EP1523748B1 - Composant inductif et utilisation de celui-ci - Google Patents

Composant inductif et utilisation de celui-ci Download PDF

Info

Publication number
EP1523748B1
EP1523748B1 EP03787700A EP03787700A EP1523748B1 EP 1523748 B1 EP1523748 B1 EP 1523748B1 EP 03787700 A EP03787700 A EP 03787700A EP 03787700 A EP03787700 A EP 03787700A EP 1523748 B1 EP1523748 B1 EP 1523748B1
Authority
EP
European Patent Office
Prior art keywords
wire winding
component according
core
component
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03787700A
Other languages
German (de)
English (en)
Other versions
EP1523748A1 (fr
Inventor
Martin Honsberg-Riedl
Johann Otto
Eckhard Wolfgang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1523748A1 publication Critical patent/EP1523748A1/fr
Application granted granted Critical
Publication of EP1523748B1 publication Critical patent/EP1523748B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/043Fixed inductances of the signal type  with magnetic core with two, usually identical or nearly identical parts enclosing completely the coil (pot cores)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating

Definitions

  • the invention relates to an inductive component for forming a magnetic circuit, comprising at least one wire winding and at least one core with a ferromagnetic core material, wherein the core for interrupting the magnetic circuit has a gap and at least one further gap and the gaps each have a gap width, the is at least 1.0 mm.
  • a use of the device is specified.
  • Out DE 198 84 902 A1 is an initially described inductive component known.
  • the inductive component is a transformer.
  • US 4,885,445 A describes a transformer suitable for high frequency applications.
  • air gaps are provided for the core, which are filled with electrically insulating material.
  • an inductive component in the form of a transformer for a television receiver is known.
  • the core has air gaps with a gap width of about 1 mm.
  • ECGs are used as an electronic voltage and / or current transformer in the lighting area.
  • ECGs have at least one inductive component.
  • the inductive component is, for example, a choke coil or a transformer.
  • the inductive component has a wire winding.
  • the wire winding has a number of turns of electrical conductor for generating a magnetic flux through the current flowing in the conductor.
  • the wire winding also serves to generate a voltage by changing the magnetic induction in the wire winding.
  • the ferromagnetic core material is, for example, a ferrite. The core ensures a closed magnetic circuit.
  • the miniaturization relates in particular to an inductive component of the electronic ballasts.
  • a small size of an inductive component can be achieved with a constant power throughput by a higher switching frequency.
  • a higher switching frequency leads to an increase in the electrical losses and thus to a reduction in the quality of the inductive component.
  • the quality is a measure of an electrical quality of the inductive component.
  • the object of the present invention is to provide an inductive component which has a high quality even with a high applied alternating voltage.
  • an inductive component for forming a magnetic circuit comprising at least one wire winding and at least one core with a ferromagnetic core material, wherein the core for interrupting the magnetic circuit has a gap and at least one further gap and the gaps each have a gap width , which is at least 1.0 mm.
  • the inductive component is characterized in that the gap width (9) is selected from the range of 2.0 mm to 10 mm inclusive. The result is a relatively wide total gap, which is divided into at least two columns.
  • a gap is a desired interruption of the magnetic circuit.
  • the gap width is approximately equal.
  • the extent is, for example, a width, a length or a radius of the gap.
  • the gap has at least partially a non-ferromagnetic material to interrupt the magnetic circuit.
  • the non-ferromagnetic material is, for example, a diamagnetic or paramagnetic material.
  • the magnetic circuit is interrupted at least two places. The interruption takes place through the column.
  • the gap widths cause the magnetic circuit to be interrupted in a length of at least 2 x 2.0 mm.
  • the core consists of at least two parts, which are arranged opposite one another on the columns and are spaced apart from one another by the gap widths.
  • At least one of the gaps is an air gap.
  • the non-ferromagnetic material of the gap is air.
  • another non-ferromagnetic, gaseous material to be arranged in the air gap.
  • a non-ferromagnetic solid or liquid material is conceivable.
  • This material is for example a polymer material.
  • the use of an adhesive with which the parts of the core are glued together is advantageous. The glue does not just lead to one Interruption of the magnetic circuit. It also leads to a cohesive contact between the parts of the core.
  • the wire winding has an inner region and an outer region and the gaps of the core are arranged in the inner region and / or in the outer region of the wire winding.
  • a gap is arranged in the interior and two columns in the outer area.
  • the gaps in the outer area are characterized by the substantially same gap width. It may also be that the gap in the interior of the wire winding has a significantly higher gap width, as the two columns in the outer area. Preferably, however, the gap widths of all gaps are substantially the same.
