EP1523748B1 - Induktives bauelement und verwendung des bauelements - Google Patents

Induktives bauelement und verwendung des bauelements Download PDF

Info

Publication number
EP1523748B1
EP1523748B1 EP03787700A EP03787700A EP1523748B1 EP 1523748 B1 EP1523748 B1 EP 1523748B1 EP 03787700 A EP03787700 A EP 03787700A EP 03787700 A EP03787700 A EP 03787700A EP 1523748 B1 EP1523748 B1 EP 1523748B1
Authority
EP
European Patent Office
Prior art keywords
wire winding
component according
core
component
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03787700A
Other languages
English (en)
French (fr)
Other versions
EP1523748A1 (de
Inventor
Martin Honsberg-Riedl
Johann Otto
Eckhard Wolfgang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1523748A1 publication Critical patent/EP1523748A1/de
Application granted granted Critical
Publication of EP1523748B1 publication Critical patent/EP1523748B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/043Fixed inductances of the signal type  with magnetic core with two, usually identical or nearly identical parts enclosing completely the coil (pot cores)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating

Definitions

  • the invention relates to an inductive component for forming a magnetic circuit, comprising at least one wire winding and at least one core with a ferromagnetic core material, wherein the core for interrupting the magnetic circuit has a gap and at least one further gap and the gaps each have a gap width, the is at least 1.0 mm.
  • a use of the device is specified.
  • Out DE 198 84 902 A1 is an initially described inductive component known.
  • the inductive component is a transformer.
  • US 4,885,445 A describes a transformer suitable for high frequency applications.
  • air gaps are provided for the core, which are filled with electrically insulating material.
  • an inductive component in the form of a transformer for a television receiver is known.
  • the core has air gaps with a gap width of about 1 mm.
  • ECGs are used as an electronic voltage and / or current transformer in the lighting area.
  • ECGs have at least one inductive component.
  • the inductive component is, for example, a choke coil or a transformer.
  • the inductive component has a wire winding.
  • the wire winding has a number of turns of electrical conductor for generating a magnetic flux through the current flowing in the conductor.
  • the wire winding also serves to generate a voltage by changing the magnetic induction in the wire winding.
  • the ferromagnetic core material is, for example, a ferrite. The core ensures a closed magnetic circuit.
  • the miniaturization relates in particular to an inductive component of the electronic ballasts.
  • a small size of an inductive component can be achieved with a constant power throughput by a higher switching frequency.
  • a higher switching frequency leads to an increase in the electrical losses and thus to a reduction in the quality of the inductive component.
  • the quality is a measure of an electrical quality of the inductive component.
  • the object of the present invention is to provide an inductive component which has a high quality even with a high applied alternating voltage.
  • an inductive component for forming a magnetic circuit comprising at least one wire winding and at least one core with a ferromagnetic core material, wherein the core for interrupting the magnetic circuit has a gap and at least one further gap and the gaps each have a gap width , which is at least 1.0 mm.
  • the inductive component is characterized in that the gap width (9) is selected from the range of 2.0 mm to 10 mm inclusive. The result is a relatively wide total gap, which is divided into at least two columns.
  • a gap is a desired interruption of the magnetic circuit.
  • the gap width is approximately equal.
  • the extent is, for example, a width, a length or a radius of the gap.
  • the gap has at least partially a non-ferromagnetic material to interrupt the magnetic circuit.
  • the non-ferromagnetic material is, for example, a diamagnetic or paramagnetic material.
  • the magnetic circuit is interrupted at least two places. The interruption takes place through the column.
  • the gap widths cause the magnetic circuit to be interrupted in a length of at least 2 x 2.0 mm.
  • the core consists of at least two parts, which are arranged opposite one another on the columns and are spaced apart from one another by the gap widths.
  • At least one of the gaps is an air gap.
  • the non-ferromagnetic material of the gap is air.
  • another non-ferromagnetic, gaseous material to be arranged in the air gap.
  • a non-ferromagnetic solid or liquid material is conceivable.
  • This material is for example a polymer material.
  • the use of an adhesive with which the parts of the core are glued together is advantageous. The glue does not just lead to one Interruption of the magnetic circuit. It also leads to a cohesive contact between the parts of the core.
  • the wire winding has an inner region and an outer region and the gaps of the core are arranged in the inner region and / or in the outer region of the wire winding.
  • a gap is arranged in the interior and two columns in the outer area.
  • the gaps in the outer area are characterized by the substantially same gap width. It may also be that the gap in the interior of the wire winding has a significantly higher gap width, as the two columns in the outer area. Preferably, however, the gap widths of all gaps are substantially the same.
  • the core can be unbalanced. This means that it can not be transformed into itself by applying a symmetry operation.
  • the core is substantially symmetrical. Essentially, it means that there may be deviations in terms of exact symmetry.
  • the symmetry means those components of the nucleus that are mainly responsible for the function and properties of the nucleus.
  • the symmetrical core is transformed into a point (symmetry center), a straight line (symmetry axis) or a plane (symmetry plane) by reflection.
  • said symmetry elements are arranged in the interior of the wire winding.
  • the symmetry element is, for example, a plane of symmetry which is arranged perpendicular to a winding axis of the wire winding.
  • the winding axis of the wire winding is given by a direction in which the wire is wound.
  • the core consists for example of two parts, which are each converted by the reflection at the plane of symmetry into each other.
  • the plane of symmetry preferably also contains the gaps and the core consists of mutually mirror-inverted shaped parts.
  • the core has an RM6 or equivalent core shape. These core shapes are a combination of an E-core shape with a pot-core shape.
  • the entire wire winding and core component has a substantially symmetrical construction.
  • wire winding and core can be converted into themselves by mirroring at a common mirror plane.
  • Essentially symmetrical means that deviations from the symmetry are conceivable. These deviations refer, for example, to a number or a shape of the turns of the wire winding, a shape of the core, and an arrangement of wire winding and core to each other.
  • the core material of the core is suitable for high frequency.
  • the core material is a ferrite in the form of an M33 core material having a cutoff frequency of about 10 MHz.
  • This core material has manganese and zinc.
  • a K1, K6 or K12 core material is conceivable. These core materials include nickel and zinc.
  • the K6 core material has a cutoff frequency of 7 MHz.
  • the wire winding on a high-frequency strand with a plurality of mutually electrically insulated individual wires is a wire wound or braided from many metal threads (individual wires).
  • the individual wires are isolated from each other to reduce losses due to skin effect and eddy currents.
  • a lower high-frequency loss resistance is achieved in comparison to a strand with individual wires not insulated from one another with the same cross-section.
  • the individual wires have at least one selected from the range of 10 microns up to and including 50 microns single wire diameter.
  • the plurality is in the range of 5 to 100 inclusive selected.
  • the plurality is selected from the range of 10 to 30 inclusive.
  • 10 or more individual wires are arranged to a high-frequency strand. This makes it possible to provide wire windings with a relatively large surface and thus with a relatively low high-frequency loss resistance.
  • the inductive component is a choke coil or a transformer.
  • An inductor is permeable to direct current.
  • alternating current is limited by the choke coil.
  • the choke coil has a high electrical reactance for a high frequency current.
  • the transformer consists of at least two wire windings. But it can also be arranged more than two wire windings to the transformer. Alternatively, the transformer consists of a wire winding, which is divided by an electrical tap into two parts.
  • the inductive component is also cooled.
  • at least one cooling device for cooling the wire winding which has at least one composite material with at least one polymer material and at least one thermally conductive filler.
  • the heat generated in the wire winding during operation of the inductive component can be efficiently dissipated.
  • the efficient dissipation of the heat leads to a relatively small increase in the temperature of the wire winding.
  • the small increase in temperature leads to a relatively small increase in the electrical resistance in the wire winding. This results in an increased compared to an uncooled wire winding good of the inductive component.
  • the composite material preferably consists of an electrically insulating or electrically poorly conductive polymer material with a thermally conductive and electrically poorly conductive filler.
  • the polymer material may comprise a natural and / or artificial polymer.
  • the natural polymer is, for example, rubber.
  • the artificial polymer is a plastic.
  • the polymer material forms as the base material of the composite material a matrix in which the filler is embedded.
  • the filler or the fillers may be powdery or fibrous.
  • a diameter of a filler particle is selected from the ⁇ m range, which ranges from 100 nm to 100 ⁇ m.
  • a degree of filling of the filler in the polymer material is preferably chosen so that a coagulation limit is exceeded. Below the coagulation limit there is a very low probability that individual filler particles will touch each other. This leads to a relatively low specific thermal conductivity coefficient. If the coagulation limit is exceeded, the filler particles touch with relatively high probability. This results in a relatively high specific thermal conductivity coefficient of the composite material.
