EP1487572A1 - Procede d'immobilisation in situ de colloides d'oxyde metallique nanodisperses hydrosolubles - Google Patents

Procede d'immobilisation in situ de colloides d'oxyde metallique nanodisperses hydrosolubles

Info

Publication number
EP1487572A1
EP1487572A1 EP03709717A EP03709717A EP1487572A1 EP 1487572 A1 EP1487572 A1 EP 1487572A1 EP 03709717 A EP03709717 A EP 03709717A EP 03709717 A EP03709717 A EP 03709717A EP 1487572 A1 EP1487572 A1 EP 1487572A1
Authority
EP
European Patent Office
Prior art keywords
metal
catalysts
metal oxide
metals
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03709717A
Other languages
German (de)
English (en)
Inventor
Manfred Theodor Reetz
Marco Lopez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Studiengesellschaft Kohle gGmbH
Original Assignee
Studiengesellschaft Kohle gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle gGmbH filed Critical Studiengesellschaft Kohle gGmbH
Publication of EP1487572A1 publication Critical patent/EP1487572A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • B01J35/23
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to particularly simple to produce heterogeneous catalysts which are generated by in situ immobilization of preformed mono- or multimetallic metal oxide particles on an oxidic or non-oxidic support.
  • Nanoscale transition metal colloids are of great interest in catalysis. Applications can be found, for example, in organic synthesis and as electrocatalysts for fuel cells. Furthermore, they serve as building blocks in materials science [G. Schmid, Clusters and Colloids, NCH, Weinheim, 1994]. Numerous methods are available for the representation of metal colloids. In addition to the physical methods such as metal evaporation or .
  • metal colloids are mainly obtained by reducing common metal salts dissolved in water or organic solvents, such as PdCl 2 , Pd (OAc) 2 , H 2 IrCl 6 , H 2 PtCl 6 , PtCl 4 , RuCl 3 , CoCl 2 , NiCl 2 , FeCl 2 or AuCl 3 , with a wide range of chemical reducing agents such as complex hydrides or lower alcohols.
  • reductive methods can also be used to obtain bimetallic colloids, although the metals used must have a similar redox potential, because otherwise no bimetallic colloids will be formed.
  • Catalyst systems consisting of more than one active component are often superior in performance to the corresponding monometallic systems.
  • a targeted representation of bimetallic and multimetallic systems is therefore becoming increasingly important in colloid chemistry.
  • platinum-rhodium mixed colloids [K. Siepen, H. Bönnemann, W. Brijoux, J. Rothe, J. Hormes, J Appl. Organom. Chem., 2000, 14, 549-556].
  • heterogenized colloid catalysts show a higher activity than corresponding commercial heterogeneous catalysts [a) H. Bönnemann, G. Braun, W. Brijoux, R. Brinkmann, A. Schulze-Tilling, K. Seevogel, K. Siepen, J. Organomet. Chem. 1996, 520, 143-162; b) H. Bönnemann, W. Brijoux, R. Brinkmann, R. Fretzen, T. Joußen, R. Köppler, B. Korall, P. Neiteler, J. Richter, J. Mol. Catal. 1994, 86, 129-177].
  • Platinum-ruthenium colloids stabilized by surfactants were also produced for use as polymer electrolyte membrane fuel cell (PEM-BZ) catalysts [U. A. Paulus, U. Endruschat, G. J. Feldmeyer, T. J. Schmidt, H. Bönnemann, R. j. Behm, J. of Catalysis, 2000, 195, 383].
  • PEM-BZ polymer electrolyte membrane fuel cell
  • the stabilizer only provides. a necessary auxiliary reagent. From an ecological and economic point of view, it would therefore be desirable in the preparation of heterogeneous catalysts prepared from preformed metal colloids to be able to dispense entirely with the stabilizer.
  • a process developed by Watanabe is mainly used for the production of the commercial platinum-ruthenium / Vulcan XC72 catalysts for low-temperature fuel cells. Platinum sulfite complexes are decomposed oxidatively and at the same time a ruthenium salt is absorbed. The disadvantage is that strict attention must be paid to certain pH values during the synthesis. Only in the last stage are the 3 - 4 nm platinum-ruthenium particles generated by reduction with hydrogen [M. Watanabe, M. Uchida, S. Motoo, J Electroanal. Chem, 1987, 229, 395].
