EP1420077B1 - Reaktionsträger Werkstoff mit erhöhter Härte für thermisch beanspruchte Bauteile - Google Patents

Reaktionsträger Werkstoff mit erhöhter Härte für thermisch beanspruchte Bauteile Download PDF

Info

Publication number
EP1420077B1
EP1420077B1 EP02450262A EP02450262A EP1420077B1 EP 1420077 B1 EP1420077 B1 EP 1420077B1 EP 02450262 A EP02450262 A EP 02450262A EP 02450262 A EP02450262 A EP 02450262A EP 1420077 B1 EP1420077 B1 EP 1420077B1
Authority
EP
European Patent Office
Prior art keywords
minus
alloy
nickel
hardness
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02450262A
Other languages
English (en)
French (fr)
Other versions
EP1420077A1 (de
Inventor
Gottfried Mayerböck
Johann Sammler
Gabriele Saller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH
Priority to SI200230449T priority Critical patent/SI1420077T1/sl
Priority to AT02450262T priority patent/ATE341651T1/de
Publication of EP1420077A1 publication Critical patent/EP1420077A1/de
Application granted granted Critical
Publication of EP1420077B1 publication Critical patent/EP1420077B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Definitions

  • the invention relates to a material with high inertness, in particular high oxidation resistance and increased hardness for thermally resilient components and tools.
  • a reaction of a metallic material with its surroundings which causes a measurable change in the material, is defined as corrosion.
  • Corrosion can be done with and without mechanical stress of the component, as well as after various types of chemical attack and at different temperatures.
  • Corrosion-resistant and heat-resistant steels and alloys are also said to have a cubic face-centered atomic lattice structure or an austenitic microstructure due to their thermal stability at temperatures above 600 ° C.
  • this means that such materials have higher nickel and / or cobalt contents or, in view of increased strength and hardness at high temperatures, are in the form of nickel-base or cobalt-base alloys, although from corrosion-chemical Due to a chromium content of at least greater than 13 wt .-% must be present.
  • JP2001011583A discloses an austenitic heat-resistant steel having particular high-temperature strength for steam boiler tubes, which steel has a limited chromium equivalent and thereby no tendency to embrittlement by precipitates of sigma phase in long-term use. However, this material has a low strength and a low 0.2% yield strength at 650 ° C.
  • an austenitic iron-base material with a nickel content of less than 36% by weight can certainly withstand a corrosion attack at high temperatures, for example at 600 ° C. and above, over a required minimum period of time owing to a high chromium concentration, if appropriate in combination with other corrosion-inhibiting elements
  • the material has a low hardness and a similar strength and a limited creep behavior.
  • alloys according to DIN material no. 1.2780 and 1.2782 and 1.2786 are used for reasons of economy and for reasons of production as tools for glass processing.
  • the invention seeks to remedy the situation and sets itself the goal of specifying a material of the type mentioned above with a hardness of greater than 230 HB, which also at temperatures above 600 ° C high creep resistance and improved creep behavior and a similar corrosion resistance having.
  • the invention aims at the use of an iron-based alloy as a material for hot working tools, which are used at working temperatures of about 550 ° C from.
  • the aforementioned object is achieved in a material of the type mentioned, consisting of an alloy with a composition in wt .-% of Carbon (C) 0.04 to 0.15 Silicon (Si) 1.22 to 2.36 Manganese (Mn) 1.0 to 3.95 Chrome (Cr) 23.9 to 26.5 Nickel (Ni) 17.9 to 25.45 Nitrogen (N) 0.018 to 0.2 with the proviso that the nickel content of the alloy is equal to or greater than the value formed by the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ⁇ Cr + 1 . 5 ⁇ Si - 0 .
  • Mo Molybdenum
  • Mo Molybdenum
  • V Vanadium
  • W Tungsten
  • Cu Copper
  • Co Cobalt
  • Co Co
  • Ti Titanium
  • Niobium Nb
  • Fe Remainder iron
  • the advantages achieved by the invention are in particular the synergy of corrosion resistance of the selected alloy and the achievable in this chemical composition by means of cold forming properties of the material.
  • solidification of the material takes place by blocking dislocations in the crystal lattice.
  • An associated increase in hardness and an increase in the strength of the material according to the invention remains, surprising for the expert, even at use temperatures of over 600 ° C, the expected recoveries in the strained grid, such as a thermally activated cross sliding and recombining dislocations can in usual Periods are not observed.
  • the nickel and chromium concentration specified in limits and by the limited concentration range of nickel as a function of chromium, silicon, manganese, nitrogen and carbon. Higher nickel levels have been found to degrade creep behavior. On the other hand, at low nickel concentrations the austenite stability and the heat resistance of the material are abruptly reduced. Essentially the same applies to the elements carbon and nitrogen, in particular nitrogen increases the fatigue strength of the material.
  • Impurities can of course deteriorate the material properties, so that the alloy according to the invention for the impurity elements concentration values in wt .-% of Oxygen (O) max 0.05 Phosphorus (P) max 0.03 Sulfur (S) max 0.03 having.