  • the filler is thermally conductive and preferably also electrically insulating or electrically poorly conductive.
  • the inductive component can also be operated with a relatively high operating voltage.
  • the operating voltage is up to 2000 V.
  • the composite material is resistant to breakdown even at an operating voltage of this magnitude.
  • electrically insulating or electrically poorly conductive filler is particularly suitable a ceramic material.
  • a ceramic one Material with the properties mentioned is, for example, aluminum oxide (Al 2 O 3 ).
  • the composite material of the cooling device is preferably connected directly to the wire winding. A heat transfer away from the wire winding occurs by heat conduction.
  • the cooling device has at least one film with the composite material, which is in direct, thermally conductive contact with the wire winding.
  • the film and the wire winding are connected in such a way that heat conduction from the wire winding to the film can take place.
  • the foil and the wire wrap touch each other.
  • a film thickness (film thickness) of the film is for example 0.22 mm.
  • a specific thermal conductivity coefficient ⁇ of 0.15 K / Wm up to 6.5 K / Wm can be achieved.
  • the dielectric strength can be 1 kV to 6 kV despite the relatively low film thickness.
  • a soft film is used with the composite material.
  • the film is plastically and / or elastically deformable.
  • the wire winding may be approximately positively embedded in the film. A thermal contact surface between the film and the wire winding over which the heat conduction takes place is particularly large.
  • the cooling device has at least one potting compound which has at least one further composite material with at least one further polymer material and at least one further thermally conductive filler and which is in direct, thermally conductive contact with the wire winding and / or the film stands.
  • the composite material and the further composite material may be the same or different. The same applies to individual components of the composite material and of the further composite material.
  • the wire winding and / or the film are partly or completely embedded in the potting compound with the further composite material. Since the other composite material is thermally conductive and by embedding an almost complete positive connection between casting material and wire winding or film is present, the heat from the wire winding and the film on the casting material can be derived very efficiently.
  • the use of the potting compound leads to a homogeneous temperature distribution within the inductive component.
  • the wire winding of the device is cooled homogeneously. This also contributes to an increased quality of the inductive component.
  • a space present between the film and the wire winding and / or between the potting and the wire winding has a thermally conductive material for thermal bridging of the interspace.
  • the gap is preferably completely filled with the thermally conductive material.
  • a thermally conductive material is used, which is additionally electrically insulating.
  • the thermally conductive material is therefore selected in particular from the group ⁇ 1, paste, wax and / or adhesive.
  • the cooling device of the inductive component is designed such that the heat generated in the wire winding during operation of the inductive component can be efficiently dissipated to the outside.
  • a further transport of heat away from the composite material of the cooling device is taken care of.
  • the further transport of the heat takes place for example by convection.
  • a fluid is passed past the cooling device with the composite material, which can absorb the heat.
  • the fluid is for example a liquid or a gas or gas mixture.
  • the further transport of the heat takes place by heat conduction.
  • the film with the composite material and / or the potting compound with the composite material with a heat sink by a_Wärme Arthur is therefore thermally conductively connected in the inductive component.
  • the heat sink is preferably designed such that it can absorb a large amount of heat.
  • the heat capacity of the heat sink is large. It is also conceivable that the heat sink ensures efficient removal of the heat.
  • the heat sink is for example a heat sink made of a material that is characterized by a high thermal conductivity. To maintain the thermal gradient, the heat sink may be cooled by convection.
  • the inductive component is used according to a second aspect of the invention in an electronic ballast, in which an electrical input power is converted into an electrical output. Input power and Output power is usually different.
  • the device is operated with an alternating voltage having a frequency in the range of 100 kHz inclusive up to and including 200 MHz. This frequency range is referred to as high frequency range.
  • an AC voltage of up to 2000 volts is used. It has been shown that with the help of the column, a high quality can be achieved even with a few hundred volts with a frequency of a few MHz. This results in that the inductive component can be miniaturized and still a high power throughput can be achieved with high quality and low internal losses.
  • the inductive component can thus be referred to as a miniaturized HF-HV (high-frequency high-voltage) component.
  • the inductive component can also be used in an ignition transformer for igniting a discharge lamp.
  • the discharge lamp is driven via an electrical circuit with a high alternating voltage (initial voltage).
  • a voltage pulse with an AC voltage of up to 40 kV is used.
  • the component is driven with this high AC voltage for a short time within a few microns (ignition duration).
  • the inductive component 1 is an HF-HV (high-frequency high-voltage) transformer ( FIG. 1 ).
  • the component 1 has a wire winding 3 and a core 4.
  • the wire winding is characterized by a winding axis 12, along which the wire of the wire winding 3 is wound.
  • the wire winding 3 is a high-frequency strand 14 with 30 individual wires.
  • the wire diameter of a single wire is about 30 microns.
  • the core 4 is a ferrite core and consists of a M33 core material.
  • the core has an RM6 core form ( FIGS. 3a and 3b ).
  • the core is a combination of an E-core shape and a pot core shape with a central bore 15.
  • the core 4 has a core-centered gap 7, which is arranged around the central bore 15 in the inner region 10 of the wire winding 3.
  • Two further gaps 8 are arranged in the outer region 11 of the wire winding 3 in each case one of the core legs 6 of the core 4. All three columns 7 and 8 are air gaps.
  • the gap widths of gaps 7 and 8 are substantially equal, each about 3 mm.
  • the core is essentially symmetrical. It consists of two to the mirror plane 13 mirror-symmetrically arranged parts 5, which are arranged opposite one another at the columns 7 and 8 and spaced from each other by the gap widths 9.
  • the mirror plane 13 is located in the three columns 7 and 8.
  • the arrangement is not only the core 4, but also the wire winding 3 arranged substantially symmetrically. The result is an inductive component, which is symmetrical to the mirror plane 13 substantially.
  • FIG. 2 shown voltage diagram is measured at a primary inductance of the RF-HV transformer 1 of 24 uH and a frequency of 2.7 MHz by means of the circular resonance method. It can clearly be seen that even with an effective alternating voltage (U L [V eff ]) of several hundred volts, a relatively high quality of the component can be achieved. Despite the high frequency, the high quality can be achieved with a small size, as is the case with an RM6 core mold.
  • the wire winding 3 of the miniaturized RF-HV transformer is cooled in accordance with further embodiments.
  • a cooling device 20 for cooling the wire winding 3 is present.
  • the cooling device 20 comprises a foil 21 with a thermally conductive composite material.
  • the base material of the composite is a thermally and electrically poorly conductive polymer material.
  • a filler with high thermal and low electrical conductivity is embedded in the polymer material.
  • the film 21 has a film thickness of about 0.22 mm.
  • the specific thermal conductivity coefficient ⁇ is about 4 K / Wm.
  • the electrical dielectric strength reaches up to about 6 kV.
  • the high-frequency strand 14 of the wire winding 3 and the film 21 are wound around a wound body 30 adapted to the RM6 core shape.
  • the film 21 and the wire winding 3 are arranged around the winding body 30 such that the high-frequency strand 14 of the wire winding 3 and the films 21 alternate from the winding body 30 in the radial direction ( FIGS. 4 and 5 ).
  • the used film 21 serves as Intermediate insulating layer of the high-frequency strand 14 of the wire winding 3.
  • An efficient heat conducting path 24 results from the wire winding 3 away in the radial direction. Along the heat conduction path 24, heat which arises during operation of the inductive component 1 in the high-frequency strand 14 is efficiently dissipated.
  • the high-frequency strand 14 of the wire winding 3 and a plurality of films 21 are each radially aligned with the winding body 30. It is a multi-chamber solution realized, which is also referred to as disk winding. Here, too, an efficient dissipation of heat via the heat conduction path 24 is provided.
  • the inductive component 1 or the cooling device 20 of the inductive component 1 is embedded in a potting compound 22 with a further thermally conductive composite material ( FIGS. 4 and 6 ).
  • the potting compound 22 is contacted with a portion of the wire winding 3 thermally conductive directly. This means that the heat can be dissipated via heat conduction via a thermal contact surface between the high-frequency winding 14 of the wire winding 3 and the film 21 or the films 21.
  • the potting compound 22 is thermally conductively connected to the heat sink 25 via heat conduction.
  • the heat sink 25 is a board with a thermally highly conductive material. During operation of the inductive component, a relatively small temperature difference results between the wire winding 3 and the heat sink 25.
  • the heat is further dissipated by a discharge fin 26 having a relatively high coefficient of thermal conductivity ( FIG. 5 ).
  • a discharge fin 26 having a relatively high coefficient of thermal conductivity
  • the heat is transmitted from the films 21 and the wire winding 3 in the direction of the heat sink 25.
  • gaps 27 may be present which reduce the efficiency with which the wire winding 3 is cooled ( FIG. 7 ).
  • These intermediate spaces 27 are filled according to a further embodiment with a thermally conductive and electrically insulating or poorly conductive paste.