  • Another example are fuel cell catalysts consisting of up to four metals from the group Pt, Rh, Ru, Pd, Ir.
  • the multimetallic catalysts are also produced using a complex two-stage absorption and reduction process [p. Hitomi JP 2001118582 A2, and DE 10047935 AI].
  • H 6 Pt (SO 3 ) a platinum salt which is previously obtained from H PtCl 6 by ligand exchange and subsequent treatment with an ion exchanger as a white solid, is used as the source of platinum colloids.
  • Disadvantages of this process are the use of the H 6 Pt (SO 3 ) 4 salt, which is initially difficult to produce, the high costs to be expected due to the use of numerous chemicals [ion exchange resin, sodium carbonate, sodium sulfite) and the multistage process which ultimately leads to a finished catalyst leads.
  • only a catalyst consisting of platinum as an active component is accessible by means of this method.
  • citrate as a reducing agent for the production of platinum colloids as a precursor for a fuel cell catalyst is also described [Y. Suguru, S. Terazono, E. Yanagsawa, JP 2001093531 A2].
  • the platinum colloids stabilized after the reduction by dodecylbenzyl sulfonate are deposited on Vulcan XC72R conductive carbon black activated beforehand by treatment with 60% nitric acid.
  • a disadvantage of this method is the need to use a stabilizer and a reducing agent.
  • only in a second step is the active component deposited on the carrier which is still to be activated.
  • the invention was therefore based on the object of avoiding these disadvantages.
  • the in situ immobilization of metal oxide colloids formed by basic hydrolysis on an oxidic or non-oxide carrier according to the invention represents an unexpected simple way of avoiding these disadvantages.
  • a heterogeneous catalyst is obtained which contains metal oxide particles as active component, which consist of one, two or more different, homogeneously mixed metal oxides.
  • the particles have an average diameter of 0.5 - 5 nm, predominantly 1 - 3 nm, and are uniformly distributed over the carrier.
  • the catalysts accessible with the inventive method also include the combinations with at least three subgroup metals which are interesting for fuel cell applications and in which the oxides of Pt and Ir are present, and any combinations of at least three oxides of metals selected from the group Pt, Ir, Ru, Os, W, Mo, Pd and Sn, so e.g. B. the combinations Pt / Ru / Mo, Pt / Ru Os, Pt / Ru / Sn, Pt / Ru / Os / Ir.
  • the metals of the sub-groups Illb, IVb, Vb, VIb, Vllb, VIII, Ib or Ilb of the PSE are suitable as subgroup metals.
  • a transfer of the metal oxides into the corresponding reduced form of the metals on the support can either during the later catalytic process or beforehand by treatment with z.
  • hypophosphite, formate or alcohols z. B. methanol, ethanol, etc.
  • electrically conductive carbon blacks as carriers, it is also possible to reduce the metal oxide particles in an electrochemical manner.
  • Another advantage of the method is that the catalyst is insensitive to atmospheric oxygen if carbon is used as a carrier. In contrast to, for example, platinum (0) on Vulcan XC72 no self-ignition of the carrier was observed here, since the metal is immobilized as a metal oxide.
  • this new process also called “instant process” by us
  • metal salts dissolved first by impregnation, precipitation or ion exchange are applied to a support and in one or more subsequent steps the active component is first applied to the support in its final shape and size, so the new process is particularly simple.
  • the new method of in situ immobilization of colloidal metal oxides has the following advantages, among others:
  • the metal or multimetal oxide particles obtained by hydrolysis and condensation have a high structural stability with high Temperatures on. For example, no significant particle growth was observed for platinum-ruthenium-osmium-iridium-oxide particles with an average size of 2 nm after treatment at 500 ° C. in the XRD / DFA experiment.
