EP1442870A1 - Verfahren und Systeme zur Herstellung eines Objekts durch 'Solid Freeform Fabrication' durch ändern der Konzentration eines, an einer Objektschicht angebrachten, gespritzten Materials - Google Patents

Verfahren und Systeme zur Herstellung eines Objekts durch 'Solid Freeform Fabrication' durch ändern der Konzentration eines, an einer Objektschicht angebrachten, gespritzten Materials Download PDF

Info

Publication number
EP1442870A1
EP1442870A1 EP03021487A EP03021487A EP1442870A1 EP 1442870 A1 EP1442870 A1 EP 1442870A1 EP 03021487 A EP03021487 A EP 03021487A EP 03021487 A EP03021487 A EP 03021487A EP 1442870 A1 EP1442870 A1 EP 1442870A1
Authority
EP
European Patent Office
Prior art keywords
layers
layer
concentration
ejected
freeform fabrication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03021487A
Other languages
English (en)
French (fr)
Other versions
EP1442870B1 (de
Inventor
Jeffrey A. Nielsen
Steven T. Castle
David C. Collins
Shawn D. Hunter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of EP1442870A1 publication Critical patent/EP1442870A1/de
Application granted granted Critical
Publication of EP1442870B1 publication Critical patent/EP1442870B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • H04N1/4092Edge or detail enhancement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • Solid freeform fabrication is a process for manufacturing three-dimensional objects, for example, prototype parts, models and working tools.
  • Solid freeform fabrication is an additive process in which an object, which is described by electronic data, is automatically built, usually layer-by-layer, from base materials.
  • Binder-jetting systems create objects by ejecting a binder onto a flat bed of powdered build material.
  • Each powder layer may be dispensed or spread as a dry powder or a slurry. Wherever the binder is selectively ejected into the powder layer, the powder is bound into a cross section or layer of the object being formed.
  • Bulk-jetting systems generate objects by ejecting a solidifiable build material and a solidifiable support material onto a platform.
  • the support material which is temporary in nature, is dispensed to enable overhangs in the object and can be of the same or different material from the object.
  • fabrication is typically performed layer-by-layer, with each layer representing another cross section of the final desired object. Adjacent layers are adhered to one another in a predetermined pattern to build up the desired object.
  • solid freeform fabrication systems can provide a color or color pattern on each layer of the object.
  • the binder may be colored such that the functions of binding and coloring are integrated.
  • the build material may be colored.
  • Inkjet technology can be employed in which a number of differently colored inks are selectively ejected from the nozzles of a liquid ejection apparatus and blended on the build material to provide a full spectrum of colors.
  • conventional two-dimensional multi-pass color techniques and half-toning algorithms can be used to hide defects and achieve a broad range of desired color hues.
  • FIGs. 1a-c This phenomenon is illustrated in FIGs. 1a-c.
  • the contoured surfaces must be built of stacked layers of build material. Therefore, typical freeform fabrication techniques create discrete layers (102) that attempt to approximate or match the desired surface (100) contour.
  • the build layers (102) are arranged like stairs in an attempt to approximate the desired surface contour (100).
  • the actual shape (104, FIG 1c) of the surface may be a noticeably terraced set of distinct layers (102) instead of a smooth contour as desired.
  • One solution to the terracing problem is to use thinner layers to build the object. As the layers become thinner, the terraces become shallower and thus less distinct and noticeable. However, by adding additional layers, the throughput of the system is reduced and the object production speed is significantly diminished. The more layers that are needed to build a product, the more time it takes to build that product.
  • the data that must be sent to the fabrication system increases. If, for example, the layer thickness is reduced by half, the number of layers (and the data defining those layers) doubles.
  • the data cannot be sent to a fabricator at a high enough rate to enable efficient production of the thinner layers.
  • the data sometimes cannot get to a fluid ejector at a high enough rate to result in efficient object production.
  • either the fabricator is slowed down to allow the data to transfer, or the same data may be erroneously used to build more than one layer.
  • the present invention provides a method of producing an object through solid freeform fabrication by varying a concentration of ejected material applied to form a particular object layer.
  • FIGs. 1a-c illustrate an example of terracing when discrete, finitely-thick layers are used to build a contoured surface.
  • FIG. 2 is a perspective view of a solid freeform fabrication system that may be used to implement embodiments of the present invention.
  • FIGs. 3a-b are side views of object layers used to build a contoured surface according to one embodiment of the present invention.
  • FIGs. 4a-e are top views of the object layers of FIG. 3b.
  • FIG. 5 is a side view of object layers used to build a contoured surface according to another embodiment of the present invention.
  • FIGs. 6a-d are side views of a sequence of object layers according to a data manipulation embodiment of the present invention.
  • ejected material is used broadly to mean any substance ejected by a fluid ejection head to color, bind or form a portion of an object being fabricated. Consequently, “ejected material” includes, but is not limited to, ink, colorant, toner, binder, build material and support material.
  • ink is used to mean any material for coloring an object or build material in a freeform fabrication system.
  • Ink includes, but is not limited to, ink, printing fluid, toner, colorant, etc.
  • binder refers to adhesives or any other substances that is ejected to selectively bind a build material together into a desired product.
  • Build material is any material from which a freeform fabrication system forms a desired product and may include a powdered build material or a jetted build material, such as a jetted polymer.
  • voxel describes a volumetric pixel, which is an addressable volume having length in x, y, and z coordinates.
  • sub-voxel describes a subset of a voxel, where a voxel is made up of many sub-voxels.
  • a voxel comprised of sub-voxels may also be referred to as a super-voxel.
  • the terms "small” and “large” indicate relative sizes to one another, and do not indicate any specific size, volume, mass, or shape.
  • the freeform fabrication system may be a binder-jetting system or a bulk-jetting system.
  • the solid freeform fabrication system (200) of FIG. 2 in terms of a binder-jetting system.
  • a build material such as a bulk powder substance is used to form each individual layer of a desired object.
  • a quantity of powder is provided from a supply chamber.
  • a roller preferably incorporated into a moving stage (203), distributes and compresses the powder to a desired thickness at the top of a fabrication chamber (202).
  • a liquid ejection apparatus e.g. a drop-on-demand liquid ejection apparatus, etc.
  • the solid freeform fabrication system (200) may include multiple liquid ejection apparatuses, each separately containing one or more ejection fluid.
  • the printheads may also be separate from the moving stage (203) according to some embodiments.
  • the fluid ejection apparatus deposits adhesive or binder onto the powder in the fabrication chamber (202) in a two dimensional pattern.
  • This two dimensional pattern is a cross section of the desired object being fabricated.
  • the fluid ejection apparatus may selectively deposit a build material, such as a jetted polymer, to form the desired product or a cross-section of the desired product.
  • a build material such as a jetted polymer
  • the binder or build material may be colored with ink, toner, or other materials to provide a desired color or color pattern for particular cross sections of the desired product.
