EP3458623B1 - Method for producing a steel material, and steel material - Google Patents

Method for producing a steel material, and steel material Download PDF

Info

Publication number
EP3458623B1
EP3458623B1 EP17724522.2A EP17724522A EP3458623B1 EP 3458623 B1 EP3458623 B1 EP 3458623B1 EP 17724522 A EP17724522 A EP 17724522A EP 3458623 B1 EP3458623 B1 EP 3458623B1
Authority
EP
European Patent Office
Prior art keywords
steel material
toughness
din
strength
mechanical properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17724522.2A
Other languages
German (de)
French (fr)
Other versions
EP3458623A1 (en
EP3458623C0 (en
Inventor
Jochen Perko
Michael Haspel
Patric Schütz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH and Co KG
Original Assignee
Voestalpine Boehler Edelstahl GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Boehler Edelstahl GmbH and Co KG filed Critical Voestalpine Boehler Edelstahl GmbH and Co KG
Publication of EP3458623A1 publication Critical patent/EP3458623A1/en
Application granted granted Critical
Publication of EP3458623C0 publication Critical patent/EP3458623C0/en
Publication of EP3458623B1 publication Critical patent/EP3458623B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the steels for this are standardized in particular and mainly the steels DIN 1.4542, DIN 1.4418, but also DIN 1.4313 are used for such aggregates.
  • the DIN 1.4418 steel has a high yield strength (Rp 0.2 %) of around 1000 MPa, whereby the DIN 1.4418 steel can achieve a very high low-temperature toughness, which is typically between 50 and 150J (Charpy V-Notch) impact work at -40°C amounts to. This high level of toughness is required because of the cavitation that occurs in pumps.
  • the material DIN 1.4542 cannot even come close to achieving this level of toughness with the same yield point and usually only has single-digit notched bar impact work values at - 40°C.
  • Steel DIN 1.4313 is also used for pump blocks, but due to its lower alloy content compared to DIN 1.4418, when tempered to its maximum strength level, it can only achieve yield strengths of between 900 and 1000 MPa. When using this material in the highest strength level, however, only a low level of toughness can be achieved at low temperatures, with the corrosion resistance due to the alloy being significantly lower compared to the other two steels.
  • the materials DIN 1.4313 and DIN 1.4418 are nickel-martensitic secondary hardening alloys, while the material DIN 1.4542 is a nickel-martensitic copper-hardening material.
  • a martensitic steel material which contains no more than 10% delta ferrite and fine copper precipitations in the matrix.
  • the steel material is characterized by good anti-stress corrosion properties and high hardness.
  • the object of the invention is to create a material that has improved strength even with very high casting weights at a very high level of toughness, with corrosion resistance also being increased.
  • the object is achieved with a method for producing a steel material with the features of claim 2.
  • a further object is to create a steel material which has correspondingly similar or higher strengths than known steels, but has a higher level of toughness and better corrosion resistance.
  • the inventors have set themselves the goal of developing a material that has the same or higher strength than DIN 1.4418 or DIN 1.4542, which in themselves already have very high strength, but also the very high level of toughness of DIN 1.4418 equals or exceeds it, but surpasses the corrosion resistance of the significantly less strong DIN 1.4313.
  • the additional goal is that these product properties are achieved with conventional melting, but the analysis is designed in such a way that a high-purity remelting variant (ESR or VLBO) can also be achieved. Due to its significantly lower content of oxidic inclusions of smaller size, such a high-purity remelting variant has special advantages with regard to the fatigue properties for special applications in machine or apparatus construction with high dynamic loads, such as in compressors or centrifuges is the case.
  • VLBO vacuum arc furnace
  • the fatigue strength of the material according to the invention can be increased by reducing the defect sizes in the material. This effect is of great importance above all when using the material according to the invention in high strength for aerospace applications.
  • the nickel-martensitic secondary hardening method on the one hand and the nickel-martensitic copper-hardening method on the other hand must be abandoned and a new path taken.
  • delta ferrite as a structural component reduces toughness, this phase being minimized as much as possible by an optimal ratio of austenite to ferrite stabilizing elements and, due to production, everything is done to reduce the delta ferrite phase using suitable casting technology and deformation to be kept low at an optimized temperature.
  • a niobium stabilization as used for example in DIN 1.4542, is completely avoided, so that according to the invention no coarse primary carbides are formed.
  • the inventors have recognized that material concepts such as DIN 1.4542 come from a time when plant technology in smelting metallurgy did not yet make it possible to reliably reduce the carbon content of melts with a high chromium content.
  • the conscious step of forgoing stabilization in this alloy system is one of the essential measures according to the invention, which makes it possible to realize a material with the property profile according to the invention and with the manufacturing options mentioned.
  • the invention thus relates to a steel material for the production of pumps or the like, the steel material having the analysis according to claim 1, the structure of the steel material consists of martensite with a maximum of 1% delta ferrite, the structure being free of primary hard phases, in particular based on niobium, tantalum, titanium or vanadium, and the tempering austenite content being a maximum of 8%.
  • the material will reach a yield strength of approx. 1000 MPa at a hardening temperature of 520°C with a toughness of over 70 J at -40°C and a yield strength of approx. 1100 MPa at a hardening temperature of 485°C a toughness at -40°C of more than 60 J, the values of the mechanical properties being based on measurements in the transverse direction.
  • the invention relates to a method for producing a steel material for pumps and the like, wherein a steel material is melted according to the analysis according to claim 2, wherein the steel material is melted conventionally or in electroslag remelting or in vacuum arc processes and is formed at 800°C to 1250°C, with a heat treatment following with a solution annealing at 850°C to 1050°C, followed by hardening, cooling and curing at 450°C to 520°C depending on the required mechanical properties.
  • Table 1 shows a comparison of all the materials mentioned in comparison to the material according to the invention (15-5MOD).
  • the material according to the invention was melted conventionally and several flat bars measuring 640 ⁇ 540 mm were produced by forging. After forging, the material is solution annealed at 950°C, hardened and then hardened.
  • the curing temperatures are 485°C in one case and 520°C in the other case.
  • the bars are divided in the middle and completely mechanically tested in the transverse direction in the bottom, middle and crown zones.
  • the mechanical testing consists of a tensile test at room temperature and a notch impact test (Charpy V-Notch). Room temperature and an impact test (Charpy V-Notch) at -40°C.
  • the analysis according to Table 1 shows that in the target state of the steel material according to the invention, the manganese and phosphorus contents in particular are reduced, in particular also the sulfur content.
  • the chromium content is between that of the materials DIN 1.4313 and DIN 1.4418, although the nitrogen content is particularly low and copper is also present.
  • Table 4 and Table 5 list comparative data for the materials DIN 1.4313 and DIN 1.4418, which were also determined from forged bars in the same dimensional range.
  • the steel material according to the invention has the best combination of strength and toughness.
  • Table 6 shows the results of a smaller DIN 1.4542 forged rod with the dimensions 520 x 280, which only achieves a fraction of the toughness with the same strength.
  • the maximum achievable strength potential with the defined analysis was also examined. It was shown that by lowering the hardening temperature to 450°C, a further increase in strength to a yield point of approx. 1177 - 1190 MPa can be achieved.
  • the loss of mass during erosive corrosion was determined in 20% acetic acid which was acidified to pH 1.6 with sulfuric acid. The test duration is 24 hours.
  • the results (Table 8) show that the materials DIN 1.4418, DIN 1.4542 and the material according to the invention show hardly any wear and the corrosion resistance under these conditions can be classified as equivalent.
  • the material DIN 1.4313 shows a significant loss of mass due to its lower alloy content.
  • the material according to the invention is able to improve both the strength and the toughness again while maintaining the same corrosion resistance.
  • the method according to the invention provides for the material to be conventionally melted into large ingot formats of up to >10 t using an analysis corresponding to the first line of Table 1.
  • the material is formed in the range of 800 to 1250°C, followed by a heat treatment.
  • the heat treatment consists of solution annealing at 850 to 1050° C., subsequent hardening, subsequent cooling and hardening at 450 to 600° C., the temperature range of 450 to 520° C. being preferred when aiming for maximum strength.
  • the structure of the material according to the invention then consists of martensite with a maximum of 1% delta ferrite, being free of primary hard phases (primarily based on niobium, tantalum, titanium, vanadium), with the tempering austenite content being a maximum of 8%.
  • the material according to the invention is primarily used for corrosion-resistant pump blocks, but can also be used in general machine and apparatus construction.
  • the material can also be produced as a high-purity remelting quality according to the ESR or VLBO process if there are increased requirements for fatigue strength, especially for units that are dynamically heavily loaded or for safety-critical structural parts in the aerospace industry.
  • the improvement in purity associated with the remelting results in the well-known improvements in fatigue properties by reducing the defect sizes in the material.
  • the advantage of the invention is that, on the one hand, a very precise analysis procedure and, on the other hand, a conversion of the analysis and the reduction of the delta ferrite and primary hard phases create a material that achieves very high strength, corrosion resistance and toughness in a way that previously could not be combined.