  • the aqueous solution or optionally suspension of a transition metal salt, or a mixture of two or more metal salts M m X n is added to the aqueous solution of a base and a suitable carrier.
  • the basic suspension of the metal salts and the carrier is stirred intimately at elevated temperature until the metal oxide colloids are completely immobilized. This initially leads to the hydrolysis of the metal salts and to condensation or co-condensation with the formation of colloids Monometal oxides or colloidal mixed metal oxides, which are briefly electrostatically stabilized by existing hydroxide ions.
  • the colloidal particles are successively immobilized on the support from the solution during the reaction without any undesired agglomeration or size increase of the particles occurring.
  • common salts of the metals of the sub-groups Illb, IVb, Vb, VIb, Vllb, NIE, Ib and Ilb of the periodic table are suitable as precursors; the same is possible using one or more of these salts in combination with the salt of a metal from the main groups of the periodic table, in particular salts of tin.
  • the bases used are carbonates, hydrogen carbonates, hydroxides, phosphates or hydrogen phosphates of the alkali and alkaline earth metals such as LiOH, ⁇ aOH, KOH, LiHCO 3 , ⁇ aHCO 3 , KHCO 3 , CsHCO 3 , Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Cs 2 CO 3 , Mg (OH) 2 , MgCO 3 , CaCO 3 , Li 3 PO 4 , Na 2 HPO 4 , Na 3 PO 4 or K 3 PO 4 .
  • Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , CsCO 3 or MgCO 3 are preferably used.
  • the reaction temperature used for the reaction is between 20 to 100 ° C, preferably between 50 ° C and 90 ° C.
  • the particle size of the nanostructured metal oxide colloids is between 0.5 nm and 5 nm, preferably between 1 and 3 nm.
  • the stoichiometric composition of the desired bimetal oxide and multimetal oxide colloids can easily be controlled via the correspondingly predetermined amount of the metal salts used.
  • the colloidal metal oxides obtained and the corresponding catalysts can be characterized using numerous physical methods, including TEM, HRTEM / EDX, SEM / EDX, XRD / DFA, XPS, UV spectroscopy and cyclic voltammetry in the case of particles immobilized on electrically conductive carbon blacks.
  • oxidic and non-oxidic solids can be used as carriers for the water-soluble metal oxide colloids for the production of heterogeneous catalysts, e.g. B. Al 2 O 3 , TiO 2 , SiO 2 , CaCO 3 , MgO, La 2 O 3 , carbon black or activated carbon.
  • heterogeneous catalysts e.g. B. Al 2 O 3 , TiO 2 , SiO 2 , CaCO 3 , MgO, La 2 O 3 , carbon black or activated carbon.
  • the metal, bimetallic or multimetal oxide colloids described here are used as catalysts or precursors of catalysts for organic chemical reactions such as hydrogenations, oxidations or C-C and other linkage reactions.
  • the use as electrocatalysts in fuel cells also lends itself and is of particular importance in view of the low manufacturing costs.
  • FIG. 1 TEM on the left.
  • 78 mg of the Vulcan XC72 conductive carbon black were then added and the mixture was stirred at 60 ° C. for a further 12 hours.
  • the suspension was sedimented in the centrifuge for 10 minutes at 5000 rpm.
  • the glass flasks used were cleaned of any metal traces before use with aqua regia. To remove any Leftover grease was then rinsed under hot water with an abrasive and for the same purpose with methyl tert-butyl ether.
  • the samples were first centrifuged at 14,000 rpm. At the beginning, the supernatant was diluted 1/100 and the 0.1 mM solution was measured. As soon as no absorption or a constant absorption in the UV spectrum was observed, the reaction was complete. The suspension was centrifuged and the solid washed three times with water / methanol (1/1) and centrifuged again. Finally, the loaded carbon black was freeze-dried.
  • Example 4 Double direct support of platinum on Vulcan XC72 carbon black
  • Example 6 Bi-, tri-, and tetrametallic systems according to the instant method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