Description

  • Die Erfindung betrifft ein induktives Bauelement zur Bildung eines magnetischen Kreises, aufweisend mindestens eine Drahtwicklung und mindestens einen Kern mit einem ferromagnetischen Kernmaterial, wobei der Kern zur Unterbrechung des magnetischen Kreises einen Spalt und mindestens einen weiteren Spalt aufweist und die Spalte jeweils eine Spaltweite aufweisen, die mindestens 1,0 mm beträgt. Daneben wird eine Verwendung des Bauelements angegeben.
  • Aus DE 198 84 902 A1 ist ein eingangs beschriebenes induktives Bauelement bekannt. Das Induktive Bauelement ist ein Transformator.
  • US 4 885 445 A beschreibt einen Transformator, der für Hochfrequenzanwendungen geeignet ist. Bei dem Transformator sind Luftspalte für den Kern vorgesehen, die mit elektrisch isolierenden Material befüllt sind.
  • Aus EP 0 193 057 A2 ist ein induktives Bauelement in Form eines Transformators für einen Fernsehempfänger bekannt. Der Kern weist Luftspalte mit einer Spaltweite von etwa 1 mm auf.
  • Ein elektronisches Vorschaltgerät (EVG) wird als elektronischer Spannungs- und/oder Stromwandler im Beleuchtungsbereich eingesetzt. EVGs weisen mindestens ein induktives Bauelement auf. Das induktive Bauelement ist beispielsweise eine Drosselspule oder ein Transformator. Das induktive Bauelement verfügt über eine Drahtwicklung. Die Drahtwicklung weist eine Anzahl von Windungen eines elektrischen Leiters zur Erzeugung eines magnetischen Flusses durch den in dem Leiter fließenden Strom auf. Die Drahtwicklung dient auch der Erzeugung einer Spannung durch Änderung der magnetischen Induktion in der Drahtwicklung. Zur Vergrößerung der magnetischen Induktion und zur Verringerung eines magnetischen Streuverlusts befindet sich die Drahtwicklung meist auf einem Kern mit ferromagnetischem Material. Das ferromagnetische Kernmaterial ist beispielsweise ein Ferrit. Der Kern sorgt für einen möglichst geschlossenen magnetischen Kreis.
  • Diese EVGs werden zunehmend miniaturisiert. Die Miniaturisierung betrifft insbesondere ein induktives Bauelement der EVGs. Eine kleine Baugröße eines induktiven Bauelements lässt sich bei einem gleichbleibenden Leistungsdurchsatz durch eine höhere Schaltfrequenz erreichen. Eine höhere Schaltfrequenz führt aber zu einer Erhöhung der elektrischen Verluste und damit zu einer Erniedrigung der Güte des induktiven Bauelements. Die Güte ist ein Maß einer elektrischen Qualität des induktiven Bauelements. Infolge der sinkenden Güte kann es bei einer zunehmenden Miniaturisierung des induktiven Bauelements insbesondere bei einer hohen Wechselspannung, mit der das induktive Bauelement betrieben wird, zu einer unzulässig hohen Betriebstemperatur kommen.
  • Aufgabe der vorliegenden Erfindung ist es, ein induktives Bauelement bereitzustellen, das eine hohe Güte auch bei einer hohen anliegenden Wechselspannung aufweist.
  • Die Aufgabe wird gelöst durch ein induktives Bauelement zur Bildung eines magnetischen Kreises, aufweisend mindestens eine Drahtwicklung und mindestens einen Kern mit einem ferromagnetischen Kernmaterial, wobei der Kern zur Unterbrechung des magnetischen Kreises einen Spalt und mindestens einen weiteren Spalt aufweist und die Spalte jeweils eine Spaltweite aufweisen, die mindestens 1,0 mm beträgt. Das induktive Bauelement ist dadurch gekennzeichnet, dass die Spaltweite (9) aus dem Bereich von einschließlich 2,0 mm bis einschließlich 10 mm ausgewählt ist. Es resultiert ein relativ weiter Gesamtspalt, der auf mindestens zwei Spalte aufgeteilt ist.
  • Ein Spalt ist eine gewünschte Unterbrechung des magnetischen Kreises. Vorzugsweise ist dabei über eine gesamte Ausdehnung des Spalts die Spaltweite annähernd gleich. Die Ausdehnung ist beispielsweise eine Breite, eine Länge oder ein Radius des Spalts. Der Spalt weist zur Unterbrechung des magnetischen Kreises zumindest teilweise ein nicht-ferromagnetisches Material auf. Das nicht-ferromagnetische Material ist beispielsweise ein diamagnetisches oder paramagnetisches Material. Erfindungsgemäß wird der magnetische Kreis an mindestens zwei Stellen unterbrochen. Die Unterbrechung erfolgt durch die Spalte. Die Spaltweiten führen dazu, dass der magnetische Kreis in einer Länge von mindestens 2 x 2,0 mm unterbrochen ist. Überraschenderweise hat sich gezeigt, dass trotz einer Ansteuerung des induktiven Bauelements mit einer Wechselspannung von mehreren hundert Volt aufgrund dieser Spalte eine relativ hohe Güte Q erzielbar ist. Daher ist eine kleinere Baugröße des induktiven Bauelements im Vergleich zu einem induktiven Bauelement mit anders ausgestalteten Spalten möglich.
  • In einer besonderen Ausgestaltung besteht der Kern aus mindestens zwei Teilen, die an den Spalten einander gegenüberliegend angeordnet und durch die Spaltweiten voneinander beabstandet sind.
  • Vorzugsweise ist mindestens einer der Spalte ein Luftspalt. Dies bedeutet, dass der durch den Spalt festgelegte Zwischenraum des Kerns Luft enthält. Das nicht-ferromagnetische Material des Spalts ist Luft. Es kann aber auch ein anderes nicht-ferromagnetisches, gasförmiges Material im Luftspalt angeordnet sein. Dem gegenüber ist auch ein nicht-ferromagnetisches festes oder flüssiges Material denkbar. Dieses Material ist beispielsweise ein Polymerwerkstoff. Vorteilhaft ist beispielsweise die Verwendung eines Klebstoffs, mit dem die Teile des Kerns zusammengeklebt sind. Der Klebstoff führt nicht nur zu einer Unterbrechung des magnetischen Kreises. Er führt auch zu einem stoffschlüssigen Kontakt zwischen den Teilen des Kerns.
  • In einer weiteren Ausgestaltung weist die Drahtwicklung einen Innenbereich und einen Außenbereich auf und die Spalte des Kerns sind im Innenbereich und/oder im Außenbereich der Drahtwicklung angeordnet. Beispielsweise ist ein Spalt im Innenbereich und zwei Spalte im Außenbereich angeordnet. Vorzugsweise zeichnen sich die Spalte im Außenbereich durch die im Wesentlichen gleiche Spaltweite aus. Dabei kann es auch sein, dass der Spalt im Innenbereich der Drahtwicklung eine deutlich höhere Spaltweite aufweist, als die beiden Spalte im Außenbereich. Vorzugsweise sind aber die Spaltweiten aller Spalte im Wesentlichen gleich.