Description

Zur Herstellung von korrosiv stark belasteten Pumpen und dergleichen sind Stähle bekannt, aus denen die entsprechenden Blöcke für die Pumpen gefertigt werden, aus denen die Pumpen und Pumpenteile dann häufig spanend erzeugt werden.Steels are known for the production of pumps and the like that are subject to severe corrosive loads, from which the corresponding blocks for the pumps are made, from which the pumps and pump parts are then frequently produced by cutting.

Die Stähle hierfür sind insbesondere genormt und hauptsächlich werden für derartige Aggregate die Stähle DIN 1.4542, DIN 1.4418, aber auch DIN 1.4313 verwendet.The steels for this are standardized in particular and mainly the steels DIN 1.4542, DIN 1.4418, but also DIN 1.4313 are used for such aggregates.

Diese Stähle werden aufgrund des recht geringen Preisniveaus einerseits aber aufgrund des sehr hohen Bedarfs am Weltmarkt weitestgehend konventionell erschmolzen.On the one hand, these steels are melted conventionally due to the very low price level, but on the other hand due to the very high demand on the world market.

Werkstoffe, die mit entsprechenden Umschmelzverfahren (ESU oder VLBO) erzeugt werden, können aus Gründen des geringen Preisniveaus und des weltweiten Bedarfs nicht flächendeckend verwendet werden.Materials that are produced with the appropriate remelting process (ESR or VLBO) cannot be used across the board for reasons of the low price level and global demand.

Um Pumpenblöcke herzustellen, werden sehr große Blockformate benötigt, so dass die Gussgewichte häufig größer 10 t betragen. Das bedeutet, dass ein passender Werkstoff so ausgelegt sein muss, dass auch bei Verwendung konventioneller Blockformate und konventioneller Erschmelzung durch geringe Seigerneigung möglichst gleichmäßige Produkteigenschaften erzielt werden können. Seigerungen sind hier grundsätzlich unerwünscht, da Seigerungen Ausgangspunkt von mechanischen Inhomogenitäten und gegebenenfalls Rissen sein können. Darüber hinaus kann es im Bereich von Seigerungen zu abweichenden Korrosionsbeständigkeitseigenschaften kommen.In order to manufacture pump blocks, very large block formats are required, so that the casting weights are often greater than 10 t. This means that a suitable material must be designed in such a way that the product properties that are as uniform as possible can be achieved even when using conventional block formats and conventional melting due to a low tendency to segregate. Segregations are fundamentally undesirable here, since segregations can be the starting point for mechanical inhomogeneities and possibly cracks. In addition, there may be deviating corrosion resistance properties in the area of segregation.

Der Stahl DIN 1.4418 besitzt eine hohe Dehngrenze (Rp0,2%) von etwa 1000 MPa, wobei der Stahl DIN 1.4418 eine sehr hohe Kaltzähigkeit erreichen kann, welche typischerweise zwischen 50 und 150J (Charpy V-Notch) Kerbschlagarbeit bei -40°C beträgt. Dieses hohe Zähigkeitsniveau ist aufgrund der in Pumpen auftretenden Kavitation erforderlich.The DIN 1.4418 steel has a high yield strength (Rp 0.2 %) of around 1000 MPa, whereby the DIN 1.4418 steel can achieve a very high low-temperature toughness, which is typically between 50 and 150J (Charpy V-Notch) impact work at -40°C amounts to. This high level of toughness is required because of the cavitation that occurs in pumps.

Der Werkstoff DIN 1.4542 kann bei gleicher Dehngrenze dieses Zähigkeitsniveau nicht annähernd erreichen und verbleibt üblicherweise bei nur einstelligen Kerbschlagarbeitswerten bei - 40°C.The material DIN 1.4542 cannot even come close to achieving this level of toughness with the same yield point and usually only has single-digit notched bar impact work values at - 40°C.

