EP3458623B1 - Method for producing a steel material, and steel material - Google Patents
Method for producing a steel material, and steel material Download PDFInfo
- Publication number
- EP3458623B1 EP3458623B1 EP17724522.2A EP17724522A EP3458623B1 EP 3458623 B1 EP3458623 B1 EP 3458623B1 EP 17724522 A EP17724522 A EP 17724522A EP 3458623 B1 EP3458623 B1 EP 3458623B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel material
- toughness
- din
- strength
- mechanical properties
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 69
- 229910000831 Steel Inorganic materials 0.000 title claims description 31
- 239000010959 steel Substances 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000004458 analytical method Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 239000010955 niobium Substances 0.000 claims description 10
- 229910000734 martensite Inorganic materials 0.000 claims description 9
- 229910000859 α-Fe Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910001566 austenite Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 4
- 238000004881 precipitation hardening Methods 0.000 claims 3
- 239000012535 impurity Substances 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 2
- 230000007797 corrosion Effects 0.000 description 15
- 238000005260 corrosion Methods 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000010421 standard material Substances 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 241001295925 Gegenes Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000002180 anti-stress Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- -1 chromium carbides Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the steels for this are standardized in particular and mainly the steels DIN 1.4542, DIN 1.4418, but also DIN 1.4313 are used for such aggregates.
- the DIN 1.4418 steel has a high yield strength (Rp 0.2 %) of around 1000 MPa, whereby the DIN 1.4418 steel can achieve a very high low-temperature toughness, which is typically between 50 and 150J (Charpy V-Notch) impact work at -40°C amounts to. This high level of toughness is required because of the cavitation that occurs in pumps.
- the material DIN 1.4542 cannot even come close to achieving this level of toughness with the same yield point and usually only has single-digit notched bar impact work values at - 40°C.
- Steel DIN 1.4313 is also used for pump blocks, but due to its lower alloy content compared to DIN 1.4418, when tempered to its maximum strength level, it can only achieve yield strengths of between 900 and 1000 MPa. When using this material in the highest strength level, however, only a low level of toughness can be achieved at low temperatures, with the corrosion resistance due to the alloy being significantly lower compared to the other two steels.
- the materials DIN 1.4313 and DIN 1.4418 are nickel-martensitic secondary hardening alloys, while the material DIN 1.4542 is a nickel-martensitic copper-hardening material.
- a martensitic steel material which contains no more than 10% delta ferrite and fine copper precipitations in the matrix.
- the steel material is characterized by good anti-stress corrosion properties and high hardness.
- the object of the invention is to create a material that has improved strength even with very high casting weights at a very high level of toughness, with corrosion resistance also being increased.
- the object is achieved with a method for producing a steel material with the features of claim 2.
- a further object is to create a steel material which has correspondingly similar or higher strengths than known steels, but has a higher level of toughness and better corrosion resistance.
- the inventors have set themselves the goal of developing a material that has the same or higher strength than DIN 1.4418 or DIN 1.4542, which in themselves already have very high strength, but also the very high level of toughness of DIN 1.4418 equals or exceeds it, but surpasses the corrosion resistance of the significantly less strong DIN 1.4313.
- the additional goal is that these product properties are achieved with conventional melting, but the analysis is designed in such a way that a high-purity remelting variant (ESR or VLBO) can also be achieved. Due to its significantly lower content of oxidic inclusions of smaller size, such a high-purity remelting variant has special advantages with regard to the fatigue properties for special applications in machine or apparatus construction with high dynamic loads, such as in compressors or centrifuges is the case.
- VLBO vacuum arc furnace
- the fatigue strength of the material according to the invention can be increased by reducing the defect sizes in the material. This effect is of great importance above all when using the material according to the invention in high strength for aerospace applications.
- the nickel-martensitic secondary hardening method on the one hand and the nickel-martensitic copper-hardening method on the other hand must be abandoned and a new path taken.
- delta ferrite as a structural component reduces toughness, this phase being minimized as much as possible by an optimal ratio of austenite to ferrite stabilizing elements and, due to production, everything is done to reduce the delta ferrite phase using suitable casting technology and deformation to be kept low at an optimized temperature.
- a niobium stabilization as used for example in DIN 1.4542, is completely avoided, so that according to the invention no coarse primary carbides are formed.
- the inventors have recognized that material concepts such as DIN 1.4542 come from a time when plant technology in smelting metallurgy did not yet make it possible to reliably reduce the carbon content of melts with a high chromium content.
- the conscious step of forgoing stabilization in this alloy system is one of the essential measures according to the invention, which makes it possible to realize a material with the property profile according to the invention and with the manufacturing options mentioned.
- the invention thus relates to a steel material for the production of pumps or the like, the steel material having the analysis according to claim 1, the structure of the steel material consists of martensite with a maximum of 1% delta ferrite, the structure being free of primary hard phases, in particular based on niobium, tantalum, titanium or vanadium, and the tempering austenite content being a maximum of 8%.
