A1 EP1527352 A1 EP 1527352A1 EP 03787612 A EP03787612 A EP 03787612A EP 03787612 A EP03787612 A EP 03787612A EP 1527352 A1 EP1527352 A1 EP 1527352A1
Authority
EP
European Patent Office
Prior art keywords
gmr
sensor element
bridge
resistance elements
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03787612A
Other languages
German (de)
English (en)
Inventor
Peter Schmollngruber
Ingo Herrmann
Henrik Siegle
Hartmut Kittel
Paul Farber
Ulrich May
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10257253A external-priority patent/DE10257253A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1527352A1 publication Critical patent/EP1527352A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/041Camshafts position or phase sensors

Definitions

  • the invention relates to a GMR sensor element according to the main claim and its use.
  • the giant magneto-resistive effect can be used in the form of so-called spin-nalve structures (spin valves or "spin valves”) for angle sensing. This is described, for example, in WO 00/79298 or in EP 0 905 523 A2.
  • GMR spin valves consist essentially of two ferromagnetic thin films with a resulting magnetization nii or m 2 , which are separated by a non-magnetic thin film in between.
  • the electrical resistance R ( ⁇ ) of such a layer system then shows a cosine dependence on the angle ⁇ between the direction of the magnetization mi and the direction of the magnetization m of the type:
  • R () R - 0.5 • AR GMR ⁇ cos ( ⁇ ).
  • the maximum relative change in resistance ⁇ R GMR / R denotes the GMR effect and is typically 5% to 15%.
  • GMR spin valve layer systems are usually deposited by means of cathode sputtering of the respective materials and then structured using conventional photolithography processes and etching techniques.
  • What is essential for the intended spin valve function is a rigid, at least approximately unchangeable direction of the magnetization with the first ferromagnetic layer, by a magnetic field acting on the layer system from the outside, which is to be detected in particular with regard to its direction and / or strength So-called reference layer (RL) or reference layer, and a direction of magnetization m 2 of the second ferromagnetic layer, the so-called free layer (FL) or detection layer, which is slightly oriented at least approximately parallel to the external magnetic field.
  • RL reference layer
  • FL free layer
  • the two ferromagnetic layers are magnetically decoupled by a sufficient thickness of the non-magnetic intermediate layer, the so-called non-magnetic layer (NML), typically of a few nanometers, and the magnetization of the reference layer (RL), for example by an additional, directly adjacent antiferromagnetic layer, a so-called natural antiferromagnet (AF), and their mutual magnetic coupling fixed (“pinned”) by exchange interaction.
  • NML non-magnetic layer
  • RL magnetization of the reference layer
  • AF natural antiferromagnet
  • FIG. 1 a This is shown schematically in FIG. 1 a, where the GMR layer system or GMR sensor element is under the influence of a magnetic field of a transmitter magnet.
  • this SAF consists of two ferromagnetic layers which are strongly antiferromagnetically coupled via a non-magnetic intermediate layer.
  • the one of these two ferromagnetic layers which lies directly next to or on the natural antiferromagnet AF is referred to as the pinned layer (PL) since its magnetization Mp is fixed (“pinned") as a result of the coupling to the natural antiferromagnet (AF).
  • the second ferromagnetic layer of the SAF whose magnetization M R is oriented opposite to that of the pinned layer (PL) due to the antiferromagnetic coupling, serves as a reference layer (RL) for the GMR spin valve layer system already described above.
  • spin valve resistance elements are used, for example, in a GMR sensor element according to the prior art.
  • B. by means of aluminum thin-film conductor spans to a Wheatstone bridge Circuit (Wheatstone full bridge) interconnected.
  • the maximum signal amplitude is obtained in accordance with Figure 2 oppositely oriented reference magnetization M R of the bridge resistors within the half-bridges and the same reference magnetizations oriented M R of the diagonally lying in the full bridge resistors.
  • a GMR angle sensor generally also has a second full bridge made of GMR resistors, the reference directions of which, as shown in FIG. 2, are rotated by 90 ° relative to those of the first full bridge.
  • n is phase-shifted by 90 ° relative to the signal of the first full bridge U cos .
  • the two cosine or sinusoidal bridge signals U s ; n , U cos which determines the unique angle ⁇ to the direction of an external magnetic field B over a full 360 ° revolution.