  • the powder becomes bonded in the areas where the binder is deposited, thereby forming a solid layer of the desired product.
  • the process is repeated with a new layer of powder being applied over the top of the previous layer in the fabrication chamber (202).
  • a next cross section of the desired product may then be built by ejecting binder into the new powder layer.
  • the adhesive binder can also bind adjacent or successive layers together.
  • a user interface or control panel (204) is provided to allow the user to control the fabrication process.
  • the moving stage (203) of the solid freeform fabrication system (200) often includes inkjet technology, a such as drop-on-demand liquid ejection apparatus, for ejecting material to form or color the layers of the desired object.
  • the moving stage (203) may include one or more drop-on-demand printheads (as discussed above) to eject drops of material that is clear or colored in a selective pattern to create the object being fabricated.
  • concentration refers to an amount of binder added to a unit volume of the build material.
  • concentration of the binder added to a unit volume of build material may vary.
  • a conventional freeform fabrication process may eject a certain amount of binder per square millimeter at all locations of an object layer. The binder then penetrates into and binds a volume of build material in a uniform manner.
  • the conventional system may eject a certain volume of build material at all locations of an object layer.
  • the amount of binder or build material added across an object layer may be varied to reduce the effects of terracing.
  • the variation in the concentration of the binder or build material applied is continuous or graduated over a transition region between succeeding layers of the object being formed.
  • Continuous or “graduated” variation refers to anything more than two discrete material ejection densities over a layer of the object being fabricated.
  • the thickness of the layer at that point is increased or diminished from the standard layer thickness (T, FIG. 1). Consequently, the effects of terracing are reduced.
  • FIG. 3a illustrates adjacent layers (302 and 304) of an object (300) with no variation in binder concentration at a transition region (306) between successive terraced layers (308).
  • FIG 3b illustrates the same transition region (306) over which a continuously varying binder concentration or build material quantity has been applied.
  • the variation in binder application shown in FIG. 3b is a binder concentration reduction that occurs in forming the upper layer (302) over a transition region (306) between the successive terraced layers (308).
  • Transition regions include, but are not limited to, the portions of the object constituting outer curved surfaces or contours of adjacent object layers, such as the two layers (302 and 304) shown.
  • the concentration of ejected material applied at a first transition area (310) of the upper layer (302) may be 70-90% of a concentration applied at bulk regions (e.g., 312) of the object.
  • a second transition area (314) further reduces the ejected material concentration to 40-60% of the bulk concentration.
  • a third transition area (316) reduces the ejected material concentration to 5-30% of the bulk concentration.
  • the concentration could be varied to account for surface variation in either X-Z or Y-Z, or a combination of the two.
  • the variation in binder concentration shown within the plane of FIG. 3b could also be occurring orthogonally to this plane (into and out of the page) if there were simultaneous variation in height (Z) in this orthogonal plane.
  • the concentration of binder or build material ejected in a unit area of the object layer being fabricated is varied. The second is to selectively deposit a varying quantity of drops of ejected material in a unit area of the object layer being fabricated.
  • FIGs. 4a-e show from a top view what a modulated or dithered binder-reduction pattern may look like.
  • dark regions indicate areas where binder or build material are deposited within a given area of the object layer being fabricated.
  • FIG. 4a shows in top view a 100% concentration, i.e., binder or build material is applied over the entire unit area.
  • FIG. 4b shows a 70-90% ejected material concentration region corresponding with first transition area (310) of FIG. 3b.
  • FIG. 4c shows a 40-60% ejected material concentration region corresponding with second transition area (314)
  • FIG. 4d shows a 15-30% ejected material concentration region corresponding with the third transition area (316)
  • FIG. 4e shows a 0% ejected material concentration region.
  • the 0% ejected material concentration may be used at absolute edges (320) of the transition or terraced region (e.g. 306).
  • the concentration of the ejected material applied at the transition regions (306, FIG. 3b) are, however, not limited to the exemplary figures and percentages shown above. There may be any number of transition areas, and there is no limit to the range of ejected material concentration percentages for each area.
  • the reduction in ejected material concentration in upper layer (302) over the transition region (306) facilitates a gradual set of steps that better define the transition area than less resolute terracing. Consequently, the discrete layers (302 and 304) of the object become less and less pronounced at the object surfaces because of the variation in ejected material concentration applied to transition areas.
  • another method that can be used to mimic the effect of variable concentration of binder is to apply two or more liquids that possess variable binding efficacy. For example, one might have two or more liquids that had, for example, different surface energies, particulate loadings, or binding-component concentrations. If the amount of material that was bound with a particular-sized drop is different between these two or more liquids, then the effect would be similar to the effect achieved by variable-sized drops.
  • varying the amount of ejected material may be accomplished by limiting the quantity of drops ejected per unit area and dithering the fluid ejection apparatus as material is ejected.
  • varying the amount of ejected material may be accomplished by a fluid ejection apparatus capable of producing various drop sizes.
  • a piezo drop-on-demand ejector is commercially available and can eject different drop sizes from a single orifice.
  • the example described above illustrates a gradual, continuous reduction in the amount of ejected material for the upper layer (302) as the upper layer (303) crosses the transition region (306).
  • the continuous reduction of ejected material application concentration over a transition region (306) is preferably only used at transition regions that form bottom surfaces or upward-sloped terraces of the object being built.
  • the use of a continuous reduction in ejected material may also be used at transition regions that form top or downward-sloped terraces of the object.
  • FIGs. 5a and 5b another way in which the ejected material application may be varied is shown.
  • the example described above illustrates a gradual, continuous reduction in the amount of ejected material for the upper layer (302) as the upper layer (303) crosses the transition region (306).
  • the example of FIGs. 5a and 5b describe a continuous increase in the amount of ejected material for a lower layer (504).
  • FIG. 5a shows adjacent layers (502 and 504) of an object (500) with no variation of ejected material concentration at a transition region (506) between successive terraced layers (508).
  • FIG. 5b there is a variation in ejected material quantity applied to the lower layer (504) of the transition region (506).
  • the variation in ejected material application shown in FIG. 5b is an increase in the ejected material concentration of the lower layer (540) of the terrace (508) along the transition region (506).
  • a continuously increasing amount of ejected material is applied to the lower layer (504) throughout the transition region (506).
  • the amount of additional binder, followed by an application of additional build material over the lower layer (504) creates the more gradual step structure shown in FIG. 5b, which better approximates the desired surface contour.
