EP1476330B1 - Methode zur vorbeugung von bewegungskrankheiten und gerät zur erfassung und signalisierung von potentiellen übelkeit verursachenden bewegungen - Google Patents
Methode zur vorbeugung von bewegungskrankheiten und gerät zur erfassung und signalisierung von potentiellen übelkeit verursachenden bewegungen Download PDFInfo
- Publication number
- EP1476330B1 EP1476330B1 EP03705514A EP03705514A EP1476330B1 EP 1476330 B1 EP1476330 B1 EP 1476330B1 EP 03705514 A EP03705514 A EP 03705514A EP 03705514 A EP03705514 A EP 03705514A EP 1476330 B1 EP1476330 B1 EP 1476330B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- motion
- vehicle
- motion sickness
- sickening
- acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/023—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
- B60R16/0231—Circuits relating to the driving or the functioning of the vehicle
- B60R16/0232—Circuits relating to the driving or the functioning of the vehicle for measuring vehicle parameters and indicating critical, abnormal or dangerous conditions
Definitions
- the invention relates to a method for the prevention of motion sickness, and an apparatus for detecting and signaling potentially sickening motions suitable for application in a method according to the invention.
- Motion sickness can arise when a person is exposed to one or more specific motions for a longer period of time.
- factors such as temperature, smell, mood and digestion can play a catalyzing role.
- the best-known forms of motion sickness are sea sickness and car sickness. Especially the latter variant occurs frequently, in particular in children.
- Many solutions have already been proposed to control motion sickness in general, and car sickness in particular.
- preventatives on the market, which need to be ingested some time before a drive and then help to suppress the motion sickness and the accompanying clinical picture, such as nausea.
- These known preventatives are generally not without side effects and so they are not suitable for every one or in every situation. This is also why the preventatives are less suitable for frequent, for example daily use.
- it is inherent to their preventative nature that, in part of the cases, these preventatives will be taken unnecessarily, since they need to be ingested at a moment when it is not certain at all yet whether one will be motion sick during the drive involved.
- car sickness preventatives are known, whose action is based on deception of the senses, particularly sight and hearing.
- Specific auditory or visual signals are blocked or replaced with artificial, non-sickening sensory signals.
- these solutions require complicated, expensive equipment and thus seem little suitable for practical daily use, for example in a bus or passenger car.
- the object of this invention is a method for the prevention of motion sickness in occupants of a vehicle, wherein the abovementioned disadvantages of the known methods mentioned above have been avoided.
- a method according to the invention is characterized by the measures according to claim 1.
- a vehicle is provided with a motion sickness indicator, which, in an early stage, alerts a driver or a steering system of the vehicle to potentially sickening vehicle motions.
- the driver or steering system can change the steering of the vehicle in such a way that the sickening motions are avoided or, in any case, do not continue over a longer period of time.
- a method according to the invention does not involve intervention in the motion-sick person, as known preventatives and methods do, but primarily in the causative source, the vehicle motions. This has a number of advantages.
- a method according to the invention is more efficient than many of the known preventatives, in that this method can help all occupants of a vehicle at the same time, without having to intervene in each of them separately.
- This is especially advantageous in large vehicles with many passengers, for example buses.
- this method causes no adverse side effects in the passengers and is thus suitable for every one, in every situation, as long and as often as needed.
- the method in contrast to many of the known preventatives, has a wide practical applicability, since the method can be carried out with relatively simple auxiliary means (in particular a motion sickness indicator to be discussed in more detail below). These auxiliary means can simply be fitted in any vehicle or even to one of the passengers, without requiring radical adaptations.
- the method can simply be 'switched off', for example when none of the occupants is susceptible to motion sickness. In that case, the driver can simply ignore the information provided by the indicator or switch off the motion sickness indicator.
- a suitable motion sickness indicator for the method can be embodied in various manners.
- the indicator can comprise, for example, a mass spring system or a body immersed in a liquid that is at rest during permissible vehicle motions and is excited by sickening motions. Then the degree of excitation is a measure for the gravity of the sickening motion.
- the motion sickness indicator can comprise measuring, evaluation and rendering means, with which the vehicle motion, at any rate at least one of its relevant parameters for motion sickness, is measured and compared with permissible values or motion patterns that are stored in evaluation means. Then, the outcome of this comparison can be presented to the driver with the aid of suitable rendering means.
- a motion sickness indicator can accurately and timely identify sickening motions and, in addition, provide the driver with further information concerning, for example, the degree of sickening of the motions generated by his steering. In addition, the effect of correcting steering actions can be visualized directly.
- the acceleration of a motion is a relevant parameter for motion sickness.
