EP1420077B1 - Inert material with high hardness for elements used at high temperature - Google Patents

Inert material with high hardness for elements used at high temperature Download PDF

Info

Publication number
EP1420077B1
EP1420077B1 EP02450262A EP02450262A EP1420077B1 EP 1420077 B1 EP1420077 B1 EP 1420077B1 EP 02450262 A EP02450262 A EP 02450262A EP 02450262 A EP02450262 A EP 02450262A EP 1420077 B1 EP1420077 B1 EP 1420077B1
Authority
EP
European Patent Office
Prior art keywords
minus
alloy
nickel
hardness
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02450262A
Other languages
German (de)
French (fr)
Other versions
EP1420077A1 (en
Inventor
Gottfried Mayerböck
Johann Sammler
Gabriele Saller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH
Priority to SI200230449T priority Critical patent/SI1420077T1/en
Priority to AT02450262T priority patent/ATE341651T1/en
Publication of EP1420077A1 publication Critical patent/EP1420077A1/en
Application granted granted Critical
Publication of EP1420077B1 publication Critical patent/EP1420077B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Definitions

  • the invention relates to a material with high inertness, in particular high oxidation resistance and increased hardness for thermally resilient components and tools.
  • a reaction of a metallic material with its surroundings which causes a measurable change in the material, is defined as corrosion.
  • Corrosion can be done with and without mechanical stress of the component, as well as after various types of chemical attack and at different temperatures.
  • Corrosion-resistant and heat-resistant steels and alloys are also said to have a cubic face-centered atomic lattice structure or an austenitic microstructure due to their thermal stability at temperatures above 600 ° C.
  • this means that such materials have higher nickel and / or cobalt contents or, in view of increased strength and hardness at high temperatures, are in the form of nickel-base or cobalt-base alloys, although from corrosion-chemical Due to a chromium content of at least greater than 13 wt .-% must be present.
  • JP2001011583A discloses an austenitic heat-resistant steel having particular high-temperature strength for steam boiler tubes, which steel has a limited chromium equivalent and thereby no tendency to embrittlement by precipitates of sigma phase in long-term use. However, this material has a low strength and a low 0.2% yield strength at 650 ° C.
  • an austenitic iron-base material with a nickel content of less than 36% by weight can certainly withstand a corrosion attack at high temperatures, for example at 600 ° C. and above, over a required minimum period of time owing to a high chromium concentration, if appropriate in combination with other corrosion-inhibiting elements
  • the material has a low hardness and a similar strength and a limited creep behavior.
  • alloys according to DIN material no. 1.2780 and 1.2782 and 1.2786 are used for reasons of economy and for reasons of production as tools for glass processing.
  • the invention seeks to remedy the situation and sets itself the goal of specifying a material of the type mentioned above with a hardness of greater than 230 HB, which also at temperatures above 600 ° C high creep resistance and improved creep behavior and a similar corrosion resistance having.
  • the invention aims at the use of an iron-based alloy as a material for hot working tools, which are used at working temperatures of about 550 ° C from.
  • the aforementioned object is achieved in a material of the type mentioned, consisting of an alloy with a composition in wt .-% of Carbon (C) 0.04 to 0.15 Silicon (Si) 1.22 to 2.36 Manganese (Mn) 1.0 to 3.95 Chrome (Cr) 23.9 to 26.5 Nickel (Ni) 17.9 to 25.45 Nitrogen (N) 0.018 to 0.2 with the proviso that the nickel content of the alloy is equal to or greater than the value formed by the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ⁇ Cr + 1 . 5 ⁇ Si - 0 .
  • Mo Molybdenum
  • Mo Molybdenum
  • V Vanadium
  • W Tungsten
  • Cu Copper
  • Co Cobalt
  • Co Co
  • Ti Titanium
  • Niobium Nb
  • Fe Remainder iron
  • the advantages achieved by the invention are in particular the synergy of corrosion resistance of the selected alloy and the achievable in this chemical composition by means of cold forming properties of the material.
  • solidification of the material takes place by blocking dislocations in the crystal lattice.
  • An associated increase in hardness and an increase in the strength of the material according to the invention remains, surprising for the expert, even at use temperatures of over 600 ° C, the expected recoveries in the strained grid, such as a thermally activated cross sliding and recombining dislocations can in usual Periods are not observed.
  • the nickel and chromium concentration specified in limits and by the limited concentration range of nickel as a function of chromium, silicon, manganese, nitrogen and carbon. Higher nickel levels have been found to degrade creep behavior. On the other hand, at low nickel concentrations the austenite stability and the heat resistance of the material are abruptly reduced. Essentially the same applies to the elements carbon and nitrogen, in particular nitrogen increases the fatigue strength of the material.
  • Impurities can of course deteriorate the material properties, so that the alloy according to the invention for the impurity elements concentration values in wt .-% of Oxygen (O) max 0.05 Phosphorus (P) max 0.03 Sulfur (S) max 0.03 having.
  • the object of the invention is a method for producing a material for components and tools with high inertia, in particular high oxidation resistance and increased hardness under thermal stress at a temperature of up to 750 ° C, after which from an alloy having a composition in wt.
  • Ni 17.9 to 25.45
  • Mo Molybdenum
  • Mo Molybdenum
  • V Vanadium
  • W Tungsten
  • Cu Copper
  • Co Cobalt
  • Co Co
  • Ti Titanium
  • Niobium Nb
  • Residual iron Fe
  • the elastic limit of the material can be raised to a voltage level which is not reached near the working surface of the component or tool in a volume change due to alternating thermal load. Accordingly, even in the area of the grain boundaries, no zones which are plastically deformed during the temperature change occur, whereby cracking due to material fatigue can be avoided. Thus, a grain boundary attack by chemical or hot corrosion is largely avoidable, so that, as for example in a glass mold, a high Hävid- or surface quality is maintained even at high loads and large quantities of production over a long time.
  • Conventional glass molds often show after a short period of use at the grain boundaries of the structure material erosion, which have a distance in the range of a few microns. As a result, the shaped glass is imparted with unevennesses in the lightwave area, which may result in reflection interference and frosted glass effects.
  • the corrosion and the heat resistance can be further increased and fatigue cracking can be effectively suppressed if, according to the invention by cold working, a material with a hardness greater than 250 HB, in particular of 300 HB and higher is formed.
  • a precursor having a composition of the invention is formed by hot working, subjected to a solution annealing treatment, or thermoformed, cooled, and cold worked from the deformation temperature, a particularly pattern-homogenous material having improved corrosion resistance can be prepared.
  • substantially axially symmetric shaped tools such as bottle molds and the like
  • the further object of the invention is achieved when using an iron-based alloy with alloying elements in wt .-% of Carbon (C) 0.04 to 0.15 Silicon (Si) 1.22 to 2.36 Manganese (Mn) 1.0 to 3.95 Chrome (Cr) 23.9 to 26.5 Nickel (Ni) 17.9 to 25.45 Nitrogen (N) 0.018 to 0.2 with the proviso that the nickel content of the alloy is equal to or greater than the value formed by the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ⁇ Cr + 1 . 5 ⁇ Si - 0 .
  • Mo Molybdenum
  • Mo Molybdenum
  • V Vanadium
  • W Tungsten
  • Cu Copper
  • Co Cobalt
  • Co Co
  • Ti Titanium
  • Ni Niobium
  • Fe Residual iron
  • impurities which alloy by cold deformation of more than 6% of the precursor formed therefrom to a material hardness of greater than 230 HB, preferably greater than 250 HB, solidified as a material for hot working tools in the glass industry, especially as a mold material for machine press glasses with a working temperature higher than 555 ° C, preferably higher than 602 ° C, especially up to 750 ° C.
  • Fig. 1 strength as a function of the degree of cold deformation of a material according to the invention at 604 ° C.
  • Fig. 2 hardness curve at room temperature after a long-term temperature stress at 600 ° C.
  • Fig. 1 the strength of the material according to the invention is shown at a test temperature of 604 ° C, depending on the extent of cold working.
  • the sample material was forged at a temperature of 1010 ° C and increasingly cooled from the forming heat and subjected to solution annealing treatment at 1060 ° C. Each part of the material was cold worked with a degree of deformation of 21%, 35%, 47% and 55%, after which tensile tests were made.
  • the strength determinations namely 0.2% proof strength and tensile strength, were made at a temperature of 604 ° C with the samples kept at that temperature for 20 minutes.
  • standard material was solution heat treated at 1060 ° C and samples made from it were also tested at 604 ° C.
  • the bar graph of FIG. 1 clearly shows an increase in the strength values of the material as a function of the degree of deformation, wherein (not shown in the diagram) an increase in strength is given to a great extent already at a cold deformation degree of more than 6%, in particular greater than 12% ,
  • the sample material was solution heat treated at 1060 ° C. followed by quenching in water, after which samples designated H 5 were undeformed and samples designated H 525 were subjected to long-term annealing at 600 ° C. with a cold working of 35%.
  • the comparative materials No. 1.2083 and No. 1.4028 were hardened from 1020 ° C in oil, tempered at 630 ° C and also subjected to the long-term annealing. After 45, 90, 140, and 180 hours, the sample material was removed from the oven, allowed to cool, and the hardness of the material tested, followed by back-loading of the samples (with thermal cycling).
  • the comparison material H 5 showed an expected behavior of the hardness, whereas the 35% cold-worked material H 525 according to the invention had an increased hardness of 315 HB and a high creep behavior. At 600 ° C no hardness reduction and no creep of the material could be determined even with changing thermal load. In contrast, the martensitic standard steels showed a marked decrease in hardness with the annealing time of the samples.