  • the core can be unbalanced. This means that it can not be transformed into itself by applying a symmetry operation.
  • the core is substantially symmetrical. Essentially, it means that there may be deviations in terms of exact symmetry.
  • the symmetry means those components of the nucleus that are mainly responsible for the function and properties of the nucleus.
  • the symmetrical core is transformed into a point (symmetry center), a straight line (symmetry axis) or a plane (symmetry plane) by reflection.
  • said symmetry elements are arranged in the interior of the wire winding.
  • the symmetry element is, for example, a plane of symmetry which is arranged perpendicular to a winding axis of the wire winding.
  • the winding axis of the wire winding is given by a direction in which the wire is wound.
  • the core consists for example of two parts, which are each converted by the reflection at the plane of symmetry into each other.
  • the plane of symmetry preferably also contains the gaps and the core consists of mutually mirror-inverted shaped parts.
  • the core has an RM6 or equivalent core shape. These core shapes are a combination of an E-core shape with a pot-core shape.
  • the entire wire winding and core component has a substantially symmetrical construction.
  • wire winding and core can be converted into themselves by mirroring at a common mirror plane.
  • Essentially symmetrical means that deviations from the symmetry are conceivable. These deviations refer, for example, to a number or a shape of the turns of the wire winding, a shape of the core, and an arrangement of wire winding and core to each other.
  • the core material of the core is suitable for high frequency.
  • the core material is a ferrite in the form of an M33 core material having a cutoff frequency of about 10 MHz.
  • This core material has manganese and zinc.
  • a K1, K6 or K12 core material is conceivable. These core materials include nickel and zinc.
  • the K6 core material has a cutoff frequency of 7 MHz.
  • the wire winding on a high-frequency strand with a plurality of mutually electrically insulated individual wires is a wire wound or braided from many metal threads (individual wires).
  • the individual wires are isolated from each other to reduce losses due to skin effect and eddy currents.
  • a lower high-frequency loss resistance is achieved in comparison to a strand with individual wires not insulated from one another with the same cross-section.
  • the individual wires have at least one selected from the range of 10 microns up to and including 50 microns single wire diameter.
  • the plurality is in the range of 5 to 100 inclusive selected.
  • the plurality is selected from the range of 10 to 30 inclusive.
  • 10 or more individual wires are arranged to a high-frequency strand. This makes it possible to provide wire windings with a relatively large surface and thus with a relatively low high-frequency loss resistance.
  • the inductive component is a choke coil or a transformer.
  • An inductor is permeable to direct current.
  • alternating current is limited by the choke coil.
  • the choke coil has a high electrical reactance for a high frequency current.
  • the transformer consists of at least two wire windings. But it can also be arranged more than two wire windings to the transformer. Alternatively, the transformer consists of a wire winding, which is divided by an electrical tap into two parts.
  • the inductive component is also cooled.
  • at least one cooling device for cooling the wire winding which has at least one composite material with at least one polymer material and at least one thermally conductive filler.
  • the heat generated in the wire winding during operation of the inductive component can be efficiently dissipated.
  • the efficient dissipation of the heat leads to a relatively small increase in the temperature of the wire winding.
  • the small increase in temperature leads to a relatively small increase in the electrical resistance in the wire winding. This results in an increased compared to an uncooled wire winding good of the inductive component.
  • the composite material preferably consists of an electrically insulating or electrically poorly conductive polymer material with a thermally conductive and electrically poorly conductive filler.
  • the polymer material may comprise a natural and / or artificial polymer.
  • the natural polymer is, for example, rubber.
  • the artificial polymer is a plastic.
  • the polymer material forms as the base material of the composite material a matrix in which the filler is embedded.
  • the filler or the fillers may be powdery or fibrous.
  • a diameter of a filler particle is selected from the ⁇ m range, which ranges from 100 nm to 100 ⁇ m.
  • a degree of filling of the filler in the polymer material is preferably chosen so that a coagulation limit is exceeded. Below the coagulation limit there is a very low probability that individual filler particles will touch each other. This leads to a relatively low specific thermal conductivity coefficient. If the coagulation limit is exceeded, the filler particles touch with relatively high probability. This results in a relatively high specific thermal conductivity coefficient of the composite material.