  • the object of the invention is a method for producing a material for components and tools with high inertia, in particular high oxidation resistance and increased hardness under thermal stress at a temperature of up to 750 ° C, after which from an alloy having a composition in wt.
  • Ni 17.9 to 25.45
  • Mo Molybdenum
  • Mo Molybdenum
  • V Vanadium
  • W Tungsten
  • Cu Copper
  • Co Cobalt
  • Co Co
  • Ti Titanium
  • Niobium Nb
  • Residual iron Fe
  • the elastic limit of the material can be raised to a voltage level which is not reached near the working surface of the component or tool in a volume change due to alternating thermal load. Accordingly, even in the area of the grain boundaries, no zones which are plastically deformed during the temperature change occur, whereby cracking due to material fatigue can be avoided. Thus, a grain boundary attack by chemical or hot corrosion is largely avoidable, so that, as for example in a glass mold, a high Hävid- or surface quality is maintained even at high loads and large quantities of production over a long time.
  • Conventional glass molds often show after a short period of use at the grain boundaries of the structure material erosion, which have a distance in the range of a few microns. As a result, the shaped glass is imparted with unevennesses in the lightwave area, which may result in reflection interference and frosted glass effects.
  • the corrosion and the heat resistance can be further increased and fatigue cracking can be effectively suppressed if, according to the invention by cold working, a material with a hardness greater than 250 HB, in particular of 300 HB and higher is formed.
  • a precursor having a composition of the invention is formed by hot working, subjected to a solution annealing treatment, or thermoformed, cooled, and cold worked from the deformation temperature, a particularly pattern-homogenous material having improved corrosion resistance can be prepared.
  • substantially axially symmetric shaped tools such as bottle molds and the like
  • the further object of the invention is achieved when using an iron-based alloy with alloying elements in wt .-% of Carbon (C) 0.04 to 0.15 Silicon (Si) 1.22 to 2.36 Manganese (Mn) 1.0 to 3.95 Chrome (Cr) 23.9 to 26.5 Nickel (Ni) 17.9 to 25.45 Nitrogen (N) 0.018 to 0.2 with the proviso that the nickel content of the alloy is equal to or greater than the value formed by the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ⁇ Cr + 1 . 5 ⁇ Si - 0 .
  • Mo Molybdenum
  • Mo Molybdenum
  • V Vanadium
  • W Tungsten
  • Cu Copper
  • Co Cobalt
  • Co Co
  • Ti Titanium
  • Ni Niobium
  • Fe Residual iron
  • impurities which alloy by cold deformation of more than 6% of the precursor formed therefrom to a material hardness of greater than 230 HB, preferably greater than 250 HB, solidified as a material for hot working tools in the glass industry, especially as a mold material for machine press glasses with a working temperature higher than 555 ° C, preferably higher than 602 ° C, especially up to 750 ° C.
  • Fig. 1 strength as a function of the degree of cold deformation of a material according to the invention at 604 ° C.
  • Fig. 2 hardness curve at room temperature after a long-term temperature stress at 600 ° C.
  • Fig. 1 the strength of the material according to the invention is shown at a test temperature of 604 ° C, depending on the extent of cold working.
  • the sample material was forged at a temperature of 1010 ° C and increasingly cooled from the forming heat and subjected to solution annealing treatment at 1060 ° C. Each part of the material was cold worked with a degree of deformation of 21%, 35%, 47% and 55%, after which tensile tests were made.
  • the strength determinations namely 0.2% proof strength and tensile strength, were made at a temperature of 604 ° C with the samples kept at that temperature for 20 minutes.
  • standard material was solution heat treated at 1060 ° C and samples made from it were also tested at 604 ° C.
  • the bar graph of FIG. 1 clearly shows an increase in the strength values of the material as a function of the degree of deformation, wherein (not shown in the diagram) an increase in strength is given to a great extent already at a cold deformation degree of more than 6%, in particular greater than 12% ,
  • the sample material was solution heat treated at 1060 ° C. followed by quenching in water, after which samples designated H 5 were undeformed and samples designated H 525 were subjected to long-term annealing at 600 ° C. with a cold working of 35%.
  • the comparative materials No. 1.2083 and No. 1.4028 were hardened from 1020 ° C in oil, tempered at 630 ° C and also subjected to the long-term annealing. After 45, 90, 140, and 180 hours, the sample material was removed from the oven, allowed to cool, and the hardness of the material tested, followed by back-loading of the samples (with thermal cycling).
  • the comparison material H 5 showed an expected behavior of the hardness, whereas the 35% cold-worked material H 525 according to the invention had an increased hardness of 315 HB and a high creep behavior. At 600 ° C no hardness reduction and no creep of the material could be determined even with changing thermal load. In contrast, the martensitic standard steels showed a marked decrease in hardness with the annealing time of the samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Powder Metallurgy (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Contacts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