  • the build material of the bottom layer (504) may be over-saturated with binder such that the application of build material for the top layer (502) facilitates absorption and binding of powder in addition to the powder bound by a separate application of binder to the top layer (502). Similarly, increased amounts of deposited build material for the lower layer (504) produce the same effect in a system that ejects build material rather than binder.
  • the concentration of ejected material applied at a first transition area (510) of the bottom layer (502) is about 150-400% of the concentration applied at bulk regions (512) of the object (500).
  • the first transition area (510) begins at a terraced region transition point (518).
  • a second transition area (514) also exhibits an increased ejected material concentration, but to a lesser extent than the first transition area (510).
  • the second transition area may have an ejected material concentration of about 120-140% of the bulk region (512) concentration.
  • a third transition area (516) may have an ejected material concentration of about 100.01-115% of the bulk region (512) concentration.
  • 100.01% indicates any percentage greater than 100%.
  • the ejected material concentration may be as low as about 100% of the bulk concentration at the absolute edge (520) of the terraced region (506).
  • the concentration of the ejected material applied at the transition regions (506) of an object is, of course, not limited to the exemplary figures and percentages shown above. There may be any number of transition areas, and there is no limit to the range of binder concentration percentages of each area.
  • the increased amount of ejected material applied at the transition region (506) may be accomplished by applying larger drop volumes of ejected material, by firing the fluid ejection apparatus multiple times, or by any other convenient method. Further, the increase in ejected material concentration at the transition region (506) is preferably performed at transition regions that form top surfaces or downward-sloped terraces. The use of additional amounts of ejected material at top object surfaces is particularly effective at reducing terracing effects. However, the use of additional amounts of ejected material may also be used at transition regions that form bottom or upward-sloped terraces.
  • a solidifiable material solid freeform fabrication system may include applying a variable application configuration of solidifiable material drops in predetermined layer patterns to build an object using different concentrations of ejected material.
  • first set of solidifiable material drops ejected at a first configuration there may be a first set of solidifiable material drops ejected at a first configuration, and a second and more sets of solidifiable material drops of different configurations at terraced regions of the object.
  • support material concentration may also be varied (such as by drop depletion and/or dithering techniques) to create a more smooth support structure to build the object onto.
  • concentration of the second or more sets of solidifiable material drops at terraced regions of the object may be less than at bulk regions.
  • the lower concentration configuration may be achieved by reducing the number of drops of solidifiable material per unit area or by using smaller drop masses at the terraced regions. Further, the lower concentration configuration is continuously variable at the terraced regions to any amount just less than the concentration at the bulk regions ( ⁇ 100%), all the way to a zero concentration configuration.
  • a data set representing layers of an object to be produced through solid freeform fabrication may be manipulated with a resolution enhancement technique (RET).
  • RET resolution enhancement technique
  • the fabrication system (100, FIG. 1) may automatically interpolate between layers and form additional layer characteristics, even when the data flow to the system (100, FIG. 1) cannot support additional specific layer data or when the original data is of low resolution in the Z-axis (thickness of an object being built).
  • the RET method described herein is similar in concept to writing systems that include resolution enhancement techniques (for example, U.S. Patent No. 5,650,858, hereby incorporated by reference). However, the enhancement is in the Z-direction for a Z-axis resolution enhancement technique (ZRET).
  • ZRET Z-axis resolution enhancement technique
  • One application of the ZRET includes sending a high-resolution object data set through a low-resolution data transfer because of constraints on the data transfer rate from a controlling computer to the solid freeform fabrication system (100, FIG. 1), or from data transfer limitations within the system (100, FIG. 1) itself (during, for example, rasterization, color mapping, or halftoning).
  • FIG. 6a shows a low-resolution voxel data representation of an object (600).
  • the object (600) of FIG. 6a includes first, second, and third layers (602, 604, 606, respectively), which are each one voxel in height.
  • the steps between the three layers are quite pronounced, and will result in rough, visually discrete layers. Therefore, according to the ZRET technique described herein, the solid freeform fabrication system (100, FIG. 1) may be programmed to automatically reduce the terracing effects associated with low-resolution data sets.
  • the three layers (602/604/606) may be automatically sliced into sub layers as shown in FIG. 6b. There may be any number of sub-layers created, however, the exemplary embodiment of FIG. 6b shows only two sublayers (a and b) for each layer (602/604/606).
  • the solid freeform fabrication system (100) may then add or subtract certain sub-voxels from layers or sublayers according to any predetermined parameters.
  • the system (100) may be programmed to take into account data surrounding a terrace to determine whether or not to add or subtract certain sub-voxels from the parent voxel. For example, according to the embodiment of FIG. 6c, a first and second sub-voxel (608 and 610) are added to the sublayer (b) of the first and second layers (602 and 604), and a third sub-voxel (612) is deleted from the sublayer (a) of the second layer (604). The terracing effect is accordingly diminished by the addition and/or subtraction of certain sub-voxels, resulting in the final object (600) shown in FIG. 6d.
  • the solid freeform fabrication system (100, FIG. 1) may be programmed with predetermined parameters to measure terracing between layers and add or subtract certain sub-voxels of certain layers when the parameters between layers are met.
  • the resolution of the resulting object (600) may thereby be greatly enhanced without the need for additional data detailing thinner layers.
  • even high-resolution data sets may be further enhanced by implementing a ZRET and adding or subtracting certain sub-voxels of an object. While some implementations of a ZRET produces data savings, ZRET may also be applied without any data savings or compression and merely to enhance the resolution of the resulting object.
  • high-resolution files may be saved as low-resolution data sets, creating a "virtual" high-resolution file.
  • high-resolution files may be sent through a low-resolution data transfer, creating the virtual high-resolution file.
  • ZRET may be applied to the low-resolution file to create a high-resolution object (600). It will be understood that ZRET is not limited to the figures shown, and that any algorithm may be applied to automatically add or subtract certain sub-voxels of object data to enhance resolution and reduce terracing in objects made by solid freeform fabrication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
EP03021487A 2003-01-29 2003-09-23 Verfahren und Systeme zur Herstellung eines Objekts durch 'Solid Freeform Fabrication' durch ändern der Konzentration eines, an einer Objektschicht angebrachten, gespritzten Materials Expired - Lifetime EP1442870B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US354538 2003-01-29
US10/354,538 US7497977B2 (en) 2003-01-29 2003-01-29 Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer

Publications (2)

Publication Number Publication Date
EP1442870A1 true EP1442870A1 (de) 2004-08-04
EP1442870B1 EP1442870B1 (de) 2006-08-02

Family

ID=32655550

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03021487A Expired - Lifetime EP1442870B1 (de) 2003-01-29 2003-09-23 Verfahren und Systeme zur Herstellung eines Objekts durch 'Solid Freeform Fabrication' durch ändern der Konzentration eines, an einer Objektschicht angebrachten, gespritzten Materials

Country Status (5)

Country Link
US (1) US7497977B2 (de)
EP (1) EP1442870B1 (de)
JP (2) JP4250096B2 (de)
DE (1) DE60307222T2 (de)
TW (1) TWI261029B (de)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113219A1 (de) * 2004-05-24 2005-12-01 Voxeljet Technology Gmbh Verfahren und vorrichtung zum herstellen eines dreidimensionalen artikels
US7748971B2 (en) 2002-04-11 2010-07-06 Voxeljet Technology Gmbh Method and device for applying fluids
US8956140B2 (en) 2010-07-13 2015-02-17 Voxeljet Ag Apparatus for producing three-dimensional models by means of a layer build up technique
FR3014355A1 (fr) * 2013-12-11 2015-06-12 Essilor Int Procede de fabrication d'une lentille ophtalmique
JP2015530621A (ja) * 2012-09-28 2015-10-15 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク 眼用レンズ上に恒久的技術マークを生成するためのマーキングステップを含む眼用レンズ製造方法
US9174392B2 (en) 2009-06-22 2015-11-03 Voxeljet Ag Method and device for switching a particulate material flow in the construction of models in layers
CN105936128A (zh) * 2015-03-03 2016-09-14 精工爱普生株式会社 三维造型装置以及三维物体制造方法
US9643360B2 (en) 2006-08-20 2017-05-09 Voxeljet Ag Self-hardening material and process for layerwise formation of models
US9649812B2 (en) 2011-01-05 2017-05-16 Voxeljet Ag Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area
US9757831B2 (en) 2007-10-23 2017-09-12 Voxeljet Ag Methods for assembling a device for the layer-wise production of patterns
EP3219410A1 (de) * 2016-03-09 2017-09-20 Ricoh Company, Ltd. Vorrichtung zur herstellung von dreidimensionalen objekten, verfahren zur herstellung von dreidimensionalen objekten und trägermittel
US9914169B2 (en) 2010-04-17 2018-03-13 Voxeljet Ag Method and device for producing three-dimensional models
US9962885B2 (en) 2010-04-14 2018-05-08 Voxeljet Ag Device for producing three-dimensional models
US10099426B2 (en) 2007-10-21 2018-10-16 Voxeljet Ag Method and device for layer-wise production of patterns
EP3230047A4 (de) * 2015-03-05 2018-10-17 Hewlett-Packard Development Company, L.P. Erzeugung dreidimensionaler objekte
EP3271146A4 (de) * 2015-05-15 2018-12-05 Hewlett-Packard Development Company, L.P. Koaleszenzmittelkonzentrationen und contone-dichten für dreidimensionale objekte
US10213938B2 (en) 2000-09-25 2019-02-26 Voxeljet Ag Method for producing a part using a deposition technique
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
EP3579044A1 (de) * 2018-06-08 2019-12-11 Essilor International Bestimmungsverfahren für ein brillenglas mit gerichtetem übertragungsspektrum
EP3845087A1 (de) * 2016-05-31 2021-07-07 Nike Innovate C.V. Gradientendruck einer dreidimensionalen strukturellen komponente
EP4092560A1 (de) * 2021-05-20 2022-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren für dreidimensionales drucken mit oberflächen-dithering, computerprogrammprodukt und 3d-drucken