  • the different reference magnetization directions according to FIG. 2 are e.g. realized in that the individual GMR bridge resistances locally to a temperature T above the blocking temperature (Neel temperature) of the antiferromagnetic layer (AF) but below the Curie temperature of the ferromagnetic layers (PL, RL) according to FIG. Ib are heated so that the antiferromagnetic spin order in the antiferromagnetic layer is canceled, and then cooled in an external magnetic field of suitable field direction. When the antiferromagnetic order is formed again, the spin configuration resulting from the exchange interaction at the interface of the antiferromagnetic layer (AF) and the adjacent ferromagnetic layer (PL) is frozen.
  • Local heating of the GMR bridge resistors can e.g. by means of a short laser or current pulse.
  • the current pulse can be driven directly through the GMR conductor structure and / or an additional heating conductor.
  • the reference magnetization M R of the individual bridge resistances is either parallel or perpendicular to the direction of the strip structured GMR resistance elements selected. This serves to keep the influence of the shape anisotropy low.
  • the strip-shaped structured GMR resistance elements within a full bridge according to FIG. 2 are preferably aligned in parallel. This serves to suppress a signal contribution due to a superimposed anisotropic magnetoresistive effect (AMR effect).
  • AMR effect anisotropic magnetoresistive effect
  • the AMR signal contribution is based on a dependence of the electrical resistance on the angle ⁇ between the current and the magnetization direction of the shape:
  • R ⁇ ß) R + 0.5 - ⁇ ⁇ - cos (2 - ⁇ «)
  • the GMR resistors are implemented within a half-bridge with their GMR strips oriented orthogonally, as is the case, for example, in FIG. 10 in WO 00/79298, the AMR signal contribution is even favored to the maximum. This has a worsening effect on the angular accuracy of the GMR angle sensor.
  • known GMR angle sensors therefore have no rotationally symmetrical arrangement of the bridge resistances. Rather, both full bridges are usually arranged laterally next to one another. As a result of the lack of rotational symmetry, this results in an increased sensitivity of known sensors with regard to the directional inhomogeneity of the encoder field, i.e. of the magnetic field acting from outside, as well as regarding temperature gradients.
  • rotational symmetry in the sensor design is very advantageous, so as not to obtain additional direction-dependent angle error contributions due to an asymmetry in the arrangement of the individual GMR resistance elements. Due to the rotationally symmetrical arrangement of the GMR resistance elements in the two Wheatstone bridges according to the invention, a reduced sensitivity to field direction and temperature inhomogeneities is therefore achieved, and an undesirable AMR signal contribution is suppressed, and the shape anisotropy influence on the pinning behavior and the angle sensor accuracy speed of the GMR sensor element is reduced.
  • each individual GMR bridge resistance element is divided into two equal halves or partial bridge resistances with orthogonally oriented GMR strip directions.
  • this also leads to an increase in the angular measurement accuracy.
  • the direction of the strip-shaped structured GMR resistance elements (“GMR strip direction”) is chosen to be parallel for one of the two partial bridge resistances and perpendicular to the pinning or reference direction for the other partial bridge resistance. sets an average of the influence of pinning directions parallel and perpendicular to the strip direction within each of the GMR bridge resistance elements.
  • the pinning behavior is then identical for all two-part GMR bridge resistance elements (averaging over both parts).
  • the two bridge output signals Ui, U 2 also advantageously have a 45 ° phase shift with respect to one another.
  • the GMR resistance elements have a pinning or reference direction that is selected at least approximately at 45 ° to the direction of the strip-shaped structured GMR resistance elements, this advantageously leads to identical pinning behavior of the individual GMR resistance elements, ie in particular to improved signal stability and long-term stability of the GMR sensor element.
  • the two bridge output signals J ⁇ , U 2 also have a 45 ° phase shift with respect to one another.
  • Bridge output signals Ui, U 2 which are phase-shifted with respect to one another by any angle ⁇ , where ⁇ is preferably 45 ° or is 45 °, can finally be advantageously mapped to orthogonal signals with a 90 ° phase shift by means of a coordinate transformation.
  • the angle ⁇ to the direction of the external magnetic field B can then be determined from the latter by arc tangent formation or a corresponding algorithm, for example the CORDIC algorithm.
  • the coordinate transformation also offers the advantage that fluctuations in the phase difference of the two bridge external signals Ui, U 2 caused by production can be compensated for when mapping to the orthogonal signals.
  • FIG. 1 a shows a simplified GMR spinvalve layer structure with two ferromagnetic layers RL and FL with the magnetizations mi and m 2 , a non-magnetic intermediate layer NML and an antiferromagnetic layer AF. The latter is used for fixing (pinning) the reference magnetization mi.
