EP1420077A1 - Inert material with high hardness for elements used at high temperature - Google Patents

Inert material with high hardness for elements used at high temperature Download PDF

Info

Publication number
EP1420077A1
EP1420077A1 EP02450262A EP02450262A EP1420077A1 EP 1420077 A1 EP1420077 A1 EP 1420077A1 EP 02450262 A EP02450262 A EP 02450262A EP 02450262 A EP02450262 A EP 02450262A EP 1420077 A1 EP1420077 A1 EP 1420077A1
Authority
EP
European Patent Office
Prior art keywords
alloy
minus
hardness
nitrogen
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02450262A
Other languages
German (de)
French (fr)
Other versions
EP1420077B1 (en
Inventor
Gottfried Mayerböck
Johann Sammler
Gabriele Saller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH and Co KG
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH and Co KG, Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH and Co KG
Priority to SI200230449T priority Critical patent/SI1420077T1/en
Priority to AT02450262T priority patent/ATE341651T1/en
Publication of EP1420077A1 publication Critical patent/EP1420077A1/en
Application granted granted Critical
Publication of EP1420077B1 publication Critical patent/EP1420077B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Definitions

  • the invention relates to a material with high inertia, in particular high oxidation resistance and increased hardness for thermally resilient components and tools.
  • DIN 50900 is a reaction of a metallic material with its Environment that causes a measurable change in the material as corrosion Are defined. Corrosion can occur with and without mechanical stress on the Component, as well as after various types of chemical attack and different temperatures.
  • a surface attack of objects is most common electrochemical corrosion in the presence of an ion conducting phase or through chemical corrosion and hot corrosion at elevated temperatures. Also in molten media at elevated temperature, for example in liquid Glasses can be a corrosive attack with a change in the surface of a metal part in contact therewith.
  • Corrosion- and heat-resistant steels and alloys are supposed to, also one thermal resilience with temperatures above 600 ° C because of a cubic face-centered atomic lattice structure or an austenitic structure exhibit. In terms of alloy technology, this means that such materials are higher Have nickel and / or cobalt contents or with a view to an increased Strength and hardness at high temperatures as nickel-based or Cobalt-based alloys are formed, but from corrosion-chemical Cobalt-based alloys are formed, but from corrosion-chemical Chromium content of at least greater than 13 wt .-% must be present.
  • the nickel content lower than 36 wt .-% and to increase the corrosion resistance To increase the chromium content of the alloy to over 16% by weight.
  • An austenitic iron base material with a nickel content of less than 36 % By weight may be due to a high chromium concentration, possibly in Connection with other corrosion-inhibiting elements, definitely one Corrosion attack at high temperatures, for example at 600 ° C and above, Resist over a required minimum amount of time, however, the material shows a low hardness as well as a similar strength and a limited Creep behavior.
  • alloys for example according to DIN material no. 1.2780 and 1.2782 and 1.2786 for reasons of Profitability and for production reasons as tools for one Glass processing used.
  • the invention seeks to remedy this and has set itself the goal of being a material Specify initially mentioned type with a hardness of greater than 230 HB, which a high creep resistance even at temperatures above 600 ° C improved durability and similar corrosion resistance having.
  • the invention aims to use an iron-based alloy as Material for hot work tools that work at temperatures above 550 ° C be used from.
  • a material of the type mentioned at the outset consisting of an alloy with a composition essentially in% by weight of Carbon (C) 0.01 to 0.25 Silicon (Si) 0.35 to 2.5 Manganese (Mn) 0.4 to 4.3 Chrome (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29 with the proviso that the nickel content of the alloy is equal to or possibly greater by a maximum of 4.8% by weight than the value formed from the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ⁇ Cr + 1.5 x Si - 0.12 Mn - 18 x N- 30 x C - 6 Rest iron (Fe), as well as accompanying elements and impurities, which material has a hardness of at least 230 HB formed by cold forming.
  • the advantages achieved with the invention are in particular the synergy of corrosion-chemical resistance of the selected alloy and that of this chemical composition achievable by means of cold forming Properties of the material.
  • cold forming or deformation below the recrystallization temperature of the face-centered cubic austenite the material solidifies by blocking dislocations in the Crystal lattice.
  • a related increase in hardness and an increase in The strength of the material according to the invention remains for the person skilled in the art surprisingly, even at temperatures above 600 ° C expected recovery processes in the strained lattice, such as a thermal activated cross sliding and a recombining of dislocations can be done in usual Periods are not observed.
  • Impurities can of course degrade the material properties, so that the alloy according to the invention for the accompanying elements and / or impurity elements has concentration values in% by weight of Molybdenum (Mo) less than 1.0 Vanadium (V) to 0.5 Tungsten (W) to 0.5 Copper (Cu) to 0.5 Cobalt (Co) to 6.5 Titanium (Ti) to 0.5 Aluminum (AI) to 1.5 Niobium (Nb) to 0.5 Oxygen (O) max 0.05 Phosphorus (P) max 0.03 Sulfur (S) max 0.03 having.
  • the object of the invention is achieved by a method for producing a material for components and tools with high inertia, in particular high oxidation resistance and increased hardness under thermal loads with a temperature of up to 750 ° C, according to which an alloy with a composition in wt.
  • Ni 0.5 to 36.0
  • the Elasticity limit of the material can be raised to a stress level, which is also close to the work surface of the component or tool at a Volume change due to changing thermal load is not achieved. Accordingly, no zones occur in the area of the grain boundaries, which at Temperature changes are plastically deformed, causing cracking Material fatigue can be avoided. This is also a grain boundary attack largely avoidable by chemical or hot corrosion, so how, for Example with a glass mold, also a high work surface or surface quality with high loads and large quantities of production over a long time preserved.
  • Conventional glass shapes on the other hand, often show up after a short time Period of use at the grain boundaries of the structure Have a distance in the range of a few microns. The shaped glass thereby conveying unevenness in the lightwave range, causing reflection interference and frosted glass effects can arise.
  • the corrosion and heat resistance can be further increased and a Fatigue cracking can be effectively suppressed if, according to the process the invention by cold working, a material with a hardness greater than 250 HB, especially 300 HB and higher is formed.
  • a preliminary product with a composition according to the invention by means of Hot forming formed this is subjected to a solution treatment or from the deformation temperature, if necessary amplified, cooled and is cold formed, a particularly homogeneous material with improved Corrosion resistance can be created.
  • the further object of the invention is achieved when using an iron-based alloy with alloying elements in% by weight Carbon (C) up to 0.25 Silicon (Si to 2.5 Manganese (Mn) to 4.3 Chrome (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29 with the proviso that the nickel content of the alloy is equal to or possibly greater by a maximum of 4.8% by weight than the value formed from the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ⁇ Cr + 1.5 x Si - 0.12 x Mn - 18 x N - 30 x C - 6 Remainder iron (Fe), as well as accompanying elements and impurities, which alloy is solidified by cold working of the preliminary product formed from it to a material hardness of at least 230 HB, preferably greater than 250 HB, as a material for hot work tools with a working temperature of higher than 555 ° C , preferably
  • the strength of the material according to the invention is at Test temperature of 604 ° C depending on the extent of the cold deformation shown.
  • the sample material was forged at a temperature of 1010 ° C and increasingly cooled from the forming heat and a solution heat treatment Subject to 1060 ° C. Parts of the material were cold worked with a degree of deformation of 21%, 35%, 47% and 55%, thereafter from it Tensile tests were created. The strength determinations, namely the 0.2% Yield strength and tensile strength took place at a temperature of 604 ° C, where the samples were kept at this temperature for 20 minutes. For comparison standard material was solution annealed at 1060 ° C, producing from it Samples were also examined at 604 ° C.
  • the bar chart of Fig. 1 clearly shows an increase in the strength values of the material depending on of the degree of deformation, where (not shown in the diagram) Strength increase to a high degree already with a degree of cold deformation of more than 6%, in particular greater than 12%.
  • the fatigue strength of the material according to the invention is at Temperature of 600 ° C, determined by a hardness test in the cold state of the Samples, in comparison with materials according to DIN material No. 1.2083 and material No. 1.4028.
  • the comparison materials No. 1.2083 and No. 1.4028 were hardened in oil from 1020 ° C, tempered at 630 ° C and also the Long-term annealing exposed. After 45, 90, 140 and 180 hours, that became Sample material taken out of the oven, allowed to cool and the material hardness checked, after which a reinsertion of the samples (with a Thermal shock).
  • the comparative material H 5 showed a expected behavior of hardness, whereas that with 35% cold-formed Material H 525 according to the invention has an increased hardness of 315 HB and a high hardness Exhibited endurance behavior. At 600 ° C even with changing thermal No reduction in hardness and no creeping of the material determined become. In contrast, the martensitic standard steels were used significant drop in hardness was observed with the glow duration of the samples.