- the material will reach a yield strength of approx. 1000 MPa at a hardening temperature of 520°C with a toughness of over 70 J at -40°C and a yield strength of approx. 1100 MPa at a hardening temperature of 485°C a toughness at -40°C of more than 60 J, the values of the mechanical properties being based on measurements in the transverse direction.
- the invention relates to a method for producing a steel material for pumps and the like, wherein a steel material is melted according to the analysis according to claim 2, wherein the steel material is melted conventionally or in electroslag remelting or in vacuum arc processes and is formed at 800°C to 1250°C, with a heat treatment following with a solution annealing at 850°C to 1050°C, followed by hardening, cooling and curing at 450°C to 520°C depending on the required mechanical properties.
- Table 1 shows a comparison of all the materials mentioned in comparison to the material according to the invention (15-5MOD).
- the material according to the invention was melted conventionally and several flat bars measuring 640 ⁇ 540 mm were produced by forging. After forging, the material is solution annealed at 950°C, hardened and then hardened.
- the curing temperatures are 485°C in one case and 520°C in the other case.
- the bars are divided in the middle and completely mechanically tested in the transverse direction in the bottom, middle and crown zones.
- the mechanical testing consists of a tensile test at room temperature and a notch impact test (Charpy V-Notch). Room temperature and an impact test (Charpy V-Notch) at -40°C.
- the analysis according to Table 1 shows that in the target state of the steel material according to the invention, the manganese and phosphorus contents in particular are reduced, in particular also the sulfur content.
- the chromium content is between that of the materials DIN 1.4313 and DIN 1.4418, although the nitrogen content is particularly low and copper is also present.
- Table 4 and Table 5 list comparative data for the materials DIN 1.4313 and DIN 1.4418, which were also determined from forged bars in the same dimensional range.
- the steel material according to the invention has the best combination of strength and toughness.
- Table 6 shows the results of a smaller DIN 1.4542 forged rod with the dimensions 520 x 280, which only achieves a fraction of the toughness with the same strength.
- the maximum achievable strength potential with the defined analysis was also examined. It was shown that by lowering the hardening temperature to 450°C, a further increase in strength to a yield point of approx. 1177 - 1190 MPa can be achieved.
- the loss of mass during erosive corrosion was determined in 20% acetic acid which was acidified to pH 1.6 with sulfuric acid. The test duration is 24 hours.
- the results (Table 8) show that the materials DIN 1.4418, DIN 1.4542 and the material according to the invention show hardly any wear and the corrosion resistance under these conditions can be classified as equivalent.
- the material DIN 1.4313 shows a significant loss of mass due to its lower alloy content.
- the material according to the invention is able to improve both the strength and the toughness again while maintaining the same corrosion resistance.
- the method according to the invention provides for the material to be conventionally melted into large ingot formats of up to >10 t using an analysis corresponding to the first line of Table 1.
- the material is formed in the range of 800 to 1250°C, followed by a heat treatment.
- the heat treatment consists of solution annealing at 850 to 1050° C., subsequent hardening, subsequent cooling and hardening at 450 to 600° C., the temperature range of 450 to 520° C. being preferred when aiming for maximum strength.
- the structure of the material according to the invention then consists of martensite with a maximum of 1% delta ferrite, being free of primary hard phases (primarily based on niobium, tantalum, titanium, vanadium), with the tempering austenite content being a maximum of 8%.
- the material according to the invention is primarily used for corrosion-resistant pump blocks, but can also be used in general machine and apparatus construction.
- the material can also be produced as a high-purity remelting quality according to the ESR or VLBO process if there are increased requirements for fatigue strength, especially for units that are dynamically heavily loaded or for safety-critical structural parts in the aerospace industry.
- the improvement in purity associated with the remelting results in the well-known improvements in fatigue properties by reducing the defect sizes in the material.
- the advantage of the invention is that, on the one hand, a very precise analysis procedure and, on the other hand, a conversion of the analysis and the reduction of the delta ferrite and primary hard phases create a material that achieves very high strength, corrosion resistance and toughness in a way that previously could not be combined.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
Zur Herstellung von korrosiv stark belasteten Pumpen und dergleichen sind Stähle bekannt, aus denen die entsprechenden Blöcke für die Pumpen gefertigt werden, aus denen die Pumpen und Pumpenteile dann häufig spanend erzeugt werden.Steels are known for the production of pumps and the like that are subject to severe corrosive loads, from which the corresponding blocks for the pumps are made, from which the pumps and pump parts are then frequently produced by cutting.