L'invention concerne des catalyseurs hétérogènes productibles de manière particulièrement simple. Ces catalyseurs sont générés par immobilisation in situ de particules d'oxyde métallique monométalliques ou multimétalliques préformées sur un support oxydant ou non oxydant. A cet effet, des colloïdes d'oxyde métallique stabilisés par des ions hydroxyde sont produits à partir de sels métalliques hydrosolubles d'usage courant par hydrolyse et condensation et immobilisés sur les supports présents dans la solution. Le procédé selon l'invention permet entre autres de générer des catalyseurs pour cellules électrochimiques.
EP03709717A 2002-03-16 2003-02-25 Procede d'immobilisation in situ de colloides d'oxyde metallique nanodisperses hydrosolubles Withdrawn EP1487572A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10211701A DE10211701A1 (de) 2002-03-16 2002-03-16 Verfahren zur in situ Immobilisierung von wasserlöslichen nanodispergierten Metalloxid-Kolloiden
DE10211701 2002-03-16
PCT/EP2003/001826 WO2003078056A1 (fr) 2002-03-16 2003-02-25 Procede d'immobilisation in situ de colloides d'oxyde metallique nanodisperses hydrosolubles

Publications (1)

Publication Number Publication Date
EP1487572A1 true EP1487572A1 (fr) 2004-12-22

Family

ID=27771379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03709717A Withdrawn EP1487572A1 (fr) 2002-03-16 2003-02-25 Procede d'immobilisation in situ de colloides d'oxyde metallique nanodisperses hydrosolubles

Country Status (7)

Country Link
US (2) US7244688B2 (fr)
EP (1) EP1487572A1 (fr)
JP (1) JP2005526596A (fr)
AU (1) AU2003214069A1 (fr)
CA (1) CA2479261A1 (fr)
DE (1) DE10211701A1 (fr)
WO (1) WO2003078056A1 (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10211701A1 (de) * 2002-03-16 2003-09-25 Studiengesellschaft Kohle Mbh Verfahren zur in situ Immobilisierung von wasserlöslichen nanodispergierten Metalloxid-Kolloiden
US20060144189A1 (en) * 2002-07-16 2006-07-06 Nippon Sheet Glass Co. Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using the same, and low temperature oxidation catalyst, method for preparing the same and fuel cell fuel modifying device using the same
JP2005097642A (ja) * 2003-09-22 2005-04-14 Tanaka Kikinzoku Kogyo Kk 貴金属−金属酸化物複合クラスター
CN1874841B (zh) 2003-10-29 2010-09-15 尤米科尔股份公司及两合公司 水电解用贵金属氧化物催化剂
WO2005056222A1 (fr) * 2003-12-15 2005-06-23 Nippon Sheet Glass Co., Ltd. Liquide nanocolloidal metallique, procede pour produire un support metallique et support metallique associe
JP4498843B2 (ja) * 2003-12-26 2010-07-07 日立マクセル株式会社 燃料電池用触媒及びその製造方法
DE102004015633A1 (de) * 2004-03-31 2005-10-20 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Beschichtungen aus Iridiumoxiden
WO2005103025A1 (fr) * 2004-04-21 2005-11-03 Novogen Research Pty Ltd Procede de synthese d'isoflavene et catalyseur