Abstract

Material comprises an alloy containing (in wt.%) 0.01-0.25 C, 0.35-2.5 Si, 0.4-4.3 Mn, 16.0-28.0 Cr, 15.0-36.0 Ni, 0.01-0.29 N and a balance of Fe, with the proviso that the Ni content of the alloy fulfills the following equation: Ni at least Cr + 1.5 x Si -0.12 x Mn - 18 x N - 30 x C - 6. The material has a hardness formed by cold forming of at least 230 HB. An Independent claim is also included for a process for the production of the material

Description

Die Erfindung betrifft einen Werkstoff mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte für thermisch belastbare Bauteile und Werkzeuge.The invention relates to a material with high inertia, in particular high oxidation resistance and increased hardness for thermally resilient components and tools.

Nach DIN 50900 ist eine Reaktion eines metallischen Werkstoffes mit seiner Umgebung, die eine meßbare Veränderung des Werkstoffes bewirkt, als Korrosion definiert. Eine Korrosion kann dabei mit und ohne mechanische Belastung des Bauteiles, sowie nach verschiedenen Arten eines chemischen Angriffes und bei unterschiedlichen Temperaturen erfolgen.According to DIN 50900 is a reaction of a metallic material with its Environment that causes a measurable change in the material as corrosion Are defined. Corrosion can occur with and without mechanical stress on the Component, as well as after various types of chemical attack and different temperatures.

Am häufigsten wird ein Oberflächenangriff von Gegenständen durch eine elektrochemische Korrosion in Gegenwart einer ionenleitenden Phase oder durch chemische Korrosion und Heißkorrosion bei erhöhten Temperaturen bewirkt. Auch in schmelzflüssigen Medien bei erhöhter Temperatur, zum Beispiel in flüssigen Gläsern, kann ein Korrosionsangriff mit einer Veränderung der Oberfläche eines damit in Berührung stehenden Metallteiles erfolgen.A surface attack of objects is most common electrochemical corrosion in the presence of an ion conducting phase or through chemical corrosion and hot corrosion at elevated temperatures. Also in molten media at elevated temperature, for example in liquid Glasses can be a corrosive attack with a change in the surface of a metal part in contact therewith.

In der modernen Technik sind Bau- und Werkzeugteile zumeist einer Mehrzahl von verschiedenen Beanspruchungen gleichzeitig ausgesetzt, von denen insbesondere die thermischen und mechanischen Belastungen auch wechselnd oder schwellend wirksam sein können. Dementsprechend liegen vielfach intensivierte Korrosionsbedingungen vor, welche gegebenenfalls durch eine Verformung der oberflächennahen Zone des Teiles verstärkt werden.In modern technology, components and tool parts are mostly a number of exposed to different stresses at the same time, in particular the thermal and mechanical loads also alternating or swelling can be effective. Accordingly, there are many intensified Corrosion conditions, which may be caused by a deformation of the near the surface of the part.

Korrosions- und hitzebeständige Stähle und Legierungen sollen, auch einer thermischen Belastbarkeit mit Temperaturen über 600°C wegen, einen kubisch flächenzentrierten Atomgitteraufbau bzw. eine austenitische Gefügestruktur aufweisen. Legierungstechnisch bedeutet dies, dass derartige Werkstoffe höhere Nickel- und/oder Kobaltgehalte aufweisen oder im Hinblick auf eine gesteigerte Festigkeit und Härte bei hohen Temperaturen als Nickelbasis- oder Kobaltbasislegierungen ausgebildet sind, wobei jedoch aus korrosionschemischen Kobaltbasislegierungen ausgebildet sind, wobei jedoch aus korrosionschemischen Gründen ein Chromgehalt von zumindest größer als 13 Gew.-% vorliegen muss.Corrosion- and heat-resistant steels and alloys are supposed to, also one thermal resilience with temperatures above 600 ° C because of a cubic face-centered atomic lattice structure or an austenitic structure exhibit. In terms of alloy technology, this means that such materials are higher Have nickel and / or cobalt contents or with a view to an increased Strength and hardness at high temperatures as nickel-based or Cobalt-based alloys are formed, but from corrosion-chemical Cobalt-based alloys are formed, but from corrosion-chemical Chromium content of at least greater than 13 wt .-% must be present.

Obwohl ein Werkstoff mit einer hohen Nickelkonzentration durchwegs erhöhte mechanische Festigkeit bzw. hohe Materialhärte aufweist, wodurch die Gebrauchseigenschaften von Bau- und Werkzeugteilen bei hoher Temperatur verbessert sind, besteht aus wirtschaftlichen Gründen der Wunsch, den Nickelgehalt unter 36 Gew.-% zu senken und zur Steigerung der Korrosionsbeständigkeit den Chromanteil der Legierung auf über 16 Gew.-% anzuheben.Although a material with a high nickel concentration consistently increased has mechanical strength or high material hardness, whereby the Usage properties of components and tool parts at high temperature are improved, there is a desire for economic reasons, the nickel content lower than 36 wt .-% and to increase the corrosion resistance To increase the chromium content of the alloy to over 16% by weight.

Ein austenitischer Eisenbasiswerkstoff mit einem Nickelgehalt von weniger als 36 Gew.-% kann zwar auf Grund einer hohen Chromkonzentration, gegebenenfalls in Verbindung mit weiteren korrosionshemmenden Elementen, durchaus einem Korrosionsangriff bei hohen Temperaturen, beispielsweise bei 600°C und darüber, über eine geforderte Mindestzeitdauer widerstehen, allerdings weist der Werkstoff eine geringe Härte sowie eine dergleichen Festigkeit und ein eingeschränktes Zeitstandsverhalten auf. Trotz dieser Nachteile werden beispielsweise Legierungen gemäß DIN Werkstoff Nr. 1.2780 und 1.2782 und 1.2786 aus Gründen der Wirtschaftlichkeit und aus Erstellungsgründen als Werkzeuge für eine Glasverarbeitung eingesetzt.An austenitic iron base material with a nickel content of less than 36 % By weight may be due to a high chromium concentration, possibly in Connection with other corrosion-inhibiting elements, definitely one Corrosion attack at high temperatures, for example at 600 ° C and above, Resist over a required minimum amount of time, however, the material shows a low hardness as well as a similar strength and a limited Creep behavior. Despite these disadvantages, alloys, for example according to DIN material no. 1.2780 and 1.2782 and 1.2786 for reasons of Profitability and for production reasons as tools for one Glass processing used.

Hier will die Erfindung Abhilfe schaffen und setzt sich zum Ziel, einen Werkstoff der eingangs genannten Art mit einer Härte von größer als 230 HB anzugeben, welcher auch bei Temperaturen über 600°C einen hohen Kriechwiderstand und ein verbessertes Dauerstandsverhalten sowie eine dergleichen Korrosionsfestigkeit aufweist.Here, the invention seeks to remedy this and has set itself the goal of being a material Specify initially mentioned type with a hardness of greater than 230 HB, which a high creep resistance even at temperatures above 600 ° C improved durability and similar corrosion resistance having.

Weiters ist es Aufgabe der Erfindung, ein Verfahren zur wirtschaftlichen Herstellung eines Werkstoffes für Bauteile und Werkzeuge zu schaffen, welche verbesserte Gebrauchseigenschaften bei hoher Härte und erhöhter Korrosionsbeständigkeit besitzen.Furthermore, it is an object of the invention to provide a process for economical production to create a material for components and tools that improved Performance characteristics with high hardness and increased corrosion resistance have.

Schließlich zielt die Erfindung auf die Verwendung einer Eisenbasislegierung als Werkstoff für Warmarbeitswerkzeuge, die bei Arbeitstemperaturen von über 550°C eingesetzt werden, ab.Finally, the invention aims to use an iron-based alloy as Material for hot work tools that work at temperatures above 550 ° C be used from.