  • the filler is thermally conductive and preferably also electrically insulating or electrically poorly conductive.
  • the inductive component can also be operated with a relatively high operating voltage.
  • the operating voltage is up to 2000 V.
  • the composite material is resistant to breakdown even at an operating voltage of this magnitude.
  • electrically insulating or electrically poorly conductive filler is particularly suitable a ceramic material.
  • a ceramic one Material with the properties mentioned is, for example, aluminum oxide (Al 2 O 3 ).
  • the composite material of the cooling device is preferably connected directly to the wire winding. A heat transfer away from the wire winding occurs by heat conduction.
  • the cooling device has at least one film with the composite material, which is in direct, thermally conductive contact with the wire winding.
  • the film and the wire winding are connected in such a way that heat conduction from the wire winding to the film can take place.
  • the foil and the wire wrap touch each other.
  • a film thickness (film thickness) of the film is for example 0.22 mm.
  • a specific thermal conductivity coefficient ⁇ of 0.15 K / Wm up to 6.5 K / Wm can be achieved.
  • the dielectric strength can be 1 kV to 6 kV despite the relatively low film thickness.
  • a soft film is used with the composite material.
  • the film is plastically and / or elastically deformable.
  • the wire winding may be approximately positively embedded in the film. A thermal contact surface between the film and the wire winding over which the heat conduction takes place is particularly large.
  • the cooling device has at least one potting compound which has at least one further composite material with at least one further polymer material and at least one further thermally conductive filler and which is in direct, thermally conductive contact with the wire winding and / or the film stands.
  • the composite material and the further composite material may be the same or different. The same applies to individual components of the composite material and of the further composite material.
  • the wire winding and / or the film are partly or completely embedded in the potting compound with the further composite material. Since the other composite material is thermally conductive and by embedding an almost complete positive connection between casting material and wire winding or film is present, the heat from the wire winding and the film on the casting material can be derived very efficiently.
  • the use of the potting compound leads to a homogeneous temperature distribution within the inductive component.
  • the wire winding of the device is cooled homogeneously. This also contributes to an increased quality of the inductive component.
  • a space present between the film and the wire winding and / or between the potting and the wire winding has a thermally conductive material for thermal bridging of the interspace.
  • the gap is preferably completely filled with the thermally conductive material.
  • a thermally conductive material is used, which is additionally electrically insulating.
  • the thermally conductive material is therefore selected in particular from the group ⁇ 1, paste, wax and / or adhesive.
  • the cooling device of the inductive component is designed such that the heat generated in the wire winding during operation of the inductive component can be efficiently dissipated to the outside.
  • a further transport of heat away from the composite material of the cooling device is taken care of.
  • the further transport of the heat takes place for example by convection.
  • a fluid is passed past the cooling device with the composite material, which can absorb the heat.
  • the fluid is for example a liquid or a gas or gas mixture.
  • the further transport of the heat takes place by heat conduction.
  • the film with the composite material and / or the potting compound with the composite material with a heat sink by a_Wärme Arthur is therefore thermally conductively connected in the inductive component.
  • the heat sink is preferably designed such that it can absorb a large amount of heat.
  • the heat capacity of the heat sink is large. It is also conceivable that the heat sink ensures efficient removal of the heat.
  • the heat sink is for example a heat sink made of a material that is characterized by a high thermal conductivity. To maintain the thermal gradient, the heat sink may be cooled by convection.
  • the inductive component is used according to a second aspect of the invention in an electronic ballast, in which an electrical input power is converted into an electrical output. Input power and Output power is usually different.
  • the device is operated with an alternating voltage having a frequency in the range of 100 kHz inclusive up to and including 200 MHz. This frequency range is referred to as high frequency range.
  • an AC voltage of up to 2000 volts is used. It has been shown that with the help of the column, a high quality can be achieved even with a few hundred volts with a frequency of a few MHz. This results in that the inductive component can be miniaturized and still a high power throughput can be achieved with high quality and low internal losses.
  • the inductive component can thus be referred to as a miniaturized HF-HV (high-frequency high-voltage) component.
  • the inductive component can also be used in an ignition transformer for igniting a discharge lamp.