  • Die Erfindung betrifft einen Werkstoff mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte für thermisch belastbare Bauteile und Werkzeuge.
  • Nach DIN 50900 ist eine Reaktion eines metallischen Werkstoffes mit seiner Umgebung, die eine meßbare Veränderung des Werkstoffes bewirkt, als Korrosion definiert. Eine Korrosion kann dabei mit und ohne mechanische Belastung des Bauteiles, sowie nach verschiedenen Arten eines chemischen Angriffes und bei unterschiedlichen Temperaturen erfolgen.
  • Am häufigsten wird ein Oberflächenangriff von Gegenständen durch eine elektrochemische Korrosion in Gegenwart einer ionenleitenden Phase oder durch chemische Korrosion und Heißkorrosion bei erhöhten Temperaturen bewirkt. Auch in schmelzflüssigen Medien bei erhöhter Temperatur, zum Beispiel in flüssigen Gläsern, kann ein Korrosionsangriff mit einer Veränderung der Oberfläche eines damit in Berührung stehenden Metallteiles erfolgen.
  • In der modernen Technik sind Bau- und Werkzeugteile zumeist einer Mehrzahl von verschiedenen Beanspruchungen gleichzeitig ausgesetzt, von denen insbesondere die thermischen und mechanischen Belastungen auch wechselnd oder schwellend wirksam sein können. Dementsprechend liegen vielfach intensivierte Korrosionsbedingungen vor, welche gegebenenfalls durch eine Verformung der oberflächennahen Zone des Teiles verstärkt werden.
  • Korrosions- und hitzebeständige Stähle und Legierungen sollen, auch einer thermischen Belastbarkeit mit Temperaturen über 600°C wegen, einen kubisch flächenzentrierten Atomgitteraufbau bzw. eine austenitische Gefügestruktur aufweisen. Legierungstechnisch bedeutet dies, dass derartige Werkstoffe höhere Nickel- und/oder Kobaltgehalte aufweisen oder im Hinblick auf eine gesteigerte Festigkeit und Härte bei hohen Temperaturen als Nickelbasis- oder Kobaltbasislegierungen ausgebildet sind, wobei jedoch aus korrosionschemischen Gründen ein Chromgehalt von zumindest größer als 13 Gew.-% vorliegen muss.
  • Obwohl ein Werkstoff mit einer hohen Nickelkonzentration durchwegs erhöhte mechanische Festigkeit bzw. hohe Materialhärte aufweist, wodurch die Gebrauchseigenschaften von Bau- und Werkzeugteilen bei hoher Temperatur verbessert sind, besteht aus wirtschaftlichen Gründen der Wunsch, den Nickelgehalt unter 36 Gew.-% zu senken und zur Steigerung der Korrosionsbeständigkeit den Chromanteil der Legierung auf über 16 Gew.-% anzuheben.
  • Die JP2001011583A offenbart einen austenitischen, hitzebeständigen Stahl mit besonderer Hochtemperaturfestigkeit für Dampfkesselrohre, welcher Stahl ein begrenztes Chrom-Äquivalent und dadurch keine Neigung zur Versprödung durch Ausscheidungen von Sigma-Phase bei Langzeiteinsatz aufweist. Allerdings besitzt dieser Werkstoff eine geringe Festigkeit und eine niedrige 0,2% Dehngrenze bei 650°C.
  • Ein austenitischer Eisenbasiswerkstoff mit einem Nickelgehalt von weniger als 36 Gew.-% kann zwar auf Grund einer hohen Chromkonzentration, gegebenenfalls in Verbindung mit weiteren korrosionshemmenden Elementen, durchaus einem Korrosionsangriff bei hohen Temperaturen, beispielsweise bei 600°C und darüber, über eine geforderte Mindestzeitdauer widerstehen, allerdings weist der Werkstoff eine geringe Härte sowie eine dergleichen Festigkeit und ein eingeschränktes Zeitstandsverhalten auf. Trotz dieser Nachteile werden beispielsweise Legierungen gemäß DIN Werkstoff Nr. 1.2780 und 1.2782 und 1.2786 aus Gründen der Wirtschaftlichkeit und aus Erstellungsgründen als Werkzeuge für eine Glasverarbeitung eingesetzt.
  • Hier will die Erfindung Abhilfe schaffen und setzt sich zum Ziel, einen Werkstoff der eingangs genannten Art mit einer Härte von größer als 230 HB anzugeben, welcher auch bei Temperaturen über 600°C einen hohen Kriechwiderstand und ein verbessertes Dauerstandsverhalten sowie eine dergleichen Korrosionsfestigkeit aufweist.
  • Weiters ist es Aufgabe der Erfindung, ein Verfahren zur wirtschaftlichen Herstellung eines Werkstoffes für Bauteile und Werkzeuge zu schaffen, welche verbesserte Gebrauchseigenschaften bei hoher Härte und erhöhter Korrosionsbeständigkeit besitzen.
  • Schließlich zielt die Erfindung auf die Verwendung einer Eisenbasislegierung als Werkstoff für Warmarbeitswerkzeuge, die bei Arbeitstemperaturen von über 550°C eingesetzt werden, ab.
  • Das vorher genannte Ziel wird bei einem Werkstoff der eingangs genannten Art erreicht, bestehend aus einer Legierung mit einer Zusammensetzung in Gew.-% von
    Kohlenstoff (C) 0,04 bis 0,15
    Silizium (Si) 1,22 bis 2,36
    Mangan (Mn) 1,0 bis 3,95
    Chrom (Cr) 23,9 bis 26,5
    Nickel (Ni) 17,9 bis 25,45
    Stickstoff (N) 0,018 bis 0,2
    mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni Cr + 1 , 5 × Si 0 , 12 × Mn 18 × N 30 × C 6
    Figure imgb0001
    wahlweise eines oder mehrere der Elemente in Konzentrationen in Gew.-%
    Molybdän (Mo) kleiner 1,0
    Vanadium (V) bis 0,5
    Wolfram (W) bis 0,5
    Kupfer (Cu) bis 0,5
    Cobalt (Co) bis 6,5
    Titan (Ti) bis 0,5
    Aluminium (Al) bis 1,5
    Niob (Nb) bis 0,5
    Rest Eisen (Fe), sowie Verunreinigungen, welcher Werkstoff eine durch Kaltumformung von mehr als 6% gebildete Härte von mehr als 230 HB aufweist.