Das vorher genannte Ziel wird bei einem Werkstoff der eingangs genannten Art, bestehend aus einer Legierung mit einer Zusammensetzung im wesentlichen in Gew.-% von Kohlenstoff (C) 0,01 bis 0,25 Silizium (Si) 0,35 bis 2,5 Mangan (Mn) 0,4 bis 4,3 Chrom (Cr) 16,0 bis 28,0 Nickel (Ni) 15,0 bis 36,0 Stickstoff (N) 0,01 bis 0,29 mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder gegebenenfalls um höchstens 4,8 Gew.-% größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni ≥ Cr + 1,5 x Si - 0,12 Mn - 18 x N- 30 x C - 6 Rest Eisen (Fe), sowie Begleitelemente und Verunreinigungen, welcher Werkstoff eine durch Kaltumformung gebildete Härte von mindestens 230 HB aufweist, erreicht.The aforementioned goal is achieved in the case of a material of the type mentioned at the outset, consisting of an alloy with a composition essentially in% by weight of Carbon (C) 0.01 to 0.25 Silicon (Si) 0.35 to 2.5 Manganese (Mn) 0.4 to 4.3 Chrome (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29 with the proviso that the nickel content of the alloy is equal to or possibly greater by a maximum of 4.8% by weight than the value formed from the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ≥ Cr + 1.5 x Si - 0.12 Mn - 18 x N- 30 x C - 6 Rest iron (Fe), as well as accompanying elements and impurities, which material has a hardness of at least 230 HB formed by cold forming.

Die mit der Erfindung erzielten Vorteile liegen insbesondere in der Synergie von korrosionschemischem Widerstand der ausgewählten Legierung und den bei dieser chemischen Zusammensetzung mittels einer Kaltumformung erreichbaren Eigenschaften des Werkstoffes. Bei einer Kaltumformung bzw. bei einer Verformung unterhalb der Rekristallisationstemperatur des kubisch flächenzentrierten Austenits erfolgt eine Verfestigung des Werkstoffes durch ein Blockieren von Versetzungen im Kristallgitter. Eine damit verbundene Härtesteigerung und eine Erhöhung der Festigkeit des erfindungsgemäßen Werkstoffes bleibt, für den Fachmann überraschend, auch bei Verwendungstemperaturen von über 600°C erhalten, die erwarteten Erholvorgänge im verspannten Gitter, wie zum Beispiel ein thermisch aktiviertes Quergleiten und ein Rekombinieren von Versetzungen können in üblichen Zeiträumen nicht beobachtet werden. Mit anderen Worten: Eine durch eine Kaltverformung erhöhte Warmfestigkeit des erfindungsgemäß zusammengesetzten Werkstoffes bleibt entgegen der Fachmeinung auch bei hohen Verwendungstemperaturen des Bauteiles erhalten, weil ein hoher Kriechwiderstand des Stahles dessen Dauerstandsverhalten verbessert. Gerade bei schwellender thermischer Belastung, wie dies bei einer Kokille für die Herstellung von Gebrauchsgläsern der Fall ist, treten an der Arbeitsoberfläche jeweils starke Temperaturschwankungen und somit örtliche Volumsänderungen des Werkstoffes auf. Es wurde gefunden, dass durch eine erfindungsgemäß erhöhte Materialhärte und Warmfestigkeit die örtliche bzw. oberflächennahe Verformung des Werkstoffes, zum Beispiel einer Glaskokille, in dessen elastischem Bereich erfolgt und dass dadurch einer Ermüdungsrißbildung, die bei auch geringen plastischen Formänderungen eintritt und zum Ausfall der Form führen kann, entgegengewirkt wird.The advantages achieved with the invention are in particular the synergy of corrosion-chemical resistance of the selected alloy and that of this chemical composition achievable by means of cold forming Properties of the material. In the case of cold forming or deformation below the recrystallization temperature of the face-centered cubic austenite the material solidifies by blocking dislocations in the Crystal lattice. A related increase in hardness and an increase in The strength of the material according to the invention remains for the person skilled in the art surprisingly, even at temperatures above 600 ° C expected recovery processes in the strained lattice, such as a thermal activated cross sliding and a recombining of dislocations can be done in usual Periods are not observed. In other words, one by one Cold forming increased the heat resistance of the composite according to the invention Contrary to the specialist opinion, material remains high Preserve usage temperatures of the component because of a high creep resistance of the steel improves its creep behavior. Especially with swelling thermal stress, as is the case with a mold for the production of Glasses are the case, strong on the work surface Temperature fluctuations and thus local volume changes in the material on. It was found that material hardness increased according to the invention and heat resistance the local or near-surface deformation of the material, for example, a glass mold, in the elastic range and that this leads to fatigue crack formation, even with low plastic Form changes occur and can lead to failure of the form, counteracted becomes.

Um ein verbessertes Eigenschaftsprofil des Werkstoffes sicherzustellen, ist es wichtig, dass dieser auch bei einer Kaltverformung im stabil austenitischen Bereich bleibt und keine Zonen mit Verformungsmartensit aufweist. Dies wird erfindungsgemäß durch die in Grenzen angegebene Nickel- und Chromkonzentration und durch den einschränkend vorgegebenen Konzentrationsbereich von Nickel in Abhängigkeit von Chrom, Silizium, Mangan, Stickstoff und Kohlenstoff erreicht. Höhere Nickelgehalte verschlechtern, wie sich gezeigt hat, das Dauerstandsverhalten. Hingegen wird bei niedrigen Nickelkonzentrationen die Austenitstabilität und die Warmfestigkeit des Werkstoffes sprunghaft verringert. Im wesentlichen gilt Gleiches für die Elemente Kohlenstoff und Stickstoff, wobei insbesondere Stickstoff die Dauerstandsfestigkeit des Werkstoffes erhöht.To ensure an improved property profile of the material, it is It is important that this also applies to cold forming in the stable austenitic range remains and has no zones with deformation martensite. this will according to the invention by the nickel and Chromium concentration and given by the restrictive Concentration range of nickel depending on chromium, silicon, manganese, Nitrogen and carbon reached. Higher nickel levels deteriorate as has shown the creep behavior. In contrast, at low Nickel concentrations, the austenite stability and the heat resistance of the material abruptly reduced. Essentially the same applies to the elements carbon and nitrogen, nitrogen in particular being the fatigue strength of the Material increased.

Die Gebrauchseigenschaften von erfindungsgemäßen Bauteilen und Werkzeugen können verbessert werden, wenn der Werkstoff für ein oder mehrere Legierungselemente Gehalte in Gew.-% von C = 0,02 bis 0,20, vorzugsweise 0,04 bis 0,15 Si = 0,50 bis 2,48, vorzugsweise 1,22 bis 2,36 Mn = 0,62 bis 4,05, vorzugsweise 1,00 bis 3,95 Cr = 20,1 bis 27,6, vorzugsweise 23,9 bis 26,5 Ni = 16,1 bis 27,3, vorzugsweise 17,9 bis 25,45 N = 0,014 bis 0,23,vorzugsweise 0,018 bis 0,20 aufweist. Dabei ist festzustellen, dass Kobalt, wie an sich bekannt, auch in der Legierung gemäß der Erfindung ab einem Gehalt von 0,52 Gew.-% die Warmfestigkeit des Werkstoffes verbessern kann.The performance properties of components and tools according to the invention can be improved if the material for one or more alloy elements has a content in% by weight of C = 0.02 to 0.20, preferably 0.04 to 0.15 Si = 0.50 to 2.48, preferably 1.22 to 2.36 Mn = 0.62 to 4.05, preferably 1.00 to 3.95 Cr = 20.1 to 27.6, preferably 23.9 to 26.5 Ni = 16.1 to 27.3, preferably 17.9 to 25.45 N = 0.014 to 0.23, preferably 0.018 to 0.20 having. It should be noted that cobalt, as is known per se, can also improve the heat resistance of the material in the alloy according to the invention from a content of 0.52% by weight.

Obwohl die Elemente Molybdän, Vanadin, Wolfram, Titan und Niob den Kriechwiderstand des Materials bei hohen Temperaturen erhöhen und Kupfer, sowie Aluminium, klassische Aushärtungselemente darstellen, weisen diese Stahlbegleiter im Werkstoff nach der Erfindung eine höchst zuverlässige Konzentration auf, weil, wie gefunden wurde, höhere Gehalte derselben den Korrosionswiderstand insbesondere bei zeitweiser Berührung mit teigigem Glas, erniedrigen und auf Grund einer gebildeten Oberflächenrauhigkeit der Form die Glastransparenz verschlechtern. Die Ursache dafür ist noch nicht ausreichend geklärt, jedoch zählen die Akzeptoratome Na+, K+, Ca2+ , B 3+, Al3+ und Si 4+ zu den harten Lewis-Säuren, wobei nach jeder Glasformung eine Heißkorrosionsbelastung der Form gegeben ist.Although the elements molybdenum, vanadium, tungsten, titanium and niobium increase the creep resistance of the material at high temperatures and copper, as well as aluminum, are classic hardening elements, these steel companions have a highly reliable concentration in the material according to the invention because, as was found, higher contents of the same reduce the corrosion resistance, in particular if they come into contact with pasty glass at times, and, due to the surface roughness of the mold, impair the transparency of the glass. The reason for this has not yet been sufficiently clarified, but the acceptor atoms Na + , K + , Ca 2+ , B 3+ , Al 3+ and Si 4+ are hard Lewis acids, with the mold exposed to hot corrosion after each glass molding is.