  • Der Kern kann unsymmetrisch sein. Dies bedeutet, dass er durch Anwendung einer Symmetrieoperation nicht in sich selbst überführt werden kann. In einer weiteren Ausgestaltung ist der Kern im Wesentlichen symmetrisch. Im Wesentlichen bedeutet, dabei, dass es Abweichungen bezüglich einer exakten Symmetrie geben kann. Darüber hinaus bedeutet im Wesentlichen, dass die Symmetrie solche Bestandteile des Kerns betrifft, die für die Funktion und die Eigenschaften des Kerns hauptsächlich verantwortlich sind. Der symmetrische Kern geht durch Spiegelung an einem Punkt (Symmetriezentrum), an einer Geraden (Symmetrieachse) oder einer Ebene (Symmetrieebene) in sich über. Beispielsweise sind die genannten Symmetrieelemente im Innenraum der Drahtwicklung angeordnet. Das Symmetrieelement ist beispielsweise eine Symmetrieebene, die senkrecht zu einer Wicklungsachse der Drahtwicklung angeordnet ist. Die Wicklungsachse der Drahtwicklung ist gegeben durch eine Richtung, in der der Draht aufgewickelt ist. Der Kern besteht beispielsweise aus zwei Teilen, die durch die Spiegelung an der Symmetrieebene jeweils ineinander übergeführt werden. Die Symmetrieebene enthält dazu vorzugsweise auch die Spalte und der Kern besteht aus zueinander spiegelbildlich geformten Teilen. Beispielsweise verfügt der Kern über eine RM6- oder damit vergleichbare Kernform. Diese Kernformen sind eine Kombination einer E-Kernform mit einer Topf-Kernform.
  • Insbesondere weist das gesamte Bauelement aus Drahtwicklung und Kern einen im Wesentlichen symmetrischen Aufbau auf. Dies bedeutet, dass nicht nur der Kern, sondern auch die Drahtwicklung im Wesentlichen symmetrisch aufgebaut sind. Beispielsweise können Drahtwicklung und Kern durch eine Spiegelung an einer gemeinsamen Spiegelebene in sich selbst überführt werden. Im Wesentlichen symmetrisch bedeutet dabei, dass durchaus auch Abweichungen von der Symmetrie vorstellbar sind. Diese Abweichungen betreffen beispielsweise eine Anzahl oder eine Form der Windungen der Drahtwicklung, eine Form des Kerns sowie eine Anordnung von Drahtwicklung und Kern zueinander.
  • Insbesondere ist das Kernmaterial des Kerns hochfrequenztauglich. Vorzugsweise ist das Kernmaterial ein Ferrit in Form eines M33-Kernmaterials mit einer Grenzfrequenz von etwa 10 MHz. Dieses Kernmaterial weist Mangan und Zink auf. Ebenso ist ein K1, K6 oder K12-Kernmaterial denkbar. Diese Kernmaterialien weisen Nickel und Zink auf. Das K6-Kernmaterial weist beispielsweise eine Grenzfrequenz von 7 MHz auf.
  • In einer besonderen Ausgestaltung weist die Drahtwicklung eine Hochfrequenzlitze mit einer Vielzahl von voneinander elektrisch isolierten Einzeldrähten auf. Eine Litze ist ein aus vielen Metallfäden (Einzeldrähten) gewundener oder geflochtener Draht. Bei einer Hochfrequenzlitze sind die Einzeldrähte gegeneinander isoliert, um Verluste durch Skineffekt und Wirbelströme zu reduzieren. Dadurch wird im Vergleich zu einer Litze mit nicht voneinander isolierten Einzeldrähten bei gleichem Querschnitt ein niedrigerer Hochfrequenzverlustwiderstand erzielt. Insbesondere weisen die Einzeldrähte zumindest einen aus dem Bereich von einschließlich 10 µm bis einschließlich 50 µm ausgewählten Einzeldrahtdurchmesser aus. Insbesondere ist die Vielzahl aus dem Bereich von einschließlich 5 bis einschließlich 100 ausgewählt. Vorzugsweise ist die Vielzahl aus dem Bereich von einschließlich 10 bis einschließlich 30 ausgewählt. Beispielsweise sind 10 und mehr Einzeldrähte zu einer Hochfrequenzlitze angeordnet. Damit lassen sich Drahtwicklungen mit einer relativ großen Oberfläche und damit mit einem relativ niedrigen Hochfrequenzverlustwiderstand bereitstellen.
  • Insbesondere ist das induktive Bauelement eine Drosselspule oder ein Transformator. Eine Drosselspule ist für Gleichstrom durchlässig. Dagegen wird Wechselstrom durch die Drosselspule begrenzt. Die Drosselspule weist für einen Strom hoher Frequenz einen hohen elektrischen Blindwiderstand auf. Der Transformator besteht aus mindestens zwei Drahtwicklungen. Es können aber auch mehr als zwei Drahtwicklungen zum Transformator angeordnet sein. Alternativ dazu besteht der Transformator aus einer Drahtwicklung, die durch einen elektrischen Abgriff in zwei Teile unterteilt ist.
  • Um die bereits durch die beschriebene strukturelle Maßnahme erzielbare hohe Güte weiter zu erhöhen, wird das induktive Bauelement zudem gekühlt. Dazu ist gemäß einer besonderen Ausgestaltung mindestens eine Kühlvorrichtung zum Kühlen der Drahtwicklung vorhanden, die mindestens einen Verbundwerkstoff mit mindestens einem Polymerwerkstoff und mindestens einem thermisch leitfähigen Füllstoff aufweist.
  • Mit Hilfe der Kühlvorrichtung kann die in der Drahtwicklung im Betrieb des induktiven Bauelements entstehende Wärme effizient abgeleitet wird. Durch das effiziente Ableiten der Wärme kommt es zu einer relativ geringen Temperaturerhöhung der Drahtwicklung. Die geringe Temperaturerhöhung führt zu einer relativ geringen Erhöhung des elektrischen Widerstands in der Drahtwicklung. Es resultiert eine im Vergleich zu einer ungekühlten Drahtwicklung erhöhte Gute des induktiven Bauelements.
  • Der Verbundwerkstoff besteht vorzugsweise aus einem elektrisch isolierenden beziehungsweise elektrisch schlecht leitenden Polymerwerkstoff mit einem thermisch leitfähigen und elektrisch schlecht leitenden Füllstoff. Der Polymerwerkstoff kann ein natürliches und/oder künstliches Polymer aufweisen. Das natürliche Polymer ist beispielsweise Kautschuk. Das künstliche Polymer ist ein Kunststoff.
  • Der Polymerwerkstoff bildet dabei als Basismaterial des Verbundwerkstoffes eine Matrix, in die der Füllstoff eingebettet ist. Dabei können mehrere Füllstoffe vorhanden sein. Der Füllstoff kann bzw. die Füllstoffe können pulverförmig oder faserförmig sein. Ein Durchmesser eines Füllstoffpartikels ist aus dem µm-Bereich ausgewählt, der von 100 nm bis 100 µm reicht. Ein Füllgrad des Füllstoffes im Polymerwerkstoff ist dabei vorzugsweise so gewählt, dass eine Koagulationsgrenze überschritten wird. Unterhalb der Koagulationsgrenze ist die Wahrscheinlichkeit dafür sehr gering, dass sich einzelne Füllstoffpartikel berühren. Dies führt zu einem relativ niedrigen spezifischen Wärmeleitfähigkeitskoeffizienten. Wenn die Koagulationsgrenze überschritten wird, berühren sich die Füllstoffpartikel mit relativ großer Wahrscheinlichkeit. Daraus ergibt sich ein relativ hoher spezifischer Wärmeleitfähigkeitskoeffizient des Verbundwerkstoffs.
  • Der Füllstoff ist thermisch leitfähig und vorzugsweise auch elektrisch isolierend bzw. elektrisch schlecht leitend. Dies führt dazu, dass das induktive Bauelement auch mit einer relativ hohen Betriebsspannung betrieben werden kann. Beispielsweise beträgt die Betriebsspannung bis zu 2000 V. Der Verbundwerkstoff ist auch bei einer Betriebsspannung in dieser Größenordnung durchschlagsfest. Als thermisch leitfähiger und gleichzeitig elektrisch isolierender beziehungsweise elektrisch schlecht leitender Füllstoff eignet besonders ein keramischer Werkstoff. Ein keramischer Werkstoff mit den genannten Eigenschaften ist beispielsweise Aluminiumoxid (Al2O3).