  • Die mit der Erfindung erzielten Vorteile liegen insbesondere in der Synergie von korrosionschemischem Widerstand der ausgewählten Legierung und den bei dieser chemischen Zusammensetzung mittels einer Kaltumformung erreichbaren Eigenschaften des Werkstoffes. Bei einer Kaltumformung bzw. bei einer Verformung unterhalb der Rekristallisationstemperatur des kubisch flächenzentrierten Austenits erfolgt eine Verfestigung des Werkstoffes durch ein Blockieren von Versetzungen im Kristallgitter. Eine damit verbundene Härtesteigerung und eine Erhöhung der Festigkeit des erfindungsgemäßen Werkstoffes bleibt, für den Fachmann überraschend, auch bei Verwendungstemperaturen von über 600°C erhalten, die erwarteten Erholvorgänge im verspannten Gitter, wie zum Beispiel ein thermisch aktiviertes Quergleiten und ein Rekombinieren von Versetzungen können in üblichen Zeiträumen nicht beobachtet werden. Mit anderen Worten: Eine durch eine Kaltverformung erhöhte Warmfestigkeit des erfindungsgemäß zusammengesetzten Werkstoffes bleibt entgegen der Fachmeinung auch bei hohen Verwendungstemperaturen des Bauteiles erhalten, weil ein hoher Kriechwiderstand des Stahles dessen Dauerstandsverhalten verbessert. Gerade bei schwellender thermischer Belastung, wie dies bei einer Kokille für die Herstellung von Gebrauchsgläsern der Fall ist, treten an der Arbeitsoberfläche jeweils starke Temperaturschwankungen und somit örtliche Volumsänderungen des Werkstoffes auf. Es wurde gefunden, dass durch eine erfindungsgemäß erhöhte Materialhärte und Warmfestigkeit die örtliche bzw. oberflächennahe Verformung des Werkstoffes, zum Beispiel einer Glaskokille, in dessen elastischem Bereich erfolgt und dass dadurch einer Ermüdungsrißbildung, die bei auch geringen plastischen Formänderungen eintritt und zum Ausfall der Form führen kann, entgegengewirkt wird.
  • Um ein verbessertes Eigenschaftsprofil des Werkstoffes sicherzustellen, ist es wichtig, dass dieser auch bei einer Kaltverformung im stabil austenitischen Bereich bleibt und keine Zonen mit Verformungsmartensit aufweist. Dies wird erfindungsgemäß durch die in Grenzen angegebene Nickel- und Chromkonzentration und durch den einschränkend vorgegebenen Konzentrationsbereich von Nickel in Abhängigkeit von Chrom, Silizium, Mangan, Stickstoff und Kohlenstoff erreicht. Höhere Nickelgehalte verschlechtern, wie sich gezeigt hat, das Dauerstandsverhalten. Hingegen wird bei niedrigen Nickelkonzentrationen die Austenitstabilität und die Warmfestigkeit des Werkstoffes sprunghaft verringert. Im wesentlichen gilt Gleiches für die Elemente Kohlenstoff und Stickstoff, wobei insbesondere Stickstoff die Dauerstandsfestigkeit des Werkstoffes erhöht.
  • Obwohl die Elemente Molybdän, Vanadin, Wolfram, Titan und Niob den Kriechwiderstand des Materials bei hohen Temperaturen erhöhen und Kupfer, sowie Aluminium, klassische Aushärtungselemente darstellen, weisen diese Stahlbegleiter im Werkstoff nach der Erfindung eine höchst zulässige Konzentration auf, weil, wie gefunden wurde, höhere Gehalte derselben den Korrosionswiderstand insbesondere bei zeitweiser Berührung mit teigigem Glas, erniedrigen und auf Grund einer gebildeten Oberflächenrauhigkeit der Form die Glastransparenz verschlechtern. Die Ursache dafür ist noch nicht ausreichend geklärt, jedoch zählen die Akzeptoratome Na+, K+, Ca2+, B3+, Al3+ und Si4+ zu den harten Lewis-Säuren, wobei nach jeder Glasformung eine Heißkorrosionsbelastung der Form gegeben ist.
  • Verunreinigungen können naturgemäß die Werkstoffeigenschaften verschlechtern, so dass die erfindungsgemäße Legierung für die Verunreinigungselemente Konzentrationswerte in Gew.-% von
    Sauerstoff (O) max 0,05
    Phosphor (P) max 0,03
    Schwefel (S) max 0,03
    aufweist.
  • Die Aufgabe der Erfindung wird durch ein Verfahren zur Herstellung eines Werkstoffes für Bauteile und Werkzeuge mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte bei thermischen Belastungen mit einer Temperatur von bis zu 750°C, nach welchem aus einer Legierung mit einer Zusammensetzung in Gew.-% von
    Kohlenstoff (C) 0,04 bis 0,15
    Silizium (Si) 1,22 bis 2,36
    Mangan (Mn) 1,0 bis 3,95
    Chrom (Cr) 23,9 bis 26,5
    Nickel (Ni) 17,9 bis 25,45
    Stickstoff (N) 0,018 bis 0,2
    mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni Cr + 1 , 5 × Si 0 , 12 × Mn 18 × N 30 × C 6
    Figure imgb0002
    wahlweise eines oder mehrere der Elemente in Konzentrationen in Gew.-%
    Molybdän (Mo) kleiner 1,0
    Vanadium (V) bis 0,5
    Wolfram (W) bis 0,5
    Kupfer (Cu) bis 0,5
    Cobalt (Co) bis 6,5
    Titan (Ti) bis 0,5
    Aluminium (Al) bis 1,5
    Niob (Nb) bis 0,5
    Rest Eisen (Fe), sowie Verunreinigungen ein Vorprodukt gebildet und dieses nachfolgend durch Kaltumformung von mehr als 6% zu einem Werkstoff mit einer Härte von größer als 230 HB weiterverarbeitetwird, gelöst.
  • Mittels einer Kaltverformung der erfindungsgemäßen Legierung kann die Elastizitätsgrenze des Werkstoffes auf ein Spannungsniveau angehoben werden, welches auch nahe der Arbeitsfläche des Bauteiles oder Werkzeuges bei einer Volumsänderung durch wechselnde thermische Belastung nicht erreicht wird. Dementsprechend treten auch im Bereich der Korngrenzen keine Zonen, die beim Temperaturwechsel plastisch verformt werden, auf, wodurch eine Rißbildung durch Materialermüdung vermieden werden kann. Damit ist auch ein Korngrenzenangriff durch chemische oder Heißkorrosion weitgehend vermeidbar, so dass, wie zum Beispiel bei einer Glasform, eine hohe Arbeitsflächen- bzw. Oberflächengüte auch bei hohen Belastungen und bei großen Stückzahlen der Fertigung über lange Zeit erhalten bleibt. Herkömmliche Glasformen hingegen zeigen oft nach kurzer Einsatzdauer an den Korngrenzen des Gefüges Materialabtragungen, welche einen Abstand im Bereich von wenigen µm aufweisen. Dem geformten Glas werden dadurch Unebenheiten im Lichtwellenbereich vermittelt, wodurch Reflexions-Interferenzen und Milchglaseffekte entstehen können.