  • the discharge lamp is driven via an electrical circuit with a high alternating voltage (initial voltage).
  • a voltage pulse with an AC voltage of up to 40 kV is used.
  • the component is driven with this high AC voltage for a short time within a few microns (ignition duration).
  • the inductive component 1 is an HF-HV (high-frequency high-voltage) transformer ( FIG. 1 ).
  • the component 1 has a wire winding 3 and a core 4.
  • the wire winding is characterized by a winding axis 12, along which the wire of the wire winding 3 is wound.
  • the wire winding 3 is a high-frequency strand 14 with 30 individual wires.
  • the wire diameter of a single wire is about 30 microns.
  • the core 4 is a ferrite core and consists of a M33 core material.
  • the core has an RM6 core form ( FIGS. 3a and 3b ).
  • the core is a combination of an E-core shape and a pot core shape with a central bore 15.
  • the core 4 has a core-centered gap 7, which is arranged around the central bore 15 in the inner region 10 of the wire winding 3.
  • Two further gaps 8 are arranged in the outer region 11 of the wire winding 3 in each case one of the core legs 6 of the core 4. All three columns 7 and 8 are air gaps.
  • the gap widths of gaps 7 and 8 are substantially equal, each about 3 mm.
  • the core is essentially symmetrical. It consists of two to the mirror plane 13 mirror-symmetrically arranged parts 5, which are arranged opposite one another at the columns 7 and 8 and spaced from each other by the gap widths 9.
  • the mirror plane 13 is located in the three columns 7 and 8.
  • the arrangement is not only the core 4, but also the wire winding 3 arranged substantially symmetrically. The result is an inductive component, which is symmetrical to the mirror plane 13 substantially.
  • FIG. 2 shown voltage diagram is measured at a primary inductance of the RF-HV transformer 1 of 24 uH and a frequency of 2.7 MHz by means of the circular resonance method. It can clearly be seen that even with an effective alternating voltage (U L [V eff ]) of several hundred volts, a relatively high quality of the component can be achieved. Despite the high frequency, the high quality can be achieved with a small size, as is the case with an RM6 core mold.
  • the wire winding 3 of the miniaturized RF-HV transformer is cooled in accordance with further embodiments.
  • a cooling device 20 for cooling the wire winding 3 is present.
  • the cooling device 20 comprises a foil 21 with a thermally conductive composite material.
  • the base material of the composite is a thermally and electrically poorly conductive polymer material.
  • a filler with high thermal and low electrical conductivity is embedded in the polymer material.
  • the film 21 has a film thickness of about 0.22 mm.
  • the specific thermal conductivity coefficient ⁇ is about 4 K / Wm.
  • the electrical dielectric strength reaches up to about 6 kV.
  • the high-frequency strand 14 of the wire winding 3 and the film 21 are wound around a wound body 30 adapted to the RM6 core shape.
  • the film 21 and the wire winding 3 are arranged around the winding body 30 such that the high-frequency strand 14 of the wire winding 3 and the films 21 alternate from the winding body 30 in the radial direction ( FIGS. 4 and 5 ).
  • the used film 21 serves as Intermediate insulating layer of the high-frequency strand 14 of the wire winding 3.
  • An efficient heat conducting path 24 results from the wire winding 3 away in the radial direction. Along the heat conduction path 24, heat which arises during operation of the inductive component 1 in the high-frequency strand 14 is efficiently dissipated.
  • the high-frequency strand 14 of the wire winding 3 and a plurality of films 21 are each radially aligned with the winding body 30. It is a multi-chamber solution realized, which is also referred to as disk winding. Here, too, an efficient dissipation of heat via the heat conduction path 24 is provided.
  • the inductive component 1 or the cooling device 20 of the inductive component 1 is embedded in a potting compound 22 with a further thermally conductive composite material ( FIGS. 4 and 6 ).
  • the potting compound 22 is contacted with a portion of the wire winding 3 thermally conductive directly. This means that the heat can be dissipated via heat conduction via a thermal contact surface between the high-frequency winding 14 of the wire winding 3 and the film 21 or the films 21.
  • the potting compound 22 is thermally conductively connected to the heat sink 25 via heat conduction.
  • the heat sink 25 is a board with a thermally highly conductive material. During operation of the inductive component, a relatively small temperature difference results between the wire winding 3 and the heat sink 25.
  • the heat is further dissipated by a discharge fin 26 having a relatively high coefficient of thermal conductivity ( FIG. 5 ).
  • a discharge fin 26 having a relatively high coefficient of thermal conductivity
  • the heat is transmitted from the films 21 and the wire winding 3 in the direction of the heat sink 25.
  • gaps 27 may be present which reduce the efficiency with which the wire winding 3 is cooled ( FIG. 7 ).
  • These intermediate spaces 27 are filled according to a further embodiment with a thermally conductive and electrically insulating or poorly conductive paste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Claims (21)