Der Stahl DIN 1.4313 wird für Pumpenblöcke auch verwendet, kann jedoch aufgrund seiner gegenüber dem DIN 1.4418 geringeren Legierungslage bei Vergütung auf sein maximales Festigkeitsniveau nur Dehngrenzen zwischen 900 und 1000 MPa erreichen. Bei der Verwendung dieses Werkstoffs in höchster Festigkeitsstufe ist allerdings nur ein geringes Zähigkeitsniveau bei tiefen Temperaturen erreichbar, wobei zusätzlich die Korrosionsbeständigkeit durch die Legierung im Vergleich zu den anderen beiden Stählen deutlich geringer ist. Die Werkstoffe DIN 1.4313 und DIN 1.4418 sind hierbei nickelmartensitisch sekundärhärtende Legierungen, während der Werkstoff DIN 1.4542 ein nickelmartensitisch kupferaushärtender Werkstoff ist.Steel DIN 1.4313 is also used for pump blocks, but due to its lower alloy content compared to DIN 1.4418, when tempered to its maximum strength level, it can only achieve yield strengths of between 900 and 1000 MPa. When using this material in the highest strength level, however, only a low level of toughness can be achieved at low temperatures, with the corrosion resistance due to the alloy being significantly lower compared to the other two steels. The materials DIN 1.4313 and DIN 1.4418 are nickel-martensitic secondary hardening alloys, while the material DIN 1.4542 is a nickel-martensitic copper-hardening material.

Aus der EP 0649 915 A1 ist ein martensitischer Stahlwerksoff bekannt, der nicht mehr als 10% Deltaferrit und feine Kupferausscheidungen in der Matrix enthält. Der Stahlwerkstoff zeichnet sich durch gute Anti-Spannungskorrosionseigenschaften und eine hohe Härte aus.From the EP 0649 915 A1 a martensitic steel material is known which contains no more than 10% delta ferrite and fine copper precipitations in the matrix. The steel material is characterized by good anti-stress corrosion properties and high hardness.

Aufgabe der Erfindung ist es, einen Werkstoff zu schaffen, der auch bei sehr hohen Gussgewichten eine verbesserte Festigkeit bei einem sehr hohen Zähigkeitsniveau besitzt, wobei die Korrosionsbeständigkeit ebenfalls erhöht ist.The object of the invention is to create a material that has improved strength even with very high casting weights at a very high level of toughness, with corrosion resistance also being increased.

Die Aufgabe wird mit einem Verfahren zum Herstellen eines Stahlwerkstoffs mit den Merkmalen des Anspruchs 2 gelöst.The object is achieved with a method for producing a steel material with the features of claim 2.

Es ist eine weitere Aufgabe einen Stahlwerkstoff zu schaffen, der entsprechend gleichartige oder höhere Festigkeiten als bekannte Stähle besitzt, jedoch ein höheres Zähigkeitsniveau und eine bessere Korrosionsbeständigkeit besitzt.A further object is to create a steel material which has correspondingly similar or higher strengths than known steels, but has a higher level of toughness and better corrosion resistance.

Die Aufgabe wird mit einem Stahlwerkstoff mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved with a steel material having the features of claim 1.

Die Erfinder haben es sich zum Ziel gesetzt, einen Werkstoff zu entwickeln, der eine gleiche oder höhere Festigkeit besitzt als der DIN 1.4418 oder der DIN 1.4542, welche an sich schon eine sehr hohe Festigkeit besitzen, aber zusätzlich noch das sehr hohe Zähigkeitsniveau des DIN 1.4418 erreicht oder übertrifft, auf der anderen Seite aber die Korrosionsbeständigkeit des deutlich weniger festen DIN 1.4313 übertrifft.The inventors have set themselves the goal of developing a material that has the same or higher strength than DIN 1.4418 or DIN 1.4542, which in themselves already have very high strength, but also the very high level of toughness of DIN 1.4418 equals or exceeds it, but surpasses the corrosion resistance of the significantly less strong DIN 1.4313.

Das Ziel ist dabei jedoch zusätzlich, dass diese Produkteigenschaften bei konventioneller Erschmelzung erreicht werden, die Analyse aber so ausgelegt ist, dass auch eine hochreine Umschmelzvariante (ESU oder VLBO) erreichbar ist. Eine solche hochreine Umschmelzvariante besitzt durch ihren deutlich geringeren Gehalt an oxidischen Einschlüssen geringerer Größe besondere Vorteile bezüglich der Ermüdungseigenschaften für Sonderanwendungen im Maschinen- oder Apparatebau mit hohen dynamischen Belastungen, wie dies zum Beispiel bei Verdichtern oder Zentrifugen der Fall ist. Durch Umschmelzen im Vakuumlichtbogenofen (VLBO), welches die übliche Umschmelztechnologie für hochbelastete Bauteile in Luftfahrtsanwendungen darstellt, kann beim erfindungsgemäßen Werkstoff durch Absenken der Defektgrößen im Werkstoff die Dauerfestigkeit erhöht werden. Dieser Effekt ist vor allem bei Anwendung des erfindungsgemäßen Werkstoffes in hoher Festigkeit für Luft- und Raumfahrtanwendungen von großer Bedeutung.However, the additional goal is that these product properties are achieved with conventional melting, but the analysis is designed in such a way that a high-purity remelting variant (ESR or VLBO) can also be achieved. Due to its significantly lower content of oxidic inclusions of smaller size, such a high-purity remelting variant has special advantages with regard to the fatigue properties for special applications in machine or apparatus construction with high dynamic loads, such as in compressors or centrifuges is the case. By remelting in a vacuum arc furnace (VLBO), which is the usual remelting technology for highly stressed components in aviation applications, the fatigue strength of the material according to the invention can be increased by reducing the defect sizes in the material. This effect is of great importance above all when using the material according to the invention in high strength for aerospace applications.

Um erfindungsgemäß derartige Werkstoffeigenschaften zu erzeugen, muss die nickelmartensitisch sekundärhärtende Arbeitsweise einerseits und die nickelmartensitisch kupferaushärtende Arbeitsweise andererseits verlassen werden und ein neuer Weg eingeschlagen werden.In order to produce such material properties according to the invention, the nickel-martensitic secondary hardening method on the one hand and the nickel-martensitic copper-hardening method on the other hand must be abandoned and a new path taken.