Verunreinigungen können naturgemäß die Werkstoffeigenschaften verschlechtern, so dass die erfindungsgemäße Legierung für die Begleitelemente und/oder Verunreinigungselemente Konzentrationswerte in Gew.-% von Molybdän (Mo) kleiner 1,0 Vanadium (V) bis 0,5 Wolfram (W) bis 0,5 Kupfer (Cu) bis 0,5 Cobalt (Co) bis 6,5 Titan (Ti) bis 0,5 Aluminium (AI) bis 1,5 Niob (Nb) bis 0,5 Sauerstoff (O) max 0,05 Phosphor (P) max 0,03 Schwefel (S) max 0,03 aufweist. Impurities can of course degrade the material properties, so that the alloy according to the invention for the accompanying elements and / or impurity elements has concentration values in% by weight of Molybdenum (Mo) less than 1.0 Vanadium (V) to 0.5 Tungsten (W) to 0.5 Copper (Cu) to 0.5 Cobalt (Co) to 6.5 Titanium (Ti) to 0.5 Aluminum (AI) to 1.5 Niobium (Nb) to 0.5 Oxygen (O) max 0.05 Phosphorus (P) max 0.03 Sulfur (S) max 0.03 having.

Die Aufgabe der Erfindung wird durch ein Verfahren zur Herstellung eines Werkstoffes für Bauteile und Werkzeuge mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte bei thermischen Belastungen mit einer Temperatur von bis zu 750°C, nach welchem aus einer Legierung mit einer Zusammensetzung in Gew.-% von im wesentlichen Kohlenstoff (C) 0,01 bis 0,25 Silizium (Si) 0,35 bis 2,5 Mangan (Mn) 0,4 bis 4,3 Chrom (Cr) 16,0 bis 28,0 Nickel (Ni) 15,0 bis 36,0 Stickstoff (N) 0,01 bis 0,29 mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder gegebenenfalls um höchstens 4,8 Gew.-% größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni ≥ Cr + 1,5 x Si - 0,12 x Mn - 18 x N - 30 x C - 6 Rest Eisen (Fe), sowie Begleitelemente und Verunreinigungen, ein Vorprodukt gebildet und dieses nachfolgend durch Kaltverformung zu einem Werkstoff mit einer Härte von größer als 230 HB weiterverarbeitet wird, gelöst.The object of the invention is achieved by a method for producing a material for components and tools with high inertia, in particular high oxidation resistance and increased hardness under thermal loads with a temperature of up to 750 ° C, according to which an alloy with a composition in wt. -% of essentially Carbon (C) 0.01 to 0.25 Silicon (Si) 0.35 to 2.5 Manganese (Mn) 0.4 to 4.3 Chrome (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29 with the proviso that the nickel content of the alloy is equal to or possibly greater by a maximum of 4.8% by weight than the value formed from the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ≥ Cr + 1.5 x Si - 0.12 x Mn - 18 x N - 30 x C - 6 Remainder iron (Fe), as well as accompanying elements and impurities, a preliminary product is formed and this is subsequently processed by cold forming into a material with a hardness of greater than 230 HB.

Mittels einer Kaltverformung der erfindungsgemäßen Legierung kann die Elastizitätsgrenze des Werkstoffes auf ein Spannungsniveau angehoben werden, welches auch nahe der Arbeitsfläche des Bauteiles oder Werkzeuges bei einer Volumsänderung durch wechselnde thermische Belastung nicht erreicht wird. Dementsprechend treten auch im Bereich der Korngrenzen keine Zonen, die beim Temperaturwechsel plastisch verformt werden, auf, wodurch eine Rißbildung durch Materialermüdung vermieden werden kann. Damit ist auch ein Korngrenzenangriff durch chemische oder Heißkorrosion weitgehend vermeidbar, so dass, wie zum Beispiel bei einer Glasform, eine hohe Arbeitsflächen- bzw. Oberflächengüte auch bei hohen Belastungen und bei großen Stückzahlen der Fertigung über lange Zeit erhalten bleibt. Herkömmliche Glasformen hingegen zeigen oft nach kurzer Einsatzdauer an den Korngrenzen des Gefüges Materialabtragungen, welche einen Abstand im Bereich von wenigen µm aufweisen. Dem geformten Glas werden dadurch Unebenheiten im Lichtwellenbereich vermittelt, wodurch Reflexions-Interferenzen und Milchglaseffekte entstehen können.By means of cold working the alloy according to the invention, the Elasticity limit of the material can be raised to a stress level, which is also close to the work surface of the component or tool at a Volume change due to changing thermal load is not achieved. Accordingly, no zones occur in the area of the grain boundaries, which at Temperature changes are plastically deformed, causing cracking Material fatigue can be avoided. This is also a grain boundary attack largely avoidable by chemical or hot corrosion, so how, for Example with a glass mold, also a high work surface or surface quality with high loads and large quantities of production over a long time preserved. Conventional glass shapes, on the other hand, often show up after a short time Period of use at the grain boundaries of the structure Have a distance in the range of a few microns. The shaped glass thereby conveying unevenness in the lightwave range, causing reflection interference and frosted glass effects can arise.

Die Korrosions- und die Warmfestigkeit können weiter erhöht und eine Ermüdungsrißbildung wirksam unterdrückt werden, wenn, verfahrensgemäß nach der Erfindung durch Kaltverformung, ein Werkstoff mit einer Härte von größer als 250 HB, insbesondere von 300 HB und höher gebildet wird.The corrosion and heat resistance can be further increased and a Fatigue cracking can be effectively suppressed if, according to the process the invention by cold working, a material with a hardness greater than 250 HB, especially 300 HB and higher is formed.

Wenn ein Vorprodukt mit einer erfindungsgemäßen Zusammensetzung mittels Warmverformung gebildet, dieses einer Lösungsglühbehandlung unterworfen oder von der Verformungstemperatur, gegebenenfalls verstärkt, abgekühlt und kaltverformt wird, kann ein besonders gefügehomogener Werkstoff mit verbesserter Korrosionsfestigkeit erstellt werden.If a preliminary product with a composition according to the invention by means of Hot forming formed, this is subjected to a solution treatment or from the deformation temperature, if necessary amplified, cooled and is cold formed, a particularly homogeneous material with improved Corrosion resistance can be created.

Insbesondere für weitgehend achssymmetrisch ausgeformte Werkzeuge, wie Flaschenkokillen und dergleichen, kann es von Vorteil sein, wenn die Kaltverformung des Materials vollumfänglich radial senkrecht zur Längsachse des Vorproduktes durchgeführt wird.Especially for largely axially symmetrical tools, such as Bottle molds and the like, it can be beneficial if the Cold deformation of the material completely radially perpendicular to the longitudinal axis of the Intermediate product is carried out.

Für eine gesteigerte Güte des Erzeugnisses ist vorgesehen, dass die Legierung mit Gehalten von einem oder mehreren Legierungselementen in Gew.-% C = 0,02 bis 0,20, vorzugsweise 0,04 bis 0,15 Si = 0,05 bis 2,48, vorzugsweise 1,22 bis 2,36 Mn = 0,62 bis 4,05, vorzugsweise 1,00 bis 3,95 Cr = 20,1 bis 27,6, vorzugsweise 23,9 bis 26,5 Ni = 16,1 bis 27,3, vorzugsweise 17,9 bis 25,45 N = 0,014 bis 0,23, vorzugsweise 0,018 bis 0,2 For an increased quality of the product, it is provided that the alloy with contents of one or more alloy elements in% by weight C = 0.02 to 0.20, preferably 0.04 to 0.15 Si = 0.05 to 2.48, preferably 1.22 to 2.36 Mn = 0.62 to 4.05, preferably 1.00 to 3.95 Cr = 20.1 to 27.6, preferably 23.9 to 26.5 Ni = 16.1 to 27.3, preferably 17.9 to 25.45 N = 0.014 to 0.23, preferably 0.018 to 0.2