  • Zu einem effizienten Abtransport von Wärme, die im Betrieb des induktiven Bauelements in der Drahtwicklung entsteht, ist der Verbundwerkstoff der Kühlvorrichtung vorzugsweise direkt mit der Drahtwicklung verbunden. Ein Wärmetransport von der Drahtwicklung weg erfolgt durch Wärmeleitung.
  • In einer besonderen Ausgestaltung weist die Kühlvorrichtung mindestens eine Folie mit dem Verbundwerkstoff auf, die mit der Drahtwicklung in direktem, thermisch leitfähigen Kontakt steht. Die Folie und die Drahtwicklung sind derart verbunden, dass eine Wärmeleitung von der Drahtwicklung zur Folie hin stattfinden kann. Die Folie und die Drahtwicklung berühren sich einander. Eine Foliedicke (Folienstärke) der Folie beträgt beispielsweise 0,22 mm. In Abhängigkeit vom Verbundwerkstoff (Art des Polymerwerkstoffes, Art und Füllgrad des Füllstoffes, etc,) ist dabei ein spezifischer Wärmeleitfähigkeitskoeffizient λ vom 0,15 K/Wm bis hin zu 6,5 K/Wm erreichbar. Die Spannungsfestigkeit kann trotz der relativ geringen Foliedicke dabei 1 kV bis 6 kV betragen.
  • Um eine effiziente Wärmeableitung durch die Kühlvorrichtung zu gewährleisten, wird insbesondere eine weiche Folie mit dem Verbundwerkstoff verwendet. Die Folie ist plastisch und/oder elastisch verformbar. Die Drahtwicklung kann näherungsweise formschlüssig in die Folie eingebettet sein. Eine thermische Kontaktfläche zwischen der Folie und der Drahtwicklung, über die die Wärmeleitung stattfindet, ist dabei besonders groß.
  • In einer besonderen Ausgestaltung weist die Kühlvorrichtung mindestens eine Vergussmasse auf, die mindestens einen weiteren Verbundwerkstoff mit mindestens einem weiteren Polymerwerkstoff und mindestens einem weiteren thermisch leitfähigen Füllstoff aufweist und die mit der Drahtwicklung und/oder der Folie in direktem, thermisch leitfähigen Kontakt steht. Der Verbundwerkstoff und der weitere Verbundwerkstoff können gleich oder verschieden sein. Gleiches gilt für einzelne Komponenten des Verbundwerkstoffs und des weiteren Verbundwerkstoffs. Die Drahtwicklung und/oder die Folie sind zum Teil oder ganz in die Vergussmasse mit dem weiteren Verbundwerkstoff eingebettet. Da der weitere Verbundwerkstoff thermisch leitfähig ist und durch das Einbetten ein nahezu kompletter Formschluss zwischen Gussmasse und Drahtwicklung bzw. Folie vorliegt, kann die Wärme von der Drahtwicklung und der Folie über die Gussmasse sehr effizient abgeleitet werden. Durch die Verwendung der Vergussmasse kommt es darüber hinaus zu einer homogenen Temperaturverteilung innerhalb des induktiven Bauelements. Die Drahtwicklung des Bauelements wird homogen gekühlt. Dies trägt ebenfalls zu einer erhöhten Güte des induktiven Bauelements bei.
  • Sowohl bei der Folie als auch bei der Vergussmasse ist es möglich, dass zwischen Vergussmasse, Folie und Drahtwicklung Zwischenräume (Hohlräume) vorhanden sind, die mit Luft gefüllt sind und daher zu einer thermischen Isolierung der Vergussmasse, Folie und der Drahtwicklung voneinander beitragen. Eine effiziente Ableitung von Wärme ist aufgrund der Zwischenräume nicht möglich. In einer besonderen Ausgestaltung weist daher ein zwischen der Folie und der Drahtwicklung und/oder zwischen dem Verguss und der Drahtwicklung vorhandener Zwischenraum ein thermisch leitfähiges Material zur thermischen Überbrückung des Zwischenraums auf. Der Zwischenraum ist vorzugsweise vollständig mit dem thermisch leitfähigen Material ausgefüllt. Dies führt zu einer verbesserten Wärmeableitung von der Drahtwicklung weg. Vorzugsweise wird dazu ein thermisch leitfähiges Material verwendet, das zusätzlich elektrisch isolierend ist. Das thermisch leitfähige Material ist daher insbesondere aus der Gruppe Ö1, Paste, Wachs und/oder Klebstoff ausgewählt. Mit diesen thermisch leitfähigen und gleichzeitig elektrisch isolierenden Materialien ist gewährleistet, dass auch bei Verwendung von hohen Betriebsspannungen eine dafür notwendige Spannungsfestigkeit gegeben ist.
  • Die Kühlvorrichtung des induktiven Bauelements ist derart ausgestaltet, dass die in der Drahtwicklung im Betrieb des induktiven Bauelements entstehende Wärme effizient nach außen abgeführt werden kann. Dazu wird für einen Weitertransport der Wärme vom Verbundwerkstoff der Kühlvorrichtung weg gesorgt. Der Weitertransport der Wärme erfolgt beispielsweise durch Konvektion. Dazu wird an der Kühlvorrichtung mit dem Verbundwerkstoff ein Fluid vorbeigeleitet, das die Wärme aufnehmen kann. Das Fluid ist beispielsweise eine Flüssigkeit oder ein Gas bzw. Gasgemisch.
  • Vorzugsweise erfolgt der Weitertransport der Wärme durch Wärmeleitung. In einer besonderen Ausgestaltung ist daher bei dem induktiven Bauelement die Folie mit dem Verbundwerkstoff und/oder die Vergussmasse mit dem Verbundwerkstoff mit einer Wärmesenke durch eine_Wärmeleitung thermisch leitend verbunden. Mit Hilfe der wärmesenke wird dafür gesorgt, dass im Betrieb des induktiven Bauelements ein möglichst kleiner Temperaturunterschied zwischen der Drahtwicklung, der Kühlvorrichtung und der Wärmesenke vorhanden ist. Dazu ist die Wärmesenke vorzugsweise derart ausgestaltet, dass sie eine große Wärmemenge aufnehmen kann. Die Wärmekapazität der Wärmesenke ist groß. Denkbar ist auch, dass bei der Wärmesenke für einen effizienten Abtransport der Wärme gesorgt ist. Die Wärmesenke ist beispielsweise ein Kühlkörper aus einem Material, das sich durch eine hohe thermische Leitfähigkeit auszeichnet. Zum Aufrechterhalten des Wärmegradienten kann der Kühlkörper kann durch Konvektion gekühlt werden.
  • Das induktive Bauelement wird gemäß einem zweiten Aspekt der Erfindung in einem elektronischen Vorschaltgerät verwendet, bei dem eine elektrische Eingangsleistung in eine elektrische Ausgangsleistung umgewandelt wird. Eingangsleistung und Ausgangsleistung sind normalerweise unterschiedlich. Insbesondere wird dabei das Bauelement mit einer Wechselspannung mit einer Frequenz aus dem Bereich von einschließlich 100 kHz bis einschließlich 200 MHz betrieben. Dieser Frequenzbereich wird als Hochfrequenzbereich bezeichnet.
  • In einer besonderen Ausgestaltung wird eine Wechselspannung von bis zu 2000 Volt verwendet. Es hat sich gezeigt, dass sich mit Hilfe der Spalte auch bei einigen hundert Volt mit einer Frequenz von einigen MHz eine hohe Güte erzielen lässt. Dies führt dazu, dass das induktive Bauelement miniaturisiert werden kann und trotzdem ein hoher Leistungsdurchsatz bei hoher Güte und niedrigen inneren Verlusten erreicht werden kann. Das induktive Bauelement kann somit als ein miniaturisiertes HF-HV (Hochfrequenz-Hochvolt)-Bauelement bezeichnet werden.