  • Die Korrosions- und die Warmfestigkeit können weiter erhöht und eine Ermüdungsrißbildung wirksam unterdrückt werden, wenn, verfahrensgemäß nach der Erfindung durch Kaltverformung, ein Werkstoff mit einer Härte von größer als 250 HB, insbesondere von 300 HB und höher gebildet wird.
  • Wenn ein Vorprodukt mit einer erfindungsgemäßen Zusammensetzung mittels Warmverformung gebildet, dieses einer Lösungsglühbehandlung unterworfen oder von der Verformungstemperatur, gegebenenfalls verstärkt, abgekühlt und kaltverformt wird, kann ein besonders gefügehomogener Werkstoff mit verbesserter Korrosionsfestigkeit erstellt werden.
  • Insbesondere für weitgehend achssymmetrisch ausgeformte Werkzeuge, wie Flaschenkokillen und dergleichen, kann es von Vorteil sein, wenn die Kaltverformung des Materials vollumfänglich radial senkrecht zur Längsachse des Vorproduktes durchgeführt wird.
  • Schließlich wird das weitere Ziel der Erfindung erreicht bei einer Verwendung einer Eisenbasislegierung mit Legierungselementen in Gew.-% von
    Kohlenstoff (C) 0,04 bis 0,15
    Silizium (Si) 1,22 bis 2,36
    Mangan (Mn) 1,0 bis 3,95
    Chrom (Cr) 23,9 bis 26,5
    Nickel (Ni) 17,9 bis 25,45
    Stickstoff (N) 0,018 bis 0,2
    mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni Cr + 1 , 5 × Si 0 , 12 × Mn 18 × N 30 × C 6
    Figure imgb0003
    wahlweise eines oder mehrere der Elemente in Konzentrationen in Gew.-%
    Molybdän (Mo) kleiner 1,0
    Vanadium (V) bis 0,5
    Wolfram (W) bis 0,5
    Kupfer (Cu) bis 0,5
    Cobalt (Co) bis 6,5
    Titan (Ti) bis 0,5
    Aluminium (Al) bis 1,5
    Niob (Nb) bis 0,5
    Rest Eisen (Fe), sowie Verunreinigungen, welche Legierung durch Kaltverformungvon mehr als 6% des daraus gebildeten Vorproduktes auf eine Materialhärte von größer als 230 HB, vorzugsweise von größer 250 HB, verfestigt ist, als Werkstoff für Warmarbeitswerkzeuge in der Glasindustrie, insbesondere als Formenwerkstoff für Maschinenpressgläser mit einer Arbeitstemperatur von höher als 555°C, vorzugsweise von höher als 602°C, insbesondere bis 750°C.
  • Anhand von vergleichenden Untersuchungsergebnissen soll der erfindungsgemäße Werkstoff näher dargestellt werden.
    Es zeigen
    Fig. 1 Festigkeit in Abhängigkeit vom Kaltverformungsgrad eines erfindungsgemäßen Werkstoffes bei 604°C
    Fig. 2 Härteverlauf bei Raumtemperatur nach einer Langzeit-Temperaturbeanspruchung bei 600°C
  • In Fig. 1 ist die Festigkeit des erfindungsgemäßen Werkstoffes bei einer Prüftemperatur von 604°C in Abhängigkeit vom Ausmaß der Kaltverformung dargestellt. Das Probematerial wurde bei einer Temperatur von 1010°C geschmiedet und aus der Umformhitze verstärkt abgekühlt und einer Lösungsglühbehandlung bei 1060°C unterworfen. An Teilen des Materials erfolgte jeweils eine Kaltverformung mit einem Umformgrad von 21 %, 35 %, 47 % und 55 %, wonach daraus Zugproben erstellt wurden. Die Festigkeitsermittlungen, und zwar die 0,2 % Dehngrenze und die Zugfestigkeit, erfolgten bei einer Temperatur von 604°C, wobei die Proben 20 Minuten auf dieser Temperatur gehalten wurden. Zum Vergleich wurde Standardmaterial bei 1060°C lösungsgeglüht, wobei daraus gefertigte Proben ebenfalls bei 604°C untersucht wurden. Das Balkendiagramm von Fig. 1 zeigt deutlich eine Erhöhung der Festigkeitswerte des Werkstoffes in Abhängigkeit vom Verformungsgrad, wobei (im Diagramm nicht dargestellt) eine Festigkeitssteigerung in hohem Ausmaß schon bei einem Kaltverformungsgrad von mehr als 6 %, insbesondere von größer als 12 %, gegeben ist.
  • In Fig. 2 ist die Dauerstandsfestigkeit des erfindungsgemäßen Werkstoffes bei einer Temperatur von 600°C, ermittelt durch eine Härteprüfung im kalten Zustand der Proben, im Vergleich mit Materialien nach DIN Werkstoff Nr. 1.2083 und Werkstoff Nr. 1.4028 dargestellt.
  • Der erfindungsgemäße Werkstoff wurde mit einer Zusammensetzung von in Gew.-% C = 0,08, Si = 1,7, Mn = 1,15, P = 0,01, S = 0,002, Cr = 24,8, Ni = 19,8, N = 0,02, Mo = 0,26, V = 0,09, W = 0,11, Cu = 0,12, Co = 0,4, Ti = 0,01, Al = 0,02, Nb = 0,001, O = 0,0029 erschmolzen, zu einem Versuchsblock gegossen und dieser zu Probenmaterial warmverformt. Am Probenmaterial erfolgte eine Lösungsglühbehandlung bei 1060°C mit einem anschließenden Abschrecken im Wasser, wonach Proben mit der Bezeichnung H 5 unverformt und Proben mit der Bezeichnung H 525 mit einer Kaltverformung von 35 % einer Langzeitglühung bei 600°C unterworfen wurden. Die Vergleichswerkstoffe Nr. 1.2083 und Nr. 1.4028 wurden von 1020°C in Öl gehärtet, bei 630°C angelassen und ebenfalls der Langzeitglühung ausgesetzt. Nach 45, 90, 140 und 180 Stunden wurde das Probenmaterial aus dem Ofen genommen, erkalten gelassen und die Materialhärte geprüft, wonach ein Rückeinsetzen der Proben (mit einer Temperaturwechselbelastung) erfolgte. Das Vergleichsmaterial H 5 zeigte ein erwartetes Verhalten der Härte, wogegen der mit 35 % kaltverformte erfindungsgemäße Werkstoff H 525 eine erhöhte Härte von 315 HB und ein hohen Dauerstandsverhalten aufwies. Bei 600°C konnte auch bei wechselnder thermischer Belastung keine Härteminderung und kein Kriechen des Materiales festgestellt werden. Im Gegensatz dazu wurde an den martensitischen Normstählen ein deutlicher Härteabfall mit der Glühdauer der Proben festgestellt.