Description

Die Erfindung betrifft einen Werkstoff mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte für thermisch belastbare Bauteile und Werkzeuge.The invention relates to a material with high inertness, in particular high oxidation resistance and increased hardness for thermally resilient components and tools.

Nach DIN 50900 ist eine Reaktion eines metallischen Werkstoffes mit seiner Umgebung, die eine meßbare Veränderung des Werkstoffes bewirkt, als Korrosion definiert. Eine Korrosion kann dabei mit und ohne mechanische Belastung des Bauteiles, sowie nach verschiedenen Arten eines chemischen Angriffes und bei unterschiedlichen Temperaturen erfolgen.According to DIN 50900, a reaction of a metallic material with its surroundings, which causes a measurable change in the material, is defined as corrosion. Corrosion can be done with and without mechanical stress of the component, as well as after various types of chemical attack and at different temperatures.

Am häufigsten wird ein Oberflächenangriff von Gegenständen durch eine elektrochemische Korrosion in Gegenwart einer ionenleitenden Phase oder durch chemische Korrosion und Heißkorrosion bei erhöhten Temperaturen bewirkt. Auch in schmelzflüssigen Medien bei erhöhter Temperatur, zum Beispiel in flüssigen Gläsern, kann ein Korrosionsangriff mit einer Veränderung der Oberfläche eines damit in Berührung stehenden Metallteiles erfolgen.Most commonly, surface attack of articles is caused by electrochemical corrosion in the presence of an ion conducting phase or by chemical corrosion and hot corrosion at elevated temperatures. Even in molten media at elevated temperature, for example in liquid glasses, corrosion can occur with a change in the surface of a metal part in contact therewith.

In der modernen Technik sind Bau- und Werkzeugteile zumeist einer Mehrzahl von verschiedenen Beanspruchungen gleichzeitig ausgesetzt, von denen insbesondere die thermischen und mechanischen Belastungen auch wechselnd oder schwellend wirksam sein können. Dementsprechend liegen vielfach intensivierte Korrosionsbedingungen vor, welche gegebenenfalls durch eine Verformung der oberflächennahen Zone des Teiles verstärkt werden.In modern technology, construction and tool parts are usually exposed to a plurality of different stresses at the same time, of which in particular the thermal and mechanical stresses can also be changing or swelling effective. Accordingly, there are often intensified corrosion conditions, which are possibly reinforced by a deformation of the near-surface zone of the part.

Korrosions- und hitzebeständige Stähle und Legierungen sollen, auch einer thermischen Belastbarkeit mit Temperaturen über 600°C wegen, einen kubisch flächenzentrierten Atomgitteraufbau bzw. eine austenitische Gefügestruktur aufweisen. Legierungstechnisch bedeutet dies, dass derartige Werkstoffe höhere Nickel- und/oder Kobaltgehalte aufweisen oder im Hinblick auf eine gesteigerte Festigkeit und Härte bei hohen Temperaturen als Nickelbasis- oder Kobaltbasislegierungen ausgebildet sind, wobei jedoch aus korrosionschemischen Gründen ein Chromgehalt von zumindest größer als 13 Gew.-% vorliegen muss.Corrosion-resistant and heat-resistant steels and alloys are also said to have a cubic face-centered atomic lattice structure or an austenitic microstructure due to their thermal stability at temperatures above 600 ° C. In terms of alloying technology, this means that such materials have higher nickel and / or cobalt contents or, in view of increased strength and hardness at high temperatures, are in the form of nickel-base or cobalt-base alloys, although from corrosion-chemical Due to a chromium content of at least greater than 13 wt .-% must be present.

Obwohl ein Werkstoff mit einer hohen Nickelkonzentration durchwegs erhöhte mechanische Festigkeit bzw. hohe Materialhärte aufweist, wodurch die Gebrauchseigenschaften von Bau- und Werkzeugteilen bei hoher Temperatur verbessert sind, besteht aus wirtschaftlichen Gründen der Wunsch, den Nickelgehalt unter 36 Gew.-% zu senken und zur Steigerung der Korrosionsbeständigkeit den Chromanteil der Legierung auf über 16 Gew.-% anzuheben.Although a material with a high nickel concentration throughout increased mechanical strength and high material hardness, whereby the performance characteristics of construction and tool parts are improved at high temperature, there is a desire for economic reasons to reduce the nickel content below 36 wt .-% and Increasing the corrosion resistance to increase the chromium content of the alloy to more than 16 wt .-%.

Die JP2001011583A offenbart einen austenitischen, hitzebeständigen Stahl mit besonderer Hochtemperaturfestigkeit für Dampfkesselrohre, welcher Stahl ein begrenztes Chrom-Äquivalent und dadurch keine Neigung zur Versprödung durch Ausscheidungen von Sigma-Phase bei Langzeiteinsatz aufweist. Allerdings besitzt dieser Werkstoff eine geringe Festigkeit und eine niedrige 0,2% Dehngrenze bei 650°C.JP2001011583A discloses an austenitic heat-resistant steel having particular high-temperature strength for steam boiler tubes, which steel has a limited chromium equivalent and thereby no tendency to embrittlement by precipitates of sigma phase in long-term use. However, this material has a low strength and a low 0.2% yield strength at 650 ° C.