- the acceleration can simply be measured and then compared with a relation between acceleration and motion sickness known from practice. It has been found that on the basis of an acceleration measured in only one direction, a correct prediction can already be made with regard to the sickening effect of a motion. Since motions in general and vehicle motions in particular can usually be provoking with regard to motion sickness in several directions, the accuracy of the prediction can be increased by measuring the acceleration of the vehicle motions three-dimensionally, in other words, in three orthogonal directions. Then the degree of sickening can be predicted for each separate direction. However, preferably one total acceleration signal is calculated on the basis of the three measured acceleration components, after which the prediction is based on this one signal.
- a second advantage is that this makes the orientation of the measuring means in relation to the vehicle irrelevant. This is favorable in particular when the motion sickness indicator is not integrated in the vehicle, but is to be fitted in the vehicle as a loose instrument.
- a method according to the invention is characterized by the measures according to claim 6.
- the relation between the acceleration of a motion and the degree to which this motion can cause motion sickness in an average person can be approximated by a transfer function with a band pass characteristic.
- the response of an average individual to the vehicle motions can thus simply be predicted by filtering the measured acceleration signal of the motion with such a band pass characteristic.
- the filtered signal then gives a direct indication of the gravity of the motion sickness.
- the transfer function can be adjusted to personal conditions with the aid of adjustable weight and amplification factors.
- the invention relates to an apparatus for detecting and signaling potentially sickening motions, characterized by the measures according to claim 8.
- the apparatus has been provided with measuring means for measuring a motion parameter that is representative of motion sickness, for example an acceleration of the motion.
- the measured motion parameter is then, with the aid of evaluation means present in the apparatus, compared with values or patterns known from practice to be permissible from the viewpoint of motion sickness.
- the evaluation means can also comprise an algorithm in which a relation between the motion parameter involved and its effect on motion sickness is fixed, and on the basis of which the sickening effect of the measured signal can be estimated.
- the apparatus comprises rendering means, for example a LED, LCD display, alarm or loudspeaker, with which the outcome of the evaluation means can be communicated to the user.
- rendering means for example a LED, LCD display, alarm or loudspeaker
- signal processing means can be provided between the measurement and evaluation means, for example for eliminating measurement peaks and measurement noise, in order to obtain a reliable prediction.
- an apparatus according to the invention is characterized by the measures according to claims 10-12.
- the degree to which a motion can cause motion sickness can be predicted by the response of a band pass filter to the acceleration of the motions involved.
- the band pass filter has a peak of around approximately 0.16 Hz, a first cut-off frequency between approximately 0.01 and 0.16 Hz and a second cut-off frequency between approximately 0.16 and 1 Hz.
- Such a band pass filter can be used to evaluate the sickening effect of the signal measured by the acceleration transducer in a simple yet accurate manner.
- an apparatus according to the invention is characterized by the measures according to claim 13.
- the apparatus is preferably provided with adjustment means, in order to tune the sensitivity of the indicator to the susceptibility of a specific interested party, for example a passenger.
- the adjustment means can comprise, for example, an amplification factor, by which the outcome of the evaluation means is multiplied.
- the adjustment means can be manually operated means, but can also be of a self-learning nature. In the latter case, adjustment to the individual takes place 'automatically', based on feedback information received from the individual during use.
- This self-learning embodiment is particularly advantageous when the apparatus is used by only one person or a small number of persons.
- memory means are provided, in which the personal preferred settings of different users can be stored, so that these can be retrieved with a single preference button.
- FIG. 1 schematically shows an apparatus 1 according to the invention, hereafter also referred to as motion sickness indicator, for detecting motions that potentially cause motion sickness.
- the motion sickness indicator 1 comprises measuring means 3, evaluation means 5 connected thereto, and connected to these evaluation means 5 rendering means 7.
- the measuring means 3 are arranged for measuring a relevant parameter for motion sickness of the motions.
- the applicant has demonstrated that the acceleration is such a relevant parameter.
- the measuring means 3 comprise one or more acceleration transducers with which the acceleration of a motion acting on the apparatus 1 during use can be measured, preferably in three orthogonal directions (a x , a y , a z ).
- the acceleration can be measured in two or only one direction, but since motions can generally be provoking with regard to motion sickness in all three directions, the most accurate prediction can be obtained on the basis of a three-dimensional signal. Acceleration transducers are sufficiently well-known from practice and therefore do not require further specification.
- the evaluation means 5 are used to predict the sickening effect of the motion on the basis of the measured accelerations.
- the evaluation means 5 comprise calculation means 8, comparison means 9 and adjustment means 10.