Claims (10)

  1. Werkstoff mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte für thermisch mit einer Temperatur von bis zu 750°C belastbare Bauteile und Werkzeuge, bestehend aus einer Legierung mit einer Zusammensetzung in Gew.-% von Kohlenstoff (C) 0,04 bis 0,15 Silizium (Si) 1,22 bis 2,36 Mangan (Mn) 1,0 bis 3,95 Chrom (Cr) 23,9 bis 26,5 Nickel (Ni) 17,9 bis 25,45 Stickstoff (N) 0,018 bis 0,2
    mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni Cr + 1 , 5 × Si 0 , 12 × Mn 18 × N 30 × C 6
    Figure imgb0004
    wahlweise eines oder mehrere der Elemente in Konzentrationen in Gew.% Molybdän (Mo) kleiner 1,0 Vanadium (V) bis 0,5 Wolfram (W) bis 0,5 Kupfer (Cu) bis 0,5 Cobalt (Co) bis 6,5 Titan (Ti) bis 0,5 Aluminium (Al) bis 1,5 Niob (Nb) bis 0,5
    Rest Eisen (Fe), sowie Verunreinigungen, welcher Werkstoff eine durch Kaltumformung von mehr als 6% gebildete Härte von mehr als 230 HB aufweist.
  2. Werkstoff nach Anspruch 1 mit einer Härte von größer 250 HB, insbesondere 300 HB und höher.
  3. Werkstoff nach Anspruch 1 oder 2, wobei der Nickelgehalt der Legierung um höchstens 4,8 Gew.-% größer ist als der Wert gebildet nach dem Zusammenhang von Anspruch 1.
  4. Werkstoff nach einem der Ansprüche 1 bis 3, welcher für ein oder mehrere Verunreinigungselemente Konzentrationswerte in Gew.-% von Sauerstoff (O) max 0,05 Phosphor (P) max 0,03 Schwefel (S) max 0,03
    aufweist.
  5. Verfahren zur Herstellung eines Werkstoffes für Bauteile und Werkzeuge mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte bei thermischen Belastungen mit einer Temperatur von bis zu 750°C, nach welchem aus einer Legierung mit einer Zusammensetzung in Gew.-% von Kohlenstoff (C) 0,04 bis 0,15 Silizium (Si) 1,22 bis 2,36 Mangan (Mn) 1,0 bis 3,95 Chrom (Cr) 23,9 bis 26,5 Nickel (Ni) 17,9 bis 25,45 Stickstoff (N) 0,018 bis 0,2
    mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni Cr + 1 , 5 × Si 0 , 12 × Mn 18 × N 30 × C 6
    Figure imgb0005
    wahlweise eines oder mehrere der Elemente in Konzentrationen in Gew.% Molybdän (Mo) kleiner 1,0 Vanadium (V) bis 0,5 Wolfram (W) bis 0,5 Kupfer (Cu) bis 0,5 Cobalt (Co) bis 6,5 Titan (Ti) bis 0,5 Aluminium (Al) bis 1,5 Niob (Nb) bis 0,5
    Rest Eisen (Fe), sowie Verunreinigungen ein Vorprodukt gebildet und dieses nachfolgend durch Kaltverformung von mehr als 6% zu einem Werkstoff mit einer Härte von größer als 230 HB weiterverarbeitet wird.
  6. Verfahren nach Anspruch 5, wobei das Vorprodukt mittels Warmverformung gebildet, dieses einer Lösungsglühbehandlung unterworfen oder von der Verformungstemperatur, gegebenenfalls verstärkt, abgekühlt und kaltverformt wird.
  7. Verfahren nach Anspruch 5 oder 6, wobei die Kaltverformung vollumfänglich radial senkrecht zur Längsachse des Vorproduktes durchgeführt wird.
  8. Verfahren nach einem der Ansprüche 5 bis 7, nach welchem der Nickelgehalt der Legierung um höchstens 4,8 Gew.-% größer eingestellt wird als dem Wert, gebildet nach dem Zusammenhang von Anspruch 5, entspricht.
  9. Verfahren nach einem der Ansprüche 5 bis 8, wobei durch Kaltverformung ein Werkstoff mit einer Härte von größer als 250 HB, insbesondere von 300 HB und höher gebildet wird.
  10. Verwendung einer Eisenbasislegierung mit Legierungselementen in Gew.-% von Kohlenstoff (C) 0,01 bis 0,25 Silizium (Si) 0,35 bis 2,5 Mangan(Mn) 0,4 bis 4,3 Chrom (Cr) 16,0 bis 28,0 Nickel (Ni) 15,0 bis 36,0 Stickstoff (N) 0,01 bis 0,29
    mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder gegebenenfalls um höchstens 4,8 Gew.% größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni Cr + 1 , 5 × Si 0 , 12 × Mn 18 × N 30 × C 6
    Figure imgb0006
    wahlweise eines oder mehrere der Elemente in Konzentrationen in Gew.% Molybdän (Mo) kleiner 1,0 Vanadium (V) bis 0,5 Wolfram (W) bis 0,5 Kupfer (Cu) bis 0,5 Cobalt (Co) bis 6,5 Titan (Ti) bis 0,5 Aluminium (Al) bis 1,5 Niob (Nb) bis 0,5
    Rest Eisen (Fe), sowie Verunreinigungen, welche Legierung durch Kaltverformung von mehr als 6% des daraus gebildeten Vorproduktes auf eine Materialhärte von größer als 230 HB, vorzugsweise von größer als 250 HB, verfestigt ist, als Werkstoff für Warmarbeitswerkzeuge in der Glasindustrie, insbesondere als Formenwerkstoff für Maschinenpressgläser mit einer Arbeitstemperatur von höher als 555°C, vorzugsweise von höher als 602°C, insbesondere bis 750°C.
EP02450262A 2002-01-23 2002-11-15 Reaktionsträger Werkstoff mit erhöhter Härte für thermisch beanspruchte Bauteile Expired - Lifetime EP1420077B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200230449T SI1420077T1 (sl) 2002-01-23 2002-11-15 Trd inerten material za toplotno obremenjene dele
AT02450262T ATE341651T1 (de) 2002-01-23 2002-11-15 Reaktionsträger werkstoff mit erhöhter härte für thermisch beanspruchte bauteile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0010702A AT410550B (de) 2002-01-23 2002-01-23 Reaktionsträger werkstoff mit erhöhter härte für thermisch beanspruchte bauteile