  • a transmitter magnet for generating an external magnetic field B is provided.
  • FIG. 1b shows a GMR spinvalve layer system with a natural antiferromagnet AF and an additional synthetic antiferromagnet SAF as well as a further non-magnetic intermediate layer NML and a ferromagnetic free layer FL.
  • FIG. 2 shows an equivalent circuit diagram for an angle sensor element based on the GMR effect with two full bridges (Wheatstone bridge circuits), the reference magnetizations M R being oriented in opposite directions within the two bridges and being rotated 90 ° to one another from bridge to bridge.
  • the direction of the reference magnetization M R is further parallel or perpendicular to the direction of the individual GMR resistance elements structured in strips, which are constructed, for example, according to FIG. 1a or FIG. 1b.
  • This “stripe direction” is represented by the indicated streak family within the individual GMR resistance elements.
  • the direction of an external magnetic field B is indicated in Figure 2, which includes the angle ⁇ to be measured with the GMR sensor element with a reference direction.
  • the reference or zero direction is defined by the choice of the reference magnetization directions in the two full bridges, one of which is designed as a sin full bridge and one as a cos full bridge.
  • FIG. 3 shows a rotationally symmetrical arrangement of meandering, nested GMR bridge resistance elements 1/1 to 1/4 (bridge I) and ⁇ / 1 to ⁇ / 4 (bridge II).
  • the directions of the reference magnetization (see arrows in FIG. 3) in bridge I are each oriented at 45 ° to the direction of the individual, strip-shaped structured GMR resistance elements, and the reference magnetization directions in bridge II are each rotated by 45 ° with respect to those in bridge I.
  • the direction of an external magnetic field B is indicated in FIG. 3, which includes the angle ⁇ to be measured with the GMR sensor element with a reference direction.
  • the reference or zero direction is defined by the choice of the reference magnetization directions in bridge I and bridge II, bridge I being intended to deliver a cosine-shaped signal curve over the angle ⁇ .
  • FIG. 4 shows an equivalent circuit diagram to the layout of the GMR sensor element according to FIG. 3.
  • the pinning or reference magnetization direction M R is in each case at 45 ° to the GMR strip direction, which is again analogous to that shown in FIG. 2 by the individual GMR resistance elements
  • Strip coulter is indicated, oriented, and additionally rotated in bridge II by 45 ° with respect to that in bridge I.
  • FIG. 5a shows GMR sensor output signals Ui and U 2 with a 45 ° phase difference according to a pinning or reference magnetization direction M R at 45 ° to the strip direction corresponding to FIGS. 3 and 4.
  • FIG. 5b shows correspondingly transformed, mutually orthogonal GMR sensor signals U. cos and U sin with 90 ° phase difference.
  • the AMR signal contribution is not shown in FIG. 5a and FIG. 5b.
  • On the x axis the direction of the external magnetic field B in degrees, ie the angle ⁇ , is plotted in FIG. 5a and FIG. 5b, while the GMR sensor output signal in mVolt / volt is shown on the y axis in FIG. 5a and the transformed GMR in FIG. Sensor signal is plotted in mVolt / volt.
  • FIG. 6 shows a rotationally symmetrical, at least approximately circular or octagonal, nested arrangement of meandering GMR bridge resistance elements, the AMR signal contribution being suppressed by dividing each of the individual bridge resistance elements into two equal halves with mutually orthogonal stripe directions.
  • FIG. 7 shows an equivalent circuit diagram for the layout of the GMR resistance elements according to FIG. 6. Suppression of the AMR signal contribution is here divided by dividing each bridge resistance element 1 / 1.1 / 2 to H 4 into halves a and b with mutually orthogonal GMR elements. Strip directions reached. The respective pinning or reference magnetization M R is oriented at 45 ° to the respective GMR strip direction. The latter is indicated by the family of strips drawn within the individual GMR resistance elements.
  • FIG. 8 shows an equivalent circuit diagram for the layout of the GMR resistance elements according to FIG. 6 with pinning or reference magnetization directions M R alternative to FIG. 7 at 0 ° and 90 ° to the GMR strip direction for each of the individual bridge resistors 1/1, 1/2 to 1/4.
  • the influence of the pinning direction is averaged here by the direction of the pinning or reference magnetization, which is both parallel and perpendicular to the GMR strip direction, within each two-part bridge resistance 1/1, 1/2 to 1/4.
  • FIG. 3 shows a possible rotationally symmetrical arrangement of a total of eight bridge resistance elements of two full bridges (Wheatstone bridges).
  • the reference direction is defined by the direction of the magnetization of the reference layer (RL) in the GMR angle sensor.