Die Stähle hierfür sind insbesondere genormt und hauptsächlich werden für derartige Aggregate die Stähle DIN 1.4542, DIN 1.4418, aber auch DIN 1.4313 verwendet.The steels for this are standardized in particular and mainly the steels DIN 1.4542, DIN 1.4418, but also DIN 1.4313 are used for such aggregates.
Diese Stähle werden aufgrund des recht geringen Preisniveaus einerseits aber aufgrund des sehr hohen Bedarfs am Weltmarkt weitestgehend konventionell erschmolzen.On the one hand, these steels are melted conventionally due to the very low price level, but on the other hand due to the very high demand on the world market.
Werkstoffe, die mit entsprechenden Umschmelzverfahren (ESU oder VLBO) erzeugt werden, können aus Gründen des geringen Preisniveaus und des weltweiten Bedarfs nicht flächendeckend verwendet werden.Materials that are produced with the appropriate remelting process (ESR or VLBO) cannot be used across the board for reasons of the low price level and global demand.
Um Pumpenblöcke herzustellen, werden sehr große Blockformate benötigt, so dass die Gussgewichte häufig größer 10 t betragen. Das bedeutet, dass ein passender Werkstoff so ausgelegt sein muss, dass auch bei Verwendung konventioneller Blockformate und konventioneller Erschmelzung durch geringe Seigerneigung möglichst gleichmäßige Produkteigenschaften erzielt werden können. Seigerungen sind hier grundsätzlich unerwünscht, da Seigerungen Ausgangspunkt von mechanischen Inhomogenitäten und gegebenenfalls Rissen sein können. Darüber hinaus kann es im Bereich von Seigerungen zu abweichenden Korrosionsbeständigkeitseigenschaften kommen.In order to manufacture pump blocks, very large block formats are required, so that the casting weights are often greater than 10 t. This means that a suitable material must be designed in such a way that the product properties that are as uniform as possible can be achieved even when using conventional block formats and conventional melting due to a low tendency to segregate. Segregations are fundamentally undesirable here, since segregations can be the starting point for mechanical inhomogeneities and possibly cracks. In addition, there may be deviating corrosion resistance properties in the area of segregation.
Der Stahl DIN 1.4418 besitzt eine hohe Dehngrenze (Rp0,2%) von etwa 1000 MPa, wobei der Stahl DIN 1.4418 eine sehr hohe Kaltzähigkeit erreichen kann, welche typischerweise zwischen 50 und 150J (Charpy V-Notch) Kerbschlagarbeit bei -40°C beträgt. Dieses hohe Zähigkeitsniveau ist aufgrund der in Pumpen auftretenden Kavitation erforderlich.The DIN 1.4418 steel has a high yield strength (Rp 0.2 %) of around 1000 MPa, whereby the DIN 1.4418 steel can achieve a very high low-temperature toughness, which is typically between 50 and 150J (Charpy V-Notch) impact work at -40°C amounts to. This high level of toughness is required because of the cavitation that occurs in pumps.
Der Werkstoff DIN 1.4542 kann bei gleicher Dehngrenze dieses Zähigkeitsniveau nicht annähernd erreichen und verbleibt üblicherweise bei nur einstelligen Kerbschlagarbeitswerten bei - 40°C.The material DIN 1.4542 cannot even come close to achieving this level of toughness with the same yield point and usually only has single-digit notched bar impact work values at - 40°C.
Der Stahl DIN 1.4313 wird für Pumpenblöcke auch verwendet, kann jedoch aufgrund seiner gegenüber dem DIN 1.4418 geringeren Legierungslage bei Vergütung auf sein maximales Festigkeitsniveau nur Dehngrenzen zwischen 900 und 1000 MPa erreichen. Bei der Verwendung dieses Werkstoffs in höchster Festigkeitsstufe ist allerdings nur ein geringes Zähigkeitsniveau bei tiefen Temperaturen erreichbar, wobei zusätzlich die Korrosionsbeständigkeit durch die Legierung im Vergleich zu den anderen beiden Stählen deutlich geringer ist. Die Werkstoffe DIN 1.4313 und DIN 1.4418 sind hierbei nickelmartensitisch sekundärhärtende Legierungen, während der Werkstoff DIN 1.4542 ein nickelmartensitisch kupferaushärtender Werkstoff ist.Steel DIN 1.4313 is also used for pump blocks, but due to its lower alloy content compared to DIN 1.4418, when tempered to its maximum strength level, it can only achieve yield strengths of between 900 and 1000 MPa. When using this material in the highest strength level, however, only a low level of toughness can be achieved at low temperatures, with the corrosion resistance due to the alloy being significantly lower compared to the other two steels. The materials DIN 1.4313 and DIN 1.4418 are nickel-martensitic secondary hardening alloys, while the material DIN 1.4542 is a nickel-martensitic copper-hardening material.
