EP1453785A2 - Procede de fabrication d acide acrylique a partir de propane et en l'absence d'oxygene moleculaire - Google Patents

Procede de fabrication d acide acrylique a partir de propane et en l'absence d'oxygene moleculaire

Info

Publication number
EP1453785A2
EP1453785A2 EP02799759A EP02799759A EP1453785A2 EP 1453785 A2 EP1453785 A2 EP 1453785A2 EP 02799759 A EP02799759 A EP 02799759A EP 02799759 A EP02799759 A EP 02799759A EP 1453785 A2 EP1453785 A2 EP 1453785A2
Authority
EP
European Patent Office
Prior art keywords
limits included
catalyst
limits
propane
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02799759A
Other languages
German (de)
English (en)
Inventor
Jean-Luc Dubois
Stéphanie SERREAU
Julien Jacquel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Atofina SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atofina SA filed Critical Atofina SA
Publication of EP1453785A2 publication Critical patent/EP1453785A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying

Definitions

  • the present invention relates to the production of acrylic acid from propane in the absence of molecular oxygen.
  • This process has the major drawback of producing propionic acid as a by-product.
  • This acid poses problems in certain applications of acrylic acid when it is present in too large a quantity.
  • the invention therefore aims to reduce the production of propionic acid in such a process.
  • the subject of the invention is a process such as that which has just been described but in which the gaseous mixture is also passed over a co-catalyst.
  • a more specific subject of the invention is therefore a process for manufacturing acrylic acid from propane, in which a gaseous mixture devoid of molecular oxygen and comprising propane, steam, as well as , where appropriate, an inert gas, on a catalyst comprising molybdenum, vanadium, tellurium, oxygen and at least one other element X chosen from niobium, tantalum, tungsten, titanium, aluminum , zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, antimony, bismuth, boron, indium and cerium, to oxidize propane according to the following redox reaction (1):
  • Such a process therefore makes it possible to greatly reduce the propionic acid / acrylic acid ratio at the outlet of the reactor. In addition, it also decreases the formation of acetone, which is also a by-product of the manufacture of acrylic acid from propane.
  • Another subject of the invention is a solid catalytic composition
  • a solid catalytic composition comprising: a) the catalyst as defined above; as well as b) the co-catalyst as defined above.
  • the co-catalyst used in the process according to the invention corresponds to formula (II) indicated above.
  • the oxides of the different metals used in the composition of the mixed oxide of formula (II) can be used as raw materials in the preparation of this composition, but the raw materials are not limited to oxides; as other raw materials, there may be mentioned: - in the case of molybdenum, ammonium molybdate, ammonium paramolybdate, ammonium heptamolybdate, molybdic acid, molybdenum halides or oxyhalides such as MoCl 5 , organometallic molybdenum compounds such as molybdenum alkoxides such as Mo (OC 2 H 5 ) 5 , acetylacetone molybdenyl; - in the case of vanadium, ammonium metavanadate, vanadium halides or oxyhalides such as VC1 4 , VC1 5 or V
  • VO (OC 2 H 5 ) 3 - in the case of niobium, niobic acid, Nb2 (C204) 5, niobium tartrate, niobium hydrogen oxalate, oxotrioxalatoammonium niobiate ⁇ (NH4) 3 [Nb0 (C204) 3] "l , 5H2 ⁇ , niobium and ammonium oxalate, niobium and tartrate oxalate, halides or oxyhalides of nobium such as NbCl3, EbC15 and organometallic compounds of niobium such as niobium alkoxides such as Nb (0C2H5 ) 5, Nb (0-n-Bu) 5;
  • the silicon source generally consists of colloidal silica.
  • solid compositions of formula (II) can be prepared by mixing, with stirring, aqueous solutions of niobic acid, ammonium heptamolybdate, ammonium metavanadate, telluric acid, preferably adding colloidal silica, then precalcining in air at about 300 ° C and calcining under nitrogen at about 600 ° C.
  • limits included d is between 0.1 and 0.6
  • limits included - e ' is between 0.006 and 0.01
  • the catalyst is such as that used in the process of the above-mentioned European patent application No. 608 838, and in particular, the catalyst of formula M ⁇ V 0 , 3 Te 0 , 23 Nbo, ⁇ O n , the preparation of which is described in Example 1 of this patent application.
  • the catalyst corresponds to the following formula (I):
  • a is between 0.006 and 1
  • limits included b is between 0.006 and 1
  • limits included c is between 0.006 and 1
  • limits included d is between 0 and 3.5, limits included
  • - x is the quantity of oxygen linked to the other elements and depends on their oxidation states,
  • a is between 0.09 and 0.8, limits included
  • Such a catalyst can be prepared in the same way as the co-catalyst of formula (II) and from the same raw materials with, in addition, as tellurium source, tellurium oxide, telluric acid or, of a in general, all the compounds capable of forming a tellurium oxide by calcination, namely, metallic salts of organic acids, metallic salts of mineral acids, complex metallic compounds, etc.
  • the manufacture of acrylic acid is carried out by passing a gaseous mixture lacking of molecular oxygen and comprising propane and water vapor, as well as, if appropriate, an inert gas, on a catalyst and a cocatalyst as defined above, to conduct the reaction redox (1) as indicated above.
  • the mass ratio of the catalyst to the co-catalyst is generally greater than 0.5 and preferably at least 1.
  • the catalyst and the cocatalyst are located in the same reactor.
  • the redox reaction is carried out in a single step.
  • the catalyst and the cocatalyst can be in the form of a solid catalytic composition.
  • They may each be in the form of grains, the grains of catalyst and of cocatalyst being mixed before the implementation of the process according to the invention.
  • the catalyst and the cocatalyst can also be in the form of a solid catalytic composition composed of grains, each of which comprises both the catalyst and the cocatalyst.
  • the redox reaction (1) is carried out at a temperature of 200 to 500 ° C, preferably from 250 to 450 ° C, more preferably still, from 350 to 400 ° C.
  • the pressure is generally from 1.01.10 4 to 1.01.10 e Pa
  • the residence time is generally 0.01 to 90 seconds, preferably 0.1 to 30 seconds.
  • the propane / water vapor volume ratio in the gas phase is not critical and can vary within wide limits.
  • the proportion of inert gas which may be helium, krypton, a mixture of these two gases, or nitrogen, carbon dioxide, etc., is also not critical and may also vary within wide limits.
  • the following ratio (by volume) can be cited: propane / inert (He-Kr) / H 2 0 (vapor): 10-20 / 40-50 / 40-50
  • reaction (2) the regeneration of said solid composition is carried out according to reaction (2):
  • the process is generally carried out until the reduction rate of the solid composition is between
  • the solid composition After the regeneration, which can be carried out under conditions of temperature and pressure identical or different from those of the redox reaction, the solid composition regains initial activity and can be used in a new reaction cycle.
  • the redox reaction (1) and the regeneration can be carried out in a conventional reactor, such as a fixed bed reactor, a fluidized bed reactor or a transported bed reactor.
  • the redox reaction (1) and the regeneration can therefore be carried out in a two-stage device, namely a reactor and a regenerator which operate simultaneously and in which two charges of solid composition alternate periodically; we can also conduct the reaction redox (1) and regeneration in the same reactor by alternating the reaction and regeneration periods.
  • the redox reaction (1) and the regeneration are carried out in a reactor with a transported catalyst bed.