JP4426379B2 (ja) * 2004-05-24 2010-03-03 Tanakaホールディングス株式会社 触媒前駆体及び触媒、並びに、触媒前駆体及び触媒の製造方法
GB0413771D0 (en) * 2004-06-21 2004-07-21 Johnson Matthey Plc Metal oxide sols
US20060116285A1 (en) * 2004-11-29 2006-06-01 De Nora Elettrodi S.P.A. Platinum alloy carbon-supported catalysts
EP1941943A4 (fr) * 2005-09-26 2011-07-06 Toyota Motor Co Ltd Particule de carbone a support microparticulaire, procede de fabrication et electrode de pile a combustible
US20100151362A1 (en) * 2005-09-26 2010-06-17 Yuko Sawaki Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cells
FR2893262A1 (fr) * 2005-11-14 2007-05-18 Inst Francais Du Petrole Procede de synthese en presence de reducteur d'un catalyseur a base de nanoparticules metalliques anisotropes.
US8722569B2 (en) 2006-03-13 2014-05-13 E I Du Pont De Nemours And Company Peroxide decomposition catalyst particles
US8663866B2 (en) * 2006-03-13 2014-03-04 E I Du Pont De Nemours And Company Stable proton exchange membranes and membrane electrode assemblies
CA2655278C (fr) 2006-06-13 2015-05-05 Toyota Jidosha Kabushiki Kaisha Fine particule d'oxyde de perovskite, particule recouverte de perovskite, materiau catalytique, materiau catalytique pour la reduction de l'oxygene, materiau catalytique pour pilea combustible et electrode pour pile a combustible
JP4875410B2 (ja) * 2006-06-13 2012-02-15 トヨタ自動車株式会社 微粒子担持カーボン粒子およびその製造方法ならびに燃料電池用電極
CA2721136A1 (fr) * 2007-07-31 2009-02-05 Showa Denko K.K. Couche de catalyseur, ensemble electrode a membrane et pile a combustible
WO2009021988A1 (fr) * 2007-08-14 2009-02-19 Universite Libre De Bruxelles Procédé de dépôt de nanoparticules sur un support
CA2737629A1 (fr) * 2008-09-18 2010-03-25 Northeastern University Electrocatalyseur en alliage de platine ayant une resistance amelioree a l'empoisonnement par un anion pour piles a combustible a basse ou moyenne temperature
EP2608298B1 (fr) * 2011-12-22 2018-07-04 Umicore AG & Co. KG Catalyseur électrique pour cellules de combustible ainsi que son procédé de fabrication
KR101446116B1 (ko) * 2012-09-18 2014-10-06 한화케미칼 주식회사 탄소나노튜브 제조용 금속촉매의 제조방법 및 이를 이용한 탄소나노튜브의 제조방법
US9889429B2 (en) 2012-10-16 2018-02-13 Bill W. Helton Hydrogen production catalysts and associated systems and methods
JP2017087151A (ja) * 2015-11-11 2017-05-25 国立大学法人東京工業大学 金属ナノクラスター触媒
CN106622229B (zh) * 2017-01-10 2019-06-28 湘潭大学 加氢催化剂的制备方法及苯酚选择性加氢制环己酮的方法
CN110380027B (zh) * 2019-06-28 2022-07-15 惠州学院 一种含碳双金属氧化物的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933684A (en) * 1972-01-03 1976-01-20 Prototech Company Method of forming palladium oxide and palladium particles
EP0898318A2 (fr) * 1997-08-01 1999-02-24 Matsushita Electric Industrial Co., Ltd. Procédé de préparation de poudre catalytique pour électrode