  1. Composant (1) inductif pour la formation d'un circuit magnétique ayant au moins un enroulement (3) de fil métallique et au moins un noyau (4) ayant un matériau de noyau ferromagnétique, le noyau (4) ayant pour interrompre le circuit magnétique une fente (7, 8) et au moins une autre fente (8, 7) et les fentes (7, 8) ayant respectivement une largeur (9) au moins égale à 1,0 mm, caractérisé en ce que la largeur (9) de fente est choisie dans la plage allant de 2,0 mm inclus à 10 mm inclus.
  2. Composant suivant la revendication 1, dans lequel le noyau (4) est constitué d'au moins deux parties (5) qui sont disposées l'une en face de l'autre sur les fentes (7, 8) et qui sont mises à distance l'une de l'autre par les largeurs (9) de fente.
  3. Composant suivant la revendication 1 ou 2, dans lequel au moins l'une des fentes (7, 8) est un entrefer.
  4. Composant suivant l'une des revendications 1 à 3, dans lequel les fentes (7, 8) ont sensiblement la même largeur (9).
  5. Composant suivant l'une des revendications 1 à 4, dans lequel l'enroulement (3) de fil métallique a une partie (10) intérieure et une partie (11) extérieure et les fentes (7, 8) du noyau (4) sont disposées dans la partie (10) intérieure et/ou dans la partie (11) extérieure de l'enroulement (3) de fil métallique.
  6. Composant suivant l'une des revendications 1 à 5, dans lequel le noyau (4) est sensiblement symétrique.
  7. Composant suivant l'une des revendications 1 à 6, dans lequel le matériau du coeur (4) peut servir en haute fréquence.
  8. Composant suivant l'une des revendications 1 à 8, dans lequel l'enroulement (3) de fil métallique a un cordon (14) de haute fréquence ayant une pluralité de fils métalliques individuels isolés électriquement les uns des autres.
  9. Composant suivant la revendication 8, dans lequel les fils métalliques individuels ont au moins un diamètre dans la plage allant de 10 µm compris à 50 µm compris.
  10. Composant suivant la revendication 8 ou 9, dans lequel la pluralité est choisie dans la plage allant de 5 compris à 100 compris.
  11. Composant suivant l'une des revendications 1 à 10, dans lequel le composant est une bobine de self ou un transformateur.
  12. Composant suivant l'une des revendications 1 à 11, dans lequel au moins un dispositif (20) de refroidissement est présent pour refroidir l'enroulement (3) de fil métallique, qui a au moins un matériau composite ayant au moins un matériau polymère et au moins une charge conductrice de la chaleur.
  13. Composant suivant la revendication 12, dans lequel le dispositif (20) de refroidissement a au moins une feuille (21) ayant le matériau composite, feuille qui est en contact direct d'une manière conductrice de la chaleur avec l'enroulement de fil métallique.
  14. Composant suivant la revendication 12 ou 13, dans lequel le dispositif (20) de refroidissement a au moins une composition (22) de scellement, qui a au moins un autre matériau composite ayant au moins un autre matériau polymère et au moins une autre charge conductrice de la chaleur et qui est en contact direct d'une manière conductrice de la chaleur avec l'enroulement (3) de fils et/ou avec la feuille (21).
  15. Composant suivant l'une des revendications 12 à 14, dans lequel un espace (27) intermédiaire présent entre la feuille (21) et l'enroulement (3) de fil métallique et/ou la composition (22) de scellement et l'enroulement (3) de fil métallique a un matériau conducteur de la chaleur pour le pontage thermique de l'espace (27) intermédiaire.
  16. Composant suivant la revendication 15, dans lequel le matériau conducteur de la chaleur est choisi dans le groupe d'une huile, d'une pâte, d'une cire et/ou d'un adhésif.
  17. Composant suivant l'une des revendications 12 à 16, dans lequel la feuille (21) ayant le matériau composite et/ou la composition (22) de scellement ayant l'autre matériau composite est reliée d'une manière conductrice de la chaleur par conduction à un puits (25) de chaleur.
  18. Utilisation d'un composant suivant l'une des revendications 1 à 17 dans un ballast électronique dans lequel une puissance électrique d'entrée est transformée en une puissance électrique de sortie.
  19. Utilisation suivant la revendication 18, dans laquelle le composant est alimenté en une tension alternative à une fréquence dans la plage allant de 100 kHz compris à 200 MHz compris.
  20. Utilisation suivant la revendication 18 ou 19, dans laquelle on utilise une tension alternative allant jusqu'à 2 000 V.
  21. Utilisation suivant la revendication 18 ou 19, dans laquelle on utilise une impulsion de tension ayant une tension alternative allant jusqu'à 40 kV.
EP03787700A 2002-07-19 2003-07-21 Composant inductif et utilisation de celui-ci Expired - Fee Related EP1523748B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10232952 2002-07-19
DE10232952 2002-07-19
PCT/DE2003/002447 WO2004017338A1 (fr) 2002-07-19 2003-07-21 Composant inductif et utilisation de celui-ci