  • the propylene produced as a secondary product and / or the unreacted propane are recycled (or returned) to the inlet of the reactor, that is to say that they are reintroduced to the 'inlet of the reactor, in mixture or in parallel with the starting mixture of propane, water vapor and if necessary inert gas (ies).
  • x is the quantity of oxygen linked to the other elements and depends on their oxidation states.
  • catalyst A of formula Mo_Vo t 3 _Jiibo, ⁇ Teo, z2Sio.9sO x a) Preparation of a niobium solution In a 5 1 beaker, 640 g of distilled water are introduced and then 51.2 g of niobic acid (ie 0, 304 moles of niobium). We then add 103.2 g (0.816 mole) of oxalic acid dihydrate.
  • the oxalic acid / niobium molar ratio is therefore 2.69.
  • Ludox silica containing 40% by weight of silica, supplied by the company Dupont
  • the latter retains its clarity and red coloration.
  • the niobium solution prepared above is then added. A fluorescent orange gel is thus obtained after a few minutes of stirring. This solution is then spray dried.
  • the atomizer used is a laboratory atomizer (ATSELAB from the company Sodeva). The atomization takes place under a nitrogen atmosphere (in order to avoid any oxidation and any untimely combustion of the oxalic acid present in the slip).
  • the operating parameters are overall: - nitrogen flow rate of the order of 45 Nm3 / h; slip flow of the order of 500 g / h; gas inlet temperature between 155 ° C and 170 ° C; gas outlet temperature between 92 ° C and 100 ° C.
  • the recovered product 355.2 g, which has a particle size of less than 40 microns, is then placed in an oven at 130 ° C. overnight in a teflon-coated tray. 331 g of dry product are thus obtained.
  • the precalcinations and calcinations were carried out under air and nitrogen flow in steel capacities. These capacities are directly installed in muffle furnaces and the air supply is through the chimney. An internal thermowell allows proper temperature control. The cover is useful to avoid a return of air to the catalyst.
  • the 331 g of the precursor obtained previously is precalcined for 4 hours at 300 ° C. under an air flow of 47.9 ml / min / g of precursor.
  • the solid obtained is then calcined for 2 hours at 600 ° C. under a nitrogen flow of 12.8 ml / min / g of solid.
  • a solution A is prepared by dissolving 79.7 g of ammonium heptamoblydate in 220.3 g of water at room temperature, with stirring, for 5 minutes.
  • a solution B is prepared by dissolving 51.5 g of cobalt nitrate and 0.3327 g of potassium nitrate in 55 g of water at room temperature, with stirring, for 5 minutes. This gives a purple solution B.
  • a solution C is prepared by dissolving 56.4 g of iron nitrate, 19.3 g of bismuth nitrate and 28.6 g of nickel nitrate in 85.1 g of water as follows: the nitrates are introduced in a small amount of water, 4.4 g of 68% nitric acid are added, then the rest of the water is added. The mixture is stirred for 30 to 45 minutes.
  • a solution D is prepared by dissolving 44.5 g of LUDOX AS40 silica in 16.4 g of distilled water at room temperature, with stirring.
  • the temperature is increased to 70 ° C and maintained at this temperature for 90 minutes.
  • the mixture is kept stirring at room temperature. Then the temperature is gradually increased to 70 ° C. The mixture is kept stirred at this temperature for 90 minutes. Then, the heating and stirring are stopped and the mixture is allowed to cool to room temperature.
  • the mixture contains approximately 33% by weight of solid matter and its pH is less than 1. The mixture is then micronized in a ball mill until particles are obtained whose average size is less than 2 microns.
  • a polysilicic acid solution (APS) at 6% by weight of silica
  • This solution is prepared by diluting 1091 g of a sodium silicate solution (360 g of silica) with 4909 g of distilled water . This solution is mixed for a few minutes; the pH of this mixture is approximately 12. Then, with vigorous stirring, a sulfonic cation exchange resin sold by the company Dow Chemicals under the trademark DOWEX Monosphere 650C (H) is added, until the pH of the mixture is between 2.5 and 3. Then the resin is filtered and the filtrate is stored in ice and must be used within the next hour to prepare a precursor suspension-PSA solution for atomization.
  • DOWEX Monosphere 650C DOWEX Monosphere 650C
  • 1110 g of the APS solution with 6% silica (obtained in the previous step) are added to 2000 g of the mixture of micronized precursor and the whole is kept under stirring in ice.
  • the resulting suspension which contains 22.7% solids, has a pH of 1 ⁇ 0.1.
  • This suspension is atomized at a speed of about 200 ml / min, with a nozzle pressure of 0.3 bar and a temperature chamber temperature of 390 ° C, so as to obtain porous microspheres, usable in the redox process, in a transported bed.
  • microspheres collected under the atomizer chamber are calcined in an oven by heating from room temperature to 90 ° C in 1 hour, maintaining the temperature at 90 ° C for 2 hours, then heating to 300 ° C in 2 hours, maintaining the temperature at 300 ° C for 5 hours, then heating to 550 ° C in 2 hours and maintaining the temperature at 550 ° C for 6 hours.
  • the desired cocatalyst C is thus obtained.
  • a first height of 1 ml of silicon carbide in the form of particles of 0.62 mm in diameter is loaded into a vertical reactor from the bottom up, a second height of 1 ml of silicon carbide in the form of particles of 0.125 mm in diameter and 5 g of catalyst in the form of particles of 0.02 to 1 mm, then a third height of silicon carbide in the form of particles of 1.19 mm in diameter.
  • the reactor is then heated to 250 ° C and the vaporizer to 200 ° C.
  • the electric priming of the water pump is activated.
  • the water pump is activated and the temperature of the reactor is raised to 380 ° C. and it is waited 30 minutes for the hot point to be stabilized.
  • Each small washing bottle (25 ml of capacity and filled with 20 ml of water) is equipped with a gas pocket, and when the bottle is connected to the outlet of the reactor (as soon as the liquid bubbles) ), the pocket is opened and the stopwatch is started.
  • the gases are analyzed during the balance on a micro-GC Chrompack chromatograph.
  • An acidity assay is carried out on each bottle to determine the exact number of moles of acid produced during each micro-balance and to validate the chromatographic analyzes.
  • the final result which is rendered corresponds to the average of the micro-assessments carried out on the 4 washing bottles and the 4 gas pockets.
  • T3 and T4 tests A third T3 test was carried out with 5 g of catalyst A. The duration of the propane pulses had been adjusted to approximately 12 s, by adjusting the opening time of the mass flow meter. The number of moles of propane sent to the catalyst is thus predetermined. We proceed as described above. The results obtained are collated in Table 2.
  • a fourth test T4 was carried out, by loading into the reactor, instead of the 5 g of catalyst A, a mechanical mixture of 5 g of catalyst A and 5 g of co-catalyst C.
  • the operating parameters were identical.
  • the results obtained are recorded in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de production d'acide acrylique à partir de propane en l'absence d'oxygíne moléculaire. Selon ce procédé, on fait passer un mélange gazeux dépourvu d'oxygíne moléculaire et comprenant du propane, de la vapeur d'eau, ainsi que, le cas échéant, un gaz inerte, sur un catalyseur comprenant du molybdíne, du vanadium, du tellure, de l'oxygíne et au moins un autre élément X choisi parmi le niobium, le tantale, le tungstíne, le titane, l'aluminium, le zirconium, le chrome, le manganíse, le fer, le ruthénium, le cobalt, le rhodium, le nickel, le palladium, le platine, l'antimoine, le bismuth, le bore, l'indium et le cerium, ainsi que sur un co-catalyseur de formule II MolBia,Feb,Coc,Nid,Ke,Sbf,Tig,Sih,CaI,Nbj,Tek,Pbl,Wm,.Cun, II. L'invention concerne également une composition solide catalytique comprenant lesdits catalyseur et co-catalyseur ainsi que l'utilisation de cette composition dans la fabrication d'acide acrylique à partir du propane.