  • the pinning or reference direction can be chosen arbitrarily, but in order to obtain the same pinning behavior for all bridge resistance elements, an orientation of the pinning or reference direction at 45 ° to the strip direction is selected here. This is further illustrated in FIG. 4, where, in addition to the stripe direction (streak family within the resistance symbols), the direction of the reference magnetization M R is also given.
  • the two bridge output signals Ui and U 2 according to FIG. 5a do not have the usual phase shift of 90 °, but only a 45 ° phase shift.
  • these signals U b U 2 can be easily transformed to the orthogonal, cosine and sinusoidal signals according to FIG. 5b.
  • the following transformation is carried out in a sensor evaluation electronics:
  • denotes the phase shift of the second bridge signal relative to the first bridge signal.
  • this phase shift can be chosen arbitrarily, but a phase shift of 45 ° is preferably set.
  • the resistor arrangement shown in FIG. 3 favors the AMR signal contribution, since the GMR stripe directions of the two bridge resistances of each half-bridge are orthogonal to one another.
  • This disadvantage can be avoided by, according to the preferred, likewise rotationally symmetrical arrangement according to FIG. 6, assembling each bridge resistor from two identical halves with GMR strip directions perpendicular to one another.
  • the series connection of the two partial resistors, each with identical reference magnetization M R of the AMR portion is then filtered out, while the GMR signal component remains unchanged due to identical in both partial resistors direction of the reference magnetization M R. This situation is illustrated by the following relationship for a two-part GMR bridge resistance element:
  • R (a) • (R - 0.5 • AR GMR ⁇ cos ( «) + 0.5 • ⁇ R ⁇ • cos (25)) l.
  • denotes the angle between the field or magnetization direction of the free ferromagnetic layer (FL) and the reference magnetization direction
  • & denotes the angle between the field or magnetization direction of the free layer (FL) and the GMR strip direction of the first partial resistor.
  • the strip direction of the second partial resistor is rotated by -90 ° to that of the first partial resistor.
  • FIG. 7 illustrates the division of the bridge resistances into two halves with mutually orthogonal stripe directions but identical reference magnetization direction M R.
  • the pinning direction or the direction of the reference magnetization M R can be chosen arbitrarily. However, an angle of 45 ° to the respective strip direction is preferred, since this achieves identical pinning behavior for all partial resistors.
  • a pinning direction or a direction of the reference magnetization M R can also be set, which is oriented parallel to the stripe direction for one of the two partial resistors and perpendicular to the stripe direction for the other partial resistance. This results in a different pinning behavior for the individual partial resistors, but for each of the bridge resistance elements in the form of a series connection of the two partial resistors, an identical pinning behavior.
  • This choice of the pinning or reference magnetization direction offers the advantage over known sensors that the average of each bridge resistance element is averaged over the different pinning behavior from parallel and perpendicular alignment of the pinning or reference magnetization direction to the GMR strip direction.
  • the 360 ° GMR angle sensor described is particularly suitable for detecting the absolute position of the camshaft or the crankshaft in a motor vehicle, in particular in the case of a camshaft-free engine with electrical or electro-hydraulic valve control, an engine position of an electrically commutated engine or a detection of a windshield wiper position, or in the steering angle sensor system in motor vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un élément capteur GMR qui comprend un agencement, à symétrie de rotation, de notamment huit éléments résistances GMR câblés entre eux pour former deux ponts intégraux de Wheatston. Cet élément capteur GMR est notamment utilisé dans un capteur angulaire servant à détecter la position absolue de l'arbre à cames ou du vilebrequin dans un véhicule automobile, notamment pour un moteur sans arbre à cames à commande de soupape électrique ou électrohydraulique, à détecter la position d'un moteur à commutation électrique ou à détecter la position d'essuie-glaces. Cet élément convient également à la technologie des capteurs d'angle de braquage dans des véhicules automobiles.
EP03787612A 2002-07-26 2003-06-27 Element capteur gmr et son utilisation Withdrawn EP1527352A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10234347 2002-07-26
DE10234347 2002-07-26
DE10257253A DE10257253A1 (de) 2002-07-26 2002-12-07 GMR-Sensorelement und dessen Verwendung
DE10257253 2002-12-07
PCT/DE2003/002145 WO2004017086A1 (fr) 2002-07-26 2003-06-27 Element capteur gmr et son utilisation