Erfindungsgemäß wird bei dem neuen Stahlwerkstoff Kupfer zum Aushärten verwendet. Die Erfinder haben erkannt, dass Delta-Ferrit als Gefügebestandteil die Zähigkeit vermindert, wobei durch ein optimales Verhältnis der Austenit- zu Ferrit stabilisierenden Elemente diese Phase möglichst minimiert wird und herstellbedingt alles unternommen wird, um die Delta-Ferrit-Phase durch geeignete Gießtechnologie und Verformung bei optimierter Temperatur gering zu halten.According to the invention, copper is used for hardening in the new steel material. The inventors have recognized that delta ferrite as a structural component reduces toughness, this phase being minimized as much as possible by an optimal ratio of austenite to ferrite stabilizing elements and, due to production, everything is done to reduce the delta ferrite phase using suitable casting technology and deformation to be kept low at an optimized temperature.

Eine Niobstabilisierung, wie sie beispielsweise im DIN 1.4542 verwendet wird, wird vollkommen vermieden, so dass erfindungsgemäß keine groben Primärkarbide gebildet werden.A niobium stabilization, as used for example in DIN 1.4542, is completely avoided, so that according to the invention no coarse primary carbides are formed.

Die Erfinder haben erkannt, dass Werkstoffkonzepte wie der DIN 1.4542 aus einer Zeit stammen, in der die Anlagentechnik in der Schmelzmetallurgie es noch nicht gesichert ermöglichte, den Kohlenstoffgehalt von hochchromhaltigen Schmelzen zu reduzieren.The inventors have recognized that material concepts such as DIN 1.4542 come from a time when plant technology in smelting metallurgy did not yet make it possible to reliably reduce the carbon content of melts with a high chromium content.

Aus diesem Grund wurde häufig der Weg gegangen, den für die Korrosionsbeständigkeit schädlichen Kohlenstoff durch starke Karbidbildner wie Titan oder Niob durch die Bildung von Monokarbiden abzubinden und die Bildung von Chromkarbiden zu verhindern. Diese Legierungstechnik wurde sowohl bei austenitischen Werkstoffen, als auch bei martensitischen Werkstoffen wie dem DIN 1.4542 verwendet, und ist noch heute in den internationalen Normen für diesen Werkstoff vorgeschrieben.For this reason, the path has often been taken to bind the carbon, which is harmful to corrosion resistance, with strong carbide formers such as titanium or niobium through the formation of monocarbides and to prevent the formation of chromium carbides. This alloying technique was used for both austenitic materials and martensitic materials such as DIN 1.4542, and is still prescribed for this material in the international standards today.

Der bewusste Schritt auf eine Stabilisierung in diesem Legierungssystem zu verzichten ist eine der wesentlichen erfindungsgemäßen Maßnahmen, die es erlaubt einen Werkstoff mit dem erfindungsgemäßen Eigenschaftsprofil und mit den genannten Herstellmöglichkeiten zu realisieren.The conscious step of forgoing stabilization in this alloy system is one of the essential measures according to the invention, which makes it possible to realize a material with the property profile according to the invention and with the manufacturing options mentioned.

Die Erfindung betrifft somit einen Stahlwerkstoff zur Herstellung von Pumpen oder dergleichen, wobei der Stahlwerkstoff die Analyse laut Anspruch 1 aufweist, wobei das Gefüge des Stahlwerkstoffs aus Martensit mit maximal 1% Deltaferrit besteht, wobei das Gefüge frei von primären Hartphasen, insbesondere auf Basis Niob, Tantal, Titan oder Vanadium ist und der Anlass-Austenitgehalt maximal 8% beträgt.The invention thus relates to a steel material for the production of pumps or the like, the steel material having the analysis according to claim 1, the structure of the steel material consists of martensite with a maximum of 1% delta ferrite, the structure being free of primary hard phases, in particular based on niobium, tantalum, titanium or vanadium, and the tempering austenite content being a maximum of 8%.

Es ist vorgesehen, dass das Material bei einer Aushärtetemperatur von 520°C eine Dehngrenze von ca. 1000 MPa bei einer Zähigkeit bei -40°C von über 70 J erreicht und bei einer Aushärtetemperatur von 485°C eine Dehngrenze von ca. 1100 MPa bei einer Zähigkeit bei -40°C von über 60 J erreicht, wobei die Werte der mechanischen Eigenschaften auf Messungen in Querrichtung bezogen sind.It is intended that the material will reach a yield strength of approx. 1000 MPa at a hardening temperature of 520°C with a toughness of over 70 J at -40°C and a yield strength of approx. 1100 MPa at a hardening temperature of 485°C a toughness at -40°C of more than 60 J, the values of the mechanical properties being based on measurements in the transverse direction.

Zudem betrifft die Erfindung ein Verfahren zum Herstellen eines Stahlwerkstoffes für Pumpen und dergleichen wobei ein Stahlwerkstoff entsprechend der Analyse gemäß Anspruch 2 erschmolzen wird, wobei der Stahlwerkstoff konventionell oder in Elektroschlackeumschmelz- oder in Vakuumlichtbogen-Verfahren erschmolzen wird und bei 800°C bis 1250°C umgeformt wird, wobei eine Wärmebehandlung folgt mit einem Lösungsglühen bei 850°C bis 1050°C, gefolgt von einem Härten, Abkühlen und einem Aushärten bei 450°C bis 520°C je nach benötigen mechanischen Eigenschaften.In addition, the invention relates to a method for producing a steel material for pumps and the like, wherein a steel material is melted according to the analysis according to claim 2, wherein the steel material is melted conventionally or in electroslag remelting or in vacuum arc processes and is formed at 800°C to 1250°C, with a heat treatment following with a solution annealing at 850°C to 1050°C, followed by hardening, cooling and curing at 450°C to 520°C depending on the required mechanical properties.

Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert.The invention is explained by way of example with reference to a drawing.