  • Das induktive Bauelement kann auch in einem Zündtrafo zum Zünden einer Entladungslampe eingesetzt werden. Zum Zünden der Entladungslampe wird die Entladungslampe über eine elektrische Schaltung mit einer hohen Wechselspannung (Initialspannung) angesteuert. In einer weiteren Ausgestaltung wird daher ein Spannungspuls mit einer Wechselspannung von bis zu 40 kV verwendet. Das Bauelement wird mit dieser hohen Wechselspannung kurzzeitig innerhalb weniger µm (Zünddauer) angesteuert.
  • Anhand mehrerer Ausführungsbeispiele und der dazugehörigen Figuren wird die Erfindung näher vorgestellt. Die Figuren sind schematisch und stellen keine maßstabsgetreuen Abbildungen dar.
  • Figur 1
    zeigt ein induktives Bauelement von der Seite.
    Figur 2
    zeigt ein Gütespannungsdiagramm des induktiven Bauelements.
    Figuren 3a und 3b
    zeigen eine RM-Bauform des Kerns des induktiven Bauelements von oben und im Querschnitt entlang der Verbindungslinie I-I.
    Figuren 4 bis 6
    zeigen das induktive Bauelement aus Figur 1 mit jeweils einer Kühlvorrichtung in einem seitlichen Querschnitt.
    Figur 7
    zeigt einen Ausschnitt des induktiven Bauelements mit der Kühlvorrichtung in einem seitlichen Querschnitt.
  • Das induktive Bauelement 1 ist ein HF-HV-(Hochfrequenz-Hochvolt)Transformator (Figur 1). Das Bauelement 1 weist eine Drahtwicklung 3 und einen Kern 4 auf. Die Drahtwicklung zeichnet sich durch eine Wicklungsachse 12 aus, entlang der der Draht der Drahtwicklung 3 gewickelt ist. Die Drahtwicklung 3 ist eine Hochfrequenzlitze 14 mit 30 Einzeldrähten. Der Drahtdurchmesser eines Einzeldrahtes beträgt etwa 30 µm. Der Kern 4 ist ein Ferritkern und besteht aus einem M33-Kernmaterial. Der Kern weist eine RM6-Kernform auf (Figuren 3a und 3b). Der Kern ist eine Kombination einer E-Kernform und einer Topf-Kernform mit einer mittigen Bohrung 15. Der Kern 4 weist einen kernmittigen Spalt 7 auf, der um die mittige Bohrung 15 im Innenbereich 10 der Drahtwicklung 3 angeordnet ist. Zwei weitere Spalte 8 sind im Außenbereich 11 der Drahtwicklung 3 in jeweils einem der Kernschenkel 6 des Kerns 4 angeordnet. Alle drei Spalte 7 und 8 sind Luftspalte. Die Spaltweiten der Spalte 7 und 8 sind mit jeweils etwa 3 mm im Wesentlichen gleich.
  • Der Kern ist im Wesentlichen symmetrisch. Er besteht aus zwei zur Spiegelebene 13 spiegelsymmetrisch angeordneten Teilen 5, die an den Spalten 7 und 8 einander gegenüberliegend angeordnet und durch die Spaltweiten 9 voneinander beabstandet sind. Die Spiegelebene 13 befindet sich in den drei Spalten 7 und 8. Durch die Anordnung ist aber nicht nur der Kern 4, sondern auch die Drahtwicklung 3 im Wesentlichen symmetrisch angeordnet. Es resultiert ein induktives Bauelement, das im Wesentlichen zur Spiegelebene 13 symmetrisch ist.
  • Das in Figur 2 gezeigte Gütespannungsdiagramm ist bei einer Primärinduktivität des HF-HV-Transformators 1 von 24 µH und einer Frequenz von 2,7 MHz mit Hilfe des Kreisresonanzverfahrens gemessen. Deutlich zu sehen ist, dass auch bei einer effektiven Wechselspannung (UL[Veff]) von mehreren hundert Volt eine relativ hohe Güte des Bauteils erzielbar ist. Die hohe Güte ist trotz hoher Frequenz bei einer kleinen Baugröße, wie sie bei einer RM6-Kernform gegeben ist, erzielbar.
  • Die Drahtwicklung 3 des miniaturisierten HF-HV-Transformators wird gemäß weiterer Ausführungsformen gekühlt. Dazu ist eine Kühlvorrichtung 20 zum Kühlen der Drahtwicklung 3 vorhanden.
  • Gemäß einen ersten Ausführungsform weist die Kühlvorrichtung 20 eine Folien 21 mit einem thermisch leitenden Verbundwerkstoff. Das Basismaterial des Verbundwerkstoffs ist ein thermisch und elektrisch schlecht leitender Polymerwerkstoff. In dem Polymerwerkstoff ist ein Füllstoff mit hoher thermischer und niedriger elektrischer Leitfähigkeit eingebettet. Die Folie 21 weist eine Foliendicke von etwa 0,22 mm auf. Der spezifische Wärmeleitfähigkeitskoeffizient λ beträgt etwa 4 K/Wm. Die elektrische Spannungsfestigkeit reicht bis etwa 6 kV.
  • Die Hochfrequenzlitze 14 der Drahtwicklung 3 und die Folie 21 sind um einen an die RM6-Kernform angepassten Wickelkörper 30 gewickelt. Dabei sind die Folie 21 und die Drahtwicklung 3 derart um den Wickelkörper 30 angeordnet, dass sich die Hochfrequenzlitze 14 er Drahtwicklung 3 und die Folien 21 ausgehend vom Wickelkörper 30 in radialer Richtung abwechseln (Figuren 4 und 5). Die verwendete Folien 21 dient als Zwischenisolationsschicht der Hochfrequenzlitze 14 der Drahtwicklung 3. Es resultiert ein effizienter Wärmeleitpfad 24 von der Drahtwicklung 3 weg in der radialen Richtung. Entlang dem Wärmeleitpfad 24 wird Wärme, die im Betrieb des induktiven Bauelements 1 in der Hochfrequenzlitze 14 entsteht, effizient abgeleitet.
  • Gemäß einer dazu alternativen Ausführungsform sind die Hochfrequenzlitze 14 der Drahtwicklung 3 und mehrere Folien 21 jeweils für sich radial zum Wickelkörper 30 ausgerichtet. Es ist eine Vielkammerlösung realisiert, die auch als Scheibenwicklung bezeichnet wird. Auch hier ist für eine effiziente Ableitung der Wärme über den Wärmeleitpfad 24 gesorgt.
  • Zur weiteren Ableitung der Wärme ist das induktive Bauelement 1 bzw. die Kühlvorrichtung 20 des induktiven Bauelements 1 in eine Vergussmasse 22 mit einem weiteren thermisch leitfähigen Verbundwerkstoff eingebettet (Figuren 4 und 6). Die Vergussmasse 22 ist mit einem Teil der Drahtwicklung 3 thermisch leitend direkt kontaktiert. Dies bedeutet, dass über eine thermische Kontaktfläche zwischen der Hochfrequenzlizte 14 der Drahtwicklung 3 und der Folie 21 bzw. den Folien 21 die Wärme über Wärmeleitung abgeleitet werden kann. Zum effizienten Ableiten der Wärme ist die Vergussmasse 22 mit der Wärmsenke 25 über Wärmeleitung thermisch leitend verbunden. Die Wärmesenke 25 ist eine Platine mit einem thermisch hochleitfähigen Material. Es resultiert im Betrieb des induktiven Bauelements eine relativ kleine Temperaturdifferenz zwischen der Drahtwicklung 3 und der Wärmesenke 25.
  • Alternativ zur Vergussmasse 22 erfolgt das weitere Ableiten der Wärme durch eine Ableitfinne 26 mit einem relativ hohen Wärmeleitfähigkeitskoeffizienten (Figur 5). Über die Ableitfinne 26, die über eine Distanzkeramik 28 mit relativ hohem Wärmeleitkoeffizienten mit den Folien 21 verbunden ist, wird die Wärme von den Folien 21 bzw. der Drahtwicklung 3 in Richtung Wärmesenke 25 weitergeleitet.
  • Sowohl im Falle der Vergussmasse 22 als auch im Falle der Folie 21 können Zwischenräume 27 vorhanden sein, die die Effizienz verringern, mit der die Drahtwicklung 3 gekühlt wird (Figur 7). Diese Zwischenräume 27 werden gemäß einer weiteren Ausführungsform mit einer thermisch leitfähigen und elektrisch isolierenden beziehungsweise schlecht leitenden Paste gefüllt.