Publications (1)

Publication Number Publication Date
EP1527352A1 true EP1527352A1 (fr) 2005-05-04

Family

ID=31889084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03787612A Withdrawn EP1527352A1 (fr) 2002-07-26 2003-06-27 Element capteur gmr et son utilisation

Country Status (6)

Country Link
US (1) US7312609B2 (fr)
EP (1) EP1527352A1 (fr)
JP (1) JP2005534199A (fr)
AU (1) AU2003250275B2 (fr)
RU (1) RU2328015C2 (fr)
WO (1) WO2004017086A1 (fr)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259937B2 (ja) * 2003-06-30 2009-04-30 アルプス電気株式会社 角度検出センサ
EP1889014B1 (fr) * 2005-06-08 2019-04-03 Ecolab Inc. Instrument de mesure a pignon ovale
JP2009501931A (ja) * 2005-07-21 2009-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気抵抗システムを有する装置
JP5161433B2 (ja) * 2006-05-16 2013-03-13 株式会社東海理化電機製作所 センサ装置
DE102006061928A1 (de) * 2006-12-21 2008-06-26 Siemens Ag Pollagemesseinrichtung für ein Magnetschwebefahrzeug einer Magnetschwebebahn und Verfahren zu deren Betrieb
US7915886B2 (en) * 2007-01-29 2011-03-29 Honeywell International Inc. Magnetic speed, direction, and/or movement extent sensor
US7635974B2 (en) * 2007-05-02 2009-12-22 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) based magnetic field angle sensor
US7394247B1 (en) * 2007-07-26 2008-07-01 Magic Technologies, Inc. Magnetic field angle sensor with GMR or MTJ elements
US8715776B2 (en) * 2007-09-28 2014-05-06 Headway Technologies, Inc. Method for providing AFM exchange pinning fields in multiple directions on same substrate
US20090115405A1 (en) * 2007-11-01 2009-05-07 Magic Technologies, Inc. Magnetic field angular sensor with a full angle detection
JP5014968B2 (ja) * 2007-12-07 2012-08-29 株式会社東海理化電機製作所 ポジションセンサ
JP4780117B2 (ja) * 2008-01-30 2011-09-28 日立金属株式会社 角度センサ、その製造方法及びそれを用いた角度検知装置
US8519703B2 (en) * 2008-03-20 2013-08-27 Infineon Technologies Ag Magnetic sensor device and method of determining resistance values
CN201411059Y (zh) 2008-04-23 2010-02-24 奥格派克有限公司 带有储能器的捆扎设备
RU2471687C2 (ru) 2008-04-23 2013-01-10 Оргапак Гмбх Обвязочное устройство с натяжным приспособлением
CN201411057Y (zh) * 2008-04-23 2010-02-24 奥格派克有限公司 带有电子传动装置的捆扎设备
RU2471689C2 (ru) * 2008-04-23 2013-01-10 Оргапак Гмбх Мобильное обвязочное устройство
WO2009129633A1 (fr) * 2008-04-23 2009-10-29 Orgapack Gmbh Dispositif de banderolage comportant un système d'entraînement
US10518914B2 (en) 2008-04-23 2019-12-31 Signode Industrial Group Llc Strapping device
US8024956B2 (en) * 2008-09-02 2011-09-27 Infineon Technologies Ag Angle measurement system
US20100097051A1 (en) * 2008-10-22 2010-04-22 Honeywell International Inc. Incremental position, speed and direction detection apparatus and method for rotating targets utilizing magnetoresistive sensor
US8405385B2 (en) * 2009-03-10 2013-03-26 The Board Of Trustees Of The Leland Stanford Junior University Temperature and drift compensation in magnetoresistive sensors
JP5387583B2 (ja) * 2009-03-30 2014-01-15 日立金属株式会社 回転角度検出装置
US8451003B2 (en) * 2009-07-29 2013-05-28 Tdk Corporation Magnetic sensor having magneto-resistive elements on a substrate
JP2011038855A (ja) * 2009-08-07 2011-02-24 Tdk Corp 磁気センサ