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10224981B4 (de) 2002-06-05 2004-08-19 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
US7807077B2 (en) 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
DE102004008168B4 (de) 2004-02-19 2015-12-10 Voxeljet Ag Verfahren und Vorrichtung zum Auftragen von Fluiden und Verwendung der Vorrichtung
DE102006030350A1 (de) 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Verfahren zum Aufbauen eines Schichtenkörpers
US8784723B2 (en) 2007-04-01 2014-07-22 Stratasys Ltd. Method and system for three-dimensional fabrication
DE102007033434A1 (de) 2007-07-18 2009-01-22 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Bauteile
DE102007049058A1 (de) 2007-10-11 2009-04-16 Voxeljet Technology Gmbh Materialsystem und Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteils
US8858856B2 (en) 2008-01-08 2014-10-14 Stratasys, Inc. Method for building and using three-dimensional objects containing embedded identification-tag inserts
US7917243B2 (en) * 2008-01-08 2011-03-29 Stratasys, Inc. Method for building three-dimensional objects containing embedded inserts
US8070473B2 (en) * 2008-01-08 2011-12-06 Stratasys, Inc. System for building three-dimensional objects containing embedded inserts, and method of use thereof
DE102008058378A1 (de) 2008-11-20 2010-05-27 Voxeljet Technology Gmbh Verfahren zum schichtweisen Aufbau von Kunststoffmodellen
DE102010006939A1 (de) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013732A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013733A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010056346A1 (de) 2010-12-29 2012-07-05 Technische Universität München Verfahren zum schichtweisen Aufbau von Modellen
JP5392282B2 (ja) * 2011-03-04 2014-01-22 ブラザー工業株式会社 立体造形装置と立体造形物の製造方法
DE102011111498A1 (de) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
JP2013075392A (ja) * 2011-09-29 2013-04-25 Brother Industries Ltd 立体造形装置、立体造形方法、及び立体造形データ作成プログラム
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
US10556417B2 (en) 2012-05-07 2020-02-11 Luxexcel Holding B.V. Method for printing a three-dimensional structure, method for controlling a print head and a printed article
CN104302464A (zh) * 2012-05-08 2015-01-21 Luxexcel控股有限公司 打印具平滑表面的三维结构体和打印制品的方法
WO2013167685A1 (en) * 2012-05-11 2013-11-14 Luxexcel Holding B.V. Method for printing a three-dimensional structure, method for controlling a print head and printed article
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
US9533526B1 (en) 2012-06-15 2017-01-03 Joel Nevins Game object advances for the 3D printing entertainment industry
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
DE102012020000A1 (de) 2012-10-12 2014-04-17 Voxeljet Ag 3D-Mehrstufenverfahren
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
DE102012022859A1 (de) 2012-11-25 2014-05-28 Voxeljet Ag Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
DE102013018031A1 (de) 2013-12-02 2015-06-03 Voxeljet Ag Wechselbehälter mit verfahrbarer Seitenwand
DE102013020491A1 (de) 2013-12-11 2015-06-11 Voxeljet Ag 3D-Infiltrationsverfahren
EP2886307A1 (de) 2013-12-20 2015-06-24 Voxeljet AG Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen
JP5804118B2 (ja) * 2014-03-27 2015-11-04 セイコーエプソン株式会社 データ変換装置、データ変換方法および造形装置
US9827715B2 (en) * 2014-03-27 2017-11-28 Seiko Epson Corporation Three-dimensional formation apparatus, three-dimensional formation method, and computer program
JP6417914B2 (ja) * 2014-12-10 2018-11-07 セイコーエプソン株式会社 三次元造形装置、三次元造形方法およびコンピュータープログラム
US9802362B2 (en) * 2014-03-27 2017-10-31 Seiko Epson Corporation Three-dimensional formation apparatus, three-dimensional formation method, and computer program
JP6417913B2 (ja) * 2014-12-10 2018-11-07 セイコーエプソン株式会社 三次元造形装置、三次元造形方法およびコンピュータープログラム
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
JP6389061B2 (ja) * 2014-05-22 2018-09-12 株式会社ミマキエンジニアリング 立体物造形装置および立体物造形方法、並びに立体物
DE102014007584A1 (de) 2014-05-26 2015-11-26 Voxeljet Ag 3D-Umkehrdruckverfahren und Vorrichtung
JP2016013671A (ja) 2014-07-03 2016-01-28 キヤノン株式会社 凹凸形成装置および凹凸形成方法
WO2016019937A1 (de) 2014-08-02 2016-02-11 Voxeljet Ag Verfahren und gussform, insbesondere zur verwendung in kaltgussverfahren
DE102015006533A1 (de) 2014-12-22 2016-06-23 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik
JP6524684B2 (ja) * 2015-02-09 2019-06-05 セイコーエプソン株式会社 立体物造形装置、立体物造形方法、および立体物造形プログラム
JP6547327B2 (ja) * 2015-02-19 2019-07-24 セイコーエプソン株式会社 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP6500483B2 (ja) 2015-02-19 2019-04-17 セイコーエプソン株式会社 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
CN106032059B (zh) * 2015-03-13 2019-11-26 三纬国际立体列印科技股份有限公司 立体打印方法与立体打印装置
JP6554837B2 (ja) * 2015-03-13 2019-08-07 セイコーエプソン株式会社 三次元造形装置、製造方法およびコンピュータープログラム
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