Schließlich wird das weitere Ziel der Erfindung bei einer Verwendung einer Eisenbasislegierung mit Legierungselementen in Gew.-% von Kohlenstoff (C) bis 0,25 Silizium (Si bis 2,5 Mangan (Mn) bis 4,3 Chrom (Cr) 16,0 bis 28,0 Nickel (Ni) 15,0 bis 36,0 Stickstoff (N) 0,01 bis 0,29 mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder gegebenenfalls um höchstens 4,8 Gew.-% größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni ≥ Cr + 1,5 x Si - 0,12 x Mn - 18 x N - 30 x C - 6 Rest Eisen (Fe), sowie Begleitelemente und Verunreinigungen, welche Legierung durch Kaltverformung des daraus gebildeten Vorproduktes auf eine Materialhärte von mindestens 230 HB, vorzugsweise von größer als 250 HB, verfestigt ist, als Werkstoff für Warmarbeitswerkzeuge mit einer Arbeitstemperatur von höher als 555°C, vorzugsweise von höher als 602 °C,insbesondere bis 750 °C, erreicht.Finally, the further object of the invention is achieved when using an iron-based alloy with alloying elements in% by weight Carbon (C) up to 0.25 Silicon (Si to 2.5 Manganese (Mn) to 4.3 Chrome (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29 with the proviso that the nickel content of the alloy is equal to or possibly greater by a maximum of 4.8% by weight than the value formed from the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ≥ Cr + 1.5 x Si - 0.12 x Mn - 18 x N - 30 x C - 6 Remainder iron (Fe), as well as accompanying elements and impurities, which alloy is solidified by cold working of the preliminary product formed from it to a material hardness of at least 230 HB, preferably greater than 250 HB, as a material for hot work tools with a working temperature of higher than 555 ° C , preferably higher than 602 ° C, in particular up to 750 ° C.

Besonders vorteilhaft, hinsichtlich der Produktgüte und einer wirtschaftlichen Herstellung, ist eine Verwendung der vorgenannten Eisenbasislegierung als Werkzeugwerkstoff in der Glasindustrie, insbesondere als Formenwerkstoff für Maschinenpreßgläser.Particularly advantageous in terms of product quality and economical Manufacturing, is a use of the aforementioned iron base alloy as Tool material in the glass industry, especially as a mold material for Maschinenpreßgläser.

Anhand von vergleichenden Untersuchungsergebnissen soll der erfindungsgemäße Werkstoff näher dargestellt werden.Based on comparative test results, the invention Material are shown in more detail.

Es zeigen

  • Fig. 1 Festigkeit in Anhängigkeit vom Kaltverformungsgrad eines erfindungsgemäßen Werkstoffes bei 604°C
  • Fig. 2 Härteverlauf bei Raumtemperatur nach einer Langzeit-Temperaturbeanspruchung bei 600°C
  • Show it
  • Fig. 1 strength depending on the degree of cold deformation of a material according to the invention at 604 ° C.
  • Fig. 2 hardness curve at room temperature after a long-term temperature stress at 600 ° C.
  • In Fig. 1 ist die Festigkeit des erfindungsgemäßen Werkstoffes bei einer Prüftemperatur von 604°C in Abhängigkeit vom Ausmaß der Kaltverformung dargestellt. Das Probematerial wurde bei einer Temperatur von 1010°C geschmiedet und aus der Umformhitze verstärkt abgekühlt und einer Lösungsglühbehandlung bei 1060°C unterworfen. An Teilen des Materials erfolgte jeweils eine Kaltverformung mit einem Umformgrad von 21 %, 35 %, 47 % und 55 %, wonach daraus Zugproben erstellt wurden. Die Festigkeitsermittlungen, und zwar die 0,2 % Dehngrenze und die Zugfestigkeit, erfolgten bei einer Temperatur von 604°C, wobei die Proben 20 Minuten auf dieser Temperatur gehalten wurden. Zum Vergleich wurde Standardmaterial bei 1060°C lösungsgeglüht, wobei daraus gefertigte Proben ebenfalls bei 604°C untersucht wurden. Das Balkendiagramm von Fig. 1 zeigt deutlich eine Erhöhung der Festigkeitswerte des Werkstoffes in Abhängigkeit vom Verformungsgrad, wobei (im Diagramm nicht dargestellt) eine Festigkeitssteigerung in hohem Ausmaß schon bei einem Kaltverformungsgrad von mehr als 6 %, insbesondere von größer als 12 %, gegeben ist.In Fig. 1, the strength of the material according to the invention is at Test temperature of 604 ° C depending on the extent of the cold deformation shown. The sample material was forged at a temperature of 1010 ° C and increasingly cooled from the forming heat and a solution heat treatment Subject to 1060 ° C. Parts of the material were cold worked with a degree of deformation of 21%, 35%, 47% and 55%, thereafter from it Tensile tests were created. The strength determinations, namely the 0.2% Yield strength and tensile strength took place at a temperature of 604 ° C, where the samples were kept at this temperature for 20 minutes. For comparison standard material was solution annealed at 1060 ° C, producing from it Samples were also examined at 604 ° C. The bar chart of Fig. 1 clearly shows an increase in the strength values of the material depending on of the degree of deformation, where (not shown in the diagram) Strength increase to a high degree already with a degree of cold deformation of more than 6%, in particular greater than 12%.

    In Fig. 2 ist die Dauerstandsfestigkeit des erfindungsgemäßen Werkstoffes bei einer Temperatur von 600°C, ermittelt durch eine Härteprüfung im kalten Zustand der Proben, im Vergleich mit Materialien nach DIN Werkstoff Nr. 1.2083 und Werkstoff Nr. 1.4028 dargestellt.2, the fatigue strength of the material according to the invention is at Temperature of 600 ° C, determined by a hardness test in the cold state of the Samples, in comparison with materials according to DIN material No. 1.2083 and material No. 1.4028.

    Der erfindungsgemäße Werkstoff wurde mit einer Zusammensetzung von in Gew.-% C = 0,08, Si = 1,7, Mn = 1,15, P = 0,01, S = 0,002, Cr = 24,8, Ni = 19,8, N = 0,02, Mo = 0,26, V = 0,09, W = 0,11, Cu = 0,12, Co = 0,4, Ti = 0,01, Al = 0,02, Nb = 0,001, O = 0,0029 erschmolzen, zu einem Versuchsblock gegossen und dieser zu Probenmaterial warmverformt. Am Probenmaterial erfolgte eine Lösungsglühbehandlung bei 1060°C mit einem anschließenden Abschrecken im Wasser, wonach Proben mit der Bezeichnung H 5 unverformt und Proben mit der Bezeichnung H 525 mit einer Kaltverformung von 35 % einer Langzeitglühung bei 600°C unterworfen wurden. Die Vergleichswerkstoffe Nr. 1.2083 und Nr. 1.4028 wurden von 1020°C in Öl gehärtet, bei 630°C angelassen und ebenfalls der Langzeitglühung ausgesetzt. Nach 45, 90, 140 und 180 Stunden wurde das Probenmaterial aus dem Ofen genommen, erkalten gelassen und die Materialhärte geprüft, wonach ein Rückeinsetzen der Proben ( mit einer Temperaturwechselbelastung) erfolgte. Das Vergleichsmaterial H 5 zeigte ein erwartetes Verhalten der Härte, wogegen der mit 35 % kaltverformte erfindungsgemäße Werkstoff H 525 eine erhöhte Härte von 315 HB und ein hohen Dauerstandsverhalten aufwies. Bei 600°C konnte auch bei wechselnder thermischer Belastung keine Härteminderung und kein Kriechen des Materiales festgestellt werden. Im Gegensatz dazu wurde an den martensitischen Normstählen ein deutlicher Härteabfall mit der Glühdauer der Proben festgestellt.The material according to the invention has a composition of in Wt% C = 0.08, Si = 1.7, Mn = 1.15, P = 0.01, S = 0.002, Cr = 24.8, Ni = 19.8, N = 0.02, Mo = 0.26, V = 0.09, W = 0.11, Cu = 0.12, Co = 0.4, Ti = 0.01, Al = 0.02, Nb = 0.001, O = 0.0029 melted, poured into a test block and closed Sample material thermoformed. A was carried out on the sample material Solution heat treatment at 1060 ° C with subsequent quenching in the Water, after which samples with the designation H 5 undeformed and samples with the Designation H 525 with a cold deformation of 35% in long-term annealing 600 ° C were subjected. The comparison materials No. 1.2083 and No. 1.4028 were hardened in oil from 1020 ° C, tempered at 630 ° C and also the Long-term annealing exposed. After 45, 90, 140 and 180 hours, that became Sample material taken out of the oven, allowed to cool and the material hardness checked, after which a reinsertion of the samples (with a Thermal shock). The comparative material H 5 showed a expected behavior of hardness, whereas that with 35% cold-formed Material H 525 according to the invention has an increased hardness of 315 HB and a high hardness Exhibited endurance behavior. At 600 ° C even with changing thermal No reduction in hardness and no creeping of the material determined become. In contrast, the martensitic standard steels were used significant drop in hardness was observed with the glow duration of the samples.