Aus der
Aufgabe der Erfindung ist es, einen Werkstoff zu schaffen, der auch bei sehr hohen Gussgewichten eine verbesserte Festigkeit bei einem sehr hohen Zähigkeitsniveau besitzt, wobei die Korrosionsbeständigkeit ebenfalls erhöht ist.The object of the invention is to create a material that has improved strength even with very high casting weights at a very high level of toughness, with corrosion resistance also being increased.
Die Aufgabe wird mit einem Verfahren zum Herstellen eines Stahlwerkstoffs mit den Merkmalen des Anspruchs 2 gelöst.The object is achieved with a method for producing a steel material with the features of claim 2.
Es ist eine weitere Aufgabe einen Stahlwerkstoff zu schaffen, der entsprechend gleichartige oder höhere Festigkeiten als bekannte Stähle besitzt, jedoch ein höheres Zähigkeitsniveau und eine bessere Korrosionsbeständigkeit besitzt.A further object is to create a steel material which has correspondingly similar or higher strengths than known steels, but has a higher level of toughness and better corrosion resistance.
Die Aufgabe wird mit einem Stahlwerkstoff mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved with a steel material having the features of claim 1.
Die Erfinder haben es sich zum Ziel gesetzt, einen Werkstoff zu entwickeln, der eine gleiche oder höhere Festigkeit besitzt als der DIN 1.4418 oder der DIN 1.4542, welche an sich schon eine sehr hohe Festigkeit besitzen, aber zusätzlich noch das sehr hohe Zähigkeitsniveau des DIN 1.4418 erreicht oder übertrifft, auf der anderen Seite aber die Korrosionsbeständigkeit des deutlich weniger festen DIN 1.4313 übertrifft.The inventors have set themselves the goal of developing a material that has the same or higher strength than DIN 1.4418 or DIN 1.4542, which in themselves already have very high strength, but also the very high level of toughness of DIN 1.4418 equals or exceeds it, but surpasses the corrosion resistance of the significantly less strong DIN 1.4313.
Das Ziel ist dabei jedoch zusätzlich, dass diese Produkteigenschaften bei konventioneller Erschmelzung erreicht werden, die Analyse aber so ausgelegt ist, dass auch eine hochreine Umschmelzvariante (ESU oder VLBO) erreichbar ist. Eine solche hochreine Umschmelzvariante besitzt durch ihren deutlich geringeren Gehalt an oxidischen Einschlüssen geringerer Größe besondere Vorteile bezüglich der Ermüdungseigenschaften für Sonderanwendungen im Maschinen- oder Apparatebau mit hohen dynamischen Belastungen, wie dies zum Beispiel bei Verdichtern oder Zentrifugen der Fall ist. Durch Umschmelzen im Vakuumlichtbogenofen (VLBO), welches die übliche Umschmelztechnologie für hochbelastete Bauteile in Luftfahrtsanwendungen darstellt, kann beim erfindungsgemäßen Werkstoff durch Absenken der Defektgrößen im Werkstoff die Dauerfestigkeit erhöht werden. Dieser Effekt ist vor allem bei Anwendung des erfindungsgemäßen Werkstoffes in hoher Festigkeit für Luft- und Raumfahrtanwendungen von großer Bedeutung.However, the additional goal is that these product properties are achieved with conventional melting, but the analysis is designed in such a way that a high-purity remelting variant (ESR or VLBO) can also be achieved. Due to its significantly lower content of oxidic inclusions of smaller size, such a high-purity remelting variant has special advantages with regard to the fatigue properties for special applications in machine or apparatus construction with high dynamic loads, such as in compressors or centrifuges is the case. By remelting in a vacuum arc furnace (VLBO), which is the usual remelting technology for highly stressed components in aviation applications, the fatigue strength of the material according to the invention can be increased by reducing the defect sizes in the material. This effect is of great importance above all when using the material according to the invention in high strength for aerospace applications.
Um erfindungsgemäß derartige Werkstoffeigenschaften zu erzeugen, muss die nickelmartensitisch sekundärhärtende Arbeitsweise einerseits und die nickelmartensitisch kupferaushärtende Arbeitsweise andererseits verlassen werden und ein neuer Weg eingeschlagen werden.In order to produce such material properties according to the invention, the nickel-martensitic secondary hardening method on the one hand and the nickel-martensitic copper-hardening method on the other hand must be abandoned and a new path taken.
Erfindungsgemäß wird bei dem neuen Stahlwerkstoff Kupfer zum Aushärten verwendet. Die Erfinder haben erkannt, dass Delta-Ferrit als Gefügebestandteil die Zähigkeit vermindert, wobei durch ein optimales Verhältnis der Austenit- zu Ferrit stabilisierenden Elemente diese Phase möglichst minimiert wird und herstellbedingt alles unternommen wird, um die Delta-Ferrit-Phase durch geeignete Gießtechnologie und Verformung bei optimierter Temperatur gering zu halten.According to the invention, copper is used for hardening in the new steel material. The inventors have recognized that delta ferrite as a structural component reduces toughness, this phase being minimized as much as possible by an optimal ratio of austenite to ferrite stabilizing elements and, due to production, everything is done to reduce the delta ferrite phase using suitable casting technology and deformation to be kept low at an optimized temperature.