- the total acceleration signal (a) is then passed through the comparison means 9.
- These comparison means 9 include knowledge gathered from practice concerning the response of a normal population to such an acceleration signal. This knowledge can be incorporated in the comparison means 9, for example, in the form of a table with permissible threshold values or a permissible acceleration pattern. Preferably, however, this knowledge is fixed in a dynamic model. It has been found that the degree to which an average individual gets motion sick due to a specific motion can be modeled as a band pass characteristic, as shown in Figure 2. This characteristic has both a high-pass and a low-pass character. The high-pass part is used to filter out the gravity acceleration component of the total acceleration signal (a).
- the high-pass part has a first cut-off frequency (A) of, for example, between approximately 0.01 and 0.16 Hz.
- the low-pass part has a second cut-off frequency (C) of between approximately 0.16 and 1 Hz.
- A first cut-off frequency
- C second cut-off frequency
- the peak sensitivity (B) of this characteristic is around approxiniately 0.16 Hz.
- Such a characteristic can be implemented in the evaluation means 5, for example, in the form of a band pass filter.
- motion sickness can also be predicted on the basis of the separate acceleration components (a x , a y , a z ), whereby the sickening effect can be determined for each acceleration component, optionally with a separate filter.
- the total acceleration signal has the advantage that, because only the measured acceleration magnitude is used as an input signal for the filter, the orientation of the acceleration transducer in relation to the vehicle becomes irrelevant. This is particularly favorable when the motion sickness indicator can be fitted in the vehicle as a loose instrument.
- an algorithm can be incorporated that, when evaluating the sickening effect of specific motions, takes the factor time into account, in particular the period during which the sickening motions occur, the motion history of the vehicle from the moment of starting up, and the delay in the response of an average passenger to such sickening motions.
- a time-dependent algorithm can factor this in.
- This degree will increase as the sickening motions are more violent and/or continue longer, while the degree will decrease when the sickening motions are temporarily less violent or even completely absent, for example because the driver of the vehicle reacts well to the instantaneous degree and, on the basis of this, corrects his driving behavior, or, for example, because the vehicle is temporarily stationary.
- the evaluation means 5 can include an algorithm, which can monitor a cumulative measure, which quantifies the sickening effect over the whole drive. This measure is obtained by integrating the instantaneous measure for motion sickness in the time. At a constant vehicle motion, this yields a straight line, as shown in Fig. 3 in interrupted lines, the unit (plotted on the vertical axis, on the right side) being arbitrary. As shown in Fig.3, this measure only increases in time.
- Such a cumulative drive value has the additional advantage of storing information relating to the driving behavior of the driver. This information can be advantageously employed, for example, for didactic or administrative purposes.
- the evaluation means 5 comprise adjustment means 10, which can be used to adjust relevant factors for the evaluation, which can vary depending on user or condition of use, such as, for example, the temperature in the vehicle, the age of the occupant or a personal susceptibility factor, with which the susceptibility differences between different users can be factored in.
- adjustment means 10 can be used to adjust relevant factors for the evaluation, which can vary depending on user or condition of use, such as, for example, the temperature in the vehicle, the age of the occupant or a personal susceptibility factor, with which the susceptibility differences between different users can be factored in.
- the adjustment means 10 can be equipped in such a manner that the user can adjust them manually, but they can also be of a self-learning nature. In the latter case, the adjustment means will, in the course of use, adopt an optimum value through interaction with the user.
- memory means (not shown) are provided, in which preferred settings for different users or conditions are stored, so these can be retrieved with a single preference button.
- the motion sickness indicator 1 is provided with rendering means 7, with which the outcome of the evaluation means 5 can be presented in a suitable manner.
- rendering means 7 can comprise, for example, a LED or alarm signal to indicate whether the evaluated motions are sickening or not.
- the indicator 1 can also indicate to what degree the motions are sickening, for example by means of differently colored LEDs (green for non-sickening motions, orange when the motions are on the verge and red when the motions are sickening), a mounting pointer, or an alarm with increasing volume or frequency.
- the motion sickness indicator can further give instructions on how to adjust the provocative motions in order to minimize the sickening effect. Such information can be shown on an LCD display, for example.
- An apparatus can be used, for example, in a vehicle to help the driver to control his driving behavior in such a manner that this is as little sickening as possible for a fellow passenger. Since the driver himself does not usually get sick, it is difficult for him to judge to what degree his driving style can cause motion sickness in fellow passengers. Of course these fellow passengers can indicate this themselves, but then it is often too late, in other words, they already feel sick.