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127356A (en) * 1964-03-31 Process for the preparation of hydro-
US2739944A (en) * 1952-06-21 1956-03-27 Exxon Research Engineering Co Stabilized metal catalysts for naphtha reforming
US3087234A (en) * 1960-03-14 1963-04-30 Du Pont Iron group metals having submicron particles of refractory oxides uniformly dispersed therein
DE1668088C3 (de) * 1968-02-01 1974-07-25 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Vinylacetat
DE1793519C3 (de) * 1968-09-28 1974-08-22 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Vinylestern
US4044193A (en) * 1971-06-16 1977-08-23 Prototech Company Finely particulated colloidal platinum compound and sol for producing the same, and method of preparation of fuel cell electrodes and the like employing the same
FR2309045A2 (fr) 1975-04-23 1976-11-19 Prototech Co Electrode catalytique a base de platine colloidal destinee notamment a une cellule a combustible et son procede de preparation
US4224178A (en) * 1978-07-24 1980-09-23 Nathan Feldstein Method for reducing the crystallinity of a stabilized colloidal composition
JPS5975560A (ja) * 1982-10-21 1984-04-28 Toshiba Corp 燃料電池の触媒製造方法
JPS63203546A (ja) * 1987-02-17 1988-08-23 磯部 裕 使い捨てコツプ
US4948707A (en) * 1988-02-16 1990-08-14 International Business Machines Corporation Conditioning a non-conductive substrate for subsequent selective deposition of a metal thereon
JPH01227361A (ja) 1988-03-07 1989-09-11 Fuji Electric Co Ltd 燃料電池用アノード電極の製造方法
JPH01266848A (ja) * 1988-04-19 1989-10-24 Matsushita Electric Ind Co Ltd 貴金属担持触媒の製造方法
JP2890486B2 (ja) * 1989-06-20 1999-05-17 松下電器産業株式会社 液体燃料電池の燃料極用触媒及びその製造方法
US5147841A (en) * 1990-11-23 1992-09-15 The United States Of America As Represented By The United States Department Of Energy Method for the preparation of metal colloids in inverse micelles and product preferred by the method
DE4111719A1 (de) * 1991-04-10 1992-10-15 Studiengesellschaft Kohle Mbh Verfahren zur herstellung hochaktiver, dotierter metall-traegerkatalysatoren
DK0672765T3 (da) * 1994-03-14 2000-01-24 Studiengesellschaft Kohle Mbh Fremgangsmåde til fremstilling af højdisperse metalkolloider og substratbundne metal-clusters ved elektrokemisk reduktion a
US6325910B1 (en) * 1994-04-08 2001-12-04 Atotch Deutschland Gmbh Palladium colloid solution and its utilization
DE4443705A1 (de) * 1994-12-08 1996-06-13 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von tensidstabilisierten Mono- und Bimetallkolloiden der Gruppe VIII und Ib des Periodensystems als isolierbare und in hoher Konzentration wasserlösliche Precursor für Katalysatoren
DE4443701C1 (de) * 1994-12-08 1996-08-29 Degussa Schalenkatalysator, Verfahren zu seiner Herstellung und seine Verwendung
DE19630581A1 (de) * 1996-07-30 1998-02-05 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Solvens-stabilisierten Metallkolloiden und trägerfixierten Metallclustern
GB9622284D0 (en) * 1996-10-25 1996-12-18 Johnson Matthey Plc Improved catalyst
DE19721437A1 (de) * 1997-05-21 1998-11-26 Degussa CO-toleranter Anodenkatalysator für PEM-Brennstoffzellen und Verfahren zu seiner Herstellung
DE19734975A1 (de) * 1997-08-13 1999-03-11 Hoechst Ag Schalenkatalysator, Verfahren zu dessen Herstellung sowie Verwendung, insbesondere zur Gasphasenoxidation von Ethylen und Essigsäure zu Vinylacetat
IL123468A (en) * 1998-02-26 2001-08-26 Yissum Res Dev Co Methods for the preparation of nanosized material particles
US6165636A (en) * 1998-04-14 2000-12-26 De Nora S.P.A. Composition of a selective oxidation catalyst for use in fuel cells
EP0952241B1 (fr) * 1998-04-23 2001-09-05 N.E. Chemcat Corporation Electrocatalyseur en alliage de platine-ruthenium sur un support, électrode, ensemble électrode à membrane, et pile à combustible à électrolyte solide polymérique le contenant
DE19852547A1 (de) * 1998-11-13 2000-05-18 Studiengesellschaft Kohle Mbh Wasserlösliche nanostrukturierte Metalloxid-Kolloide und Verfahren zu ihrer Herstellung
DE19911865A1 (de) * 1999-03-17 2000-09-28 Degussa Verfahren zur katalytischen Hydrierung von Dinitrotoluol sowie Katalysator
DE50013678D1 (de) * 1999-08-27 2006-12-14 Umicore Ag & Co Kg Elektrokatalysator für Brennstoffzellen
EP1079452B1 (fr) * 1999-08-27 2006-11-02 Umicore AG & Co. KG Electrocatalyseur pour cellule à combustible
JP3649061B2 (ja) 1999-10-19 2005-05-18 日本電池株式会社 燃料電池用電極およびその製造方法
JP2001093531A (ja) 1999-09-28 2001-04-06 Asahi Glass Co Ltd 固体高分子型燃料電池及びそのための電極触媒の製造方法
US6500871B1 (en) * 2000-06-08 2002-12-31 Rhodia Chimie Process for preparing colloids of particles coming from the hydrolysis of a salt of a metal cation
DE10032400A1 (de) * 2000-07-06 2002-01-17 Studiengesellschaft Kohle Mbh Auf Trägermaterialien immobilisierte Silber-Nanopartikel als Katalysatoren
US6844026B2 (en) * 2001-02-12 2005-01-18 Rhodia Chimie Preparation of particles by hydrolysis of a metal cation in the presence of a polymer
JP2003089523A (ja) * 2001-09-12 2003-03-28 Yamanaka Kagaku Kogyo Kk 非晶質酸化スズコロイド溶液及びその製造方法
US6686308B2 (en) * 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
DE10211701A1 (de) * 2002-03-16 2003-09-25 Studiengesellschaft Kohle Mbh Verfahren zur in situ Immobilisierung von wasserlöslichen nanodispergierten Metalloxid-Kolloiden