Eine Niobstabilisierung, wie sie beispielsweise im DIN 1.4542 verwendet wird, wird vollkommen vermieden, so dass erfindungsgemäß keine groben Primärkarbide gebildet werden.A niobium stabilization, as used for example in DIN 1.4542, is completely avoided, so that according to the invention no coarse primary carbides are formed.
Die Erfinder haben erkannt, dass Werkstoffkonzepte wie der DIN 1.4542 aus einer Zeit stammen, in der die Anlagentechnik in der Schmelzmetallurgie es noch nicht gesichert ermöglichte, den Kohlenstoffgehalt von hochchromhaltigen Schmelzen zu reduzieren.The inventors have recognized that material concepts such as DIN 1.4542 come from a time when plant technology in smelting metallurgy did not yet make it possible to reliably reduce the carbon content of melts with a high chromium content.
Aus diesem Grund wurde häufig der Weg gegangen, den für die Korrosionsbeständigkeit schädlichen Kohlenstoff durch starke Karbidbildner wie Titan oder Niob durch die Bildung von Monokarbiden abzubinden und die Bildung von Chromkarbiden zu verhindern. Diese Legierungstechnik wurde sowohl bei austenitischen Werkstoffen, als auch bei martensitischen Werkstoffen wie dem DIN 1.4542 verwendet, und ist noch heute in den internationalen Normen für diesen Werkstoff vorgeschrieben.For this reason, the path has often been taken to bind the carbon, which is harmful to corrosion resistance, with strong carbide formers such as titanium or niobium through the formation of monocarbides and to prevent the formation of chromium carbides. This alloying technique was used for both austenitic materials and martensitic materials such as DIN 1.4542, and is still prescribed for this material in the international standards today.
Der bewusste Schritt auf eine Stabilisierung in diesem Legierungssystem zu verzichten ist eine der wesentlichen erfindungsgemäßen Maßnahmen, die es erlaubt einen Werkstoff mit dem erfindungsgemäßen Eigenschaftsprofil und mit den genannten Herstellmöglichkeiten zu realisieren.The conscious step of forgoing stabilization in this alloy system is one of the essential measures according to the invention, which makes it possible to realize a material with the property profile according to the invention and with the manufacturing options mentioned.
Die Erfindung betrifft somit einen Stahlwerkstoff zur Herstellung von Pumpen oder dergleichen, wobei der Stahlwerkstoff die Analyse laut Anspruch 1 aufweist, wobei das Gefüge des Stahlwerkstoffs aus Martensit mit maximal 1% Deltaferrit besteht, wobei das Gefüge frei von primären Hartphasen, insbesondere auf Basis Niob, Tantal, Titan oder Vanadium ist und der Anlass-Austenitgehalt maximal 8% beträgt.The invention thus relates to a steel material for the production of pumps or the like, the steel material having the analysis according to claim 1, the structure of the steel material consists of martensite with a maximum of 1% delta ferrite, the structure being free of primary hard phases, in particular based on niobium, tantalum, titanium or vanadium, and the tempering austenite content being a maximum of 8%.
Es ist vorgesehen, dass das Material bei einer Aushärtetemperatur von 520°C eine Dehngrenze von ca. 1000 MPa bei einer Zähigkeit bei -40°C von über 70 J erreicht und bei einer Aushärtetemperatur von 485°C eine Dehngrenze von ca. 1100 MPa bei einer Zähigkeit bei -40°C von über 60 J erreicht, wobei die Werte der mechanischen Eigenschaften auf Messungen in Querrichtung bezogen sind.It is intended that the material will reach a yield strength of approx. 1000 MPa at a hardening temperature of 520°C with a toughness of over 70 J at -40°C and a yield strength of approx. 1100 MPa at a hardening temperature of 485°C a toughness at -40°C of more than 60 J, the values of the mechanical properties being based on measurements in the transverse direction.
Zudem betrifft die Erfindung ein Verfahren zum Herstellen eines Stahlwerkstoffes für Pumpen und dergleichen wobei ein Stahlwerkstoff entsprechend der Analyse gemäß Anspruch 2 erschmolzen wird, wobei der Stahlwerkstoff konventionell oder in Elektroschlackeumschmelz- oder in Vakuumlichtbogen-Verfahren erschmolzen wird und bei 800°C bis 1250°C umgeformt wird, wobei eine Wärmebehandlung folgt mit einem Lösungsglühen bei 850°C bis 1050°C, gefolgt von einem Härten, Abkühlen und einem Aushärten bei 450°C bis 520°C je nach benötigen mechanischen Eigenschaften.In addition, the invention relates to a method for producing a steel material for pumps and the like, wherein a steel material is melted according to the analysis according to claim 2, wherein the steel material is melted conventionally or in electroslag remelting or in vacuum arc processes and is formed at 800°C to 1250°C, with a heat treatment following with a solution annealing at 850°C to 1050°C, followed by hardening, cooling and curing at 450°C to 520°C depending on the required mechanical properties.
Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert.The invention is explained by way of example with reference to a drawing.
Es zeigen dabei:
- Tabelle 1
- die chemische Analyse der Normwerkstoffe, basierend auf EN 10088-3 im Vergleich zum erfindungsgemäßen Werkstoff (15-5MOD);
- Tabelle 2
- die mechanischen Eigenschaften des erfindungsgemäßen Werkstoffs in Querrichtung bei einer Aushärtung bei 520°C;
- Tabelle 3
- die mechanischen Eigenschaften des erfindungsgemäßen Werkstoffs in Querrichtung bei einer Aushärtung bei 485°C;
- Tabelle 4
- die mechanischen Eigenschaften eines nicht erfindungsgemäßen Normwerkstoffs in Querrichtung;
- Tabelle 5
- die mechanischen Eigenschaften eines weiteren Normwerkstoffs in Querrichtung;
- Tabelle 6
- die mechanischen Eigenschaften eines weiteren Normwerkstoffs in Querrichtung;
- Tabelle 7
- die mechanischen Eigenschaften des erfindungsgemäßen Werkstoffs in Querrichtung bei einer Aushärtung bei 450°C;
Tabelle 8- die Beständigkeit gegen abtragende Korrosion anhand von Zugversuchskennwerten der untersuchten Proben und der Massenverlust der Normwerkstoffe und des erfindungsgemäßen Werkstoffs im Vergleich.
- Table 1
- the chemical analysis of the standard materials, based on EN 10088-3 in comparison to the material according to the invention (15-5MOD);
- Table 2
- the mechanical properties of the material according to the invention in the transverse direction when hardened at 520° C.;
- Table 3
- the mechanical properties of the material according to the invention in the transverse direction when cured at 485° C.;
- Table 4
- the mechanical properties of a standard material not according to the invention in the transverse direction;
- Table 5
- the mechanical properties of another standard material in the transverse direction;
- Table 6
- the mechanical properties of another standard material in the transverse direction;
- Table 7
- the mechanical properties of the material according to the invention in the transverse direction when cured at 450° C.;
- Table 8
- the resistance to erosive corrosion based on tensile test parameters of the samples examined and the mass loss of the standard materials and the material according to the invention in comparison.
Tabelle 1 zeigt eine Gegenüberstellung aller genannten Werkstoffe im Vergleich zum erfindungsgemäßen Werkstoff (15-5MOD). Der erfindungsgemäße Werkstoff wurde konventionell erschmolzen und es wurden mehrere Flachstäbe mit der Abmessung 640 x 540 mm durch Schmieden hergestellt. Nach dem Schmieden wird der Werkstoff bei 950°C lösungsgeglüht, gehärtet und anschließend ausgehärtet.Table 1 shows a comparison of all the materials mentioned in comparison to the material according to the invention (15-5MOD). The material according to the invention was melted conventionally and several flat bars measuring 640×540 mm were produced by forging. After forging, the material is solution annealed at 950°C, hardened and then hardened.
Die Aushärtetemperaturen betragen in einem Fall 485°C und im anderen Fall 520°C.The curing temperatures are 485°C in one case and 520°C in the other case.
Nach der Wärmebehandlung werden die Stäbe mittig geteilt und in den Zonen Boden, Mitte und Schopf in Querrichtung vollständig mechanisch erprobt.After heat treatment, the bars are divided in the middle and completely mechanically tested in the transverse direction in the bottom, middle and crown zones.
Die mechanische Erprobung besteht hierbei aus einem Zugversuch bei Raumtemperatur, ein Kerbschlagversuch (Charpy V-Notch) bei Raumtemperatur und ein Kerbschlagversuch (Charpy V-Notch) bei -40°C.The mechanical testing consists of a tensile test at room temperature and a notch impact test (Charpy V-Notch). Room temperature and an impact test (Charpy V-Notch) at -40°C.
Die Analyse gemäß Tabelle 1 zeigt, dass im Sollzustand des erfindungsgemäßen Stahlwerkstoffes insbesondere die Mangan- und Phosphorgehalte zurückgenommen sind, insbesondere auch der Schwefelgehalt. Der Chromgehalt liegt zwischen dem der Werkstoffe DIN 1.4313 und DIN 1.4418, wobei jedoch letztlich der Stickstoffgehalt besonders niedrig ist und zudem Kupfer vorhanden ist.The analysis according to Table 1 shows that in the target state of the steel material according to the invention, the manganese and phosphorus contents in particular are reduced, in particular also the sulfur content. The chromium content is between that of the materials DIN 1.4313 and DIN 1.4418, although the nitrogen content is particularly low and copper is also present.