Description

PROCEDE DE FABRICATION D'ACIDE ACRYLIQUE À PARTIR DE PROPANE
ET EN L'ABSENCE D'OXYGENE MOLÉCULAIRE
La présente invention concerne la production d'acide acrylique à partir de propane en l'absence d'oxygène moléculaire .
Il est connu, d'après la demande de brevet européen n° 608 838, de préparer un acide carboxylique insaturé, tel que l'acide acrylique, à partir d'un alcane tel que le propane, en soumettant cet alcane à une réaction d'oxydation catalytique en phase vapeur éventuellement dépourvue d'oxygène moléculaire et en présence d'un catalyseur contenant un oxyde mixte de métaux comprenant essentiellement du molybdène, du vanadium, du tellure, de l'oxygène et au moins un autre élément X choisi parmi le niobium, le tantale, le tungstène, le titane, l'aluminium, le zirconium, le chrome, le manganèse, le fer, le ruthénium, le cobalt, le rhodium, le nickel, le palladium, le platine, l'antimoine, le bismuth, le bore 1 ' indium et le cerium, les proportions de ces éléments satisfaisant aux conditions suivantes : 0,25 < rMo < 0,98 0, 003 < rv < 0,5 0, 003 < rTe < 0,5 0, 003 < rx < 0,5 dans lesquelles rMo, rv, rTe et rx représentent respectivement les fractions molaires de Mo, V, Te et X, par rapport à la somme des nombres de moles de tous les éléments du catalyseur, à l'exception de l'oxygène.
• Ce procédé a pour inconvénient majeur de produire de l'acide propionique comme sous-produit . Cet acide pose des problèmes dans certaines applications de l'acide acrylique lorsqu'il est présent en trop grande quantité. L'invention a donc pour but de diminuer la production d'acide propionique dans un tel procédé. Ainsi, l'invention a pour objet un procédé tel que celui qui vient d'être décrit mais dans lequel on fait en outre passer le mélange gazeux sur un co-catalyseur.
L'invention a donc plus précisément pour objet un procédé de fabrication de l'acide acrylique à partir de propane, dans lequel on fait passer un mélange gazeux dépourvu d'oxygène moléculaire et comprenant du propane, de la vapeur d'eau, ainsi que, le cas échéant, un gaz inerte, sur un catalyseur comprenant du molybdène, du vanadium, du tellure, de l'oxygène et au moins un autre élément X choisi parmi le niobium, le tantale, le tungstène, le titane, l'aluminium, le zirconium, le chrome, le manganèse, le fer, le ruthénium, le cobalt, le rhodium, le nickel, le palladium, le platine, l'antimoine, le bismuth, le bore, l' indium et le cerium, pour oxyder le propane selon la réaction rédox (1) suivante :
SOLIDEoxydé + PROPANE - SOLIDEréduit + ACIDE ACRYLIQUE (1)
ce procédé se caractérisant en ce que l'on fait également passer le mélange gazeux sur un co-catalyseur de formule (II)
MθιBia< Feb' Coc<Nid' Ke< Sbf - Tig- Sih< Cai<Nb . Tek. P ι<Wra' Cun< (II)
dans laquelle :
- a' est compris entre 0,006 et 1, bornes incluses
- b' est compris entre 0 et 3,5, bornes incluses c' est compris entre 0 et 3,5, bornes incluses d' est compris entre 0 et 3,5, bornes incluses e' est compris entre 0 et 1, bornes incluses ; f est compris entre 0 et 1, bornes incluses ;
- g' est compris entre 0 et 1, bornes incluses ;
- h' est compris entre 0 et 3,5, bornes incluses
- i' est compris entre 0 et 1, bornes incluses j ' est compris entre 0 et 1, bornes incluses
- k' est compris entre 0 et 1, bornes incluses l' est compris entre 0 et 1, bornes incluses
- m' est compris entre 0 et 1, bornes incluses ; et - n' est compris entre 0 et 1, bornes incluses.
Un tel procédé permet donc de réduire fortement le rapport acide propionique/acide acrylique en sortie de réacteur. En outre, il diminue également la formation d'acétone, qui est aussi un sous-produit de la fabrication d'acide acrylique à partir de propane.
L'invention a pour autre objet une composition solide catalytique comprenant : a) le catalyseur tel qu'il a été défini ci-dessus ; ainsi que b) le co-catalyseur tel qu'il a été défini ci-dessus.
D'autres caractéristiques et avantages de l'invention vont maintenant être décrits en détail dans l'exposé qui suit.
EXPOSE DETAILLE DE L'INVENTION Le co-catalyseur utilisé dans le procédé selon l'invention répond à la formule (II) indiquée ci-dessus. Les oxydes des différents métaux entrant dans la composition de l'oxyde mixte de formule (II) peuvent être utilisés comme matières premières dans la préparation de cette composition, mais les matières premières ne sont pas limitées aux oxydes ; comme autres matières premières, on peut citer : - dans le cas du molybdène, le molybdate d'ammonium, le paramolybdate d'ammonium, l'heptamolybdate d'ammonium, l'acide molybdique, les halogènures ou oxyhalogénures de molybdène tels que MoCl5, les composés organométalliques du molybdène comme les alkoxydes de molybdène tels que Mo(OC2H5)5, le molybdényle d' acétylacétone ; - dans le cas du vanadium, le métavanadate d'ammonium, les halogènures ou oxyhalogénures de vanadium tels que VC14, VC15 ou V0C13, les composés organométalliques du vanadium comme les alkoxydes de vanadium tels que
VO(OC2H5)3 ; - dans le cas du niobium, l'acide niobique, Nb2 (C204) 5, le tartrate de niobium, l'hydrogéno-oxalate de niobium, le niobiate d'oxotrioxalatoammonium { (NH4)3 [Nb0(C204)3] »l,5H2θ}, l'oxalate de niobium et d'ammonium, l'oxalate de niobium et de tartrate, les halogènures ou oxyhalogénures de nobium tels que NbCl3, EbC15 et les composés organométalliques du niobium comme les alkoxydes de niobium tels que Nb(0C2H5)5, Nb(0-n-Bu)5 ;
- dans le cas du nickel, du cobalt, du bismuth, du fer ou du potassium, les nitrates correspondants ; et, d'une manière générale, tous les composés susceptibles de former un oxyde par calcination, à savoir, les sels métalliques d'acides organique, les sels métalliques d'acides minéraux, les composés métalliques complexes, etc. La source de silicium est généralement constituée de silice colloïdale.
Conformément à des modes de réalisation particuliers, on peut préparer des compositions solides de formule (II) en mélangeant sous agitation des solutions aqueuses d'acide niobique, d'heptamolybdate d'ammonium, de métavanadate d'ammonium, d'acide tellurique, en ajoutant de préférence de la silice colloïdale, puis en précalcinant sous air à environ 300°C et en calcinant sous azote à environ 600°C.
De préférence, dans le co-catalyseur de formule (II) :
- a' est compris entre 0,01 et 0,4, bornes incluses ;
- b' est compris entre 0,2 et 1,6, bornes incluses
- c' est compris entre 0,3 et 1,6, bornes incluses d' est compris entre 0,1 et 0,6, bornes incluses - e' est compris entre 0,006 et 0,01, bornes incluses