JP6602555B2 (ja) * 2015-05-25 2019-11-06 株式会社ミマキエンジニアリング 三次元造形物の製造方法及び造形装置
JP6618277B2 (ja) * 2015-06-05 2019-12-11 キヤノン株式会社 情報処理装置および情報処理方法
WO2016200384A1 (en) * 2015-06-10 2016-12-15 Hewlett-Packard Development Company, L.P. Build temperature modulation
KR102297516B1 (ko) 2015-09-02 2021-09-03 삼성전자주식회사 조형물 형성 장치 및 그의 제어 방법
DE102015011503A1 (de) 2015-09-09 2017-03-09 Voxeljet Ag Verfahren zum Auftragen von Fluiden
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
JP6689596B2 (ja) * 2015-11-24 2020-04-28 ローランドディー.ジー.株式会社 3次元造形装置
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
JP2017109427A (ja) * 2015-12-18 2017-06-22 セイコーエプソン株式会社 立体物造形装置、立体物造形方法、及び、立体物造形装置の制御プログラム
JP6766381B2 (ja) * 2016-03-09 2020-10-14 株式会社リコー 立体造形物を造形する装置、プログラム、立体造形物を造形する方法
DE102016002777A1 (de) 2016-03-09 2017-09-14 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen
SG11201806820UA (en) * 2016-03-09 2018-09-27 Applied Materials Inc Correction of fabricated shapes in additive manufacturing
JP6026688B1 (ja) * 2016-03-24 2016-11-16 株式会社松浦機械製作所 三次元造形方法
CN108698319B (zh) 2016-05-12 2021-06-08 惠普发展公司,有限责任合伙企业 构建材料飞溅控制
CN109311221B (zh) 2016-07-21 2022-08-05 惠普发展公司,有限责任合伙企业 具有导电通道的以增材方式形成的3d物体
JP6599837B2 (ja) * 2016-10-05 2019-10-30 日本ヒューム株式会社 型枠設計装置、型枠製造方法、コンクリート成形品製造方法、型枠設計システム、及び型枠設計方法
DE102016013610A1 (de) 2016-11-15 2018-05-17 Voxeljet Ag Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken
WO2018108508A1 (en) * 2016-12-12 2018-06-21 Luxexcel Holding B.V. Printed multifocal lens and method for printing a multifocal lens
CN108688142B (zh) * 2017-04-10 2020-07-14 三纬国际立体列印科技股份有限公司 立体打印方法及其系统
US10882160B2 (en) 2017-05-25 2021-01-05 Applied Materials, Inc. Correction of fabricated shapes in additive manufacturing using sacrificial material
DE102017006860A1 (de) 2017-07-21 2019-01-24 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler
CN111344137B (zh) * 2017-11-27 2022-02-22 惠普发展公司,有限责任合伙企业 功能试剂的选择性沉积
WO2019209262A1 (en) * 2018-04-24 2019-10-31 Hewlett-Packard Development Company, L.P. Additive manufacturing system
CN112041149A (zh) 2018-06-18 2020-12-04 惠普发展公司,有限责任合伙企业 增材制造
DE102018006473A1 (de) 2018-08-16 2020-02-20 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung
DE102019000796A1 (de) 2019-02-05 2020-08-06 Voxeljet Ag Wechselbare Prozesseinheit
EP3722073A1 (de) * 2019-04-11 2020-10-14 Luxexcel Holding B.V. Verfahren zum drucken einer optischen komponente
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat
WO2021096534A1 (en) * 2019-11-15 2021-05-20 Hewlett-Packard Development Company, L.P. Three-dimensional printing
CN113681898B (zh) * 2021-09-17 2023-03-21 珠海赛纳三维科技有限公司 三维物体打印方法、数据处理装置及计算机设备
WO2023062158A1 (en) * 2021-10-15 2023-04-20 Sandvik Machining Solutions Ab A method for manufacturing a sintered article and a sintered article
EP4166261A1 (de) * 2021-10-15 2023-04-19 Sandvik Machining Solutions AB Verfahren zur herstellung eines sinterartikels sowie sinterartikel
WO2023130059A1 (en) 2021-12-30 2023-07-06 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for forming same
CN114474732A (zh) * 2022-01-28 2022-05-13 上海联泰科技股份有限公司 数据处理方法、系统、3d打印方法、设备及存储介质
CN115107270B (zh) * 2022-05-25 2023-07-07 上海理工大学 消除彩色3d打印阶梯效应的着色边界微滴填充方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017664A1 (en) * 1995-11-08 1997-05-15 Sanders Prototypes, Inc. 3-d model making
US6146567A (en) * 1993-02-18 2000-11-14 Massachusetts Institute Of Technology Three dimensional printing methods
US6405095B1 (en) * 1999-05-25 2002-06-11 Nanotek Instruments, Inc. Rapid prototyping and tooling system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325267B2 (ja) * 1990-10-30 2002-09-17 3ディー・システムズ、インコーポレイテッド 3次元物体の造形方法及び装置
US5510066A (en) * 1992-08-14 1996-04-23 Guild Associates, Inc. Method for free-formation of a free-standing, three-dimensional body
DE69324418T2 (de) 1992-08-26 1999-08-05 Hewlett Packard Co Verfahren und Vorrichtung zur Kantenglättung in Pixelbildern
DE69524080T2 (de) * 1994-04-25 2002-08-29 3D Systems, Inc. Fortschrittliche bautechniken in stereolithografie
JP2000218708A (ja) * 1999-01-01 2000-08-08 Three D Syst Inc 立体造形装置および方法
US6214279B1 (en) * 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms
EP1195717A3 (de) * 2000-10-04 2004-04-14 TeraRecon, Inc. Regler für ein Pipeline-Darstellungssystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146567A (en) * 1993-02-18 2000-11-14 Massachusetts Institute Of Technology Three dimensional printing methods
WO1997017664A1 (en) * 1995-11-08 1997-05-15 Sanders Prototypes, Inc. 3-d model making
US6405095B1 (en) * 1999-05-25 2002-06-11 Nanotek Instruments, Inc. Rapid prototyping and tooling system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213938B2 (en) 2000-09-25 2019-02-26 Voxeljet Ag Method for producing a part using a deposition technique