Ein austenitischer Eisenbasiswerkstoff mit einem Nickelgehalt von weniger als 36 Gew.-% kann zwar auf Grund einer hohen Chromkonzentration, gegebenenfalls in Verbindung mit weiteren korrosionshemmenden Elementen, durchaus einem Korrosionsangriff bei hohen Temperaturen, beispielsweise bei 600°C und darüber, über eine geforderte Mindestzeitdauer widerstehen, allerdings weist der Werkstoff eine geringe Härte sowie eine dergleichen Festigkeit und ein eingeschränktes Zeitstandsverhalten auf. Trotz dieser Nachteile werden beispielsweise Legierungen gemäß DIN Werkstoff Nr. 1.2780 und 1.2782 und 1.2786 aus Gründen der Wirtschaftlichkeit und aus Erstellungsgründen als Werkzeuge für eine Glasverarbeitung eingesetzt.Although an austenitic iron-base material with a nickel content of less than 36% by weight can certainly withstand a corrosion attack at high temperatures, for example at 600 ° C. and above, over a required minimum period of time owing to a high chromium concentration, if appropriate in combination with other corrosion-inhibiting elements However, the material has a low hardness and a similar strength and a limited creep behavior. Despite these disadvantages, for example, alloys according to DIN material no. 1.2780 and 1.2782 and 1.2786 are used for reasons of economy and for reasons of production as tools for glass processing.

Hier will die Erfindung Abhilfe schaffen und setzt sich zum Ziel, einen Werkstoff der eingangs genannten Art mit einer Härte von größer als 230 HB anzugeben, welcher auch bei Temperaturen über 600°C einen hohen Kriechwiderstand und ein verbessertes Dauerstandsverhalten sowie eine dergleichen Korrosionsfestigkeit aufweist.Here, the invention seeks to remedy the situation and sets itself the goal of specifying a material of the type mentioned above with a hardness of greater than 230 HB, which also at temperatures above 600 ° C high creep resistance and improved creep behavior and a similar corrosion resistance having.

Weiters ist es Aufgabe der Erfindung, ein Verfahren zur wirtschaftlichen Herstellung eines Werkstoffes für Bauteile und Werkzeuge zu schaffen, welche verbesserte Gebrauchseigenschaften bei hoher Härte und erhöhter Korrosionsbeständigkeit besitzen.It is another object of the invention to provide a method for the economic production of a material for components and tools, which have improved performance characteristics with high hardness and increased corrosion resistance.

Schließlich zielt die Erfindung auf die Verwendung einer Eisenbasislegierung als Werkstoff für Warmarbeitswerkzeuge, die bei Arbeitstemperaturen von über 550°C eingesetzt werden, ab.Finally, the invention aims at the use of an iron-based alloy as a material for hot working tools, which are used at working temperatures of about 550 ° C from.

Das vorher genannte Ziel wird bei einem Werkstoff der eingangs genannten Art erreicht, bestehend aus einer Legierung mit einer Zusammensetzung in Gew.-% von Kohlenstoff (C) 0,04 bis 0,15 Silizium (Si) 1,22 bis 2,36 Mangan (Mn) 1,0 bis 3,95 Chrom (Cr) 23,9 bis 26,5 Nickel (Ni) 17,9 bis 25,45 Stickstoff (N) 0,018 bis 0,2 mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni Cr + 1 , 5 × Si 0 , 12 × Mn 18 × N 30 × C 6

Figure imgb0001
wahlweise eines oder mehrere der Elemente in Konzentrationen in Gew.-% Molybdän (Mo) kleiner 1,0 Vanadium (V) bis 0,5 Wolfram (W) bis 0,5 Kupfer (Cu) bis 0,5 Cobalt (Co) bis 6,5 Titan (Ti) bis 0,5 Aluminium (Al) bis 1,5 Niob (Nb) bis 0,5 Rest Eisen (Fe), sowie Verunreinigungen, welcher Werkstoff eine durch Kaltumformung von mehr als 6% gebildete Härte von mehr als 230 HB aufweist.The aforementioned object is achieved in a material of the type mentioned, consisting of an alloy with a composition in wt .-% of Carbon (C) 0.04 to 0.15 Silicon (Si) 1.22 to 2.36 Manganese (Mn) 1.0 to 3.95 Chrome (Cr) 23.9 to 26.5 Nickel (Ni) 17.9 to 25.45 Nitrogen (N) 0.018 to 0.2 with the proviso that the nickel content of the alloy is equal to or greater than the value formed by the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni Cr + 1 . 5 × Si - 0 . 12 × Mn - 18 × N - 30 × C - 6
Figure imgb0001
optionally one or more of the elements in concentrations in% by weight Molybdenum (Mo) less than 1.0 Vanadium (V) to 0.5 Tungsten (W) to 0.5 Copper (Cu) to 0.5 Cobalt (Co) to 6.5 Titanium (Ti) to 0.5 Aluminum (Al) to 1.5 Niobium (Nb) to 0.5 Remainder iron (Fe), as well as impurities, which material has a hardness of more than 230 HB formed by cold working of more than 6%.

Die mit der Erfindung erzielten Vorteile liegen insbesondere in der Synergie von korrosionschemischem Widerstand der ausgewählten Legierung und den bei dieser chemischen Zusammensetzung mittels einer Kaltumformung erreichbaren Eigenschaften des Werkstoffes. Bei einer Kaltumformung bzw. bei einer Verformung unterhalb der Rekristallisationstemperatur des kubisch flächenzentrierten Austenits erfolgt eine Verfestigung des Werkstoffes durch ein Blockieren von Versetzungen im Kristallgitter. Eine damit verbundene Härtesteigerung und eine Erhöhung der Festigkeit des erfindungsgemäßen Werkstoffes bleibt, für den Fachmann überraschend, auch bei Verwendungstemperaturen von über 600°C erhalten, die erwarteten Erholvorgänge im verspannten Gitter, wie zum Beispiel ein thermisch aktiviertes Quergleiten und ein Rekombinieren von Versetzungen können in üblichen Zeiträumen nicht beobachtet werden. Mit anderen Worten: Eine durch eine Kaltverformung erhöhte Warmfestigkeit des erfindungsgemäß zusammengesetzten Werkstoffes bleibt entgegen der Fachmeinung auch bei hohen Verwendungstemperaturen des Bauteiles erhalten, weil ein hoher Kriechwiderstand des Stahles dessen Dauerstandsverhalten verbessert. Gerade bei schwellender thermischer Belastung, wie dies bei einer Kokille für die Herstellung von Gebrauchsgläsern der Fall ist, treten an der Arbeitsoberfläche jeweils starke Temperaturschwankungen und somit örtliche Volumsänderungen des Werkstoffes auf. Es wurde gefunden, dass durch eine erfindungsgemäß erhöhte Materialhärte und Warmfestigkeit die örtliche bzw. oberflächennahe Verformung des Werkstoffes, zum Beispiel einer Glaskokille, in dessen elastischem Bereich erfolgt und dass dadurch einer Ermüdungsrißbildung, die bei auch geringen plastischen Formänderungen eintritt und zum Ausfall der Form führen kann, entgegengewirkt wird.The advantages achieved by the invention are in particular the synergy of corrosion resistance of the selected alloy and the achievable in this chemical composition by means of cold forming properties of the material. In the case of cold forming or deformation below the recrystallization temperature of the cubic face centered austenite, solidification of the material takes place by blocking dislocations in the crystal lattice. An associated increase in hardness and an increase in the strength of the material according to the invention remains, surprising for the expert, even at use temperatures of over 600 ° C, the expected recoveries in the strained grid, such as a thermally activated cross sliding and recombining dislocations can in usual Periods are not observed. In other words: increased by a cold deformation heat resistance of the composite material according to the invention remains contrary to the opinion even at high temperatures of use of the component obtained because a high creep resistance of the steel improves its creep behavior. Especially with swelling thermal stress, as is the case with a mold for the production of utility glasses, occur on the work surface each strong temperature fluctuations and thus local volume changes of the material. It has been found that by means of an inventively increased material hardness and heat resistance, the local or near-surface deformation of the material, for example a glass mold, takes place in its elastic region and thereby fatigue cracking occurs, which also results in small plastic deformations and leads to failure of the mold can, is counteracted.