Es zeigen dabei:

Tabelle 1
die chemische Analyse der Normwerkstoffe, basierend auf EN 10088-3 im Vergleich zum erfindungsgemäßen Werkstoff (15-5MOD);
Tabelle 2
die mechanischen Eigenschaften des erfindungsgemäßen Werkstoffs in Querrichtung bei einer Aushärtung bei 520°C;
Tabelle 3
die mechanischen Eigenschaften des erfindungsgemäßen Werkstoffs in Querrichtung bei einer Aushärtung bei 485°C;
Tabelle 4
die mechanischen Eigenschaften eines nicht erfindungsgemäßen Normwerkstoffs in Querrichtung;
Tabelle 5
die mechanischen Eigenschaften eines weiteren Normwerkstoffs in Querrichtung;
Tabelle 6
die mechanischen Eigenschaften eines weiteren Normwerkstoffs in Querrichtung;
Tabelle 7
die mechanischen Eigenschaften des erfindungsgemäßen Werkstoffs in Querrichtung bei einer Aushärtung bei 450°C;
Tabelle 8
die Beständigkeit gegen abtragende Korrosion anhand von Zugversuchskennwerten der untersuchten Proben und der Massenverlust der Normwerkstoffe und des erfindungsgemäßen Werkstoffs im Vergleich.
They show:
Table 1
the chemical analysis of the standard materials, based on EN 10088-3 in comparison to the material according to the invention (15-5MOD);
Table 2
the mechanical properties of the material according to the invention in the transverse direction when hardened at 520° C.;
Table 3
the mechanical properties of the material according to the invention in the transverse direction when cured at 485° C.;
Table 4
the mechanical properties of a standard material not according to the invention in the transverse direction;
Table 5
the mechanical properties of another standard material in the transverse direction;
Table 6
the mechanical properties of another standard material in the transverse direction;
Table 7
the mechanical properties of the material according to the invention in the transverse direction when cured at 450° C.;
Table 8
the resistance to erosive corrosion based on tensile test parameters of the samples examined and the mass loss of the standard materials and the material according to the invention in comparison.

Tabelle 1 zeigt eine Gegenüberstellung aller genannten Werkstoffe im Vergleich zum erfindungsgemäßen Werkstoff (15-5MOD). Der erfindungsgemäße Werkstoff wurde konventionell erschmolzen und es wurden mehrere Flachstäbe mit der Abmessung 640 x 540 mm durch Schmieden hergestellt. Nach dem Schmieden wird der Werkstoff bei 950°C lösungsgeglüht, gehärtet und anschließend ausgehärtet.Table 1 shows a comparison of all the materials mentioned in comparison to the material according to the invention (15-5MOD). The material according to the invention was melted conventionally and several flat bars measuring 640×540 mm were produced by forging. After forging, the material is solution annealed at 950°C, hardened and then hardened.

Die Aushärtetemperaturen betragen in einem Fall 485°C und im anderen Fall 520°C.The curing temperatures are 485°C in one case and 520°C in the other case.

Nach der Wärmebehandlung werden die Stäbe mittig geteilt und in den Zonen Boden, Mitte und Schopf in Querrichtung vollständig mechanisch erprobt.After heat treatment, the bars are divided in the middle and completely mechanically tested in the transverse direction in the bottom, middle and crown zones.

Die mechanische Erprobung besteht hierbei aus einem Zugversuch bei Raumtemperatur, ein Kerbschlagversuch (Charpy V-Notch) bei Raumtemperatur und ein Kerbschlagversuch (Charpy V-Notch) bei -40°C.The mechanical testing consists of a tensile test at room temperature and a notch impact test (Charpy V-Notch). Room temperature and an impact test (Charpy V-Notch) at -40°C.

Die Analyse gemäß Tabelle 1 zeigt, dass im Sollzustand des erfindungsgemäßen Stahlwerkstoffes insbesondere die Mangan- und Phosphorgehalte zurückgenommen sind, insbesondere auch der Schwefelgehalt. Der Chromgehalt liegt zwischen dem der Werkstoffe DIN 1.4313 und DIN 1.4418, wobei jedoch letztlich der Stickstoffgehalt besonders niedrig ist und zudem Kupfer vorhanden ist.The analysis according to Table 1 shows that in the target state of the steel material according to the invention, the manganese and phosphorus contents in particular are reduced, in particular also the sulfur content. The chromium content is between that of the materials DIN 1.4313 and DIN 1.4418, although the nitrogen content is particularly low and copper is also present.

Die mechanischen Eigenschaften in den beiden Aushärtezuständen sind in den Tabellen 2 und 3 dargestellt und zeigen, dass sich die Festigkeit um ca. 100 MPa unterscheidet und mit den festgelegten Wärmebehandlungen eine Dehngrenze von ca. 1000 bzw. 1100 MPa erreicht werden können. Die Besonderheit am erfindungsgemäßen Werkstoff ist jedoch ein beeindruckend hohes Zähigkeitsniveau auch bei tiefen Temperaturen.The mechanical properties in the two hardening states are shown in Tables 2 and 3 and show that the strength differs by approx. 100 MPa and that a yield strength of approx. 1000 and 1100 MPa can be achieved with the specified heat treatments. The special feature of the material according to the invention, however, is an impressively high level of toughness even at low temperatures.

Diese hervorragende Eigenschaftskombination ist auf die erfindungsgemäße Erkenntnis zurückzuführen, dass Delta-Ferrit durch passende Analysenauslegung weitestgehend vermieden werden kann. Weiters ist bei der Erfindung die Höchstmenge an Niob stark beschränkt, so dass eine Niobstabilisierung ausscheidet und die Niobgehalte so niedrig sind, dass zähigkeitsvermindernde Hartphasen vermieden werden.This excellent combination of properties is due to the finding according to the invention that delta ferrite can be largely avoided by appropriate analysis design. Furthermore, in the case of the invention, the maximum amount of niobium is severely restricted, so that niobium stabilization is ruled out and the niobium contents are so low that toughness-reducing hard phases are avoided.

Zum Vergleich sind in Tabelle 4 und Tabelle 5 Vergleichsdaten der Werkstoffe DIN 1.4313 und DIN 1.4418 aufgeführt, wobei diese ebenfalls aus Schmiedestäben im gleichen Abmessungsbereich ermittelt wurden.For comparison, Table 4 and Table 5 list comparative data for the materials DIN 1.4313 and DIN 1.4418, which were also determined from forged bars in the same dimensional range.

Der erfindungsgemäße Stahlwerkstoff weist dabei die beste Kombination aus Festigkeit und Zähigkeit auf.The steel material according to the invention has the best combination of strength and toughness.

Tabelle 6 zeigt die Ergebnisse von einem kleineren DIN 1.4542 Schmiedestab mit den Abmessungen 520 x 280, der bei gleicher Festigkeit nur noch einen Bruchteil der Zähigkeit erreicht.Table 6 shows the results of a smaller DIN 1.4542 forged rod with the dimensions 520 x 280, which only achieves a fraction of the toughness with the same strength.