- a motion sickness indicator according to the invention can be used to signal motions associated with motion sickness at an early stage, long before these actually cause motion sickness, and allows the driver to adjust his driving style in time.
- the motion sickness indicator 1 can be fitted in the vehicle or to a passenger prior to the drive.
- the indicator can also be integrated in the vehicle as a standard accessory.
- the term 'vehicle' is to be construed in a broad sense, including at least any means of transport on land, but vessels and aircraft also belong to the means of transport for which application of the motion sickness indicator 1 is possible.
- the thus installed motion sickness indicator 1 will evaluate the motions present in the car during the drive for their sickening effect and will give feedback on the outcome to the driver or a steering system of the vehicle.
- the information presented is differentiated on the basis of the origin of the motions (braking, accelerating, bends), so the driver can see exactly which driving actions cause motion sickness and how he can adjust these.
- angular speed can be used to predict motion sickness.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
- Gyroscopes (AREA)
- Eye Examination Apparatus (AREA)
- Machine Translation (AREA)
- Telephone Function (AREA)
Claims (18)
- Verfahren zum Verhindern von Reisekrankheit bei Insassen eines Fahrzeugs, wobei ein Reisekrankheitsanzeiger in dem Fahrzeug angebracht ist, der anzeigt, ob die von den Insassen während des Betriebs erfahrenen Fahrzeugbewegungen Reisekrankheit verursachen können, wenn die Insassen fortgesetzt solchen Bewegungen ausgesetzt werden, wobei von dem Anzeiger kommende Informationen zu einem Fahrer oder Steuersystem des Fahrzeugs zurückgeleitet werden, wobei dies in einer solchen Weise geschieht, dass das Fahrer oder Steuersystem die Steuerung des Fahrzeugs so anpassen kann, dass Reisekrankheit verursachende Bewegungen minimiert werden.
- Verfahren nach Anspruch 1, wobei der Reisekrankheitsanzeiger die Fahrzeugbewegung mißt, jedenfalls wenigstens einen Parameter davon, der für die Reisekrankheit relevant ist, und den Reisekrankheit verursachenden Effekt des gemessenen Signals auf der Grundlage einer aus der Praxis bekannten Beziehung zwischen dem gemessenen Parameter und der Reisekrankheit vorhersagt, wonach das Ergebnis der Bewertung einem Fahrer und/oder Steuersystem des Fahrzeugs mit Hilfe eines dafür geeigneten Wiedergabemittels präsentiert.
- Verfahren nach Anspruch 2, wobei die Vorhersage des Anzeigers auf der Beschleunigung der Fahrzeugbewegung basiert, wobei die Beschleunigung in wenigstens eine Richtung gemessen wird.
- Verfahren nach Anspruch 3, wobei die Beschleunigung der Fahrzeugbewegung in drei, im Wesentlichen orthogonalen Richtungen (ax,ay,az) gemessen wird, wonach der kranheitsverursachende Effekt jedes Beschleunigungssignals separat mit Hilfe einer speziell für die betroffene Richtung bestimmten Beziehung bestimmt wird.
- Verfahren nach Anspruch 3, wobei die Beschleunigung der Fahrzeugbewegung in 3, im Wesentlichen in orthogonalen Richtungen (ax, ay, az) gemessen wird, wonach eine skalare Gesamtbeschleunigung (a) gemäß
- Verfahren nach einem der Ansprüche 3 - 5, wobei die Beziehung zwischen der gemessenen Beschleunigung und dem Ausmaß, in dem diese Beschleunigung zu Reisekrankheit führen kann, als Übertragungsfunktion mit einer Bandpass-Charakteristik modelliert wird.
- Verfahren nach einem der Ansprüche 2 - 6, wobei die in dem Reisekrankheitsanzeiger implementierte Beziehung, die die Anfälligkeit der Normalbevölkerung für Reisekrankheit repräsentiert, während des Betriebs durch Einwirkung eines Insassen des Fahrzeugs auf den Anzeiger auf eine spezifische Beziehung, die für den betroffenen Insassen repräsentativ ist, eingestellt werden kann.
- Vorrichtung zum Detektieren und Signalisieren von potentiell Reisekrankheit verursachenden Bewegungen, mit einem Wandler (3) zum Messen eines für Reisekrankheit relevanten Parameters aufgrund einer durch die Vorrichtung erfahrenen Bewegung, Bewertungseinrichtungen (8,9,10) zum Vergleichen des gemessenen Bewegungsparameters mit empirischen Daten, die den Reisekrankheit verursachenden Effekt von vergleichbaren Bewegungsparametern betreffen, auf Grundlage wessen der Reisekrankheit verursachende Effekt der gemessenen Parameter abgeschätzt werden kann, und Wiedergabemitteln (7) zum Präsentieren eines durch die Bewertungseinrichtungen erhaltenen Ergebnisses für den Benutzer in einer geeigneten Weise.