Um ein verbessertes Eigenschaftsprofil des Werkstoffes sicherzustellen, ist es wichtig, dass dieser auch bei einer Kaltverformung im stabil austenitischen Bereich bleibt und keine Zonen mit Verformungsmartensit aufweist. Dies wird erfindungsgemäß durch die in Grenzen angegebene Nickel- und Chromkonzentration und durch den einschränkend vorgegebenen Konzentrationsbereich von Nickel in Abhängigkeit von Chrom, Silizium, Mangan, Stickstoff und Kohlenstoff erreicht. Höhere Nickelgehalte verschlechtern, wie sich gezeigt hat, das Dauerstandsverhalten. Hingegen wird bei niedrigen Nickelkonzentrationen die Austenitstabilität und die Warmfestigkeit des Werkstoffes sprunghaft verringert. Im wesentlichen gilt Gleiches für die Elemente Kohlenstoff und Stickstoff, wobei insbesondere Stickstoff die Dauerstandsfestigkeit des Werkstoffes erhöht.In order to ensure an improved property profile of the material, it is important that it remains in the stable austenitic region even with a cold deformation and has no zones with deformation martensite. According to the invention, this is achieved by the nickel and chromium concentration specified in limits and by the limited concentration range of nickel as a function of chromium, silicon, manganese, nitrogen and carbon. Higher nickel levels have been found to degrade creep behavior. On the other hand, at low nickel concentrations the austenite stability and the heat resistance of the material are abruptly reduced. Essentially the same applies to the elements carbon and nitrogen, in particular nitrogen increases the fatigue strength of the material.

Obwohl die Elemente Molybdän, Vanadin, Wolfram, Titan und Niob den Kriechwiderstand des Materials bei hohen Temperaturen erhöhen und Kupfer, sowie Aluminium, klassische Aushärtungselemente darstellen, weisen diese Stahlbegleiter im Werkstoff nach der Erfindung eine höchst zulässige Konzentration auf, weil, wie gefunden wurde, höhere Gehalte derselben den Korrosionswiderstand insbesondere bei zeitweiser Berührung mit teigigem Glas, erniedrigen und auf Grund einer gebildeten Oberflächenrauhigkeit der Form die Glastransparenz verschlechtern. Die Ursache dafür ist noch nicht ausreichend geklärt, jedoch zählen die Akzeptoratome Na+, K+, Ca2+, B3+, Al3+ und Si4+ zu den harten Lewis-Säuren, wobei nach jeder Glasformung eine Heißkorrosionsbelastung der Form gegeben ist.Although the elements molybdenum, vanadium, tungsten, titanium and niobium increase the creep resistance of the material at high temperatures and copper, and aluminum, are classical hardening elements, these steel companions have a maximum allowable concentration in the material according to the invention because it has been found that Higher levels of the same, the corrosion resistance, especially in case of temporary contact with doughy glass, lower and worsen due to a formed surface roughness of the mold, the glass transparency. The reason for this is not yet sufficiently clarified, but the acceptor atoms Na + , K + , Ca 2+ , B 3+ , Al 3+ and Si 4+ are among the hard Lewis acids, with a hot corrosion stress on the mold after each glass forming is.

Verunreinigungen können naturgemäß die Werkstoffeigenschaften verschlechtern, so dass die erfindungsgemäße Legierung für die Verunreinigungselemente Konzentrationswerte in Gew.-% von Sauerstoff (O) max 0,05 Phosphor (P) max 0,03 Schwefel (S) max 0,03 aufweist.Impurities can of course deteriorate the material properties, so that the alloy according to the invention for the impurity elements concentration values in wt .-% of Oxygen (O) max 0.05 Phosphorus (P) max 0.03 Sulfur (S) max 0.03 having.

Die Aufgabe der Erfindung wird durch ein Verfahren zur Herstellung eines Werkstoffes für Bauteile und Werkzeuge mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte bei thermischen Belastungen mit einer Temperatur von bis zu 750°C, nach welchem aus einer Legierung mit einer Zusammensetzung in Gew.-% von Kohlenstoff (C) 0,04 bis 0,15 Silizium (Si) 1,22 bis 2,36 Mangan (Mn) 1,0 bis 3,95 Chrom (Cr) 23,9 bis 26,5 Nickel (Ni) 17,9 bis 25,45 Stickstoff (N) 0,018 bis 0,2 mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni Cr + 1 , 5 × Si 0 , 12 × Mn 18 × N 30 × C 6

Figure imgb0002
wahlweise eines oder mehrere der Elemente in Konzentrationen in Gew.-% Molybdän (Mo) kleiner 1,0 Vanadium (V) bis 0,5 Wolfram (W) bis 0,5 Kupfer (Cu) bis 0,5 Cobalt (Co) bis 6,5 Titan (Ti) bis 0,5 Aluminium (Al) bis 1,5 Niob (Nb) bis 0,5 Rest Eisen (Fe), sowie Verunreinigungen ein Vorprodukt gebildet und dieses nachfolgend durch Kaltumformung von mehr als 6% zu einem Werkstoff mit einer Härte von größer als 230 HB weiterverarbeitetwird, gelöst.The object of the invention is a method for producing a material for components and tools with high inertia, in particular high oxidation resistance and increased hardness under thermal stress at a temperature of up to 750 ° C, after which from an alloy having a composition in wt. -% from Carbon (C) 0.04 to 0.15 Silicon (Si) 1.22 to 2.36 Manganese (Mn) 1.0 to 3.95 Chrome (Cr) 23.9 to 26.5 Nickel (Ni) 17.9 to 25.45 Nitrogen (N) 0.018 to 0.2 with the proviso that the nickel content of the alloy is equal to or greater than the value formed by the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni Cr + 1 . 5 × Si - 0 . 12 × Mn - 18 × N - 30 × C - 6
Figure imgb0002
optionally one or more of the elements in concentrations in% by weight Molybdenum (Mo) less than 1.0 Vanadium (V) to 0.5 Tungsten (W) to 0.5 Copper (Cu) to 0.5 Cobalt (Co) to 6.5 Titanium (Ti) to 0.5 Aluminum (Al) to 1.5 Niobium (Nb) to 0.5 Residual iron (Fe), as well as impurities formed a precursor and this is subsequently processed by cold forming of more than 6% to a material having a hardness greater than 230 HB further.