    Claims (13)

    Werkstoff mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte für thermisch mit einer Temperatur von bis zu 750°C belastbare Bauteile und Werkzeuge, bestehend aus einer Legierung mit einer Zusammensetzung im wesentlichen in Gew.-% von Kohlenstoff (C) 0,01 bis 0,25 Silizium (Si) 0,35 bis 2,5 Mangan (Mn) 0,4 bis 4,3 Chrom (Cr) 16,0 bis 28,0 Nickel (Ni) 15,0 bis 36,0 Stickstoff (N) 0,01 bis 0,29
    mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni ≥ Cr + 1,5 x Si - 0,12 x Mn -18 x N - 30 x C - 6 Rest Eisen (Fe), sowie Begleitelemente und Verunreinigungen, welcher Werkstoff eine durch Kaltumformung gebildete Härte von mindestens 230 HB aufweist.
    Material with high inertia, in particular high oxidation resistance and increased hardness for components and tools that can be thermally loaded at a temperature of up to 750 ° C, consisting of an alloy with a composition essentially in% by weight of Carbon (C) 0.01 to 0.25 Silicon (Si) 0.35 to 2.5 Manganese (Mn) 0.4 to 4.3 Chrome (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29
    with the proviso that the nickel content of the alloy is equal to or greater than the value formed from the chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ≥ Cr + 1.5 x Si - 0.12 x Mn -18 x N - 30 x C - 6 Remainder iron (Fe), as well as accompanying elements and impurities, which material has a hardness of at least 230 HB formed by cold forming.
    Werkstoff nach Anspruch 1 mit einer Härte von größer 250 HB, insbesondere 300 HB und höher.Material according to claim 1 with a hardness of greater than 250 HB, in particular 300 HB and higher. Werkstoff nach Anspruch 1 oder 2, wobei der Nickelgehalt der Legierung um höchstens 4,8 Gew.-% größer ist als der Wert gebildet nach dem Zusammenhang von Anspruch 1.The material of claim 1 or 2, wherein the nickel content of the alloy is around is at most 4.8% by weight greater than the value formed according to the relationship of claim 1. Werkstoff nach einem der Ansprüche 1 bis 3, welcher für ein oder mehrere Legierungselemente Gehalte in Gew.-% von C = 0,02 bis 0,20, vorzugsweise 0,04 bis 0,15 Si = 0,50 bis 2,48, vorzugsweise 1,22 bis 2,36 Mn = 0,62 bis 4,05, vorzugsweise 1,00 bis 3,95 Cr = 20,1 bis 27,6, vorzugsweise 23,9 bis 26,5 Ni = 16,1 bis 27,3, vorzugsweise 17,9 bis 25,45 N = 0,014 bis 0,23, vorzugsweise 0,018 bis 0,20
    aufweist.
    Material according to one of claims 1 to 3, which for one or more alloy elements contents in wt .-% of C = 0.02 to 0.20, preferably 0.04 to 0.15 Si = 0.50 to 2.48, preferably 1.22 to 2.36 Mn = 0.62 to 4.05, preferably 1.00 to 3.95 Cr = 20.1 to 27.6, preferably 23.9 to 26.5 Ni = 16.1 to 27.3, preferably 17.9 to 25.45 N = 0.014 to 0.23, preferably 0.018 to 0.20
    having.
    Werkstoff nach einem der Ansprüche 1 bis 4, welcher für ein oder mehrere Begleitelemente und/oder Verunreinigungselemente Konzentrationswerte in Gew.-% von Molybdän ( Mo) kleiner 1,0 Vanadium (V) bis 0,5 Wolfram (W) bis 0,5 Kupfer (Cu) bis 0,5 Cobalt (Co) bis 6,5 Titan ( Ti) bis 0,5 Aluminium ( Al) bis 1,5 Niob (Nb) bis 0,5 Sauerstoff (O) max 0,05 Phosphor (P) max 0,03 Schwefel (S) max 0,03
    aufweist.
    Material according to one of claims 1 to 4, which for one or more accompanying elements and / or impurity elements concentration values in wt .-% of Molybdenum (Mo) less than 1.0 Vanadium (V) to 0.5 Tungsten (W) to 0.5 Copper (Cu) to 0.5 Cobalt (Co) to 6.5 Titanium (Ti) to 0.5 Aluminum (Al) to 1.5 Niobium (Nb) to 0.5 Oxygen (O) max 0.05 Phosphorus (P) max 0.03 Sulfur (S) max 0.03
    having.
    Verfahren zur Herstellung eines Werkstoffes für Bauteile und Werkzeuge mit hoher Reaktionsträgheit, insbesondere hoher Oxidationsbeständigkeit und erhöhter Härte bei thermischen Belastungen mit einer Temperatur von bis zu 750°C, nach welchem aus einer Legierung mit einer Zusammensetzung in Gew.-% von im wesentlichen Kohlenstoff (C) 0,01 bis 0,25 Silizium (Si) 0,35 bis 2,5 Mangan (Mn) 0,4 bis 4,3 Chrom (Cr) 16,0 bis 28,0 Nickel (Ni) 15,0 bis 36,0 Stickstoff (N) 0,01 bis 0,29
    mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni ≥ Cr + 1,5 x Si - 0,12 x Mn - 18 x N - 30 x C - 6 Rest Eisen (Fe), sowie Begleitelemente und Verunreinigungen ein Vorprodukt gebildet und dieses nachfolgend durch Kaltverformung zu einem Werkstoff mit einer Härte von größer als 230 HB weiterverarbeitet wird.
    Process for producing a material for components and tools with high inertia, in particular high oxidation resistance and increased hardness under thermal loads with a temperature of up to 750 ° C, according to which essentially consists of an alloy with a composition in wt .-% of Carbon (C) 0.01 to 0.25 Silicon (Si) 0.35 to 2.5 Manganese (Mn) 0.4 to 4.3 Chrome (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29
    with the proviso that the nickel content of the alloy is equal to or greater than the value formed from the chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ≥ Cr + 1.5 x Si - 0.12 x Mn - 18 x N - 30 x C - 6 Remainder iron (Fe), as well as accompanying elements and impurities form a preliminary product and this is subsequently processed by cold forming into a material with a hardness of greater than 230 HB.
    Verfahren nach Anspruch 6, wobei das Vorprodukt mittels Warmverformung gebildet, dieses einer Lösungsglühbehandlung unterworfen oder von der Verformungstemperatur, gegebenenfalls verstärkt, abgekühlt und kaltverformt wird.A method according to claim 6, wherein the intermediate product by means of hot forming formed, this is subjected to a solution treatment or from the Deformation temperature, optionally increased, cooled and cold worked. Verfahren nach Anspruch 6 oder 7, wobei die Kaltverformung vollumfänglich radial senkrecht zur Längsachse des Vorproduktes durchgeführt wird.A method according to claim 6 or 7, wherein the cold deformation is complete is carried out radially perpendicular to the longitudinal axis of the intermediate product. Verfahren nach einem der Ansprüche 6 bis 8, nach welchen der Nickelgehalt der Legierung um höchstens 4,8 Gew.-% größer eingestellt wird als dem Wert, gebildet nach dem Zusammenhang von Anspruch 6, entspricht.Method according to one of claims 6 to 8, according to which the nickel content of the Alloy is set by a maximum of 4.8 wt .-% larger than the value according to the context of claim 6. Verfahren nach einem der Ansprüche 6 bis 9, nach welchen die Legierung mit Gehalten von einem oder mehreren Legierungselementen in Gew.-% C = 0,02 bis 0,20, vorzugsweise 0,04 bis 0,15 Si = 0,50 bis 2,48, vorzugsweise 1,22 bis 2,36 Mn = 0,62 bis 4,05, vorzugsweise 1,00 bis 3,95 Cr = 20,1 bis 27,6, vorzugsweise 23,9 bis 26,5 Ni = 16,1 bis 27,3, vorzugsweise 17,9 bis 25,45 N = 0,014 bis 0,23, vorzugsweise 0,018 bis 0,2
    gebildet wird.
    Method according to one of claims 6 to 9, according to which the alloy with contents of one or more alloy elements in wt .-% C = 0.02 to 0.20, preferably 0.04 to 0.15 Si = 0.50 to 2.48, preferably 1.22 to 2.36 Mn = 0.62 to 4.05, preferably 1.00 to 3.95 Cr = 20.1 to 27.6, preferably 23.9 to 26.5 Ni = 16.1 to 27.3, preferably 17.9 to 25.45 N = 0.014 to 0.23, preferably 0.018 to 0.2
    is formed.
    Verfahren nach einem der Ansprüche 6 bis 10, wobei durch Kaltverformung ein Werkstoff mit einer Härte von größer als 250 HB, insbesondere von 300 HB und höher gebildet wird.A method according to any one of claims 6 to 10, wherein by cold working Material with a hardness greater than 250 HB, in particular 300 HB and is formed higher. Verwendung einer Eisenbasislegierung mit Legierungselementen in Gew.-% von Kohlenstoff (C) bis 0,25 Silizium (Si) bis 2,5 Mangan (Mn) bis 4,3 Chrom (Cr) 16,0 bis 28,0 Nickel (Ni) 15,0 bis 36,0 Stickstoff (N) 0,01 bis 0,29
    mit der Maßgabe, dass der Nickelgehalt der Legierung gleich oder gegebenenfalls um höchstens 4,8 Gew.-% größer ist als der Wert, gebildet von dem Gehalt an Chrom plus 1,5 Silizium minus 0,12 Mangan minus 18 Stickstoff minus 30 Kohlenstoff minus dem Zahlenwert 6 Ni ≥ Cr + 1,5 x Si - 0,12 x Mn - 18 x N - 30 x C - 6 Rest Eisen (Fe) sowie Begleitelemente und Verunreinigungen, welche Legierung durch Kaltverformung des daraus gebildeten Vorproduktes auf eine Materialhärte von mindestens 230 HB, vorzugsweise von größer als 250 HB, verfestigt ist, als Werkstoff für Warmarbeitswerkzeuge mit einer Arbeitstemperatur von höher als 555°C, vorzugsweise von höher als 602°C, insbesondere bis 750°C.
    Use of an iron-based alloy with alloying elements in% by weight Carbon (C) up to 0.25 Silicon (Si) to 2.5 Manganese (Mn) to 4.3 Chrome (Cr) 16.0 to 28.0 Nickel (Ni) 15.0 to 36.0 Nitrogen (N) 0.01 to 0.29
    with the proviso that the nickel content of the alloy is equal to or possibly greater by a maximum of 4.8% by weight than the value formed from the content of chromium plus 1.5 silicon minus 0.12 manganese minus 18 nitrogen minus 30 carbon minus the numerical value 6 Ni ≥ Cr + 1.5 x Si - 0.12 x Mn - 18 x N - 30 x C - 6 Remainder iron (Fe) as well as accompanying elements and impurities, which alloy is hardened by cold forming of the preliminary product formed from it to a material hardness of at least 230 HB, preferably greater than 250 HB, as a material for hot work tools with a working temperature of higher than 555 ° C, preferably higher than 602 ° C, especially up to 750 ° C.
    Verwendung einer Eisenbasislegierung nach Anspruch 10 als Werkzeugwerkstoff in der Glasindustrie, insbesondere als Formenwerkstoff für Maschinenpreßgläser.Use of an iron-based alloy according to claim 10 as Tool material in the glass industry, especially as a mold material for Maschinenpreßgläser.
    EP02450262A 2002-01-23 2002-11-15 Inert material with high hardness for elements used at high temperature Expired - Lifetime EP1420077B1 (en)