- Vorrichtung nach Anspruch 8, wobei der gemessene Bewegungsparamter eine Beschleunigung der Bewegung ist.
- Vorrichtung nach Anspruch 8 oder 9, wobei die Bewertungseinrichtungen einen Bandpassfilter (9) umfassen.
- Vorrichtung nach Anspruch 10, wobei der Filter eine Spitze zwischen etwa 0,08 und 0,3 Hz, insbesondere zwischen etwa 0,1 und 0,2 Hz und besonders bevorzugt im Bereich von etwa 0,16 Hz hat.
- Vorrichtung nach Anspruch 10 oder 11, wobei der Bandpassfilter eine erste Abschneidefrequenz zwischen etwa 0,01 und 0,16 Hz und eine zweite Abschneidefrequenz zwischen etwa 0,16 und 1 Hz hat.
- Vorrichtung nach einem der Ansprüche 9 - 12, wobei die Vorrichtung Einstellmittel zum Einstellen wenigstens eines Verstärkungsfaktors aufweist, mit dem das Ergebnis der Bewertungseinrichtungen multipliziert werden kann, was die Empfindlichkeit der Vorrichtung an die Empfindlichkeit eines individuellen Benutzers für Reisekrankheit anpass macht.
- Vorrichtung nach Anspruch 13, wobei die Einstellmittel selbstlernend sind.
- Vorrichtung nach einem der Ansprüche 8 - 14, wobei die Vorrichtung ein Gehäuse aufweist, das mit Befestigungsmitteln versehen ist, um die Vorrichtung positionsfest in, zum Beispiel, einem Fahrzeug oder einem Schiff oder an einem Passagier zu fixieren.
- Vorrichtung nach einem der Ansprüche 8 - 15, wobei die Bewertungseinrichtungen einen Tiefpassfilter aufweisen, um ein zeitabhängiges Maß eines krankmachenden Effekts zu bestimmen, insbesondere abhängig von der Bewegungsgeschichte, der Zeit, über die die krankmachenden Bewegungen auftreten, und/oder einer mittleren Reaktionszeit eines Passagiers auf solche krankmachenden Bewegungen.
- Vorrichtung nach Anspruch 16, wobei der Tiefpassfilter eine Zeitkonstante zwischen etwa 10 und 15 Minuten, vorzugsweise von etwa 12 Minuten hat.
- Vorrichtung nach einem der Ansprüche 8 - 17, wobei die Bewertungseinrichtungen einen Integrator umfassen, um ein kumulatives Maß des krankmachenden Effekts gemessen über eine spezifische Zeitperiode zu bestimmen.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1019989A NL1019989C2 (nl) | 2002-02-18 | 2002-02-18 | Werkwijze ter preventie van bewegingsziekte, alsmede inrichting voor het detecteren en signaleren van potentieel ziekmakende bewegingen. |
NL1019989 | 2002-02-18 | ||
PCT/NL2003/000119 WO2003068564A2 (en) | 2002-02-18 | 2003-02-18 | Method for the prevention of motion sickness, and apparatus for detecting and signaling potentially sickening motions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1476330A2 EP1476330A2 (de) | 2004-11-17 |
EP1476330B1 true EP1476330B1 (de) | 2006-01-04 |
Family
ID=27730982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03705514A Expired - Lifetime EP1476330B1 (de) | 2002-02-18 | 2003-02-18 | Methode zur vorbeugung von bewegungskrankheiten und gerät zur erfassung und signalisierung von potentiellen übelkeit verursachenden bewegungen |
Country Status (13)
Country | Link |
---|---|
US (1) | US7437219B2 (de) |
EP (1) | EP1476330B1 (de) |
JP (1) | JP4533629B2 (de) |
KR (1) | KR100961006B1 (de) |
CN (1) | CN1646344B (de) |
AT (1) | ATE314950T1 (de) |
AU (1) | AU2003211325A1 (de) |
CA (1) | CA2476617C (de) |
DE (1) | DE60303121T2 (de) |
ES (1) | ES2254906T3 (de) |
MX (1) | MXPA04008013A (de) |
NL (1) | NL1019989C2 (de) |
WO (1) | WO2003068564A2 (de) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1027526C2 (nl) | 2004-11-16 | 2006-05-17 | Conmedi | Voetensteun voor gebruik bij een zitplaats in een voertuig en werkwijze voor vervoeren. |
EP2034468A1 (de) * | 2007-09-05 | 2009-03-11 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Verfahren zum Testen der Leistung eines Bewegungssimulators und durch dieses Verfahren gewonnener Bewegungsanzeiger |
US9630631B2 (en) | 2013-10-03 | 2017-04-25 | Honda Motor Co., Ltd. | System and method for dynamic in-vehicle virtual reality |