Publications (2)

Publication Number Publication Date
EP1523748A1 EP1523748A1 (fr) 2005-04-20
EP1523748B1 true EP1523748B1 (fr) 2008-04-23

Family

ID=31724044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03787700A Expired - Fee Related EP1523748B1 (fr) 2002-07-19 2003-07-21 Composant inductif et utilisation de celui-ci

Country Status (7)

Country Link
US (1) US7508290B2 (fr)
EP (1) EP1523748B1 (fr)
JP (1) JP2005537636A (fr)
CN (1) CN100538924C (fr)
AU (1) AU2003250792B2 (fr)
DE (1) DE50309696D1 (fr)
WO (1) WO2004017338A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10332842A1 (de) * 2003-07-18 2005-02-10 Siemens Ag Induktives Bauelement mit Kühlvorrichtung und Verwendung des Bauelements
US8183971B2 (en) * 2008-04-10 2012-05-22 Nxp B.V. 8-shaped inductor
JP4661966B2 (ja) * 2009-03-06 2011-03-30 株式会社デンソー 電力変換装置
US8427269B1 (en) 2009-06-29 2013-04-23 VI Chip, Inc. Encapsulation method and apparatus for electronic modules
US8427267B1 (en) * 2009-06-29 2013-04-23 VI Chip, Inc. Encapsulation method and apparatus for electronic modules
US8102236B1 (en) 2010-12-14 2012-01-24 International Business Machines Corporation Thin film inductor with integrated gaps
CN103167657B (zh) * 2011-12-09 2016-03-30 特电株式会社 环状金属件感应加热装置和杯状金属件感应加热装置
FR2996047B1 (fr) * 2012-09-27 2014-09-05 Renault Sa Dispositif inductif limitant les oscillations acoustiques
CN103794332A (zh) * 2012-10-29 2014-05-14 江苏正强电气有限公司 一种用于高铁机车辅助电源变流器系统的高频滤波电感
DE102013208653A1 (de) * 2013-05-10 2014-11-13 Sts Spezial-Transformatoren-Stockach Gmbh & Co. Kg Induktives Bauteil
CA3063452A1 (fr) * 2017-06-15 2018-12-20 Radyne Corporation Utilisation de poudres thermiquement conductrices en tant que materiaux de transfert de chaleur pour composants electriques

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1876451A (en) * 1932-09-06 r gurtler
DE1439441A1 (de) 1963-09-18 1968-12-05 Sits Soc It Telecom Siemens Verlustarme Spulenwicklung fuer eine Induktivitaet
CA898921A (en) * 1968-04-11 1972-04-25 Trench Electric Limited Metalized encapsulated coil and method of making the same
US3855561A (en) * 1971-12-29 1974-12-17 Siemens Ag High frequency coil having an adjustable ferrite pot core
US4546210A (en) * 1982-06-07 1985-10-08 Hitachi, Ltd. Litz wire