- f est compris entre 0 et 0,4, bornes incluses ;
- g' est compris entre 0 et 0,4, bornes incluses ;
- h' est compris entre 0,01 et 1,6, bornes incluses ;
- i' est compris entre 0 et 0,4, bornes incluses - j' est compris entre 0 et 0,4, bornes incluses
- k' est compris entre 0 et 0,4, bornes incluses
- l' est compris entre 0 et 0,4, bornes incluses - m' est compris entre 0 et 0,4, bornes incluses ; et
- n' est compris entre 0 et 0,4, bornes incluses.
Selon un mode de réalisation de l'invention, le catalyseur est tel que celui utilisé dans le procédé de la demande de brevet européen n° 608 838 précitée, et en particulier, le catalyseur de formule MθιV0,3Te0,23Nbo,ιOn, dont la préparation est décrite dans l'exemple 1 de cette demande de brevet.
Selon un mode de réalisation préféré de l'invention, le catalyseur répond à la formule (I) suivante :
MθιNaTebNbcSidOx ( I )
dans laquelle : a est compris entre 0,006 et 1, bornes incluses b est compris entre 0,006 et 1, bornes incluses c est compris entre 0,006 et 1, bornes incluses d est compris entre 0 et 3,5, bornes incluses ; et - x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états d'oxydation, Avantageusement : a est compris entre 0,09 et 0,8, bornes incluses
- b est compris entre 0,04 et 0,6, bornes incluses - c est compris entre 0,01 et 0,4, bornes incluses ; et d est compris entre 0,4 et 1,6, bornes incluses. Un tel catalyseur peut être préparé de la même manière que le co-catalyseur de formule (II) et à partir des mêmes matières premières avec en outre comme source de tellure, l'oxyde de tellure, l'acide tellurique ou, d'une manière générale, tous les composés susceptibles de former un oxyde de tellure par calcination, à savoir, les sels métalliques d'acides organique, les sels métalliques d'acides minéraux, les composés métalliques complexes, etc.
Selon l'invention, la fabrication de l'acide acrylique est réalisée en faisant passer un mélange gazeux dépourvu d'oxygène moléculaire et comprenant du propane et de la vapeur d'eau, ainsi que, le cas échéant, un gaz inerte, sur un catalyseur et un co-catalyseur tels qu'ils ont été définis ci- dessus, pour conduire la réaction rédox (1) telle qu'indiquée ci-dessus.
Le rapport massique du catalyseur au co-catalyseur est généralement supérieur à 0,5 et de préférence d'au moins 1.
Selon un mode de réalisation avantageux de l'invention, le catalyseur et le co-catalyseur se situent dans le même réacteur. Ainsi, la réaction rédox est mise en œuvre en une seule étape.
Le catalyseur et le co-catalyseur peuvent se présenter sous la forme d'une composition solide catalytique.
Ils peuvent être chacun sous la forme de grains, les grains de catalyseur et de co-catalyseur étant mélangés avant la mise en œuvre du procédé selon l'invention.
Le catalyseur et le co-catalyseur peuvent aussi se présenter sous la forme d'une composition solide catalytique composée de grains dont chacun comprend à la fois le catalyseur et le co-catalyseur.
Généralement, la réaction rédox (1) est conduite à une température de 200 à 500°C, de préférence de 250 à 450°C, plus préférentiellement encore, de 350 à 400°C. La pression est généralement de 1,01.104 à 1,01.10e Pa
(0,1 à 10 atmosphères), de préférence de 5,05.104 à 5,05.105 Pa
(0,5-5 atmosphères).
Le temps de séjour est généralement de 0,01 à 90 secondes, de préférence, de 0,1 à 30 secondes. Le rapport en volume propane/vapeur d'eau dans la phase gazeuse n'est pas critique et peut varier dans de larges limites .
De même, la proportion de gaz inerte, qui peut être de l'hélium, du krypton, un mélange de ces deux gaz, ou bien de l'azote, du dioxyde de carbone, etc., n'est pas non plus critique et peut aussi varier dans de larges limites. Comme ordre de grandeur des proportions du mélange de départ, on peut citer le ratio suivant (en volumes) : propane/inerte (He-Kr) /H20 (vapeur) : 10-20/40-50/40-50
Au cours de la réaction rédox (1) , la composition solide subit une réduction et, en général, une perte progressive de son activité. C'est pourquoi, une fois que la composition solide est au moins partiellement passée à l'état réduit, on conduit la régénération de ladite composition solide selon la réaction (2) :
S0LIDEréduit + 02 - SOLIDEoxydé (2) par chauffage en présence d'oxygène ou d'un gaz contenant de l'oxygène à une température de 250 à 500°C, pendant le temps nécessaire à la réoxydation de la composition solide.
On met en général le procédé en œuvre jusqu'à ce que le taux de réduction de la composition solide soit compris entre
10 et 40%. Ce taux de réduction peut être surveillé au cours de la réaction par la quantité de produits obtenus. On calcule alors la quantité d'oxygène équivalente. On peut aussi le suivre par l' exothermicité de la réaction.
Après la régénération, qui peut être effectuée dans des conditions de température et de pression identiques ou différentes de celles de la réaction rédox, la composition solide retrouve une activité initiale et peut être utilisée dans un nouveau cycle de réaction.
On peut conduire la réaction rédox (1) et la régénération dans un réacteur classique, tel qu'un réacteur à lit fixe, un réacteur à lit fluidisé ou un réacteur à lit transporté.
On peut donc conduire la réaction rédox (1) et la régénération dans un dispositif à deux étages, à savoir un réacteur et un régénérateur qui fonctionnent simultanément et dans lesquels alternent périodiquement deux charges de composition solide ; on peut également conduire la réaction rédox (1) et la régénération dans un même réacteur en alternant les périodes de réaction et de régénération.
De préférence, la réaction rédox (1) et la régénération sont effectuées dans un réacteur à lit de catalyseur transporté.
On peut utiliser un mode de fonctionnement à un seul passage ou avec recyclage.
Selon un mode de réalisation préféré, le propylène produit comme produit secondaire et/ou le propane n'ayant pas réagi sont recyclés (ou renvoyés) à l'entrée du réacteur, c'est-à- dire qu'ils sont réintroduits à l'entrée du réacteur, en mélange ou parallèlement avec le mélange de départ de propane, de vapeur d'eau et le cas échéant de gaz inerte (s) .
Exemples
Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée .
Dans les formules indiquées dans les exemples 1 à 3 , x est la quantité d' oxygène lié aux autres éléments et dépend de leurs états d' oxydation .
Les sélectivités et rendements sont définis comme suit :
Nombre de moles d' acide acrylique formées
Sélectivité (%) = x 100 en acide acrylique Nombre de moles de propane ayant réagi
Nombre de moles d' acide acrylique formées