US9715764B2 (en) | 2013-10-03 | 2017-07-25 | Honda Motor Co., Ltd. | System and method for dynamic in-vehicle virtual reality |
US9536353B2 (en) * | 2013-10-03 | 2017-01-03 | Honda Motor Co., Ltd. | System and method for dynamic in-vehicle virtual reality |
US9547173B2 (en) * | 2013-10-03 | 2017-01-17 | Honda Motor Co., Ltd. | System and method for dynamic in-vehicle virtual reality |
US9145129B2 (en) * | 2013-10-24 | 2015-09-29 | Ford Global Technologies, Llc | Vehicle occupant comfort |
GB2515616A (en) * | 2014-04-17 | 2014-12-31 | Daimler Ag | System for preventing motion sickness of occupants of a vehicle |
GB2530592A (en) * | 2014-12-18 | 2016-03-30 | Daimler Ag | Vehicle with an alert system and method for operating a vehicle with an alert system |
JP2017116991A (ja) * | 2015-12-21 | 2017-06-29 | 京セラ株式会社 | 携帯端末および車両 |
CN107274646A (zh) * | 2016-04-07 | 2017-10-20 | 司文奎 | 防晕车的信号采集及发送、接收及处理方法和发送端、终端 |
US10543758B2 (en) * | 2016-07-14 | 2020-01-28 | International Business Machines Corporation | Reduction of unwanted motion in vehicles |
US10107635B2 (en) * | 2016-08-19 | 2018-10-23 | Waymo Llc | Method and system for determining and dynamically updating a route and driving style for passenger comfort |
CN109791739B (zh) * | 2016-10-11 | 2021-06-22 | 三菱电机株式会社 | 晕车估计装置、晕车防止装置和晕车估计方法 |
DE102016222800A1 (de) | 2016-11-18 | 2018-05-24 | Thyssenkrupp Ag | Vorrichtung und Verfahren zum Ausgleichen einer Fahrbewegung eines Fahrzeuges |
DE102017206435A1 (de) * | 2017-04-13 | 2018-10-18 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Fahrerassistenzsystem zur Verminderung von Kinetosestörungen eines Insassen eines Fortbewegungsmittels, Fortbewegungsmittel |
DE102017206740B4 (de) * | 2017-04-21 | 2024-07-11 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und System zur Erstellung oder Anpassung eines Kinetoseprofils eines Fahrzeuginsassen |
DE102017211463A1 (de) * | 2017-07-05 | 2019-01-10 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Fahrerassistenzsystem zur Unterstützung eines Insassen eines Fortbewegungsmittels und Fortbewegungsmittel |
CN107301801B (zh) * | 2017-07-14 | 2020-06-09 | 深圳国泰安教育技术有限公司 | 一种vr模拟驾驶的操作方法、装置、vr头盔和存储介质 |
US10259451B2 (en) * | 2017-07-19 | 2019-04-16 | GM Global Technology Operations LLC | Motion sickness mitigation system and method |
DE102017214823B4 (de) | 2017-08-24 | 2019-10-10 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Erstellen und Bereitstellen einer Karte zum Betreiben eines automatisierten Fahrzeugs |
US10379535B2 (en) | 2017-10-24 | 2019-08-13 | Lear Corporation | Drowsiness sensing system |
KR200486715Y1 (ko) | 2017-10-24 | 2018-06-22 | 주식회사 주니픽셀 | 휴대형 소형 건조기 |
US10836403B2 (en) | 2017-12-04 | 2020-11-17 | Lear Corporation | Distractedness sensing system |
CN108639061B (zh) * | 2018-04-16 | 2020-06-02 | 浙江工业大学 | 一种自动驾驶车辆主动防晕车辅助驾驶控制方法 |
US10867218B2 (en) | 2018-04-26 | 2020-12-15 | Lear Corporation | Biometric sensor fusion to classify vehicle passenger state |
CN108542355A (zh) * | 2018-05-04 | 2018-09-18 | 成都泰和万钟科技有限公司 | 一种裸眼3d显示视觉诱导晕动症评估方法 |
US20210154430A1 (en) * | 2018-07-10 | 2021-05-27 | Mobilex Ltd | Systems and methods for predicting and preventing motion sickness |
US10766483B2 (en) | 2018-08-22 | 2020-09-08 | International Business Machines Corporation | Active vehicle virtual reality prevention of predictive motion sickness |
KR102136750B1 (ko) | 2018-09-27 | 2020-07-22 | 울산과학기술원 | 휴대용 건조기 |
US10821969B2 (en) * | 2018-12-18 | 2020-11-03 | Toyota Research Institute, Inc. | Systems and methods to improve ride comfort for users within a vehicle during operation of the vehicle |
DE112020000508T5 (de) | 2019-01-25 | 2021-12-30 | DRiV Automotive Inc. | Systeme und verfahren zum minimieren von reisekrankheit in fahrzeugen |
JP2020124370A (ja) * | 2019-02-05 | 2020-08-20 | ソニーセミコンダクタソリューションズ株式会社 | 酔い状態判定システム、生体情報取得装置、周囲環境情報取得装置、酔い状態判定装置、及び酔い状態判定方法 |