    Priority Applications (2)

    Application Number Priority Date Filing Date Title
    SI200230449T SI1420077T1 (en) 2002-01-23 2002-11-15 Inert material with high hardness for elements used at high temperature
    AT02450262T ATE341651T1 (en) 2002-01-23 2002-11-15 REACTION CARRIER MATERIAL WITH INCREASED HARDNESS FOR THERMALLY STRESSED COMPONENTS

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    AT0010702A AT410550B (en) 2002-01-23 2002-01-23 Material used as a tool material in the glass industry, especially as a molding material for machine pressed glass consists of an alloy containing carbon, silicon, chromium, nickel and nitrogen

    Publications (2)

    Publication Number Publication Date
    EP1420077A1 true EP1420077A1 (en) 2004-05-19
    EP1420077B1 EP1420077B1 (en) 2006-10-04

    Family

    ID=3624219

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02450262A Expired - Lifetime EP1420077B1 (en) 2002-01-23 2002-11-15 Inert material with high hardness for elements used at high temperature

    Country Status (13)

    Country Link
    US (1) US20030136482A1 (en)
    EP (1) EP1420077B1 (en)
    KR (1) KR100540851B1 (en)
    CN (1) CN1434146A (en)
    AT (1) AT410550B (en)
    BR (1) BR0300116A (en)
    CA (1) CA2416950C (en)
    DE (1) DE50208351D1 (en)
    DK (1) DK1420077T3 (en)
    ES (1) ES2273992T3 (en)
    HK (1) HK1067668A1 (en)
    RU (1) RU2246553C2 (en)
    TW (1) TWI225102B (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2246454A1 (en) * 2008-02-27 2010-11-03 Sumitomo Metal Industries, Ltd. Carburization-resistant metal material
    CN102650023A (en) * 2011-02-23 2012-08-29 宝山钢铁股份有限公司 Cu-Fe-Ni-Cr austenite alloy for oil bushing
    WO2018160515A1 (en) * 2017-03-03 2018-09-07 Borgwarner Inc. Nickel and chrome based iron alloy having enhanced high temperature oxidation resistance

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1605072B1 (en) * 2003-03-20 2012-09-12 Sumitomo Metal Industries, Ltd. Stainless steel for high pressure hydrogen gas, vessel and equipment comprising the steel
    US20090053100A1 (en) * 2005-12-07 2009-02-26 Pankiw Roman I Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same
    UA100460C2 (en) * 2008-11-19 2012-12-25 Сандвік Інтеллекчуал Проперті Аб Nickel based alloy capable for forming ALUMINA
    EP2224031B1 (en) 2009-02-17 2013-04-03 MEC Holding GmbH Wear resistant alloy
    EP2287351A1 (en) 2009-07-22 2011-02-23 Arcelormittal Investigación y Desarrollo SL Heat-resistant austenitic steel having high resistance to stress relaxation cracking
    CN101921967A (en) * 2010-08-12 2010-12-22 江苏新华合金电器有限公司 Novel austenitic heat-resistance stainless steel
    US9347121B2 (en) * 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
    PL3590643T3 (en) * 2018-07-02 2021-07-05 Höganäs Ab (Publ) Wear-resistant iron-based alloy compositions comprising nickel
    CN110724873A (en) * 2018-07-17 2020-01-24 宝钢特钢有限公司 High-wear-resistance die forging die steel and manufacturing method thereof
    RU2703318C1 (en) * 2019-04-15 2019-10-16 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Radiation-resistant austenitic steel for the wwpr in-vessel partition

    Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2746209A (en) * 1949-08-20 1956-05-22 Libbey Owens Ford Glass Co Equipment for bending glass sheets
    US4341555A (en) * 1980-03-31 1982-07-27 Armco Inc. High strength austenitic stainless steel exhibiting freedom from embrittlement
    EP0087482A1 (en) * 1982-02-26 1983-09-07 Kubota Ltd. Heat-resisting alloy for rolls
    US4560408A (en) * 1983-06-10 1985-12-24 Santrade Limited Method of using chromium-nickel-manganese-iron alloy with austenitic structure in sulphurous environment at high temperature
    US5223214A (en) * 1992-07-09 1993-06-29 Carondelet Foundry Company Heat treating furnace alloys
    EP0801140A1 (en) * 1996-04-12 1997-10-15 Daido Tokushuko Kabushiki Kaisha Heat resisting alloys, exhaust valves and support for exhaust gas treating catalysts
    JP2001011583A (en) * 1999-07-02 2001-01-16 Hmy Ltd Heat resistant alloy