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
US8901921B2 (en) * 2009-11-25 2014-12-02 Infineon Technologies Ag Angle measurement system for determining an angular position of a rotating shaft
US8518734B2 (en) 2010-03-31 2013-08-27 Everspin Technologies, Inc. Process integration of a single chip three axis magnetic field sensor
WO2012073732A1 (fr) * 2010-12-02 2012-06-07 アルプス・グリーンデバイス株式会社 Capteur de courant
US8975889B2 (en) * 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
US9000763B2 (en) 2011-02-28 2015-04-07 Infineon Technologies Ag 3-D magnetic sensor
RU2447527C1 (ru) * 2011-04-27 2012-04-10 Учреждение Российской академии наук Институт проблем проектирования в микроэлектронике РАН Способ и устройство для создания магнитного поля, локализованного в нанометровой области пространства
JP5602682B2 (ja) * 2011-06-03 2014-10-08 株式会社東海理化電機製作所 磁気センサ、及び磁気センサ用パターン
JP5747759B2 (ja) * 2011-09-19 2015-07-15 株式会社デンソー 磁気センサ
CH705743A2 (de) 2011-11-14 2013-05-15 Illinois Tool Works Umreifungsvorrichtung.
US9817085B2 (en) * 2012-03-15 2017-11-14 Infineon Technologies Ag Frequency doubling of xMR signals
US9411024B2 (en) * 2012-04-20 2016-08-09 Infineon Technologies Ag Magnetic field sensor having XMR elements in a full bridge circuit having diagonal elements sharing a same shape anisotropy
CN105324310B (zh) 2012-09-24 2018-03-27 信诺国际Ip控股有限责任公司 捆扎装置
CH708294A2 (de) 2013-05-05 2014-12-15 Orgapack Gmbh Umreifungsvorrichtung.
PL3105128T3 (pl) 2014-02-10 2021-11-22 Signode International Ip Holdings Llc Urządzenie do taśmowania z urządzeniem do przesuwu taśmy w przód
US9435662B2 (en) * 2014-04-08 2016-09-06 Infineon Technologies Ag Magneto-resistive angle sensor and sensor system using the same
EP2960666B1 (fr) * 2014-06-25 2017-01-25 Nxp B.V. Système de capteur ayant une configuration en trois demi-ponts
DE102014119531B4 (de) 2014-12-23 2019-06-27 Infineon Technologies Ag Sensorschaltung
US9625281B2 (en) * 2014-12-23 2017-04-18 Infineon Technologies Ag Fail-safe operation of an angle sensor with mixed bridges having separate power supplies
CN104776794B (zh) * 2015-04-16 2017-11-10 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器
JP2018109518A (ja) * 2015-05-22 2018-07-12 アルプス電気株式会社 回転検出器
US10782153B2 (en) 2016-03-08 2020-09-22 Analog Devices Global Multiturn sensor arrangement and readout
USD864688S1 (en) 2017-03-28 2019-10-29 Signode Industrial Group Llc Strapping device
CN106871778B (zh) * 2017-02-23 2019-11-22 江苏多维科技有限公司 一种单芯片双轴磁电阻角度传感器
US10782154B2 (en) * 2017-06-26 2020-09-22 Texas Instruments Incorporated Tilted segmented anisotropic magneto-resistive angular sensor
US10627459B2 (en) 2017-07-17 2020-04-21 Texas Instruments Incorporated Anisotropic magneto-resistive (AMR) angle sensor die comprising a plurality of AMR angle sensors
JP2021055999A (ja) * 2018-01-15 2021-04-08 パナソニックIpマネジメント株式会社 磁気センサ
JP2019129254A (ja) * 2018-01-25 2019-08-01 株式会社東海理化電機製作所 磁気センサ
CN109752675A (zh) * 2019-01-10 2019-05-14 东南大学 一种正八边形薄膜磁阻传感器
US11460521B2 (en) 2019-03-18 2022-10-04 Analog Devices International Unlimited Company Multiturn sensor arrangement