Claims (21)

  1. Induktives Bauelement (1) zur Bildung eines magnetischen Kreises, aufweisend mindestens eine Drahtwicklung (3) und mindestens einen Kern (4) mit einem ferromagnetischen Kernmaterial, wobei der Kern (4) zur Unterbrechung des magnetischen Kreises einen Spalt (7, 8) und mindestens einen weiteren Spalt (8, 7) aufweist und die Spalte (7, 8) jeweils eine Spaltweite (9) aufweisen, die mindestens 1,0 mm beträgt,
    dadurch gekenntzeichnet, dass die Spaltweite (9) aus dem Bereich von einschließlich 2,0 mm bis einschließlich 10 mm ausgewählt ist.
  2. Bauelement nach Anspruch 1, wobei der Kern (4) aus mindestens zwei Teilen (5) besteht, die an den Spalten (7, 8) einander gegenüber liegend angeordnet und durch die Spaltweiten (9) voneinander beabstandet sind.
  3. Bauelement nach Anspruch 1 oder 2, wobei zumindest einer der Spalte (7, 8) ein Luftspalt ist.
  4. Bauelement nach einem der Ansprüche 1 bis 3, wobei die Spalte (7, 8) eine im Wesentlichen gleiche Spaltweite (9) aufweisen.
  5. Bauelement nach einem der Ansprüche 1 bis 4, wobei die Drahtwicklung (3) einen Innenbereich (10) und einen Außenbereich (11) aufweist und die Spalte (7, 8) des Kerns (4) im Innenbereich (10) und/oder im Außenbereich (11) der Drahtwicklung (3) angeordnet sind.
  6. Bauelement nach einem der Ansprüche 1 bis 5, wobei der Kern (4) im Wesentlichen symmetrisch ist.
  7. Bauelement nach einem der Ansprüche 1 bis 6, wobei das Kernmaterial des Kerns (4) hochfrequenztauglich ist.
  8. Bauelement nach einem der Ansprüche 1 bis 7, wobei die Drahtwicklung (3) eine Hochfrequenzlitze (14) mit einer Vielzahl von voneinander elektrisch isolierten Einzeldrähten aufweist.
  9. -Bauelement nach Anspruch 8, wobei die Einzeldrähte zumindest einen aus dem Bereich von einschließlich 10 µm bis'einschließlich 50 µm ausgewählten Einzeldrahtdurchmesser aufweisen.
  10. Bauelement nach Anspruch 8 oder 9, wobei die Vielzahl aus dem Bereich von einschließlich 5 bis einschließlich 100 ausgewählt ist.
  11. Bauelement nach einem der Ansprüche 1 bis 10, wobei das Bauelement eine Drosselspule oder ein Transformator ist.
  12. Bauelement nach einem der Ansprüche 1 bis 11, wobei mindestens eine Kühlvorrichtung (20) zum Kühlen der Drahtwicklung (3) vorhanden ist, die mindestens einen Verbundwerkstoff mit mindestens einem Polymerwerkstoff und mindestens einem thermisch leitfähigen Füllstoff aufweist.
  13. Bauelement nach Anspruch 12, wobei die Kühlvorrichtung (20) mindestens eine Folie (21) mit dem Verbundwerkstoff aufweist, die mit der Drahtwicklung in direktem, thermisch leitfähigen Kontakt steht.
  14. Bauelement nach Anspruch 12 oder 13, wobei die Kühlvorrichtung (20) mindestens eine Vergussmasse (22) aufweist, die mindestens einen weiteren Verbundwerkstoff mit mindestens einem weiteren Polymerwerkstoff und mindestens einem weiteren thermisch leitfähigen Füllstoff aufweist und die mit der Drahtwicklung (3) und/oder der Folie (21) in direktem, thermisch leitfähigen Kontakt steht.
  15. Bauelement nach einem der Ansprüche 12 bis 14, wobei ein zwischen der Folie (21) und der Drahtwicklung (3) und/oder der Vergussmasse (22) und der Drahtwicklung (3) vorhandener Zwischenraum (27) ein thermisch leitfähiges Material zur thermischen überbrückung des Zwischenraums (27) aufweist.
  16. Bauelement nach Anspruch 15, wobei das thermisch leitfähige Material aus der Gruppe Öl, Paste, Wachs und/oder Klebstoff ausgewählt ist.
  17. Bauelement nach einem der Ansprüche 12 bis 16, wobei die Folie (21) mit dem Verbundwerkstoff und/oder die Vergussmasse (22) mit dem weiteren Verbundwerkstoff mit einer Wärmesenke (25) durch eine Wärmeleitung thermisch leitend verbunden ist.
  18. Verwendung eines Bauelements nach einem der Ansprüche 1 bis 17 in einem elektronischen Vorschaltgerät, bei dem eine elektrische Eingangsleistung in eine elektrische Ausgangsleistung umgewandelt wird.
  19. Verwendung nach Anspruch 18, wobei das Bauelement mit einer Wechselspannung mit einer Frequenz aus dem Bereich von einschließlich 100 kHz bis einschließlich 200 MHz betrieben wird.
  20. Verwendung nach Anspruch 18 oder 19, wobei eine Wechselspannung bis zu 2000 V verwendet wird.
  21. Verwendung nach Anspruch 18 oder 19, wobei ein Spannungspuls mit einer Wechselspannung von bis zu 40 kV verwendet wird.
EP03787700A 2002-07-19 2003-07-21 Induktives bauelement und verwendung des bauelements Expired - Fee Related EP1523748B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10232952 2002-07-19
DE10232952 2002-07-19
PCT/DE2003/002447 WO2004017338A1 (de) 2002-07-19 2003-07-21 Induktives bauelement und verwendung des bauelements

Publications (2)

Publication Number Publication Date
EP1523748A1 EP1523748A1 (de) 2005-04-20
EP1523748B1 true EP1523748B1 (de) 2008-04-23

Family

ID=31724044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03787700A Expired - Fee Related EP1523748B1 (de) 2002-07-19 2003-07-21 Induktives bauelement und verwendung des bauelements

Country Status (7)