CN113439049B (zh) * | 2019-02-18 | 2024-04-09 | 三菱电机株式会社 | 交通工具晕动症推测装置、交通工具晕动症抑制装置以及交通工具晕动症推测方法 |
US10694078B1 (en) * | 2019-02-19 | 2020-06-23 | Volvo Car Corporation | Motion sickness reduction for in-vehicle displays |
CN109823173A (zh) * | 2019-03-08 | 2019-05-31 | 浙江吉利汽车研究院有限公司 | 一种防晕车的动态显示方法及系统 |
US12059980B2 (en) | 2019-06-21 | 2024-08-13 | Lear Corporation | Seat system and method of control |
US11524691B2 (en) | 2019-07-29 | 2022-12-13 | Lear Corporation | System and method for controlling an interior environmental condition in a vehicle |
FR3104445B1 (fr) * | 2019-12-13 | 2021-11-19 | Novares France | Dispositif destiné à lutter contre la cinétose intégré dans un véhicule automobile |
CN113415238A (zh) * | 2021-06-15 | 2021-09-21 | 宁波越凡医疗科技有限公司 | 车载式防晕车电刺激系统及方法 |
DE102021117327A1 (de) * | 2021-07-05 | 2023-01-05 | Ford Global Technologies, Llc | Verfahren zum Betrieb eines Kraftfahrzeugs |
CN114348007B (zh) * | 2021-11-30 | 2023-12-05 | 宁波均联智行科技股份有限公司 | 一种防晕车的方法及装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2334018A (en) * | 1939-09-23 | 1943-11-09 | Mayne Robert | Apparatus for combating acceleration nausea |
JPS60151195A (ja) * | 1984-01-19 | 1985-08-09 | Takashi Mori | 船酔防止装置 |
US4930435A (en) * | 1989-03-29 | 1990-06-05 | Brunswick Corporation | Anti-motion sickness apparatus |
US6042533A (en) * | 1998-07-24 | 2000-03-28 | Kania; Bruce | Apparatus and method for relieving motion sickness |
JP2003015676A (ja) * | 2001-07-02 | 2003-01-17 | System I Design Inc | 乗り物酔い防止の方法及び装置 |
US6866225B2 (en) * | 2003-04-30 | 2005-03-15 | The Boeing Company | Method and system for presenting moving simulated images in a moving vehicle |
-
2002
- 2002-02-18 NL NL1019989A patent/NL1019989C2/nl not_active IP Right Cessation
-
2003
- 2003-02-18 MX MXPA04008013A patent/MXPA04008013A/es active IP Right Grant
- 2003-02-18 AT AT03705514T patent/ATE314950T1/de active
- 2003-02-18 US US10/505,111 patent/US7437219B2/en not_active Expired - Lifetime
- 2003-02-18 AU AU2003211325A patent/AU2003211325A1/en not_active Abandoned
- 2003-02-18 KR KR1020047012858A patent/KR100961006B1/ko not_active IP Right Cessation
- 2003-02-18 DE DE60303121T patent/DE60303121T2/de not_active Expired - Lifetime
- 2003-02-18 EP EP03705514A patent/EP1476330B1/de not_active Expired - Lifetime
- 2003-02-18 CA CA2476617A patent/CA2476617C/en not_active Expired - Fee Related
- 2003-02-18 WO PCT/NL2003/000119 patent/WO2003068564A2/en active IP Right Grant
- 2003-02-18 ES ES03705514T patent/ES2254906T3/es not_active Expired - Lifetime
- 2003-02-18 JP JP2003567717A patent/JP4533629B2/ja not_active Expired - Fee Related
- 2003-02-18 CN CN038086565A patent/CN1646344B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
NL1019989C2 (nl) | 2003-08-19 |
AU2003211325A1 (en) | 2003-09-04 |
CN1646344A (zh) | 2005-07-27 |
US20050159865A1 (en) | 2005-07-21 |
ES2254906T3 (es) | 2006-06-16 |
KR20040101233A (ko) | 2004-12-02 |
ATE314950T1 (de) | 2006-02-15 |
KR100961006B1 (ko) | 2010-05-31 |
CA2476617C (en) | 2013-03-26 |
DE60303121T2 (de) | 2006-08-31 |
WO2003068564A2 (en) | 2003-08-21 |
DE60303121D1 (de) | 2006-03-30 |
CA2476617A1 (en) | 2003-08-21 |
US7437219B2 (en) | 2008-10-14 |
WO2003068564A3 (en) | 2003-12-04 |
EP1476330A2 (de) | 2004-11-17 |
JP4533629B2 (ja) | 2010-09-01 |
JP2005517568A (ja) | 2005-06-16 |
MXPA04008013A (es) | 2004-11-26 |
CN1646344B (zh) | 2010-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1476330B1 (de) | Methode zur vorbeugung von bewegungskrankheiten und gerät zur erfassung und signalisierung von potentiellen übelkeit verursachenden bewegungen | |
US10118488B1 (en) | System and method to monitor and alert vehicle operator of impairment | |
JP6323549B2 (ja) | 車両用情報呈示装置 | |
US7248997B2 (en) | Driver's condition detector for vehicle and computer program | |
EP1891490B1 (de) | Dialogsystem | |
CN109878527A (zh) | 分心感测系统 | |