Rendement (%) = x 100 en acide acrylique Nombre de moles de propane introduites
Les sélectivités et rendements relatifs aux autres composés sont calculées de manière similaire.
Exemple 1
Préparation du catalyseur A de formule Mo_Vot 3_Jiibo,ιιTeo,z2Sio.9sOx a) Préparation d' une solution de niobium Dans un bêcher de 5 1 , on introduit 640 g d' eau distillée puis 51 , 2 g d' acide niobique ( soit 0 , 304 moles de niobium) . On ajoute ensuite 103,2 g (0,816 mole) d'acide oxalique dihydraté .
Le rapport molaire acide oxalique/niobium est donc de 2,69.
On chauffe la solution obtenue précédemment à 60 °C pendant 2 heures, en couvrant pour éviter l' évaporâtion et en agitant. On obtient ainsi une suspension blanche que l'on laisse refroidir sous agitation jusqu'à 30°C , ce qui dure environ 2 heures .
b) Préparation d'une solution de Mo, V et Te
Dans un bêcher de 5 1, on introduit 2120 g d'eau distillée, 488 g d'heptamolybdate d'ammonium (soit 2,768 moles de molybdène), 106,4 g de métavanadate d'ammonium NHVO3 (soit 0,912 mole de vanadium) et 139,2 g d'acide tellurique
(fournisseur : FLUKA) (soit 0,608 mole de tellure) .
On chauffe la solution obtenue précédemment à 60°C pendant
1 heure et 20 minutes, en couvrant pour éviter 1 ' évaporation et en agitant. On obtient ainsi une solution limpide rouge que l'on laisse refroidir sous agitation jusqu'à 30°C, ce qui dure environ 2 heures .
c) Introduction de la silice
393,6 g de silice Ludox (contenant 40% en poids de silice, fournie par la société Dupont) sont introduits sous agitation dans la solution de Mo, V et Te préparée précédemment. Cette dernière conserve sa limpidité et sa coloration rouge.
On ajoute ensuite la solution de niobium préparée précédemment. On obtient ainsi un gel orange fluo au bout de quelques minutes d'agitation. On sèche alors par atomisation cette solution. L'atomiseur utilisé est un atomiseur de laboratoire (ATSELAB de la société Sodeva) . L' atomisation se déroule sous atmosphère d'azote (afin d'éviter toute oxydation et toute combustion intempestive de l'acide oxalique présent dans la barbotine) .
Les paramètres de marche sont globalement : - débit d'azote de l'ordre de 45 Nm3/h ; débit de barbotine de l'ordre de 500 g/h ; température d'entrée des gaz comprise entre 155°C et 170°C ; température de sortie des gaz comprise entre 92 °C et 100°C. On met ensuite le produit récupéré (355,2 g), qui présente une granulometrie inférieure à 40 microns à l'étuve à 130°C pendant une nuit, dans un plateau téfloné. On obtient ainsi 331 g de produit sec.
d) Calcination
Les précalcinations et calcinations ont été faites sous flux d'air et d'azote dans des capacités en acier. Ces capacités sont directement installées dans des fours à moufles et l'alimentation en air se fait par la cheminée. Un puits thermométrique interne permet un juste contrôle de la température. Le couvercle est utile pour éviter un retour d'air vers le catalyseur.
Tout d'abord, on précalcine les 331 g du précurseur obtenu précédemment pendant 4 heures à 300°C sous flux d'air de 47,9 ml/min/g de précurseur.
Le solide obtenu est ensuite calciné pendant 2 heures à 600°C sous un flux d'azote de 12,8 ml/min/g de solide.
On obtient ainsi le catalyseur A.
Exemple 2
Préparation du co-catalyseur B de formule
MθχBi 22K0 , ooβSbo, osSi o, 6β x
On prépare une solution A en dissolvant 79,7 g d'heptamoblydate d'ammonium dans 220,3 g d'eau à température ambiante, sous agitation, pendant 5 minutes.
On obtient ainsi une solution incolore A.
On prépare une solution B en dissolvant 51,5 g de nitrate de cobalt et 0,3327 g de nitrate de potassium dans 55 g d'eau à température ambiante, sous agitation, pendant 5 minutes. On obtient ainsi une solution pourpre B. On prépare une solution C en dissolvant 56,4 g de nitrate de fer, 19,3 g de nitrate de bismuth et 28,6 g de nitrate de nickel dans 85,1 g d'eau de la façon suivante : on introduit les nitrates dans une petite quantité d'eau, on ajoute 4,4 g d'acide nitrique à 68%, puis on ajoute le reste d'eau. On agite pendant 30 à 45 minutes.
On obtient ainsi une solution verte C.
On prépare une solution D en dissolvant 44,5 g de silice LUDOX AS40 dans 16,4 g d'eau distillée à température ambiante, sous agitation.
On obtient ainsi une solution D.
Ensuite, on verse la solution B dans la solution A et on agite pendant 10 minutes. Puis, on ajoute 5,9 g de trioxyde d'antimoine et la solution C en 10 minutes. Enfin, on ajoute la solution D en 10 minutes suivie de 16,2 g d'ammoniaque (à 28% en poids) pour ramener le pH de la solution à 2,3.
Tout en poursuivant l'agitation on augmente la température jusqu'à 70°C et on maintient à cette température pendant 90 minutes .
On effectue ensuite une êvaporation sous vide avec bain- marie et sous agitation, jusqu'à l'obtention d'un gel épais. Le séchage du précurseur est ensuite terminé à l'étuve à 130°C pendant 24 heures. On récupère ainsi 158,3 g de précurseur sec. La calcination se fait sous air (47 ml/min/g de précurseur) selon la programmation suivante :
- montée en température de 2°C/min jusqu'à 320°C ;
- palier à 320°C pendant 2 heures ;
- montée en température de 2°C/min jusqu'à 540°C ; - palier à 540°C pendant 999 minutes (16,7 heures) .
On obtient ainsi 23,9 g de co-catalyseur B.
Exemple 3
Préparation du co-catalyseur C de formule MOxBi
a) Préparation du précurseur Une solution de 7970,0 g d' heptamolybdate d'ammonium dans 22000 g d'eau distillée est ajoutée, dans un mélangeur, à une solution de 5151 g de nitrate de cobalt hexahydrate et. de 33,0 g de nitrate de potassium dans 5000 g d'eau. La solution résultante est agitée pendant 10 minutes à température ambiante. On y verse ensuite 127,6 g de Ti02 de granulometrie inférieure à 1 micron. Puis, en 10 minutes, on ajoute une solution constituée de :
5637 g de nitrate ferrique non hydraté, - 1920 g de nitrate de bismuth pentahydrate, 2859 g de nitrate de nickel hexahydrate,
- 417 g d'acide nitrique à 68% et
- 8500 g d'eau distillée.
Pour terminer, on introduit, en 5 minutes, 594 g d'une solution de silice colloïdale à 30% en poids de silice dans 1500 g d'eau distillée.
Le mélange est maintenu sous agitation à température ambiante. Ensuite, la température est progressivement augmentée jusqu'à 70°C. Le mélange est maintenu sous agitation à cette température pendant 90 minutes. Puis, le chauffage et l'agitation sont arrêtés et on laisse le mélange refroidir jusqu'à la température ambiante. Le mélange contient environ 33% en poids de matières solides et son pH est inférieur à 1. Le mélange est ensuite micronisé dans un broyeur à billes jusqu'à l'obtention de particules dont la taille moyenne est inférieure à 2 microns.