US7748971B2 (en) 2002-04-11 2010-07-06 Voxeljet Technology Gmbh Method and device for applying fluids
WO2005113219A1 (de) * 2004-05-24 2005-12-01 Voxeljet Technology Gmbh Verfahren und vorrichtung zum herstellen eines dreidimensionalen artikels
US9676143B2 (en) 2006-08-10 2017-06-13 Voxeljet Ag Self-hardening material and process for layerwise formation of models
US9643360B2 (en) 2006-08-20 2017-05-09 Voxeljet Ag Self-hardening material and process for layerwise formation of models
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
US10960655B2 (en) 2007-07-18 2021-03-30 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
US10099426B2 (en) 2007-10-21 2018-10-16 Voxeljet Ag Method and device for layer-wise production of patterns
US10799989B2 (en) 2007-10-23 2020-10-13 Voxeljet Ag Pre-assembled module for a device for the layer-wise production of patterns
US9757831B2 (en) 2007-10-23 2017-09-12 Voxeljet Ag Methods for assembling a device for the layer-wise production of patterns
US9174392B2 (en) 2009-06-22 2015-11-03 Voxeljet Ag Method and device for switching a particulate material flow in the construction of models in layers
US9931762B2 (en) 2009-06-22 2018-04-03 Voxeljet Ag Method and device for switching a particulate material flow in the construction of models in layers
US9962885B2 (en) 2010-04-14 2018-05-08 Voxeljet Ag Device for producing three-dimensional models
US10639715B2 (en) 2010-04-17 2020-05-05 Voxeljet Ag Method and device for producing three-dimensional models
US10179365B2 (en) 2010-04-17 2019-01-15 Voxeljet Ag Method and device for producing three-dimensional models
US9914169B2 (en) 2010-04-17 2018-03-13 Voxeljet Ag Method and device for producing three-dimensional models
US8956140B2 (en) 2010-07-13 2015-02-17 Voxeljet Ag Apparatus for producing three-dimensional models by means of a layer build up technique
US9149987B2 (en) 2010-07-13 2015-10-06 Voxeljet Ag Device for producing three-dimensional models by a layering technique
US10513105B2 (en) 2011-01-05 2019-12-24 Voxeljet Ag Device and method for constructing a layer body
US10946636B2 (en) 2011-01-05 2021-03-16 Voxeljet Ag Device and method for constructing a layer body
US11407216B2 (en) 2011-01-05 2022-08-09 Voxeljet Ag Device and method for constructing a layer body
US9649812B2 (en) 2011-01-05 2017-05-16 Voxeljet Ag Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area
JP2015530621A (ja) * 2012-09-28 2015-10-15 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク 眼用レンズ上に恒久的技術マークを生成するためのマーキングステップを含む眼用レンズ製造方法
US10442146B2 (en) 2013-12-11 2019-10-15 Essilor International Method and system for producing an ophthalmic lens
WO2015086981A1 (fr) * 2013-12-11 2015-06-18 Essilor International (Compagnie Générale d'Optique) Procede et systeme de fabrication d'une lentille ophtalmique
FR3014355A1 (fr) * 2013-12-11 2015-06-12 Essilor Int Procede de fabrication d'une lentille ophtalmique
CN105936128A (zh) * 2015-03-03 2016-09-14 精工爱普生株式会社 三维造型装置以及三维物体制造方法
EP3230047A4 (de) * 2015-03-05 2018-10-17 Hewlett-Packard Development Company, L.P. Erzeugung dreidimensionaler objekte
US11097472B2 (en) 2015-03-05 2021-08-24 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
US11338507B2 (en) 2015-05-15 2022-05-24 Hewlett-Packard Development Company, L.P. Coalescing agent concentrations and contone densities for three-dimensional objects
EP3271146A4 (de) * 2015-05-15 2018-12-05 Hewlett-Packard Development Company, L.P. Koaleszenzmittelkonzentrationen und contone-dichten für dreidimensionale objekte
EP3219410A1 (de) * 2016-03-09 2017-09-20 Ricoh Company, Ltd. Vorrichtung zur herstellung von dreidimensionalen objekten, verfahren zur herstellung von dreidimensionalen objekten und trägermittel
US11045976B2 (en) 2016-03-09 2021-06-29 Ricoh Company, Ltd. Apparatus for producing three-dimensional objects, method for producing three-dimensional objects, and non-transitory recording medium
EP3845087A1 (de) * 2016-05-31 2021-07-07 Nike Innovate C.V. Gradientendruck einer dreidimensionalen strukturellen komponente
US11618206B2 (en) 2016-05-31 2023-04-04 Nike, Inc. Gradient printing a three-dimensional structural component
EP4415342A3 (de) * 2016-05-31 2024-10-16 Nike Innovate C.V. Gradientendruck eines dreidimensionalen strukturbauteils
WO2019233960A1 (en) * 2018-06-08 2019-12-12 Essilor International Determining method for an ophthalmic lens with targeted transmission spectrum
EP3579044A1 (de) * 2018-06-08 2019-12-11 Essilor International Bestimmungsverfahren für ein brillenglas mit gerichtetem übertragungsspektrum
EP4092560A1 (de) * 2021-05-20 2022-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren für dreidimensionales drucken mit oberflächen-dithering, computerprogrammprodukt und 3d-drucken