SE439857B (sv) 1983-10-27 1985-07-01 Asea Ab Distanshallare mellan ledarlager for en lagerlindning for en transformator eller reaktor samt sett att framstella en sadan distanshallare
JPS61167352A (ja) * 1985-01-21 1986-07-29 Toshiba Corp 磁極の製造方法
JPS61193411A (ja) 1985-02-21 1986-08-27 Hitachi Ltd 薄葉絶縁物とその製造方法およびこの薄葉絶縁物を用いた樹脂モ−ルドコイル
DE3505976A1 (de) * 1985-02-21 1986-08-21 Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen Transformator fuer einen fersehempfaenger
DE3611069A1 (de) 1986-04-03 1987-10-08 Schwabe Gmbh Vorschaltdrossel, insbesondere fuer gasentladungslampen
DE3700488A1 (de) * 1987-01-08 1988-07-21 Klaus Dipl Ing Becker Leistungsuebertrager mit ferromagnetischem kern
JPH01154488A (ja) * 1987-12-09 1989-06-16 Toshiba Corp 電子レンジ用昇圧トランス
DE3821284A1 (de) 1988-06-24 1989-12-28 Electronic Werke Deutschland Transformator fuer ein schaltnetzteil oder die zeilenendstufe in einem fernsehempfaenger
JPH04504643A (ja) 1989-12-12 1992-08-13 ザ スペリオール エレクトリック カンパニー 電気機器
EP0440865A1 (fr) * 1990-02-09 1991-08-14 Asea Brown Boveri Ab Isolation électrique
DE4233898A1 (de) 1992-10-08 1994-04-14 Bosch Gmbh Robert Transformatorwicklung
US5656983A (en) * 1992-11-11 1997-08-12 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Inductive coupler for transferring electrical power
JPH08321425A (ja) 1995-05-24 1996-12-03 Hitachi Metals Ltd アクティブ・フィルタ用チョークコイルおよびアクティブ・フィルタ回路ならびに電源装置
US6253247B1 (en) * 1996-11-21 2001-06-26 Ragula Systems System and method for transmitting a user's data packets concurrently over different telephone lines between two computer networks
US6512437B2 (en) * 1997-07-03 2003-01-28 The Furukawa Electric Co., Ltd. Isolation transformer
US6259347B1 (en) * 1997-09-30 2001-07-10 The United States Of America As Represented By The Secretary Of The Navy Electrical power cooling technique
DE19751548C2 (de) 1997-11-20 2001-03-15 Vogt Electronic Ag Zündtransformator für eine Entladungslampe
DE19854902A1 (de) * 1998-11-27 2000-02-17 Siemens Ag Transformator mit von einer Gleichstromkomponente beaufschlagten Wicklung
JP2000356919A (ja) * 1999-04-15 2000-12-26 Canon Inc 像加熱装置および像加熱用コイル
DE10042283A1 (de) * 2000-08-29 2002-03-14 Fachhochschule Konstanz Fachbe Drosselspule
JP2002208527A (ja) * 2001-01-12 2002-07-26 Toko Inc 漏れ磁束型電力変換トランス