b) Préparation d'une solution d'acide polysilicique (APS) à 6% en poids de silice On prépare cette solution en diluant 1091 g d'une solution de silicate de sodium (360 g de silice) avec 4909 g d'eau distillée. Cette solution est mélangée pendant quelques minutes ; le pH de ce mélange est d'environ 12. Ensuite, sous une agitation énergique, on ajoute une résine échangeuse de cations sulfonique commercialisée par la société Dow Chemicals sous la marque DOWEX Monosphère 650C (H), jusqu'à ce que le pH du mélange soit compris entre 2,5 et 3. Ensuite, la résine est filtrée et le filtrat est stocké dans de la glace et doit être utilisé dans l'heure suivante pour préparer une suspension précurseur-solution d'APS en vue de l' atomisation.
c) Préparation et atomisation de la suspension précurseur- solution d'APS
1110 g de la solution d'APS à 6% de silice (obtenue à l'étape précédente) sont ajoutés à 2000 g du mélange de précurseur micronisé et le tout est maintenu sous agitation dans de la glace. La suspension résultante, qui contient 22,7 % de solides a un pH de 1 ± 0 , 1. Cette suspension est atomisée à une vitesse d'environ 200 ml/min, avec une pression de buse de 0,3 bar et une température de chambre de 390°C, de façon à obtenir des microsphères poreuses, utilisables dans le procédé rédox, en lit transporté.
d) Calcination
Les microsphères recueillies sous la chambre de l'atomiseur sont calcinées dans un four en chauffant de la température ambiante à 90 °C en 1 heure, en maintenant la température à 90 °C pendant 2 heures, puis en chauffant à 300°C en 2 heures, en maintenant la température à 300°C pendant 5 heures, puis en chauffant à 550 °C en 2 heures et en maintenant la température à 550°C pendant 6 heures. On obtient ainsi le co-catalyseur C désiré.
Exemple 4 a) Mode opératoire
Le mode opératoire mis en œuvre est détaillé ci-après. On charge dans un réacteur vertical, du bas vers le haut, une première hauteur de 1 ml de carbure de silicium sous forme de particules de 0,62 mm de diamètre, une seconde hauteur de 1 ml de carbure de silicium sous forme de particules de 0,125 mm de diamètre et 5 g de catalyseur sous forme de particules de 0,02 à 1 mm, puis une troisième hauteur de carbure de silicium sous forme de particules de 1,19 mm de diamètre . Le réacteur est ensuite chauffé à 250°C et le vaporisateur à 200°C. L'amorçage électrique de la pompe à eau est activé.
Une fois que le réacteur et le vaporisateur ont atteint les températures indiquées ci-dessus, on active la pompe à eau et on fait monter la température du réacteur à 380°C et on attend 30 minutes pour que le point chaud soit stabilisé.
Puis, de l'oxygène est introduit en 10 impulsions de 23 secondes chacune pour bien oxyder le catalyseur. Le catalyseur est considéré comme totalement oxydé lorsque la température du point chaud s'est stabilisée, c'est-à-dire quand il n'y a plus d'exothermie due à la réaction (en suivant la température du catalyseur mesurée au moyen d'un thermocouple placé dans le lit catalytique, on peut voir les fluctuations de température en fonction des impulsions) . Pour ce qui est de la production d'acide acrylique proprement dite, un bilan rédox est composé de 60 cycles rédox. Un cycle rédox représente :
- 9,5 ou 12 secondes de propane, selon le cas, dans un flux continu d'hélium-krypton/eau, - 45 secondes de flux continu d'hélium- krypton/eau,
- 20 secondes d'oxygène dans un flux continu d'hélium- krypton/eau,
- 45 secondes de flux continu d'hélium-krypton/eau. Pendant le bilan, quatre prélèvements liquides sont faits, chacun représentant 15 cycles . On effectue aussi 4 prélèvements de gaz à l'aide de poches à gaz, chaque prélèvement représentant environ 15 cycles .
Chaque petit flacon laveur (de 25 ml de contenance et rempli de 20 -ml d'eau) est équipé d'une poche à gaz, et lorsque l'on connecte le flacon à la sortie du réacteur (dès que le liquide fait des bulles) , la poche est ouverte et le chronomètre est déclenché.
Pour vérifier l'état d'oxydation du catalyseur, une nouvelle série de 10 impulsions de 23 secondes d'oxygène est effectuée. Elle montre que l'état d'oxydation du solide a été maintenu pendant le bilan. Les effluents liquides sont analysés sur un chromatographe HP 6890, après avoir effectué un étalonnage spécifique.
Les gaz sont analysés pendant le bilan sur un chromatographe micro-GC Chrompack. Un dosage de l'acidité est effectué sur chaque flacon pour déterminer le nombre exact de moles d'acide produites au cours de chaque micro-bilan et valider les analyses chromatographiques .
Le résultat final qui est rendu correspond à la moyenne des micro-bilans effectués sur les 4 flacons laveurs et les 4 poches à gaz .
b) Résultats bl) Tests Tl et T2 Un premier test Tl a été effectué avec 5 g du catalyseur A. La durée des impulsions de propane avait été ajustée à environ 9,5 s, en réglant le temps d'ouverture du débitmètre massique. Le nombre de moles de propane envoyé sur le catalyseur est ainsi prédéterminé. On procède comme décrit plus haut . Les résultats obtenus sont regroupés dans le Tableau 1.
Un deuxième test T2 a été effectué, en chargeant dans le réacteur, au lieu des 5 g de catalyseur A, un mélange mécanique de 5 g de catalyseur A et 5 g de co-catalyseur B. Les paramètres de fonctionnement étaient identiques . Les résultats obtenus sont consignés dans le Tableau 1 suivant.
On constate donc que l'ajout du co-catalyseur permet de réduire le rapport acide propionique/acide acrylique de 0,75% à 0,20%. En outre, le rapport acétone/acide acrylique chute de 1,64% à 0,59%.
b2) Tests T3 et T4 Un troisième test T3 a été effectué avec 5 g du catalyseur A. La durée des impulsions de propane avait été ajustée à environ 12 s, en réglant le temps d'ouverture du débitmètre massique. Le nombre de moles de propane envoyé sur le catalyseur est ainsi prédéterminé. On procède comme décrit plus haut . Les résultats obtenus sont regroupés dans le Tableau 2.
Un quatrième test T4 a été effectué, en chargeant dans le réacteur, au lieu des 5 g de catalyseur A, un mélange mécanique de 5 g de catalyseur A et 5 g de co-catalyseur C. Les paramètres de fonctionnement étaient identiques . Les résultats obtenus sont consignés dans le Tableau 2 suivant.
On constate donc que l'ajout du co-catalyseur permet de réduire le rapport acide propionique/acide acrylique de 0,35% à 0,09%. En outre, le rapport acétone/acide acrylique chute de ,09% à 0,38%.