Country Link
US (1) US7508290B2 (de)
EP (1) EP1523748B1 (de)
JP (1) JP2005537636A (de)
CN (1) CN100538924C (de)
AU (1) AU2003250792B2 (de)
DE (1) DE50309696D1 (de)
WO (1) WO2004017338A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10332842A1 (de) * 2003-07-18 2005-02-10 Siemens Ag Induktives Bauelement mit Kühlvorrichtung und Verwendung des Bauelements
WO2009125324A1 (en) * 2008-04-10 2009-10-15 Nxp B.V. 8-shaped inductor
JP4661966B2 (ja) * 2009-03-06 2011-03-30 株式会社デンソー 電力変換装置
US8427269B1 (en) 2009-06-29 2013-04-23 VI Chip, Inc. Encapsulation method and apparatus for electronic modules
US8427267B1 (en) * 2009-06-29 2013-04-23 VI Chip, Inc. Encapsulation method and apparatus for electronic modules
US8102236B1 (en) 2010-12-14 2012-01-24 International Business Machines Corporation Thin film inductor with integrated gaps
CN203027520U (zh) * 2011-12-09 2013-06-26 特电株式会社 环状金属件感应加热装置和杯状金属件感应加热装置
FR2996047B1 (fr) * 2012-09-27 2014-09-05 Renault Sa Dispositif inductif limitant les oscillations acoustiques
CN103794332A (zh) * 2012-10-29 2014-05-14 江苏正强电气有限公司 一种用于高铁机车辅助电源变流器系统的高频滤波电感
DE102013208653A1 (de) * 2013-05-10 2014-11-13 Sts Spezial-Transformatoren-Stockach Gmbh & Co. Kg Induktives Bauteil
CA3063452A1 (en) * 2017-06-15 2018-12-20 Radyne Corporation Use of thermally conductive powders as heat transfer materials for electrical components

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1876451A (en) * 1932-09-06 r gurtler
DE1439441A1 (de) 1963-09-18 1968-12-05 Sits Soc It Telecom Siemens Verlustarme Spulenwicklung fuer eine Induktivitaet
CA898921A (en) * 1968-04-11 1972-04-25 Trench Electric Limited Metalized encapsulated coil and method of making the same
US3855561A (en) * 1971-12-29 1974-12-17 Siemens Ag High frequency coil having an adjustable ferrite pot core
US4546210A (en) * 1982-06-07 1985-10-08 Hitachi, Ltd. Litz wire
SE439857B (sv) 1983-10-27 1985-07-01 Asea Ab Distanshallare mellan ledarlager for en lagerlindning for en transformator eller reaktor samt sett att framstella en sadan distanshallare
JPS61167352A (ja) * 1985-01-21 1986-07-29 Toshiba Corp 磁極の製造方法
JPS61193411A (ja) 1985-02-21 1986-08-27 Hitachi Ltd 薄葉絶縁物とその製造方法およびこの薄葉絶縁物を用いた樹脂モ−ルドコイル
DE3505976A1 (de) 1985-02-21 1986-08-21 Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen Transformator fuer einen fersehempfaenger
DE3611069A1 (de) 1986-04-03 1987-10-08 Schwabe Gmbh Vorschaltdrossel, insbesondere fuer gasentladungslampen
DE3700488A1 (de) * 1987-01-08 1988-07-21 Klaus Dipl Ing Becker Leistungsuebertrager mit ferromagnetischem kern
JPH01154488A (ja) * 1987-12-09 1989-06-16 Toshiba Corp 電子レンジ用昇圧トランス
DE3821284A1 (de) 1988-06-24 1989-12-28 Electronic Werke Deutschland Transformator fuer ein schaltnetzteil oder die zeilenendstufe in einem fernsehempfaenger
JPH04504643A (ja) 1989-12-12 1992-08-13 ザ スペリオール エレクトリック カンパニー 電気機器
EP0440865A1 (de) * 1990-02-09 1991-08-14 Asea Brown Boveri Ab Elektrische Isolierung
DE4233898A1 (de) 1992-10-08 1994-04-14 Bosch Gmbh Robert Transformatorwicklung
US5656983A (en) * 1992-11-11 1997-08-12 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Inductive coupler for transferring electrical power
JPH08321425A (ja) 1995-05-24 1996-12-03 Hitachi Metals Ltd アクティブ・フィルタ用チョークコイルおよびアクティブ・フィルタ回路ならびに電源装置
US6253247B1 (en) * 1996-11-21 2001-06-26 Ragula Systems System and method for transmitting a user's data packets concurrently over different telephone lines between two computer networks
US6512437B2 (en) * 1997-07-03 2003-01-28 The Furukawa Electric Co., Ltd. Isolation transformer
US6259347B1 (en) 1997-09-30 2001-07-10 The United States Of America As Represented By The Secretary Of The Navy Electrical power cooling technique
DE19751548C2 (de) 1997-11-20 2001-03-15 Vogt Electronic Ag Zündtransformator für eine Entladungslampe
DE19854902A1 (de) 1998-11-27 2000-02-17 Siemens Ag Transformator mit von einer Gleichstromkomponente beaufschlagten Wicklung
JP2000356919A (ja) 1999-04-15 2000-12-26 Canon Inc 像加熱装置および像加熱用コイル
DE10042283A1 (de) 2000-08-29 2002-03-14 Fachhochschule Konstanz Fachbe Drosselspule
JP2002208527A (ja) * 2001-01-12 2002-07-26 Toko Inc 漏れ磁束型電力変換トランス

Also Published As

Publication number Publication date
CN100538924C (zh) 2009-09-09
CN1669097A (zh) 2005-09-14
AU2003250792A1 (en) 2004-03-03
EP1523748A1 (de) 2005-04-20
DE50309696D1 (de) 2008-06-05
JP2005537636A (ja) 2005-12-08
US7508290B2 (en) 2009-03-24
AU2003250792B2 (en) 2007-02-15
WO2004017338A1 (de) 2004-02-26
US20050206487A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
EP2463869B2 (de) Induktives Bauelement mit verbesserten Kerneigenschaften
EP2463871B1 (de) Amorpher Transformatorkern
EP1523748B1 (de) Induktives bauelement und verwendung des bauelements
EP2462596B1 (de) Stromkompensierte drossel und verfahren zur herstellung einer stromkompensierten drossel
DE3836415A1 (de) Elektromagnetische vorrichtung mit kuehleinrichtung
EP1168384A1 (de) Elektronisches Bauteil
EP2428967A1 (de) Transformatorwicklung
EP1647037B1 (de) Induktives bauelement mit kühlvorrichtung und verwendung des bauelements
EP2272072B1 (de) Spule und verfahren zur herstellung einer spule
EP1301931A1 (de) I-induktor als hochfrequenz-mikroinduktor
EP1501106B1 (de) Ferritkern für ein Induktivitätsbauteil
DE102013111433A1 (de) Planare symmetrische Spule für integrierte HF-Schaltungen
DE4311126C2 (de) Stromkompensierte Mehrfachdrossel in Kompaktbauweise
DE2813026C2 (de)
WO2020074718A1 (de) Verfahren zur herstellung eines keramischen materials mit lokal einstellbarem permeabilitätsgradienten, dessen anwendung in einem beschichtungsverfahren sowie dessen verwendung
DE102014106480A1 (de) Streuverlustarme Transformatoren und Herstellungsverfahren für diese
DE19627817A1 (de) Flachspule
DE202010018206U1 (de) Drossel
DE19843415A1 (de) Induktives Bauelement mit einem Stabkern
DE10001120C2 (de) Induktionsarmer Elektrolyt-Kondensator
DE102020100190A1 (de) Induktives Bauteil mit einer Betriebsfrequenz im Mittelfrequenzbereich
DE102008017314B4 (de) Induktives Bauelement und elektronische Schaltung zur Ansteuerung einer Leuchte
DE10104648A1 (de) I-Induktor als Hochfrequenz-Mikroinduktor
DE102016206929A1 (de) Kleinbauender Transformator für ein Betriebsgerät für Leuchtmittel
DE10261003A1 (de) Elektromagnetischer Übertrager und elektronischer Schaltkreis zum Anschließen einer HID-Lampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50309696

Country of ref document: DE

Date of ref document: 20080605

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090717

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090713

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100721

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309696

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100721