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317512C2 (de) 1993-05-26 1995-03-30 Univ Schiller Jena Vorrichtung zur berührungslosen Nullpunkt-, Positions- und Drehwinkelmessung
DE4408078A1 (de) 1994-03-10 1995-09-14 Philips Patentverwaltung Winkelsensor
JPH0846268A (ja) * 1994-08-03 1996-02-16 Jeco Co Ltd 磁電変換装置
JPH10222817A (ja) * 1997-02-06 1998-08-21 Hitachi Ltd 磁気抵抗センサ
DE19722834B4 (de) * 1997-05-30 2014-03-27 Sensitec Gmbh Magnetoresistives Gradiometer in Form einer Wheatstone-Brücke zur Messung von Magnetfeldgradienten sowie dessen Verwendung
WO1998057188A1 (fr) * 1997-06-13 1998-12-17 Koninklijke Philips Electronics N.V. Capteur muni d'un pont de wheatstone
DE59812241D1 (de) * 1997-09-24 2004-12-16 Infineon Technologies Ag Sensoreinrichtung zur Richtungserfassung eines äu eren Magnetfeldes mittels eines magnetoresistiven Sensorelementes
WO1999067651A1 (fr) * 1998-06-22 1999-12-29 Koninklijke Philips Electronics N.V. Detecteur de position magnetique
DE19835694A1 (de) * 1998-08-07 2000-02-10 Bosch Gmbh Robert Sensoranordnung zur Erfassung eines Drehwinkels und/oder eines Drehmoments
DE19843348A1 (de) 1998-09-22 2000-03-23 Bosch Gmbh Robert Magnetoresistives Sensorelement, insbesondere Winkelsensorelement
JP2000149225A (ja) * 1998-11-10 2000-05-30 Fujitsu Ltd 薄膜磁気ヘッドとその製造方法
DE60037790T2 (de) 1999-06-18 2009-01-08 Koninklijke Philips Electronics N.V. Magnetisches messsystem mit irreversibler charakteristik, sowie methode zur erzeugung, reparatur und verwendung eines solchen systems
US6566867B1 (en) * 1999-06-24 2003-05-20 Delphi Technologies, Inc. Binary encoded crankshaft target wheel with single VR sensor
DE19962241A1 (de) * 1999-12-22 2001-07-12 Ruf Electronics Gmbh Positionssensor
US6633462B2 (en) * 2000-07-13 2003-10-14 Koninklijke Philips Electronics N.V. Magnetoresistive angle sensor having several sensing elements
US6519549B1 (en) * 2000-07-31 2003-02-11 Delphi Technologies, Inc. Method and device for determining absolute angular position of a rotating body
DE10104116A1 (de) * 2001-01-31 2002-08-01 Philips Corp Intellectual Pty Anordnung zum Erfassen des Drehwinkels eines drehbaren Elements
DE10118650A1 (de) 2001-04-14 2002-10-17 Philips Corp Intellectual Pty Winkelsensor sowie Verfahren zum Erhöhen der Anisotropiefeldstärke einer Sensoreinheit eines Winkelsensors
US7005958B2 (en) * 2002-06-14 2006-02-28 Honeywell International Inc. Dual axis magnetic sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004017086A1 *