Publications (2)

Publication Number Publication Date
EP1420077A1 EP1420077A1 (de) 2004-05-19
EP1420077B1 true EP1420077B1 (de) 2006-10-04

Family

ID=3624219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02450262A Expired - Lifetime EP1420077B1 (de) 2002-01-23 2002-11-15 Reaktionsträger Werkstoff mit erhöhter Härte für thermisch beanspruchte Bauteile

Country Status (13)

Country Link
US (1) US20030136482A1 (de)
EP (1) EP1420077B1 (de)
KR (1) KR100540851B1 (de)
CN (1) CN1434146A (de)
AT (1) AT410550B (de)
BR (1) BR0300116A (de)
CA (1) CA2416950C (de)
DE (1) DE50208351D1 (de)
DK (1) DK1420077T3 (de)
ES (1) ES2273992T3 (de)
HK (1) HK1067668A1 (de)
RU (1) RU2246553C2 (de)
TW (1) TWI225102B (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605072B1 (de) * 2003-03-20 2012-09-12 Sumitomo Metal Industries, Ltd. Nichtrostender stahl für hochdruckwasserstoffgas, behülter und einrichtungen, die den stahl enthalten
US20090053100A1 (en) * 2005-12-07 2009-02-26 Pankiw Roman I Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same
ES2545488T3 (es) * 2008-02-27 2015-09-11 Nippon Steel & Sumitomo Metal Corporation Material metálico resistente a la cementación por el carbono
ES2593077T3 (es) * 2008-11-19 2016-12-05 Sandvik Intellectual Property Ab Aleación basada en níquel formadora de óxido de aluminio
ES2418135T3 (es) 2009-02-17 2013-08-12 Mec Holding Gmbh Aleación resistente al desgaste
EP2287351A1 (de) * 2009-07-22 2011-02-23 Arcelormittal Investigación y Desarrollo SL Wärmebeständiger austentischer Stahl mit einer hohen Belastbarkeit gegen Entspannungsbruch
CN101921967A (zh) * 2010-08-12 2010-12-22 江苏新华合金电器有限公司 一种新型奥氏体耐热不锈钢
CN102650023A (zh) * 2011-02-23 2012-08-29 宝山钢铁股份有限公司 一种油套管用含铜铁镍铬合金
US9347121B2 (en) * 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
CN110520551B (zh) * 2017-03-03 2022-01-07 博格华纳公司 具有增强的高温抗氧化性的镍和铬基铁合金
DK3590643T3 (da) * 2018-07-02 2021-04-12 Hoeganaes Ab Publ Slidbestandige jernbaserede legeringssammensætninger, der omfatter nikkel
CN110724873A (zh) * 2018-07-17 2020-01-24 宝钢特钢有限公司 一种高耐磨模锻模具钢及其制造方法
RU2703318C1 (ru) * 2019-04-15 2019-10-16 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Радиационно-стойкая аустенитная сталь для внутрикорпусной выгородки ввэр

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016460A (en) * 1989-12-22 1991-05-21 Inco Alloys International, Inc. Durable method for producing finned tubing
WO2002042510A1 (en) * 2000-11-24 2002-05-30 Sandvik Ab Cylindrical tube for industrial chemical installations

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746209A (en) * 1949-08-20 1956-05-22 Libbey Owens Ford Glass Co Equipment for bending glass sheets
US3385739A (en) * 1965-04-13 1968-05-28 Eaton Yale & Towne Alloy steel articles and the method of making
AT305000B (de) * 1970-06-29 1973-02-12 Mannesmann Ag Werkzeug
US3833358A (en) * 1970-07-22 1974-09-03 Pompey Acieries Refractory iron-base alloy resisting to high temperatures
DE2641555A1 (de) * 1976-09-15 1978-03-16 Schevtschenko Verfahren zum kontinuierlichen rohrwalzen und kontinuierliches rohrwalzwerk
US4341555A (en) * 1980-03-31 1982-07-27 Armco Inc. High strength austenitic stainless steel exhibiting freedom from embrittlement
US4329173A (en) * 1980-03-31 1982-05-11 Carondelet Foundry Company Alloy resistant to corrosion
DE3271810D1 (en) * 1982-02-26 1986-07-31 Kubota Ltd Heat-resisting alloy for rolls
US4489040A (en) * 1982-04-02 1984-12-18 Cabot Corporation Corrosion resistant nickel-iron alloy
US4560408A (en) * 1983-06-10 1985-12-24 Santrade Limited Method of using chromium-nickel-manganese-iron alloy with austenitic structure in sulphurous environment at high temperature
DE3407307A1 (de) * 1984-02-24 1985-08-29 Mannesmann AG, 4000 Düsseldorf Verwendung einer korrosionsbestaendigen austenitischen eisen-chrom-nickel-stickstoff-legierung fuer mechanisch hoch beanspruchte bauteile
US4851059A (en) * 1987-03-12 1989-07-25 Nippon Steel Corp. Non-magnetic high hardness austenitic stainless steel
US4795610A (en) * 1987-04-23 1989-01-03 Carondelet Foundry Company Corrosion resistant alloy
US4981647A (en) * 1988-02-10 1991-01-01 Haynes International, Inc. Nitrogen strengthened FE-NI-CR alloy
US4861547A (en) * 1988-04-11 1989-08-29 Carondelet Foundry Company Iron-chromium-nickel heat resistant alloys
US5098652A (en) * 1989-06-13 1992-03-24 Kabushiki Kaisha Toshiba Precision parts of non-magnetic stainless steels
JP2756549B2 (ja) * 1989-07-22 1998-05-25 日新製鋼株式会社 ばね特性に優れた高強度複相組織ステンレス鋼帯の製造法
US5223214A (en) * 1992-07-09 1993-06-29 Carondelet Foundry Company Heat treating furnace alloys
JPH09279309A (ja) * 1996-04-12 1997-10-28 Daido Steel Co Ltd Fe−Cr−Ni系耐熱合金
JP2001011583A (ja) * 1999-07-02 2001-01-16 Hmy Ltd 耐熱性合金
AT408889B (de) * 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T Korrosionsbeständiger werkstoff