Die mechanischen Eigenschaften in den beiden Aushärtezuständen sind in den Tabellen 2 und 3 dargestellt und zeigen, dass sich die Festigkeit um ca. 100 MPa unterscheidet und mit den festgelegten Wärmebehandlungen eine Dehngrenze von ca. 1000 bzw. 1100 MPa erreicht werden können. Die Besonderheit am erfindungsgemäßen Werkstoff ist jedoch ein beeindruckend hohes Zähigkeitsniveau auch bei tiefen Temperaturen.The mechanical properties in the two hardening states are shown in Tables 2 and 3 and show that the strength differs by approx. 100 MPa and that a yield strength of approx. 1000 and 1100 MPa can be achieved with the specified heat treatments. The special feature of the material according to the invention, however, is an impressively high level of toughness even at low temperatures.
Diese hervorragende Eigenschaftskombination ist auf die erfindungsgemäße Erkenntnis zurückzuführen, dass Delta-Ferrit durch passende Analysenauslegung weitestgehend vermieden werden kann. Weiters ist bei der Erfindung die Höchstmenge an Niob stark beschränkt, so dass eine Niobstabilisierung ausscheidet und die Niobgehalte so niedrig sind, dass zähigkeitsvermindernde Hartphasen vermieden werden.This excellent combination of properties is due to the finding according to the invention that delta ferrite can be largely avoided by appropriate analysis design. Furthermore, in the case of the invention, the maximum amount of niobium is severely restricted, so that niobium stabilization is ruled out and the niobium contents are so low that toughness-reducing hard phases are avoided.
Zum Vergleich sind in Tabelle 4 und Tabelle 5 Vergleichsdaten der Werkstoffe DIN 1.4313 und DIN 1.4418 aufgeführt, wobei diese ebenfalls aus Schmiedestäben im gleichen Abmessungsbereich ermittelt wurden.For comparison, Table 4 and Table 5 list comparative data for the materials DIN 1.4313 and DIN 1.4418, which were also determined from forged bars in the same dimensional range.
Der erfindungsgemäße Stahlwerkstoff weist dabei die beste Kombination aus Festigkeit und Zähigkeit auf.The steel material according to the invention has the best combination of strength and toughness.
Tabelle 6 zeigt die Ergebnisse von einem kleineren DIN 1.4542 Schmiedestab mit den Abmessungen 520 x 280, der bei gleicher Festigkeit nur noch einen Bruchteil der Zähigkeit erreicht.Table 6 shows the results of a smaller DIN 1.4542 forged rod with the dimensions 520 x 280, which only achieves a fraction of the toughness with the same strength.
Im Rahmen der Entwicklung des erfindungsgemäßen Werkstoffes 15-5MOD wurde auch das mit der festgelegten Analyse maximal erzielbare Festigkeitspotenzial untersucht. Dabei zeigte sich, dass durch eine Absenkung der Aushärtetemperatur auf 450°C eine weitere Festigkeitserhöhung auf eine Dehngrenze von ca. 1177 - 1190 MPa erzielen lässt. In diesem höchstfesten Zustand ist die mittels Kerbschlagversuch bei -40°C ermittelte Zähigkeit naturgemäß gegenüber einer Aushärtung bei 485°C verringert, allerdings zeigt der Werkstoff mit 20J bis 78J (Tabelle 7) ein noch immer um ein Vielfaches höheres Kerbschlagarbeitsniveau als der Werkstoff DIN 1.4542 bei um mehr als 100MPa höherer Dehngrenze, sodass auch dieser WBH Zustand trotz geringerer Tieftemperaturzähigkeit als äußerst praxisrelevant anzusehen ist.As part of the development of the material 15-5MOD according to the invention, the maximum achievable strength potential with the defined analysis was also examined. It was shown that by lowering the hardening temperature to 450°C, a further increase in strength to a yield point of approx. 1177 - 1190 MPa can be achieved. In this high-strength state, the toughness determined by means of a notched bar impact test at -40°C is naturally reduced compared to hardening at 485°C, but the material with 20J to 78J (Table 7) still shows a notched bar impact work level that is many times higher than the material DIN 1.4542 with a yield point that is more than 100MPa higher, so that this WBH state can also be regarded as extremely relevant in practice, despite the lower low-temperature toughness.