Mittels einer Kaltverformung der erfindungsgemäßen Legierung kann die Elastizitätsgrenze des Werkstoffes auf ein Spannungsniveau angehoben werden, welches auch nahe der Arbeitsfläche des Bauteiles oder Werkzeuges bei einer Volumsänderung durch wechselnde thermische Belastung nicht erreicht wird. Dementsprechend treten auch im Bereich der Korngrenzen keine Zonen, die beim Temperaturwechsel plastisch verformt werden, auf, wodurch eine Rißbildung durch Materialermüdung vermieden werden kann. Damit ist auch ein Korngrenzenangriff durch chemische oder Heißkorrosion weitgehend vermeidbar, so dass, wie zum Beispiel bei einer Glasform, eine hohe Arbeitsflächen- bzw. Oberflächengüte auch bei hohen Belastungen und bei großen Stückzahlen der Fertigung über lange Zeit erhalten bleibt. Herkömmliche Glasformen hingegen zeigen oft nach kurzer Einsatzdauer an den Korngrenzen des Gefüges Materialabtragungen, welche einen Abstand im Bereich von wenigen µm aufweisen. Dem geformten Glas werden dadurch Unebenheiten im Lichtwellenbereich vermittelt, wodurch Reflexions-Interferenzen und Milchglaseffekte entstehen können.By means of a cold deformation of the alloy according to the invention, the elastic limit of the material can be raised to a voltage level which is not reached near the working surface of the component or tool in a volume change due to alternating thermal load. Accordingly, even in the area of the grain boundaries, no zones which are plastically deformed during the temperature change occur, whereby cracking due to material fatigue can be avoided. Thus, a grain boundary attack by chemical or hot corrosion is largely avoidable, so that, as for example in a glass mold, a high Arbeitsflächen- or surface quality is maintained even at high loads and large quantities of production over a long time. Conventional glass molds, however, often show after a short period of use at the grain boundaries of the structure material erosion, which have a distance in the range of a few microns. As a result, the shaped glass is imparted with unevennesses in the lightwave area, which may result in reflection interference and frosted glass effects.

Die Korrosions- und die Warmfestigkeit können weiter erhöht und eine Ermüdungsrißbildung wirksam unterdrückt werden, wenn, verfahrensgemäß nach der Erfindung durch Kaltverformung, ein Werkstoff mit einer Härte von größer als 250 HB, insbesondere von 300 HB und höher gebildet wird.The corrosion and the heat resistance can be further increased and fatigue cracking can be effectively suppressed if, according to the invention by cold working, a material with a hardness greater than 250 HB, in particular of 300 HB and higher is formed.

Wenn ein Vorprodukt mit einer erfindungsgemäßen Zusammensetzung mittels Warmverformung gebildet, dieses einer Lösungsglühbehandlung unterworfen oder von der Verformungstemperatur, gegebenenfalls verstärkt, abgekühlt und kaltverformt wird, kann ein besonders gefügehomogener Werkstoff mit verbesserter Korrosionsfestigkeit erstellt werden.When a precursor having a composition of the invention is formed by hot working, subjected to a solution annealing treatment, or thermoformed, cooled, and cold worked from the deformation temperature, a particularly pattern-homogenous material having improved corrosion resistance can be prepared.

Insbesondere für weitgehend achssymmetrisch ausgeformte Werkzeuge, wie Flaschenkokillen und dergleichen, kann es von Vorteil sein, wenn die Kaltverformung des Materials vollumfänglich radial senkrecht zur Längsachse des Vorproduktes durchgeführt wird.In particular, for substantially axially symmetric shaped tools, such as bottle molds and the like, it may be advantageous if the cold deformation of the material is performed fully radially perpendicular to the longitudinal axis of the precursor.

Schließlich wird das weitere Ziel der Erfindung erreicht bei einer Verwendung einer Eisenbasislegierung mit Legierungselementen in Gew.-% von Kohlenstoff (C) 0,04 bis 0,15 Silizium (Si) 1,22 bis 2,36 Mangan (Mn) 1,0 bis 3,95 Chrom (Cr) 23,9 bis 26,5 Nickel (Ni) 17,9 bis 25,45 Stickstoff (N) 0,018 bis 0,2 mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni Cr + 1 , 5 × Si 0 , 12 × Mn 18 × N 30 × C 6

Figure imgb0003
wahlweise eines oder mehrere der Elemente in Konzentrationen in Gew.-% Molybdän (Mo) kleiner 1,0 Vanadium (V) bis 0,5 Wolfram (W) bis 0,5 Kupfer (Cu) bis 0,5 Cobalt (Co) bis 6,5 Titan (Ti) bis 0,5 Aluminium (Al) bis 1,5 Niob (Nb) bis 0,5 Rest Eisen (Fe), sowie Verunreinigungen, welche Legierung durch Kaltverformungvon mehr als 6% des daraus gebildeten Vorproduktes auf eine Materialhärte von größer als 230 HB, vorzugsweise von größer 250 HB, verfestigt ist, als Werkstoff für Warmarbeitswerkzeuge in der Glasindustrie, insbesondere als Formenwerkstoff für Maschinenpressgläser mit einer Arbeitstemperatur von höher als 555°C, vorzugsweise von höher als 602°C, insbesondere bis 750°C.Finally, the further object of the invention is achieved when using an iron-based alloy with alloying elements in wt .-% of Carbon (C) 0.04 to 0.15 Silicon (Si) 1.22 to 2.36 Manganese (Mn) 1.0 to 3.95 Chrome (Cr) 23.9 to 26.5 Nickel (Ni) 17.9 to 25.45 Nitrogen (N) 0.018 to 0.2 with the proviso that the nickel content of the alloy is equal to or greater than the value formed by the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni Cr + 1 . 5 × Si - 0 . 12 × Mn - 18 × N - 30 × C - 6
Figure imgb0003
optionally one or more of the elements in concentrations in% by weight Molybdenum (Mo) less than 1.0 Vanadium (V) to 0.5 Tungsten (W) to 0.5 Copper (Cu) to 0.5 Cobalt (Co) to 6.5 Titanium (Ti) to 0.5 Aluminum (Al) to 1.5 Niobium (Nb) to 0.5 Residual iron (Fe), as well as impurities, which alloy by cold deformation of more than 6% of the precursor formed therefrom to a material hardness of greater than 230 HB, preferably greater than 250 HB, solidified as a material for hot working tools in the glass industry, especially as a mold material for machine press glasses with a working temperature higher than 555 ° C, preferably higher than 602 ° C, especially up to 750 ° C.

Anhand von vergleichenden Untersuchungsergebnissen soll der erfindungsgemäße Werkstoff näher dargestellt werden.
Es zeigen
Fig. 1 Festigkeit in Abhängigkeit vom Kaltverformungsgrad eines erfindungsgemäßen Werkstoffes bei 604°C
Fig. 2 Härteverlauf bei Raumtemperatur nach einer Langzeit-Temperaturbeanspruchung bei 600°C
On the basis of comparative test results, the material according to the invention should be described in more detail.
Show it
Fig. 1 strength as a function of the degree of cold deformation of a material according to the invention at 604 ° C.
Fig. 2 hardness curve at room temperature after a long-term temperature stress at 600 ° C.