Also Published As

Publication number Publication date
US7312609B2 (en) 2007-12-25
US20060103381A1 (en) 2006-05-18
JP2005534199A (ja) 2005-11-10
RU2004115639A (ru) 2006-01-10
WO2004017086A1 (fr) 2004-02-26
AU2003250275A1 (en) 2004-03-03
AU2003250275B2 (en) 2008-01-31
RU2328015C2 (ru) 2008-06-27

Similar Documents

Publication Publication Date Title
WO2004017086A1 (fr) Element capteur gmr et son utilisation
DE102009050427B4 (de) Magnetsensorsystem und Verfahren
DE19732616C2 (de) Magnetfeld-Messgerät zur Messung der Drehung eines sich drehenden Körpers
DE102006032277B4 (de) Magnetfeldsensorbauelement
EP2396666B1 (fr) Dispositif de mesure d'au moins une composante d'un champ magnétique
DE10342260B4 (de) Magnetoresistiver Sensor in Form einer Halb- oder Vollbrückenschaltung
DE102016102601B4 (de) Magnetsensor
DE4301704A1 (de) Vorrichtung zum Erfassen einer Winkelposition eines Objektes
WO2000012957A1 (fr) Configuration destinee a la detection de l'angle de rotation d'un element rotatif
WO2006136577A1 (fr) Capteur de courant permettant la mesure de courant a separation galvanique
WO1997013120A1 (fr) Systeme de detection sans contact de la position d'un objet et utilisation dudit dispositif
DE102020200177A1 (de) Streufeldrobuster xmr-sensor mit senkrechter anisotropie
EP1567878B1 (fr) Element de detection magnetoresistif et procede pour diminuer le defaut d'alignement angulaire d'un element de detection magnetoresistif
EP1046047B1 (fr) Element detecteur magnetoresistif avec possibilite de choisir le sens d'aimantation de la couche de polarisation
DE19532674C1 (de) Drehwinkelgeber unter Verwendung von Giant Magnetowiderstandsmaterialien
DE102019102152A1 (de) Magnetfelddrehmoment- und/oder winkelsensor
DE102016111256A1 (de) Magnetfeldgenerator, Magnetsensorsystem und Magnetsensor
DE10128135A1 (de) Magnetoresistive Schichtanordnung und Gradiometer mit einer derartigen Schichtanordnung
DE102015106521A1 (de) Magnetfeldsensorvorrichtung
DE10257253A1 (de) GMR-Sensorelement und dessen Verwendung
DE19949714A1 (de) Magnetisch sensitives Bauteil, insbesondere Sensorelement, mit magnetoresistiven Schichtsystemen in Brückenschaltung
DE10042006A1 (de) Vorrichtung und Verfahren zur Winkelmessung
DE19712833C2 (de) Einrichtung zur berührungslosen Positionserfassung eines Objektes und Verwendung der Einrichtung
DE102020126871A1 (de) Ein Sensorsystem, ein System und ein Verfahren zum Bestimmen einer Position oder eines Drehwinkels
DE19949713C2 (de) Magnetoresistives Schichtsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): CZ DE FR GB

17Q First examination report despatched

Effective date: 20101119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140103