Also Published As

Publication number Publication date
US20040159978A1 (en) 2004-08-19
TW200413179A (en) 2004-08-01
EP1442870B1 (de) 2006-08-02
DE60307222D1 (de) 2006-09-14
US7497977B2 (en) 2009-03-03
JP4250096B2 (ja) 2009-04-08
TWI261029B (en) 2006-09-01
DE60307222T2 (de) 2006-12-07
JP2004230895A (ja) 2004-08-19
JP2008006827A (ja) 2008-01-17

Similar Documents

Publication Publication Date Title
US7497977B2 (en) Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer
US7700020B2 (en) Methods for producing an object through solid freeform fabrication
CN107530973B (zh) 用于三维对象的处理对象部件数据
JP4126283B2 (ja) 混和しない流体を用いて立体自由造形によって物体を製造するための方法およびシステム
EP1486318B1 (de) Verfahren und Vorrichtung zur Herstellung eines Formteils durch "Solid Freeform Fabrication"
EP1491322B1 (de) Verfahren und Systeme zum Herstellen einer verbesserten Färbung in einem durch 'Solid Freeform Fabrication' hergestellten Gegenstand
DE60010943T2 (de) Herstellungsverfahren und -Vorrichtung für ein Steuerungssystem in einem selektiv ablagernden Modellierungssystem
US20120133080A1 (en) Additive Manufacturing Methods for Improved Curl Control and Sidewall Quality
US20050074596A1 (en) Method and system for using porous structures in solid freeform fabrication
CN107148336A (zh) 用于制造三维物体的方法、装置和重涂模块
JP2015044299A (ja) 立体造形データ作成装置およびプログラム
WO2021008641A1 (de) Verfahren zur herstellung von 3d-formteilen mit variablen zieleigenschaften der gedruckten bildpunkte
EP3894185B1 (de) Verfahren zur herstellung von gegenständen in einem grünling aus pulvermaterial durch generative fertigung
EP3865308A1 (de) Verfahren und maschine zur herstellung von reliefs sowie paneele mit diesen reliefs
CN112743040A (zh) 3d打印方法、打印机及储存介质
US11597154B2 (en) Color representation of a property of a 3D object
DE102017207740B4 (de) Drucker und Verfahren zum Betreiben eines Druckers
US20170305141A1 (en) Apparatus and method for fabricating three-dimensional objects

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041216

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20050425

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60307222

Country of ref document: DE

Date of ref document: 20060914

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071031

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070917

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080923

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080923