Also Published As

Publication number Publication date
WO2004017338A1 (fr) 2004-02-26
JP2005537636A (ja) 2005-12-08
CN1669097A (zh) 2005-09-14
CN100538924C (zh) 2009-09-09
EP1523748A1 (fr) 2005-04-20
AU2003250792B2 (en) 2007-02-15
US7508290B2 (en) 2009-03-24
US20050206487A1 (en) 2005-09-22
DE50309696D1 (de) 2008-06-05
AU2003250792A1 (en) 2004-03-03

Similar Documents

Publication Publication Date Title
EP2463869B2 (fr) Composant inductif doté de propriétés de noyau améliorées
EP2463871B1 (fr) Noyau de transformateur amorphe
EP1523748B1 (fr) Composant inductif et utilisation de celui-ci
EP2462596B1 (fr) Bobine de self à compensation de courant, et procédé de production d'une bobine de self à compensation de courant
DE3836415A1 (de) Elektromagnetische vorrichtung mit kuehleinrichtung
EP1168384A1 (fr) Composant électronique
EP2428967A1 (fr) Enroulement de transformateur
EP1647037B1 (fr) Composant inductif avec dispositif de refroidissement et utilisation de ce composant
EP2272072B1 (fr) Bobine et procédé de fabrication d une bobine
EP1301931A1 (fr) Inducteur de type i comme microinducteur haute frequence
EP1501106B1 (fr) Noyau en ferrite pour inductance
DE102013111433A1 (de) Planare symmetrische Spule für integrierte HF-Schaltungen
DE4311126C2 (de) Stromkompensierte Mehrfachdrossel in Kompaktbauweise
DE2813026C2 (fr)
WO2020074718A1 (fr) Procédé de fabrication d'un matériau céramique avec des gradients de perméabilité réglables localement, son application dans un procédé de revêtement et son utilisation
DE19627817A1 (de) Flachspule
DE202010018206U1 (de) Drossel
DE19843415A1 (de) Induktives Bauelement mit einem Stabkern
DE10001120C2 (de) Induktionsarmer Elektrolyt-Kondensator
DE102020100190A1 (de) Induktives Bauteil mit einer Betriebsfrequenz im Mittelfrequenzbereich
DE102008017314B4 (de) Induktives Bauelement und elektronische Schaltung zur Ansteuerung einer Leuchte
DE102014106480A1 (de) Streuverlustarme Transformatoren und Herstellungsverfahren für diese
DE102016206929A1 (de) Kleinbauender Transformator für ein Betriebsgerät für Leuchtmittel
DE10261003A1 (de) Elektromagnetischer Übertrager und elektronischer Schaltkreis zum Anschließen einer HID-Lampe
AT8313U1 (de) Transformator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50309696

Country of ref document: DE

Date of ref document: 20080605

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090717

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090713

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100721

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309696

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100721