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933684A (en) * 1972-01-03 1976-01-20 Prototech Company Method of forming palladium oxide and palladium particles
EP0898318A2 (fr) * 1997-08-01 1999-02-24 Matsushita Electric Industrial Co., Ltd. Procédé de préparation de poudre catalytique pour électrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO03078056A1 *

Also Published As

Publication number Publication date
AU2003214069A1 (en) 2003-09-29
DE10211701A1 (de) 2003-09-25
US20080044692A1 (en) 2008-02-21
US20050148464A1 (en) 2005-07-07
WO2003078056A1 (fr) 2003-09-25
CA2479261A1 (fr) 2003-09-25
JP2005526596A (ja) 2005-09-08
US7244688B2 (en) 2007-07-17

Similar Documents

Publication Publication Date Title
EP1487572A1 (fr) Procede d'immobilisation in situ de colloides d'oxyde metallique nanodisperses hydrosolubles
DE102013225764B4 (de) Katalysatorpartikel mit einer schichtförmig aufgebauten Kern-Schale-Schale-Struktur und Verfahren zu ihrer Herstellung
EP2481113B1 (fr) Catalyseur à dopage d'oxyde métallique pour piles à combustible
EP0994520B1 (fr) Catalyseur pour cellule à combustible comprenant un alliage Pt/Rh/Fe et sa méthode de fabrication
DE4443701C1 (de) Schalenkatalysator, Verfahren zu seiner Herstellung und seine Verwendung
EP0924784B1 (fr) Catalyseur tolérant le CO pour cellule a combustible de type PEM et sa méthode de fabrication
DE60208262T2 (de) Verfahren zur Herstellung eines Anodenkatalysators für Brennstoffzellen
DE112006002287B4 (de) Poroser Katalysatorträger, Brennstoffelektrode, Brennstoffzelle und Verfahren zum Herstellen eines porösen Katalysatorträgers
DE112006000205B4 (de) Photokatalytische Verfahren zur Herstellung von Elektrokatalysator-Materialien
DE102020127614A1 (de) Verfahren zur Herstellung von einem auf einem stickstoffdotierten hierarchischen porösen Kohlenstoff geträgerten Nano-Pd-Katalysator und dessen Produkte und Verwendungen
CN101305485B (zh) 燃料电池用电催化剂及其制备方法
DE102012211238A1 (de) Verfahren zum Herstellen von Katalysatoren des Kern-Schale-Typs auf einem Träger und mit diesem gebildete Katalysatoren des Kern-Schale-Typs auf einem Träger
WO1999029423A1 (fr) Nanoparticules de platine stabilisees par de la polybetaine, leur procede de production et leur utilisation comme electrocatalyseurs dans des cellules electrochimiques
DE112019000069T5 (de) Verbundkatalysator sowie seine Herstellungsverfahren und Anwendungen
EP2337630A1 (fr) Procédé de production en continu d'un catalyseur
EP3764443A1 (fr) Catalyseur pour la réaction de dégagement d'oxygène lors de l'électrolyse de l'eau
EP1133447A1 (fr) Colloides d'oxyde metallique nanostructures solubles dans l'eau et procede permettant de les produire
EP3473337A1 (fr) Procédé de fabrication de particules de platine supportées
DE1667107B2 (de) Verfahren zum Aufbringen einer katalytisch aktiven Schicht aus Platin oder einer Platin enthaltenden Kombination auf eine Unterlage
DE112019000031T5 (de) Pd/In-Legierungskatalysator sowie sein Herstellungsverfahren und Verwendungen
DE60320444T2 (de) Metalllegierung für elektrochemische oxydationsreaktionen und verfahren zu deren herstellung
DE112018001663T5 (de) Elektrodenmaterial und anwendung hiervon
DE202015106071U1 (de) Elektrochemische Zelle, Elektrode und Elektrokatalysator für eine elektrochemische Zelle
RU2446009C1 (ru) Способ приготовления платино-рутениевых электрокатализаторов
DE10035841B4 (de) Herstellungsverfahren für ein Alkanol-resistentes Katalysatormaterial für die elektrochemische, selektive Sauerstoffreduktion und Anwendung des hergestellten Katalysatormaterials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20071114

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080326