Im Rahmen der Entwicklung des erfindungsgemäßen Werkstoffes 15-5MOD wurde auch das mit der festgelegten Analyse maximal erzielbare Festigkeitspotenzial untersucht. Dabei zeigte sich, dass durch eine Absenkung der Aushärtetemperatur auf 450°C eine weitere Festigkeitserhöhung auf eine Dehngrenze von ca. 1177 - 1190 MPa erzielen lässt. In diesem höchstfesten Zustand ist die mittels Kerbschlagversuch bei -40°C ermittelte Zähigkeit naturgemäß gegenüber einer Aushärtung bei 485°C verringert, allerdings zeigt der Werkstoff mit 20J bis 78J (Tabelle 7) ein noch immer um ein Vielfaches höheres Kerbschlagarbeitsniveau als der Werkstoff DIN 1.4542 bei um mehr als 100MPa höherer Dehngrenze, sodass auch dieser WBH Zustand trotz geringerer Tieftemperaturzähigkeit als äußerst praxisrelevant anzusehen ist.As part of the development of the material 15-5MOD according to the invention, the maximum achievable strength potential with the defined analysis was also examined. It was shown that by lowering the hardening temperature to 450°C, a further increase in strength to a yield point of approx. 1177 - 1190 MPa can be achieved. In this high-strength state, the toughness determined by means of a notched bar impact test at -40°C is naturally reduced compared to hardening at 485°C, but the material with 20J to 78J (Table 7) still shows a notched bar impact work level that is many times higher than the material DIN 1.4542 with a yield point that is more than 100MPa higher, so that this WBH state can also be regarded as extremely relevant in practice, despite the lower low-temperature toughness.

Da der Werkstoff neben einer hohen Festigkeit und hiermit verbunden einer hohen Zähigkeit auch eine ausreichende Korrosionsbeständigkeit aufweisen muss, wurden auch zusätzliche Korrosionsuntersuchungen durchgeführt.Since the material has to have sufficient corrosion resistance in addition to high strength and the associated high toughness, additional corrosion tests were also carried out.

Ermittelt wurde der Masseverlust bei abtragender Korrosion in 20%-iger Essigsäure, die mit Schwefelsäure auf pH = 1,6 angesäuert wurde. Die Prüfdauer beträgt 24 Stunden. Die Ergebnisse (Tabelle 8) zeigen, dass die Werkstoffe DIN 1.4418, DIN 1.4542 und der erfindungsgemäße Werkstoff kaum Abtrag zeigen und die Korrosionsbeständigkeit unter diesen Bedingungen als gleichwertig eingestuft werden kann. Der Werkstoff DIN 1.4313 zeigt erwartungsgemäß aufgrund seines geringeren Legierungsgehaltes signifikanten Masseverlust. Hierbei wird besonders deutlich, dass der erfindungsgemäße Werkstoff es vermag, sowohl die Festigkeit als auch die Zähigkeit noch einmal zu verbessern bei einer gleichbleibenden Korrosionsbeständigkeit.The loss of mass during erosive corrosion was determined in 20% acetic acid which was acidified to pH 1.6 with sulfuric acid. The test duration is 24 hours. The results (Table 8) show that the materials DIN 1.4418, DIN 1.4542 and the material according to the invention show hardly any wear and the corrosion resistance under these conditions can be classified as equivalent. As expected, the material DIN 1.4313 shows a significant loss of mass due to its lower alloy content. Here it becomes particularly clear that the material according to the invention is able to improve both the strength and the toughness again while maintaining the same corrosion resistance.

Das erfindungsgemäße Verfahren sieht vor, den Werkstoff mit einer Analyse entsprechend erster Zeile der Tabelle 1 konventionell zu großen Blockformaten bis > 10 t zu erschmelzen.The method according to the invention provides for the material to be conventionally melted into large ingot formats of up to >10 t using an analysis corresponding to the first line of Table 1.

Anschließend wird das Material im Bereich von 800 bis 1250°C umgeformt, gefolgt von einer Wärmebehandlung.Then the material is formed in the range of 800 to 1250°C, followed by a heat treatment.

Die Wärmebehandlung besteht aus einem Lösungsglühen bei 850 bis 1050°C, einem anschließenden Härten, einem anschließenden Abkühlen und Aushärten bei 450 bis 600°C, bevorzugt wird der Temperaturbereich 450 bis 520°C beim Anstreben einer maximalen Festigkeit.The heat treatment consists of solution annealing at 850 to 1050° C., subsequent hardening, subsequent cooling and hardening at 450 to 600° C., the temperature range of 450 to 520° C. being preferred when aiming for maximum strength.

Das Gefüge des erfindungsgemäßen Materials besteht anschließend aus Martensit mit maximal 1% Delta-Ferrit, wobei es frei von primären Hartphasen (vor allen Dingen auf Basis Niob, Tantal, Titan, Vanadium) ist, wobei der Anlass-Austenitgehalt maximal 8% beträgt.The structure of the material according to the invention then consists of martensite with a maximum of 1% delta ferrite, being free of primary hard phases (primarily based on niobium, tantalum, titanium, vanadium), with the tempering austenite content being a maximum of 8%.

Das erfindungsgemäße Material wird primär für korrosionsbeständige Pumpenblöcke verwendet, kann aber auch im allgemeinen Maschinen- und Apparatebau verwendet werden.The material according to the invention is primarily used for corrosion-resistant pump blocks, but can also be used in general machine and apparatus construction.

Erfindungsgemäß kann bei gesteigerten Anforderungen an die Ermüdungsfestigkeit, insbesondere bei Aggregaten, die dynamisch stark belastet sind oder bei sicherheitskritischen Konstruktionsteilen in der Luft- und Raumfahrtindustrie, das Material auch als hochreine Umschmelzgüte entsprechend dem ESU- oder VLBO-Verfahren erzeugt werden. Durch die mit dem Umschmelzen verbundene Reinheitsgradverbesserung ergeben sich die hinreichlich bekannten Verbesserungen der Ermüdungseigenschaften durch Absenken der Defektgrößen im Werkstoff.According to the invention, the material can also be produced as a high-purity remelting quality according to the ESR or VLBO process if there are increased requirements for fatigue strength, especially for units that are dynamically heavily loaded or for safety-critical structural parts in the aerospace industry. The improvement in purity associated with the remelting results in the well-known improvements in fatigue properties by reducing the defect sizes in the material.