Claims

REVENDICATIONS
Procédé de fabrication de l'acide acrylique à partir de propane, dans lequel on fait passer un mélange gazeux dépourvu d'oxygène moléculaire et comprenant du propane, de la vapeur d'eau, ainsi que, le cas échéant, un gaz inerte, sur un catalyseur comprenant du molybdène, du vanadium, du tellure, de l'oxygène et au moins un autre élément X choisi parmi le niobium, le tantale, le tungstène, le titane, l'aluminium, le zirconium, le chrome, le manganèse, le fer, le ruthénium, le cobalt, le rhodium, le nickel, le palladium, le platine, l'antimoine, le bismuth, le bore, l' indium et le cerium, pour oxyder le propane selon la réaction rédox (1) suivante :
SOLIDEoxyrdé + PROPANE -> S0LIDEréduιt + ACIDE ACRYLIQUE (1)
ce procédé étant caractérisé en ce que l'on fait également passer le mélange gazeux sur un co-catalyseur de formule (II)
OiBia- Feb- Coc<Nid> KO Sbf-Tig. Sih< Ca^Nb-, . Tek< Pbi-Wm- Cun- (II]
dans laquelle : a' est compris entre 0,006 et 1, bornes incluses ; b' est compris entre 0 et 3,5, bornes incluses c' est compris entre 0 et 3,5, bornes incluses d' est compris entre 0 et 3,5, bornes incluses - e' est compris entre 0 et 1, bornes incluses f est compris entre 0 et 1, bornes incluses g' est compris entre 0 et 1, bornes incluses h' est compris entre 0 et 3,5, bornes incluses i' est compris entre 0 et 1, bornes incluses j ' est compris entre 0 et 1, bornes incluses k' est compris entre 0 et 1, bornes incluses l' est compris entre 0 et 1, bornes incluses m' est compris entre 0 et 1, bornes incluses ; et n' est compris entre 0 et 1, bornes incluses.
2. Procédé selon la revendication 1, dans lequel, dans le co- catalyseur de formule (II) : a' est compris entre 0,01 et 0,4, bornes incluses ; b' est compris entre 0,2 et 1,6, bornes incluses c' est compris entre 0,3 et 1,6, bornes incluses d' est compris entre 0,1 et 0,6, bornes incluses - e' est compris entre 0,006 et 0,01, bornes incluses f est compris entre 0 et 0,4, bornes incluses ; g' est compris entre 0 et 0,4, bornes incluses ; h' est compris entre 0,01 et 1,6, bornes incluses ; i' est compris entre 0 et 0,4, bornes incluses - j' est compris entre 0 et 0,4, bornes incluses k' est compris entre 0 et 0,4, bornes incluses l' est compris entre 0 et 0,4, bornes incluses m' est compris entre 0 et 0,4, bornes incluses ; et n' est compris entre 0 et 0,4, bornes incluses.
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel les proportions des éléments du catalyseur satisfont aux conditions suivantes :
0,25 < rMo < 0,98 0, 003 < rv < 0,5 0,003 < rTe < 0,5 0, 003 < rx < 0,5 dans lesquelles rMo, rv, rTe et rx représentent les fractions molaires, respectivement, de Mo, V, Te et X, par rapport à la somme des nombres de moles de tous les éléments du catalyseur, à l'exception de l'oxygène.
4. Procédé selon la revendication 1 ou la revendication 2, dans lequel le catalyseur répond à la formule (I) suivante :
MOiVaTebNbcSidOx ( I ) dans laquelle : a est compris entre 0,006 et 1, bornes incluses
- b est compris entre 0,006 et 1, bornes incluses - c est compris entre 0,006 et 1, bornes incluses d est compris entre 0 et 3,5, bornes incluses ; et
- x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états d'oxydation.
5. Procédé selon la revendications 4, dans lequel, dans la formule (I) : a est compris entre 0,09 et 0,8, bornes incluses
- b est compris entre 0,04 et 0,6, bornes incluses c est compris entre 0,01 et 0,4, bornes incluses ; et - d est compris entre 0,4 et 1,6, bornes incluses.
6. Procédé selon l'une des revendications 1 à 5, dans lequel on utilise un rapport massique du catalyseur au co- catalyseur supérieur à 0,5 et de préférence d'au moins 1.
7. Procédé selon l'une des revendications 1 à 6, dans lequeL le catalyseur et le co-catalyseur sont mélangés.
8. Procédé selon l'une des revendications 1 à 7, dans lequel le catalyseur et le co-catalyseur se présentent sous la forme de grains, chaque grain comprenant à la fois le catalyseur et le co-catalyseur.
9. Procédé selon l'une des revendications 1 à 8, dans lequel on conduit la réaction rédox (1) à une température de 200 à
500°C et de préférence de 250 à 450°C.
10. Procédé selon l'une des revendications 1 à 9, dans lequel on conduit la réaction rédox (1) sous une pression de 1,01.104 à 1,01.106 Pa (0,1 à 10 atmosphères) et de préférence de 5,05.104 à 5,05.105 Pa (0,5-5 atmosphères).
11. Procédé selon l'une des revendications 1 à 10, dans lequel on conduit la réaction rédox (1) avec un temps de séjour de 0,01 à 90 secondes et de préférence de 0,1 à 30 secondes.
12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'une fois que la composition solide est au moins partiellement passée à l'état réduit, on conduit la régénération de ladite composition solide selon la réaction (2) :
S0LIDEréduit + 02 " SOLIDEoxydé (2)
par chauffage en présence d'oxygène ou d'un gaz contenant de l'oxygène à une température de 250 à 500°C, pendant le temps nécessaire à la réoxydation de la composition solide.
13. Procédé selon la revendication précédente, caractérisé en ce que l'on conduit la réaction rédox (1) et la régénération dans un dispositif à deux étages, à savoir un réacteur et un régénérateur qui fonctionnement simultanément et dans lesquels alternent périodiquement deux charges de composition solide.
14. Procédé selon la revendication 12, caractérisé en ce que l'on conduit la réaction rédox (1) et la régénération dans un même réacteur en alternant les périodes de réaction et de régénération.
15. Procédé selon la revendication 12, caractérisé en ce que l'on conduit la réaction rédox (1) et la régénération dans un réacteur à lit transporté.
16. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que le propylène produit et/ou le propane n'ayant pas réagi sont recyclés à l'entrée du réacteur.
17. Composition solide catalytique comprenant : a) un catalyseur comprenant du molybdène, du vanadium, du tellure, de l'oxygène et au moins un autre élément X choisi parmi le niobium, le tantale, le tungstène, le titane, l'aluminium, le zirconium, le chrome, le manganèse, le fer, le ruthénium, le cobalt, le rhodium, le nickel, le palladium, le platine, l'antimoine, le bismuth, le bore, l' indium et le cerium ; et b) un co-catalyseur de formule (II)
MouBia'Feb'COc'Nid'Ke'Sbf'Tig'Si ' (II)
dans laquelle : a' est compris entre 0,006 et 1, bornes incluses - b' est compris entre 0 et 3,5, bornes incluses
C est compris entre 0 et 3,5, bornes incluses d' est compris entre 0 et 3,5, bornes incluses e' est compris entre 0 et 1, bornes incluses f est compris entre 0 et 1, bornes incluses - g' est compris entre 0 et 1, bornes incluses h' est compris entre 0 et 3,5, bornes incluses i' est compris entre 0 et 1, bornes incluses j' est compris entre 0 et 1, bornes incluses k' est compris entre 0 et 1, bornes incluses - l' est compris entre 0 et 1, bornes incluses m' est compris entre 0 et 1, bornes incluses ; et n' est compris entre 0 et 1, bornes incluses.
18. Composition solide catalytique selon la revendication 17, dans laquelle : i) le catalyseur répond à la formule (I) suivante :
MθιVaTebNbcSidOx (I)
dans laquelle : a est compris entre 0,006 et 1 et de préférence entre 0,09 et 0,8, bornes incluses ; b est compris entre 0,006 et et de préférence entre 0,04 et 0,6, bornes incluses ; c est compris entre 0,006 et et de préférence entre 0,01 et 0,4, bornes incluses ; d est compris entre 0 et 3,5 et de préférence entre 0,4 et 1,6, bornes incluses ; et x est la quantité d'oxygène lié aux autres éléments et dépend de leurs états d'oxydation ; et
ϋ) dans le co-catalyseur de formule (II) : a' est compris entre 0,01 et 0,4, bornes incluses b' est compris entre 0,2 et 1,6, bornes incluses
C est compris entre 0,3 et 1,6, bornes incluses d' est compris entre 0,1 et 0,6, bornes incluses e' est compris entre 0,006 et 0,01, bornes incluses f ' est compris entre 0 et 0,4, bornes incluses ; g' est compris entre 0 et 0,4, bornes incluses ; h' est compris entre 0,01 et 1,6, bornes incluses ; i' est compris entre 0 et 0,4, bornes incluses j' est compris entre 0 et 0,4, bornes incluses k' est compris entre 0 et 0,4, bornes incluses l' est compris entre 0 et 0,4, bornes incluses m' est compris entre 0 et 0,4, bornes incluses ; et n' est compris entre 0 et 0,4, bornes incluses
19. Composition solide catalytique selon la revendication 17 ou la revendication 18 se présentant sous la forme de grains, chaque grain comprenant à la fois le catalyseur et le co- catalyseur.
20. Utilisation d'une composition solide selon l'une des revendications 17 à 19 dans la fabrication d'acide acrylique à partir du propane.
EP02799759A 2001-11-30 2002-11-28 Procede de fabrication d acide acrylique a partir de propane et en l'absence d'oxygene moleculaire Withdrawn EP1453785A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0115524A FR2833005B1 (fr) 2001-11-30 2001-11-30 Procede de fabrication d'acide acrylique a partir de propane et en l'absence d'oxygene moleculaire
FR0115524 2001-11-30
PCT/FR2002/004089 WO2003045886A2 (fr) 2001-11-30 2002-11-28 Procede de fabrication d'acide acrylique a partir de propane et en l'absence d'oxygene moleculaire

Publications (1)

Publication Number Publication Date
EP1453785A2 true EP1453785A2 (fr) 2004-09-08

Family

ID=8869982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02799759A Withdrawn EP1453785A2 (fr) 2001-11-30 2002-11-28 Procede de fabrication d acide acrylique a partir de propane et en l'absence d'oxygene moleculaire

Country Status (8)