    Family Cites Families (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3385739A (en) * 1965-04-13 1968-05-28 Eaton Yale & Towne Alloy steel articles and the method of making
    AT305000B (en) * 1970-06-29 1973-02-12 Mannesmann Ag Tool
    US3833358A (en) * 1970-07-22 1974-09-03 Pompey Acieries Refractory iron-base alloy resisting to high temperatures
    DE2641555A1 (en) * 1976-09-15 1978-03-16 Schevtschenko METHOD OF CONTINUOUS TUBE ROLLING AND CONTINUOUS TUBE ROLLING MILL
    US4329173A (en) * 1980-03-31 1982-05-11 Carondelet Foundry Company Alloy resistant to corrosion
    US4489040A (en) * 1982-04-02 1984-12-18 Cabot Corporation Corrosion resistant nickel-iron alloy
    DE3407307A1 (en) * 1984-02-24 1985-08-29 Mannesmann AG, 4000 Düsseldorf USE OF A CORROSION-RESISTANT AUSTENITIC IRON-CHROME-NICKEL-NITROGEN ALLOY FOR MECHANICALLY HIGH-QUALITY COMPONENTS
    JPS64255A (en) * 1987-03-12 1989-01-05 Nippon Steel Corp High-hardness nonmagnetic stainless steel for electrical equipment parts
    US4795610A (en) * 1987-04-23 1989-01-03 Carondelet Foundry Company Corrosion resistant alloy
    US4981647A (en) * 1988-02-10 1991-01-01 Haynes International, Inc. Nitrogen strengthened FE-NI-CR alloy
    US4861547A (en) * 1988-04-11 1989-08-29 Carondelet Foundry Company Iron-chromium-nickel heat resistant alloys
    US5098652A (en) * 1989-06-13 1992-03-24 Kabushiki Kaisha Toshiba Precision parts of non-magnetic stainless steels
    JP2756549B2 (en) * 1989-07-22 1998-05-25 日新製鋼株式会社 Manufacturing method of high strength duplex stainless steel strip with excellent spring properties.
    US5016460A (en) * 1989-12-22 1991-05-21 Inco Alloys International, Inc. Durable method for producing finned tubing
    AT408889B (en) * 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T CORROSION-RESISTANT MATERIAL
    SE0004336L (en) * 2000-11-24 2002-05-25 Sandvik Ab Cylinder pipes for industrial chemical installations

    Patent Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2746209A (en) * 1949-08-20 1956-05-22 Libbey Owens Ford Glass Co Equipment for bending glass sheets
    US4341555A (en) * 1980-03-31 1982-07-27 Armco Inc. High strength austenitic stainless steel exhibiting freedom from embrittlement
    EP0087482A1 (en) * 1982-02-26 1983-09-07 Kubota Ltd. Heat-resisting alloy for rolls
    US4560408A (en) * 1983-06-10 1985-12-24 Santrade Limited Method of using chromium-nickel-manganese-iron alloy with austenitic structure in sulphurous environment at high temperature
    US5223214A (en) * 1992-07-09 1993-06-29 Carondelet Foundry Company Heat treating furnace alloys
    EP0801140A1 (en) * 1996-04-12 1997-10-15 Daido Tokushuko Kabushiki Kaisha Heat resisting alloys, exhaust valves and support for exhaust gas treating catalysts
    JP2001011583A (en) * 1999-07-02 2001-01-16 Hmy Ltd Heat resistant alloy

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 2000, no. 16 8 May 2001 (2001-05-08) *

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2246454A1 (en) * 2008-02-27 2010-11-03 Sumitomo Metal Industries, Ltd. Carburization-resistant metal material
    EP2246454A4 (en) * 2008-02-27 2014-01-22 Nippon Steel & Sumitomo Metal Corp Carburization-resistant metal material
    CN102650023A (en) * 2011-02-23 2012-08-29 宝山钢铁股份有限公司 Cu-Fe-Ni-Cr austenite alloy for oil bushing
    WO2018160515A1 (en) * 2017-03-03 2018-09-07 Borgwarner Inc. Nickel and chrome based iron alloy having enhanced high temperature oxidation resistance

    Also Published As

    Publication number Publication date
    EP1420077B1 (en) 2006-10-04
    HK1067668A1 (en) 2005-04-15
    KR20030064304A (en) 2003-07-31
    DE50208351D1 (en) 2006-11-16
    ES2273992T3 (en) 2007-05-16
    TWI225102B (en) 2004-12-11
    CA2416950C (en) 2007-08-28
    CN1434146A (en) 2003-08-06
    KR100540851B1 (en) 2006-01-10
    US20030136482A1 (en) 2003-07-24
    RU2246553C2 (en) 2005-02-20
    CA2416950A1 (en) 2003-07-23
    DK1420077T3 (en) 2007-02-05
    RU2003101774A (en) 2005-01-10
    BR0300116A (en) 2003-09-09
    ATA1072002A (en) 2002-10-15
    AT410550B (en) 2003-05-26

    Similar Documents

    Publication Publication Date Title
    DE60214456T2 (en) Martensitic stainless steel with high hardness and good corrosion resistance
    EP2855723B1 (en) Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance
    AT412727B (en) CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
    EP1956108A1 (en) High-strength steel excellent in delayed fracture resistance characteristics and metal bolts
    DE60010997T2 (en) Heat-resistant chrome-molybdenum steel
    AT515157B1 (en) Process for producing plastic molds from martensitic chromium steel and plastic mold
    AT410550B (en) Material used as a tool material in the glass industry, especially as a molding material for machine pressed glass consists of an alloy containing carbon, silicon, chromium, nickel and nitrogen
    WO2017085072A1 (en) High-grade structural steel with bainitic structure, forged part produced therefrom and method for producing a forged part
    DE1558668C3 (en) Use of creep-resistant, stainless austenitic steels for the production of sheet metal
    EP1905857A2 (en) High-strength steel and applications for such steel
    EP1249511B1 (en) High speed steel with good high temperature strength manufactured by powder metallurgy
    EP1300482B1 (en) Hot-work tool-steel article
    DE2800444C2 (en) Use of a Cr-Mo steel
    EP1233080B1 (en) Steel for plastic molds and process of heat treatment thereof
    DE2253148C3 (en) Process for the production of a ferritic, corrosion-resistant steel and its use
    DE112008001181B4 (en) Use of a steel alloy for axle tubes and axle tube
    EP3591081A1 (en) Use of a steel for producing a steel component, namely for a gearwheel, a shaft, an axle or a tool holder to a thermochemically cured edge layer and such steel component having a thermochemically cured edge layer
    EP2396440A1 (en) Steel alloy
    EP0733719B1 (en) Iron base alloy for use at high temperature
    DE202009017752U1 (en) hardened steel
    EP3872206B1 (en) Post-treated cold rolled steel sheet product and method of manufacturing a post-treated cold rolled steel sheet product
    WO2022049282A1 (en) Hot-rolled flat steel product and method for producing a hot-rolled flat steel product
    EP1471160B1 (en) Cold-worked Steel Object
    EP1445339B1 (en) Alloy and article with high heat resistance and high heat stability
    EP3458623B1 (en) Method for producing a steel material, and steel material

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17P Request for examination filed

    Effective date: 20040619

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BOEHLER EDELSTAHL GMBH

    17Q First examination report despatched

    Effective date: 20041201

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

    AXX Extension fees paid

    Extension state: SI

    Payment date: 20040619

    REG Reference to a national code

    Ref country code: HK

    Ref legal event code: DE

    Ref document number: 1067668

    Country of ref document: HK

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

    AX Request for extension of the european patent

    Extension state: SI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061004

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061004

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50208351

    Country of ref document: DE

    Date of ref document: 20061116

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061130

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070104

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20070110

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070316

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2273992

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070705

    BERE Be: lapsed

    Owner name: BOHLER EDELSTAHL GMBH

    Effective date: 20061130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070105

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061004

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061115

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061004

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061004

    REG Reference to a national code

    Ref country code: HK

    Ref legal event code: GR

    Ref document number: 1067668

    Country of ref document: HK

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CZ

    Payment date: 20081111

    Year of fee payment: 7

    Ref country code: DK

    Payment date: 20081118

    Year of fee payment: 7

    Ref country code: NL

    Payment date: 20081113

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SK

    Payment date: 20081112

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20081114

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20100601

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: SK

    Ref legal event code: MM4A

    Ref document number: E 1152

    Country of ref document: SK

    Effective date: 20091115

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091115

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091115

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100601

    REG Reference to a national code

    Ref country code: SI

    Ref legal event code: KO00

    Effective date: 20100827

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091116

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20141119

    Year of fee payment: 13

    Ref country code: DE

    Payment date: 20141119

    Year of fee payment: 13

    Ref country code: ES

    Payment date: 20141126

    Year of fee payment: 13

    Ref country code: GB

    Payment date: 20141119

    Year of fee payment: 13

    Ref country code: CH

    Payment date: 20141119

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20141120

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20141126

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50208351

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 341651

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20151115

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20151115

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151115

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151130

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20160729

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151115

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151115

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160601

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151130

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20170303

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151116