Bei der Erfindung ist von Vorteil, dass durch eine sehr genaue Analysenführung einerseits und andererseits durch eine Umstellung der Analyse und die Verminderung des Delta-Ferrits und primärer Hartphasen ein Werkstoff geschaffen wird, der sehr hohe Festigkeit, Korrosionsbeständigkeit und Zähigkeit in einer Weise erreicht, die zuvor nicht miteinander kombinierbar gewesen wäre.The advantage of the invention is that, on the one hand, a very precise analysis procedure and, on the other hand, a conversion of the analysis and the reduction of the delta ferrite and primary hard phases create a material that achieves very high strength, corrosion resistance and toughness in a way that previously could not be combined.

Claims (2)

  1. Steel material for the manufacture of pumps or the like, characterised in that the steel material features the following analysis in wt%: C 0.030 ;
    Figure imgb0035
    Si 0.40 ;
    Figure imgb0036
    Mn 0.60 ;
    Figure imgb0037
    P 0.025 ;
    Figure imgb0038
    S 0.005 ;
    Figure imgb0039
    Cr = 14.20 14.60 ;
    Figure imgb0040
    Mo = 0.30 0.45 ;
    Figure imgb0041
    Ni = 4.80 5.20 ;
    Figure imgb0042
    V < 0.10 ;
    Figure imgb0043
    W < 0.10 ;
    Figure imgb0044
    Cu = 3.00 3.70 ;
    Figure imgb0045
    Co < 0.15 ;
    Figure imgb0046
    Ti < 0.010 ;
    Figure imgb0047
    Al < 0.030 ;
    Figure imgb0048
    Nb < 0.02 ;
    Figure imgb0049
    Ta < 0.02 ;
    Figure imgb0050
    N < 0.02 ;
    Figure imgb0051
    remainder iron and unavoidable impurities, wherein the structure of the steel material consists of martensite with maximum 1% delta ferrite, wherein the structure is free of primary hard phases, in particular with a niobium, tantalum, titanium or vanadium base, and the temper austenite content is maximum 8%, wherein the steel material at a precipitation hardening temperature of 520°C attains a yield strength of approx. 1000 MPa with a toughness of more than 70 J at -40°C and at a precipitation hardening temperature of 485°C a yield strength of approx. 1100 MPa with a toughness of more than 60 J at -40°C, wherein the values of the mechanical properties are related to measurements in the transverse direction.
  2. Method for manufacturing a steel material for pumps and the like according to claim 1, wherein a steel material corresponding to the following analysis in wt% is melted: C 0 .030;
    Figure imgb0052
    Si 0 .40;
    Figure imgb0053
    Mn 0 .60;
    Figure imgb0054
    P 0 .025;
    Figure imgb0055
    S 0 .005;
    Figure imgb0056
    Cr = 14.20 14.60
    Figure imgb0057
    Mo = 0.30 0.45 ;
    Figure imgb0058
    Ni = 4.80 5.20 ;
    Figure imgb0059
    V < 0.10 ;
    Figure imgb0060
    W < 0.10 ;
    Figure imgb0061
    Cu = 3.00 3.70 ;
    Figure imgb0062
    Co < 0.15 ;
    Figure imgb0063
    Ti < 0.010 ;
    Figure imgb0064
    Al < 0.030 ;
    Figure imgb0065
    Nb < 0.02 ;
    Figure imgb0066
    Ta < 0.02 ;
    Figure imgb0067
    N < 0.02 ;
    Figure imgb0068
    remainder iron and impurities due to melting, characterised in that the steel material is melted conventionally or by the electroslag remelting process or the vacuum arc process and recast at 800°C to 1250°C, wherein heat treatment follows with solution annealing at 850°C to 1050°C, followed by hardening, cooling and precipitation hardening at 450°C to 520°C, depending on the required respective mechanical properties.
EP17724522.2A 2016-05-19 2017-05-11 Method for producing a steel material, and steel material Active EP3458623B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016109253.3A DE102016109253A1 (en) 2016-05-19 2016-05-19 Method for producing a steel material and steel material
PCT/EP2017/061290 WO2017198530A1 (en) 2016-05-19 2017-05-11 Method for producing a steel material, and steel material

Publications (3)

Publication Number Publication Date
EP3458623A1 EP3458623A1 (en) 2019-03-27
EP3458623C0 EP3458623C0 (en) 2023-07-05
EP3458623B1 true EP3458623B1 (en) 2023-07-05

Family

ID=58739020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17724522.2A Active EP3458623B1 (en) 2016-05-19 2017-05-11 Method for producing a steel material, and steel material

Country Status (11)