In Fig. 1 ist die Festigkeit des erfindungsgemäßen Werkstoffes bei einer Prüftemperatur von 604°C in Abhängigkeit vom Ausmaß der Kaltverformung dargestellt. Das Probematerial wurde bei einer Temperatur von 1010°C geschmiedet und aus der Umformhitze verstärkt abgekühlt und einer Lösungsglühbehandlung bei 1060°C unterworfen. An Teilen des Materials erfolgte jeweils eine Kaltverformung mit einem Umformgrad von 21 %, 35 %, 47 % und 55 %, wonach daraus Zugproben erstellt wurden. Die Festigkeitsermittlungen, und zwar die 0,2 % Dehngrenze und die Zugfestigkeit, erfolgten bei einer Temperatur von 604°C, wobei die Proben 20 Minuten auf dieser Temperatur gehalten wurden. Zum Vergleich wurde Standardmaterial bei 1060°C lösungsgeglüht, wobei daraus gefertigte Proben ebenfalls bei 604°C untersucht wurden. Das Balkendiagramm von Fig. 1 zeigt deutlich eine Erhöhung der Festigkeitswerte des Werkstoffes in Abhängigkeit vom Verformungsgrad, wobei (im Diagramm nicht dargestellt) eine Festigkeitssteigerung in hohem Ausmaß schon bei einem Kaltverformungsgrad von mehr als 6 %, insbesondere von größer als 12 %, gegeben ist.In Fig. 1, the strength of the material according to the invention is shown at a test temperature of 604 ° C, depending on the extent of cold working. The sample material was forged at a temperature of 1010 ° C and increasingly cooled from the forming heat and subjected to solution annealing treatment at 1060 ° C. Each part of the material was cold worked with a degree of deformation of 21%, 35%, 47% and 55%, after which tensile tests were made. The strength determinations, namely 0.2% proof strength and tensile strength, were made at a temperature of 604 ° C with the samples kept at that temperature for 20 minutes. For comparison For example, standard material was solution heat treated at 1060 ° C and samples made from it were also tested at 604 ° C. The bar graph of FIG. 1 clearly shows an increase in the strength values of the material as a function of the degree of deformation, wherein (not shown in the diagram) an increase in strength is given to a great extent already at a cold deformation degree of more than 6%, in particular greater than 12% ,

In Fig. 2 ist die Dauerstandsfestigkeit des erfindungsgemäßen Werkstoffes bei einer Temperatur von 600°C, ermittelt durch eine Härteprüfung im kalten Zustand der Proben, im Vergleich mit Materialien nach DIN Werkstoff Nr. 1.2083 und Werkstoff Nr. 1.4028 dargestellt.In Fig. 2, the fatigue strength of the material according to the invention at a temperature of 600 ° C, determined by a hardness test in the cold state of the samples, in comparison with materials according to DIN material no. 1.2083 and material no. 1.4028 shown.

Der erfindungsgemäße Werkstoff wurde mit einer Zusammensetzung von in Gew.-% C = 0,08, Si = 1,7, Mn = 1,15, P = 0,01, S = 0,002, Cr = 24,8, Ni = 19,8, N = 0,02, Mo = 0,26, V = 0,09, W = 0,11, Cu = 0,12, Co = 0,4, Ti = 0,01, Al = 0,02, Nb = 0,001, O = 0,0029 erschmolzen, zu einem Versuchsblock gegossen und dieser zu Probenmaterial warmverformt. Am Probenmaterial erfolgte eine Lösungsglühbehandlung bei 1060°C mit einem anschließenden Abschrecken im Wasser, wonach Proben mit der Bezeichnung H 5 unverformt und Proben mit der Bezeichnung H 525 mit einer Kaltverformung von 35 % einer Langzeitglühung bei 600°C unterworfen wurden. Die Vergleichswerkstoffe Nr. 1.2083 und Nr. 1.4028 wurden von 1020°C in Öl gehärtet, bei 630°C angelassen und ebenfalls der Langzeitglühung ausgesetzt. Nach 45, 90, 140 und 180 Stunden wurde das Probenmaterial aus dem Ofen genommen, erkalten gelassen und die Materialhärte geprüft, wonach ein Rückeinsetzen der Proben (mit einer Temperaturwechselbelastung) erfolgte. Das Vergleichsmaterial H 5 zeigte ein erwartetes Verhalten der Härte, wogegen der mit 35 % kaltverformte erfindungsgemäße Werkstoff H 525 eine erhöhte Härte von 315 HB und ein hohen Dauerstandsverhalten aufwies. Bei 600°C konnte auch bei wechselnder thermischer Belastung keine Härteminderung und kein Kriechen des Materiales festgestellt werden. Im Gegensatz dazu wurde an den martensitischen Normstählen ein deutlicher Härteabfall mit der Glühdauer der Proben festgestellt.The material according to the invention was made with a composition in wt .-% C = 0.08, Si = 1.7, Mn = 1.15, P = 0.01, S = 0.002, Cr = 24.8, Ni = 19 , 8, N = 0.02, Mo = 0.26, V = 0.09, W = 0.11, Cu = 0.12, Co = 0.4, Ti = 0.01, Al = 0.02 , Nb = 0.001, O = 0.0029 melted, poured into a test block and this thermoformed to sample material. The sample material was solution heat treated at 1060 ° C. followed by quenching in water, after which samples designated H 5 were undeformed and samples designated H 525 were subjected to long-term annealing at 600 ° C. with a cold working of 35%. The comparative materials No. 1.2083 and No. 1.4028 were hardened from 1020 ° C in oil, tempered at 630 ° C and also subjected to the long-term annealing. After 45, 90, 140, and 180 hours, the sample material was removed from the oven, allowed to cool, and the hardness of the material tested, followed by back-loading of the samples (with thermal cycling). The comparison material H 5 showed an expected behavior of the hardness, whereas the 35% cold-worked material H 525 according to the invention had an increased hardness of 315 HB and a high creep behavior. At 600 ° C no hardness reduction and no creep of the material could be determined even with changing thermal load. In contrast, the martensitic standard steels showed a marked decrease in hardness with the annealing time of the samples.

Claims (10)