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016460A (en) * 1989-12-22 1991-05-21 Inco Alloys International, Inc. Durable method for producing finned tubing
WO2002042510A1 (en) * 2000-11-24 2002-05-30 Sandvik Ab Cylindrical tube for industrial chemical installations

Also Published As

Publication number Publication date
BR0300116A (pt) 2003-09-09
KR100540851B1 (ko) 2006-01-10
EP1420077A1 (de) 2004-05-19
US20030136482A1 (en) 2003-07-24
RU2246553C2 (ru) 2005-02-20
CN1434146A (zh) 2003-08-06
ATA1072002A (de) 2002-10-15
AT410550B (de) 2003-05-26
RU2003101774A (ru) 2005-01-10
KR20030064304A (ko) 2003-07-31
CA2416950A1 (en) 2003-07-23
HK1067668A1 (en) 2005-04-15
CA2416950C (en) 2007-08-28
DE50208351D1 (de) 2006-11-16
TWI225102B (en) 2004-12-11
DK1420077T3 (da) 2007-02-05
ES2273992T3 (es) 2007-05-16

Similar Documents

Publication Publication Date Title
EP2855723B1 (de) Nickel-chrom-aluminium-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
DE60214456T2 (de) Martensitischer rostfreier Stahl mit hoher Härte und guter Korrosionsbeständigkeit
DE69901345T2 (de) Einsatzstahl mit hoher anlasstemperatur, herstellungsverfahren für diesen stahl und werkstücke aus diesem stahl
AT394056B (de) Verfahren zur herstellung von stahl
DE3650515T2 (de) Hochfester hitzebeständiger ferritischer Stahl mit hohem Chromgehalt
EP2855724B1 (de) Nickel-chrom-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
DE69406512T3 (de) Rotor für Dampfturbinen und Verfahren zu seiner Herstellung
DE69529829T2 (de) Ferritische wärmebeständige Stähle
DE60010997T2 (de) Wärmebeständiges Chrom-Molybdän Stahl
DE69706224T2 (de) Wärmebeständiger Stahl und Dampfturbinenrotor
DE69003202T2 (de) Hochfeste, hitzebeständige, niedrig legierte Stähle.
EP1420077B1 (de) Reaktionsträger Werkstoff mit erhöhter Härte für thermisch beanspruchte Bauteile
DE1558668C3 (de) Verwendung von kriechfesten, nichtrostenden austenitischen Stählen zur Herstellung von Blechen
DE60300561T3 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
DE112016005198T5 (de) Walzdraht mit ausgezeichneter Kaltschmiedbarkeit und Verfahren zu seiner Herstellung
WO2017085072A1 (de) Edelbaustahl mit bainitischem gefüge, daraus hergestelltes schmiedeteil und verfahren zur herstellung eines schmiedeteils
EP0866145A2 (de) Vollmartensitsche Stahllegierung
AT515157A1 (de) Verfahren zur Herstellung von Kunststoffformen aus martensitischem Chromstahl und Kunststoffform
EP0432434B1 (de) Verfahren zur Herstellung von Verbindungselementen aus einem vollaustenitischen Cr-Mn-Stahl.
EP3105358B1 (de) Verfahren zur herstellung einer titanfreien legierung
WO2021084025A1 (de) Korrosionsbeständiger und ausscheidungshärtender stahl, verfahren zur herstellung eines stahlbauteils und stahlbauteil
EP2535430B1 (de) Werkzeugstahl für höher beanspruchte Warmumformungswerkzeuge sowie dessen Herstellungsprozess
DE112008001181B4 (de) Verwendung einer Stahllegierung für Achsrohre sowie Achsrohr
DE102019103502A1 (de) Verfahren zur Herstellung eines nahtlosen Stahlrohres, nahtloses Stahlrohr und Rohrprodukt
DE2105745A1 (de) Aushärtbare Nickel-Chrom-Stahllegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040619

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHLER EDELSTAHL GMBH

17Q First examination report despatched

Effective date: 20041201

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AXX Extension fees paid

Extension state: SI

Payment date: 20040619

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1067668

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50208351

Country of ref document: DE

Date of ref document: 20061116

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070110

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070316

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2273992

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070705

BERE Be: lapsed

Owner name: BOHLER EDELSTAHL GMBH

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061115

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1067668

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20081111

Year of fee payment: 7

Ref country code: DK

Payment date: 20081118

Year of fee payment: 7

Ref country code: NL

Payment date: 20081113

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20081112

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20081114

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100601

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 1152

Country of ref document: SK

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20100827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141119

Year of fee payment: 13

Ref country code: DE

Payment date: 20141119

Year of fee payment: 13

Ref country code: ES

Payment date: 20141126

Year of fee payment: 13

Ref country code: GB

Payment date: 20141119

Year of fee payment: 13

Ref country code: CH

Payment date: 20141119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20141120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141126

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208351

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 341651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151115

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151115

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151116