Country Link
US (1) US11486015B2 (en)
EP (1) EP3458623B1 (en)
JP (1) JP6836280B2 (en)
KR (1) KR20190009335A (en)
CN (1) CN109689913A (en)
AU (1) AU2017267098B2 (en)
BR (1) BR112018073760B1 (en)
CA (1) CA3024661C (en)
DE (1) DE102016109253A1 (en)
SG (1) SG11201810271VA (en)
WO (1) WO2017198530A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3850114A1 (en) 2019-10-31 2021-07-21 Deutsche Edelstahlwerke Specialty Steel GmbH & Co.KG Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1553841B2 (en) * 1966-03-22 1974-06-06 Wuerttembergische Metallwarenfabrik, 7340 Geislingen Use of an austenitic work-hardened stainless steel alloy for knife blades
US3622307A (en) 1968-05-15 1971-11-23 Armco Steel Corp Precipitation-hardenable chromium-nickel stainless steel
US3574601A (en) * 1968-11-27 1971-04-13 Carpenter Technology Corp Corrosion resistant alloy
AT377785B (en) * 1983-06-28 1985-04-25 Ver Edelstahlwerke Ag CHROMED ALLOY
US4769213A (en) 1986-08-21 1988-09-06 Crucible Materials Corporation Age-hardenable stainless steel having improved machinability
DE3825634C2 (en) * 1988-07-28 1994-06-30 Thyssen Stahl Ag Process for the production of hot baths or heavy plates
JP2672437B2 (en) * 1992-09-07 1997-11-05 新日本製鐵株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2962098B2 (en) * 1993-04-09 1999-10-12 日本鋼管株式会社 Method for producing 110 Ksi grade high strength corrosion resistant martensitic stainless steel pipe
US5496421A (en) * 1993-10-22 1996-03-05 Nkk Corporation High-strength martensitic stainless steel and method for making the same
JP3228008B2 (en) * 1993-10-22 2001-11-12 日本鋼管株式会社 High-strength martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same
JPH07179943A (en) * 1993-12-22 1995-07-18 Nippon Steel Corp Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP3446394B2 (en) * 1995-05-11 2003-09-16 大同特殊鋼株式会社 Precipitation hardening stainless steel
PL195084B1 (en) 1999-03-08 2007-08-31 Crs Holdings An enhanced machinability precipitation-hardenable stainless steel for critical applications
DE60114839T2 (en) * 2000-08-01 2006-08-10 Nisshin Steel Co., Ltd. FUEL TANK IN STAINLESS STEEL FOR A MOTOR VEHICLE
JP2002173742A (en) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd High strength austenitic stainless steel strip having excellent shape flatness and its production method
JP3696552B2 (en) * 2001-04-12 2005-09-21 日新製鋼株式会社 Soft stainless steel plate with excellent workability and cold forgeability
JP4240189B2 (en) * 2001-06-01 2009-03-18 住友金属工業株式会社 Martensitic stainless steel
JP4144283B2 (en) * 2001-10-18 2008-09-03 住友金属工業株式会社 Martensitic stainless steel
JP5744575B2 (en) * 2010-03-29 2015-07-08 新日鐵住金ステンレス株式会社 Double phase stainless steel sheet and strip, manufacturing method
EP2947167B1 (en) * 2013-01-16 2016-12-07 JFE Steel Corporation Stainless steel seamless tube for use in oil well and manufacturing process therefor
BR102014005015A8 (en) * 2014-02-28 2017-12-26 Villares Metals S/A martensitic-ferritic stainless steel, manufactured product, process for producing forged or rolled bars or parts of martensitic-ferritic stainless steel and process for producing all seamless martensitic-ferritic stainless steel
CN104328353B (en) * 2014-12-01 2017-08-11 什邡新工金属材料有限公司 A kind of rare-earth type 0Cr17Ni4Cu4Nb martensitic precipitations and preparation method thereof
JP6460229B2 (en) * 2016-03-29 2019-01-30 Jfeスチール株式会社 High strength stainless steel seamless steel pipe for oil well

Also Published As

Publication number Publication date
BR112018073760B1 (en) 2022-10-18
EP3458623A1 (en) 2019-03-27
AU2017267098B2 (en) 2019-10-31
US20190211410A1 (en) 2019-07-11
EP3458623C0 (en) 2023-07-05
BR112018073760A8 (en) 2021-10-05
DE102016109253A1 (en) 2017-12-07
BR112018073760A2 (en) 2019-04-09
US11486015B2 (en) 2022-11-01
CA3024661A1 (en) 2017-11-23
CN109689913A (en) 2019-04-26
WO2017198530A1 (en) 2017-11-23
AU2017267098A1 (en) 2018-12-13
JP2019518871A (en) 2019-07-04
JP6836280B2 (en) 2021-02-24
CA3024661C (en) 2021-10-12
KR20190009335A (en) 2019-01-28
SG11201810271VA (en) 2018-12-28

Similar Documents

Publication Publication Date Title
EP2956562B1 (en) Nickel-cobalt alloy
DE60202598T2 (en) ULTRA-HIGH-RESISTANCE EXTRACTOR-STAINLESS STAINLESS STEEL AND LONG-TERM STRIP MANUFACTURED THEREFROM
EP1538232B1 (en) Corrosion resistant austenitic steel
DE102006005250B4 (en) Iron-nickel alloy
EP0091897B1 (en) Strain hardening austenitic manganese steel and process for the manufacture thereof
EP1780293B1 (en) Procedure for manufacturing of steel starting material by warm deforming
EP2059623A1 (en) Rustproof austenitic cast steel, method for production and use thereof
EP3504349B1 (en) Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type
DE1301586B (en) Austenitic precipitation hardenable steel alloy and process for its heat treatment
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
DE102008040689B4 (en) Ball studs and sleeves made of high manganese steel
WO2020127788A1 (en) Superaustenitic material
DE102019135830A1 (en) Method of making a hot work steel article
EP2662461A1 (en) Iron-chromium-manganese-nickel alloy
EP3458623B1 (en) Method for producing a steel material, and steel material
DE60201984T2 (en) TOOL STEEL OF HIGH TENSILE, METHOD FOR PRODUCING PARTS FROM THIS STEEL AND PARTS MANUFACTURED THEREOF
EP3899065A1 (en) Drill string component with high corosion resistance, and method for the production of same
DE2029962A1 (en) Nickel alloy
DE60126646T2 (en) STEEL ALLOY, HOLDER AND BRACKET PARTS FOR PLASTIC TOOLS AND GUARANTEED COVERS FOR HOLDER AND HOLDER PARTS
EP3061838B1 (en) Blank bainite long product and method for producing the same
DE112017006053T5 (en) HIGH-TEN AND HIGH-TIMING TUBE FOR A PERFORIER PISTOL AND METHOD OF MANUFACTURING THEREOF
WO2022049282A1 (en) Hot-rolled flat steel product and method for producing a hot-rolled flat steel product
DE19823911B4 (en) Stainless steel
DE69938617T2 (en) Steel for casting molds and method of manufacture
EP0410979B1 (en) Hardenable nickel alloy

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HASPEL, MICHAEL

Inventor name: PERKO, JOCHEN

Inventor name: SCHUETZ, PATRIC

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40001250

Country of ref document: HK

17Q First examination report despatched

Effective date: 20200204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017015009

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038020000

Ipc: C22C0038000000

Ref country code: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038020000

Ipc: C22C0038000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 6/00 20060101ALI20221219BHEP

Ipc: C22C 38/46 20060101ALI20221219BHEP

Ipc: C22C 38/44 20060101ALI20221219BHEP

Ipc: C22C 38/42 20060101ALI20221219BHEP

Ipc: C22C 38/04 20060101ALI20221219BHEP

Ipc: C21D 1/26 20060101ALI20221219BHEP

Ipc: C21D 1/18 20060101ALI20221219BHEP

Ipc: C22C 38/02 20060101ALI20221219BHEP

Ipc: C22C 38/52 20060101ALI20221219BHEP

Ipc: C22C 38/50 20060101ALI20221219BHEP

Ipc: C22C 38/48 20060101ALI20221219BHEP

Ipc: C22C 38/00 20060101AFI20221219BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1584897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017015009

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230705

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230713

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230710

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705