  1. Material of high inertness, particularly high oxidation stability, and high hardness for components and tools to be loaded with a temperature of up to 750°C, consisting of an alloy having a composition in % by weight of Carbon (C) 0.04 to 0.15 silicone (Si) 1.22 to 2.36 manganese (Mn) 1.0 to 3.95 chromium (Cr) 23.9 to 26.5 nickel (Ni) 17.9 to 25.45 nitrogen (N) 0.018 to 0.2
    with the proviso that the nickel contents of the alloy is equal or higher that that value, which is formed from the contents of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value of 6 Ni Cr + 1.5 × Si 0.12 × Mn 18 × N 30 × C 6
    Figure imgb0007
    and optionally one or more of the elements present in concentrations in % by weight of molybdenum (Mo) smaller than 1.0 vanadium (V) up to 0.5 tungsten (W) up to 0.5 copper (Cu) up to 0.5 cobalt (Co) up to 6.5 titanium (Ti) up to 0.5 aluminium (Al) up to 1.5 niobium (Nb) up to 0.5
    the remainder being iron (Fe) as well as impurities, wherein the material exhibits a hardness of more than 230 HB formed by cold deformation of more than 6%.
  2. Material according to claim 1 having a hardness greater than 250 HB, particularly of 300 HB or more.
  3. Material according to claim 1 or 2, wherein the contents of nickel of the alloy is greater by 4.8 % by weight in maximum, than that value which is formed in accordance with claim 1.
  4. Material according to any of claims 1 to 3, which comprises concentration values for one or more impurity elements, in % by weight of oxygen (O) 0.05 in maximum phosphorous (P) 0.03 in maximum sulphur (S) 0.03 in maximum
  5. Process for fabricating a material for components and tools, having a high reaction inertness, particularly being of a high oxidation resistance and having an elevated hardness at thermal loads with a temperature of up to 750°C, according to which from an alloy having a composition in % by weight of Carbon (C) 0.04 to 0.15 silicon (Si) 1.22 to 2.36 manganese (Mn) 1.0 to 3.95 chromium (Cr) 23.9 to 26.5 nickel (Ni) 17.9 to 25.45 nitrogen (N) 0.018 to 0.2
    with the proviso that the nickel contents of the alloy is equal or higher that that value, which is formed from the contents of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value of 6 Ni Cr + 1.5 × Si 0.12 × Mn 18 × N 30 × C 6
    Figure imgb0008
    and optionally one or more of the elements present in concentrations in % by weight of molybdenum (Mo) smaller than 1.0 vanadium (V) up to 0.5 tungsten (W) up to 0.5 copper (Cu) up to 0.5 cobalt (Co) up to 6.5 titanium (Ti) up to 0.5 aluminium (Al) up to 1.5 niobium (Nb) up to 0.5
    the remainder being iron (Fe) as well as impurities, a base product is formed, and this is subsequently further processed into a material of a hardness greater than 230 HB by cold deformation of more than 6%.
  6. Process according to claim 5, wherein the base product is formed by hot-deforming, and is subjected to a solution treatment or is cooled down from the deformation temperature, optionally in a forced manner, and is cold-deformed.
  7. Process according to claim 5 or 6, wherein cold deforming is effected completely in radial perpendicular direction to the longitudinal axis of the base product.
  8. Process according to any of claims 5 to 7, according to which the contents of nickel of the alloy is adjusted to be greater by 4.8 % by weight in maximum, than corresponds to that value which is formed in accordance with claim 5.
  9. Process according to any of claims 5 to 8, wherein a material having a hardness greater than 250 HB, particularly of 300 HB or more, is formed by cold-deforming.
  10. The use of an alloy on an iron basis comprising alloy elements in % by weight of Carbon (C) 0.01 to 0.25 silicon (Si) 0.35 to 2.5 manganese (Mn) 0.4 to 4.3 chromium (Cr) 16.0 to 28.0 nickel (Ni) 15.0 to 36.0 nitrogen (N) 0.01 to 0.29
    with the proviso that the nickel contents of the alloy is equal, or optionally higher by 4.8% in maximum, than that value, which is formed from the contents of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value of 6 Ni Cr + 1.5 × Si 0.12 × Mn 18 × N 30 × C 6
    Figure imgb0009
    and optionally one or more of the elements present in concentrations in % by weight of molybdenum (Mo) smaller than 1.0 vanadium (V) up to 0.5 tungsten (W) up to 0.5 copper (Cu) up to 0.5 cobalt (Co) up to 6.5 titanium (Ti) up to 0.5 aluminium (AI) up to 1.5 niobium (Nb) up to 0.5
    the remainder being iron (Fe) as well as impurities, which alloy is strengthened to a material hardness of more than 230 HN, preferably more than 250 HB, by cold deformation of more than 6% of the base product formed from it, as a material for hot-working tools in the glass industry, particularly as a die material for machine pressed glass with a working temperature of higher than 555°C, preferably higher than 602°C, particularly of up to 750°C.
EP02450262A 2002-01-23 2002-11-15 Inert material with high hardness for elements used at high temperature Expired - Lifetime EP1420077B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200230449T SI1420077T1 (en) 2002-01-23 2002-11-15 Inert material with high hardness for elements used at high temperature
AT02450262T ATE341651T1 (en) 2002-01-23 2002-11-15 REACTION CARRIER MATERIAL WITH INCREASED HARDNESS FOR THERMALLY STRESSED COMPONENTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0010702A AT410550B (en) 2002-01-23 2002-01-23 Material used as a tool material in the glass industry, especially as a molding material for machine pressed glass consists of an alloy containing carbon, silicon, chromium, nickel and nitrogen

Publications (2)

Publication Number Publication Date
EP1420077A1 EP1420077A1 (en) 2004-05-19
EP1420077B1 true EP1420077B1 (en) 2006-10-04

Family

ID=3624219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02450262A Expired - Lifetime EP1420077B1 (en) 2002-01-23 2002-11-15 Inert material with high hardness for elements used at high temperature

Country Status (13)

Country Link
US (1) US20030136482A1 (en)
EP (1) EP1420077B1 (en)
KR (1) KR100540851B1 (en)
CN (1) CN1434146A (en)
AT (1) AT410550B (en)
BR (1) BR0300116A (en)
CA (1) CA2416950C (en)
DE (1) DE50208351D1 (en)
DK (1) DK1420077T3 (en)
ES (1) ES2273992T3 (en)
HK (1) HK1067668A1 (en)
RU (1) RU2246553C2 (en)
TW (1) TWI225102B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605072B1 (en) * 2003-03-20 2012-09-12 Sumitomo Metal Industries, Ltd. Stainless steel for high pressure hydrogen gas, vessel and equipment comprising the steel
US20090053100A1 (en) * 2005-12-07 2009-02-26 Pankiw Roman I Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same
ES2545488T3 (en) * 2008-02-27 2015-09-11 Nippon Steel & Sumitomo Metal Corporation Metallic material resistant to carbon cementation
UA100460C2 (en) * 2008-11-19 2012-12-25 Сандвік Інтеллекчуал Проперті Аб Nickel based alloy capable for forming ALUMINA
EP2224031B1 (en) 2009-02-17 2013-04-03 MEC Holding GmbH Wear resistant alloy
EP2287351A1 (en) 2009-07-22 2011-02-23 Arcelormittal Investigación y Desarrollo SL Heat-resistant austenitic steel having high resistance to stress relaxation cracking
CN101921967A (en) * 2010-08-12 2010-12-22 江苏新华合金电器有限公司 Novel austenitic heat-resistance stainless steel
CN102650023A (en) * 2011-02-23 2012-08-29 宝山钢铁股份有限公司 Cu-Fe-Ni-Cr austenite alloy for oil bushing
US9347121B2 (en) * 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
JP2020509237A (en) * 2017-03-03 2020-03-26 ボーグワーナー インコーポレーテッド Nickel and chromium based iron alloys with enhanced high temperature oxidation resistance
PL3590643T3 (en) * 2018-07-02 2021-07-05 Höganäs Ab (Publ) Wear-resistant iron-based alloy compositions comprising nickel
CN110724873A (en) * 2018-07-17 2020-01-24 宝钢特钢有限公司 High-wear-resistance die forging die steel and manufacturing method thereof
RU2703318C1 (en) * 2019-04-15 2019-10-16 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Radiation-resistant austenitic steel for the wwpr in-vessel partition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016460A (en) * 1989-12-22 1991-05-21 Inco Alloys International, Inc. Durable method for producing finned tubing
WO2002042510A1 (en) * 2000-11-24 2002-05-30 Sandvik Ab Cylindrical tube for industrial chemical installations