HU184050B (en) | Method for detecting and checking the decreasing of activity and watchfulness level of driver on vehicles on non-limited way having independent source of power as well as safety device for vehicles of non-limited way | |
CN113439049A (zh) | 交通工具晕动症推测装置、交通工具晕动症抑制装置以及交通工具晕动症推测方法 | |
US7937241B2 (en) | Method and device for analyzing the effects of the vibrations of a vehicle acting on a person | |
JP6692924B2 (ja) | 眠気推定装置 | |
WO2015189434A1 (en) | System or method for evaluation of the guide and comfort | |
JP4577564B2 (ja) | 車両用表示装置 | |
US20240057913A1 (en) | Device for analysing a vehicle driver's perception of a danger and associated method | |
KR20210158525A (ko) | 자율주행차 주행 시 멀미 저감 시스템 | |
GB2571121A (en) | Method for use in a vehicle | |
EP3751559A1 (de) | Informationsbereitstellungsvorrichtung | |
EP1672336B1 (de) | Ein Verfahren und eine Vorrichtung zur Überwachung der Belastung von einem Fahrzeuginsassen durch mechanische Vibrationen und ein Fahrzeug mit einer solchen Überwachungsvorrichtung | |
US20240351601A1 (en) | Vehicle operator drowsiness alert | |
JP6972877B2 (ja) | 警告情報通知装置 | |
JPH06270717A (ja) | 車両の運転状態報知装置 | |
JP3686183B2 (ja) | 居眠り運転防止装置 | |
DE102023127663A1 (de) | Schläfrigkeitswarnung für fahrzeugführer | |
JP2009240683A (ja) | 運転者の眠気検出装置 | |
KR20180002987A (ko) | 사고예방이 가능한 차량용 블랙박스 | |
KR20080069055A (ko) | 안전운전 유도장치 및 그 장치가 탑재된 네비게이션 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040914 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BOS, JELTE, EGBERT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060104 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060104 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060104 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060104 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060104 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060228 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REF | Corresponds to: |
Ref document number: 60303121 Country of ref document: DE Date of ref document: 20060330 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060404 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060605 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2254906 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20061005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060104 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060104 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20140220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20140221 Year of fee payment: 12 Ref country code: CZ Payment date: 20140213 Year of fee payment: 12 Ref country code: SE Payment date: 20140218 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20140212 Year of fee payment: 12 Ref country code: IT Payment date: 20140227 Year of fee payment: 12 Ref country code: BE Payment date: 20140218 Year of fee payment: 12 Ref country code: ES Payment date: 20140226 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150218 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 314950 Country of ref document: AT Kind code of ref document: T Effective date: 20150218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150218 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150218 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150218 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20160329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150219 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220223 Year of fee payment: 20 Ref country code: DE Payment date: 20220217 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20220216 Year of fee payment: 20 Ref country code: FR Payment date: 20220216 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60303121 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20230217 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20230217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230217 |