Country Link
US (1) US7161028B2 (fr)
EP (1) EP1453785A2 (fr)
JP (1) JP2005510553A (fr)
KR (1) KR20040058339A (fr)
CN (1) CN1286794C (fr)
AU (1) AU2002364406A1 (fr)
FR (1) FR2833005B1 (fr)
WO (1) WO2003045886A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534750A (zh) * 2020-11-24 2022-05-27 中国石油天然气股份有限公司 用于丙烷选择性氧化制丙烯酸催化剂的制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024665A1 (fr) * 2002-09-10 2004-03-25 Arkema Procede de fabrication d'acide acrylique a partir de propane
FR2844262B1 (fr) * 2002-09-10 2004-10-15 Atofina Procede de fabrication d'acide acrylique a partir de propane, en l'absence d'oxygene moleculaire
EP1539670A1 (fr) * 2002-09-10 2005-06-15 Arkema Procede de fabrication d'acide acrylique a partir de propane,en presence d oxygene moleculaire
JP5094459B2 (ja) * 2007-03-09 2012-12-12 ローム アンド ハース カンパニー アルカンを不飽和カルボン酸に変換するための改良法
JP4822559B2 (ja) * 2007-09-19 2011-11-24 ローム アンド ハース カンパニー (メタ)アクリル酸生成物流からのプロピオン酸の選択的減少のための改良された方法
WO2010037011A2 (fr) 2008-09-26 2010-04-01 The Ohio State University Transformation des combustibles carbonés en vecteurs énergétiques sans carbone
ES2630217T3 (es) 2009-09-08 2017-08-18 The Ohio State University Research Foundation Integración de reformación/división de agua y sistemas electromagnéticos para generación de energía con captura de carbono integrada
CA3011693C (fr) 2009-09-08 2021-03-09 The Ohio State University Research Foundation Production de combustibles et produits chimiques de synthese avec capture de co2 insitu
CN103354763B (zh) 2010-11-08 2016-01-13 俄亥俄州立大学 具有反应器之间的气体密封和移动床下导管的循环流化床
CN103635673B (zh) 2011-05-11 2016-05-04 俄亥俄州国家创新基金会 载氧材料
CN103635449B (zh) 2011-05-11 2016-09-07 俄亥俄州国家创新基金会 用来转化燃料的系统
DE102011109816B4 (de) * 2011-08-09 2017-04-06 Clariant Produkte (Deutschland) Gmbh Katalysatormaterial für die Oxidation von Kohlenwasserstoffen
DE102011109774B4 (de) 2011-08-09 2017-04-20 Clariant Produkte (Deutschland) Gmbh Katalysatormaterial für die Oxidation von Kohlenwasserstoffen
WO2014124011A1 (fr) 2013-02-05 2014-08-14 Ohio State Innovation Foundation Procédés pour la conversion de combustible
US9616403B2 (en) 2013-03-14 2017-04-11 Ohio State Innovation Foundation Systems and methods for converting carbonaceous fuels
US20150238915A1 (en) 2014-02-27 2015-08-27 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
CN105983421A (zh) * 2015-02-02 2016-10-05 中国石油天然气股份有限公司 催化氧化丙烷制取丙烯酸的催化剂及其制备方法
AU2017250214B2 (en) 2016-04-12 2021-08-12 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
CA3129146A1 (fr) 2019-04-09 2020-10-15 Liang-Shih Fan Generation d'alcene a l'aide de particules de sulfure metallique
CN112439441B (zh) * 2019-09-05 2023-03-21 中石油吉林化工工程有限公司 丙烯醛氧化制丙烯酸的催化剂制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341717A (en) * 1973-03-08 1982-07-27 The Standard Oil Company Reactor for contacting gases and a particulate solid
EP0608838B1 (fr) * 1993-01-28 1997-04-16 Mitsubishi Chemical Corporation Procédé pour la préparation d'un acide carboxylique insaturé
US6281384B1 (en) * 1998-06-26 2001-08-28 E. I. Du Pont Nemours And Company Vapor phase catalytic oxidation of propylene to acrylic acid
WO2001004079A1 (fr) * 1999-07-09 2001-01-18 E.I. Du Pont De Nemours And Company Oxydation catalytique en phase vapeur de propylene produisant de l'acide acrylique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03045886A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534750A (zh) * 2020-11-24 2022-05-27 中国石油天然气股份有限公司 用于丙烷选择性氧化制丙烯酸催化剂的制备方法
CN114534750B (zh) * 2020-11-24 2024-03-01 中国石油天然气股份有限公司 用于丙烷选择性氧化制丙烯酸催化剂的制备方法

Also Published As

Publication number Publication date
CN1596244A (zh) 2005-03-16
FR2833005A1 (fr) 2003-06-06
US20050054880A1 (en) 2005-03-10
WO2003045886A2 (fr) 2003-06-05
WO2003045886A3 (fr) 2004-02-12
JP2005510553A (ja) 2005-04-21
CN1286794C (zh) 2006-11-29
AU2002364406A8 (en) 2003-06-10
AU2002364406A1 (en) 2003-06-10
FR2833005B1 (fr) 2004-01-23
KR20040058339A (ko) 2004-07-03
US7161028B2 (en) 2007-01-09

Similar Documents

Publication Publication Date Title
EP1453785A2 (fr) Procede de fabrication d acide acrylique a partir de propane et en l&#39;absence d&#39;oxygene moleculaire
EP1238960B1 (fr) Procédé de fabrication d&#39;acide acrylique à partir de propane, en l&#39;absence d&#39;oxygène moléculaire
FR2754817A1 (fr) Procede de production d&#39;acide acrylique a partir de propane et d&#39;oxygene gazeux
EP0861819B1 (fr) Procédé de fabrication d&#39;acroléine à partir du propylène par réaction redox
EP1539670A1 (fr) Procede de fabrication d&#39;acide acrylique a partir de propane,en presence d oxygene moleculaire
FR2855516A1 (fr) Oxydation du propane en acide acrylique par utilisation de catalyseurs en melange de phases cristallines
JP2000254496A (ja) アクリル酸製造用の触媒
WO2004024665A1 (fr) Procede de fabrication d&#39;acide acrylique a partir de propane
WO2006058998A2 (fr) Preparation de catalyseurs a base de tantale pour l&#39;oxydation selective du propane en acide acrylique
EP0861821A1 (fr) Procédé de fabrication d&#39;acide acrylique à partir de l&#39;acroléine par réaction redox
EP1539668A1 (fr) Procede de fabrication d acide acrylique a partir de propane en l&#39;absenceed oxygene moleculaire
JP4666334B2 (ja) 酸化又はアンモ酸化用酸化物触媒の製造方法
EP1848530B1 (fr) Procede de preparation de l&#39;acide acrylique comprenant une oxydation partielle du propane en propylene
FR2844263A1 (fr) Procede de fabrication d&#39;acide acrylique a partir de propane, en presence d&#39;oxygene moleculaire
FR2855514A1 (fr) Procede de fabrication d&#39;acide acrylique a partir de propane, en presence d&#39;oxygene moleculaire
JP2001347165A (ja) 金属酸化物触媒の製造方法
FR2811243A1 (fr) Compositions solides utiles dans la fabrication de l&#39;acide acrylique par oxydation de l&#39;acroleine
EP1105364A1 (fr) Procede de fabrication d&#39;acroleine a partir du propylene par reaction redox
FR2855515A1 (fr) Procede de fabrication d&#39;acide acrylique a partir de propane
WO2000010959A1 (fr) Procede de fabrication d&#39;acide methacrylique a partir de la methacroleine par reaction redox
JP2004099534A (ja) アクリル酸の製造設備およびアクリル酸の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040812

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JACQUEL, JULIEN

Inventor name: SERREAU, STEPHANIE

Inventor name: DUBOIS, JEAN-LUC

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090324