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746209A (en) * 1949-08-20 1956-05-22 Libbey Owens Ford Glass Co Equipment for bending glass sheets
US3385739A (en) * 1965-04-13 1968-05-28 Eaton Yale & Towne Alloy steel articles and the method of making
AT305000B (en) * 1970-06-29 1973-02-12 Mannesmann Ag Tool
US3833358A (en) * 1970-07-22 1974-09-03 Pompey Acieries Refractory iron-base alloy resisting to high temperatures
DE2641555A1 (en) * 1976-09-15 1978-03-16 Schevtschenko METHOD OF CONTINUOUS TUBE ROLLING AND CONTINUOUS TUBE ROLLING MILL
US4341555A (en) * 1980-03-31 1982-07-27 Armco Inc. High strength austenitic stainless steel exhibiting freedom from embrittlement
US4329173A (en) * 1980-03-31 1982-05-11 Carondelet Foundry Company Alloy resistant to corrosion
EP0087482B1 (en) * 1982-02-26 1986-06-25 Kubota Ltd. Heat-resisting alloy for rolls
US4489040A (en) * 1982-04-02 1984-12-18 Cabot Corporation Corrosion resistant nickel-iron alloy
US4560408A (en) * 1983-06-10 1985-12-24 Santrade Limited Method of using chromium-nickel-manganese-iron alloy with austenitic structure in sulphurous environment at high temperature
DE3407307A1 (en) * 1984-02-24 1985-08-29 Mannesmann AG, 4000 Düsseldorf USE OF A CORROSION-RESISTANT AUSTENITIC IRON-CHROME-NICKEL-NITROGEN ALLOY FOR MECHANICALLY HIGH-QUALITY COMPONENTS
JPS64255A (en) * 1987-03-12 1989-01-05 Nippon Steel Corp High-hardness nonmagnetic stainless steel for electrical equipment parts
US4795610A (en) * 1987-04-23 1989-01-03 Carondelet Foundry Company Corrosion resistant alloy
US4981647A (en) * 1988-02-10 1991-01-01 Haynes International, Inc. Nitrogen strengthened FE-NI-CR alloy
US4861547A (en) * 1988-04-11 1989-08-29 Carondelet Foundry Company Iron-chromium-nickel heat resistant alloys
US5098652A (en) * 1989-06-13 1992-03-24 Kabushiki Kaisha Toshiba Precision parts of non-magnetic stainless steels
JP2756549B2 (en) * 1989-07-22 1998-05-25 日新製鋼株式会社 Manufacturing method of high strength duplex stainless steel strip with excellent spring properties.
US5223214A (en) * 1992-07-09 1993-06-29 Carondelet Foundry Company Heat treating furnace alloys
JPH09279309A (en) * 1996-04-12 1997-10-28 Daido Steel Co Ltd Iron-chrome-nickel heat resistant alloy
JP2001011583A (en) * 1999-07-02 2001-01-16 Hmy Ltd Heat resistant alloy
AT408889B (en) * 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T CORROSION-RESISTANT MATERIAL

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016460A (en) * 1989-12-22 1991-05-21 Inco Alloys International, Inc. Durable method for producing finned tubing
WO2002042510A1 (en) * 2000-11-24 2002-05-30 Sandvik Ab Cylindrical tube for industrial chemical installations

Also Published As

Publication number Publication date
HK1067668A1 (en) 2005-04-15
KR20030064304A (en) 2003-07-31
DE50208351D1 (en) 2006-11-16
ES2273992T3 (en) 2007-05-16
TWI225102B (en) 2004-12-11
CA2416950C (en) 2007-08-28
CN1434146A (en) 2003-08-06
KR100540851B1 (en) 2006-01-10
US20030136482A1 (en) 2003-07-24
RU2246553C2 (en) 2005-02-20
CA2416950A1 (en) 2003-07-23
DK1420077T3 (en) 2007-02-05
EP1420077A1 (en) 2004-05-19
RU2003101774A (en) 2005-01-10
BR0300116A (en) 2003-09-09
ATA1072002A (en) 2002-10-15
AT410550B (en) 2003-05-26

Similar Documents

Publication Publication Date Title
EP2855723B1 (en) Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance
DE60214456T2 (en) Martensitic stainless steel with high hardness and good corrosion resistance
AT394056B (en) METHOD FOR PRODUCING STEEL
DE60304077T2 (en) Heat and corrosion resistant austenitic alloy, heat and pressure resistant components and method of making the same
EP2855724B1 (en) Nickel-chromium alloy with good formability, creep strength and corrosion resistance
DE60010997T2 (en) Heat-resistant chrome-molybdenum steel
EP1420077B1 (en) Inert material with high hardness for elements used at high temperature
AT515157B1 (en) Process for producing plastic molds from martensitic chromium steel and plastic mold
DE1558668C3 (en) Use of creep-resistant, stainless austenitic steels for the production of sheet metal
DE60300561T3 (en) Process for producing a hot-rolled steel strip
DE112016005198T5 (en) Wire rod with excellent cold forgeability and process for its production
WO2017085072A1 (en) High-grade structural steel with bainitic structure, forged part produced therefrom and method for producing a forged part
EP0866145A2 (en) Completely martensitic steel alloy
EP0432434B1 (en) Process for manufacturing joining structural parts from a fully austenitic Cr-Mn steel.
EP3105358B1 (en) Process of producing a titanium-free alloy
WO2021084025A1 (en) Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component
EP2535430B1 (en) Tool steel for high-performance thermoforming tools and production process for same
EP2111475A1 (en) Components made of steels with an ultrahigh carbon content and with a reduced density and high scaling resistance
DE112008001181B4 (en) Use of a steel alloy for axle tubes and axle tube
EP3899064B1 (en) Super austenitic material
DE19531260C5 (en) Process for producing a hot-work tool steel
DE102019103502A1 (en) Method of manufacturing seamless steel pipe, seamless steel pipe, and pipe product
EP0733719B1 (en) Iron base alloy for use at high temperature
DE2105745A1 (en) Age-hardenable nickel-chromium steel alloy
EP3292223A1 (en) Method for producing thin sheet from a stainless austenitic crmnni steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040619

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHLER EDELSTAHL GMBH

17Q First examination report despatched

Effective date: 20041201

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AXX Extension fees paid

Extension state: SI

Payment date: 20040619

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1067668

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50208351

Country of ref document: DE

Date of ref document: 20061116

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070110

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070316

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2273992

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070705

BERE Be: lapsed

Owner name: BOHLER EDELSTAHL GMBH

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061115

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061004

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1067668

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20081111

Year of fee payment: 7

Ref country code: DK

Payment date: 20081118

Year of fee payment: 7

Ref country code: NL

Payment date: 20081113

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20081112

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20081114

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100601

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 1152

Country of ref document: SK

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20100827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141119

Year of fee payment: 13

Ref country code: DE

Payment date: 20141119

Year of fee payment: 13

Ref country code: ES

Payment date: 20141126

Year of fee payment: 13

Ref country code: GB

Payment date: 20141119

Year of fee payment: 13

Ref country code: CH

Payment date: 20141119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20141120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141126

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208351

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 341651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151115

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151115

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151116