Da der Werkstoff neben einer hohen Festigkeit und hiermit verbunden einer hohen Zähigkeit auch eine ausreichende Korrosionsbeständigkeit aufweisen muss, wurden auch zusätzliche Korrosionsuntersuchungen durchgeführt.Since the material has to have sufficient corrosion resistance in addition to high strength and the associated high toughness, additional corrosion tests were also carried out.
Ermittelt wurde der Masseverlust bei abtragender Korrosion in 20%-iger Essigsäure, die mit Schwefelsäure auf pH = 1,6 angesäuert wurde. Die Prüfdauer beträgt 24 Stunden. Die Ergebnisse (Tabelle 8) zeigen, dass die Werkstoffe DIN 1.4418, DIN 1.4542 und der erfindungsgemäße Werkstoff kaum Abtrag zeigen und die Korrosionsbeständigkeit unter diesen Bedingungen als gleichwertig eingestuft werden kann. Der Werkstoff DIN 1.4313 zeigt erwartungsgemäß aufgrund seines geringeren Legierungsgehaltes signifikanten Masseverlust. Hierbei wird besonders deutlich, dass der erfindungsgemäße Werkstoff es vermag, sowohl die Festigkeit als auch die Zähigkeit noch einmal zu verbessern bei einer gleichbleibenden Korrosionsbeständigkeit.The loss of mass during erosive corrosion was determined in 20% acetic acid which was acidified to pH 1.6 with sulfuric acid. The test duration is 24 hours. The results (Table 8) show that the materials DIN 1.4418, DIN 1.4542 and the material according to the invention show hardly any wear and the corrosion resistance under these conditions can be classified as equivalent. As expected, the material DIN 1.4313 shows a significant loss of mass due to its lower alloy content. Here it becomes particularly clear that the material according to the invention is able to improve both the strength and the toughness again while maintaining the same corrosion resistance.
Das erfindungsgemäße Verfahren sieht vor, den Werkstoff mit einer Analyse entsprechend erster Zeile der Tabelle 1 konventionell zu großen Blockformaten bis > 10 t zu erschmelzen.The method according to the invention provides for the material to be conventionally melted into large ingot formats of up to >10 t using an analysis corresponding to the first line of Table 1.
Anschließend wird das Material im Bereich von 800 bis 1250°C umgeformt, gefolgt von einer Wärmebehandlung.Then the material is formed in the range of 800 to 1250°C, followed by a heat treatment.
Die Wärmebehandlung besteht aus einem Lösungsglühen bei 850 bis 1050°C, einem anschließenden Härten, einem anschließenden Abkühlen und Aushärten bei 450 bis 600°C, bevorzugt wird der Temperaturbereich 450 bis 520°C beim Anstreben einer maximalen Festigkeit.The heat treatment consists of solution annealing at 850 to 1050° C., subsequent hardening, subsequent cooling and hardening at 450 to 600° C., the temperature range of 450 to 520° C. being preferred when aiming for maximum strength.
Das Gefüge des erfindungsgemäßen Materials besteht anschließend aus Martensit mit maximal 1% Delta-Ferrit, wobei es frei von primären Hartphasen (vor allen Dingen auf Basis Niob, Tantal, Titan, Vanadium) ist, wobei der Anlass-Austenitgehalt maximal 8% beträgt.The structure of the material according to the invention then consists of martensite with a maximum of 1% delta ferrite, being free of primary hard phases (primarily based on niobium, tantalum, titanium, vanadium), with the tempering austenite content being a maximum of 8%.
Das erfindungsgemäße Material wird primär für korrosionsbeständige Pumpenblöcke verwendet, kann aber auch im allgemeinen Maschinen- und Apparatebau verwendet werden.The material according to the invention is primarily used for corrosion-resistant pump blocks, but can also be used in general machine and apparatus construction.
Erfindungsgemäß kann bei gesteigerten Anforderungen an die Ermüdungsfestigkeit, insbesondere bei Aggregaten, die dynamisch stark belastet sind oder bei sicherheitskritischen Konstruktionsteilen in der Luft- und Raumfahrtindustrie, das Material auch als hochreine Umschmelzgüte entsprechend dem ESU- oder VLBO-Verfahren erzeugt werden. Durch die mit dem Umschmelzen verbundene Reinheitsgradverbesserung ergeben sich die hinreichlich bekannten Verbesserungen der Ermüdungseigenschaften durch Absenken der Defektgrößen im Werkstoff.According to the invention, the material can also be produced as a high-purity remelting quality according to the ESR or VLBO process if there are increased requirements for fatigue strength, especially for units that are dynamically heavily loaded or for safety-critical structural parts in the aerospace industry. The improvement in purity associated with the remelting results in the well-known improvements in fatigue properties by reducing the defect sizes in the material.
Bei der Erfindung ist von Vorteil, dass durch eine sehr genaue Analysenführung einerseits und andererseits durch eine Umstellung der Analyse und die Verminderung des Delta-Ferrits und primärer Hartphasen ein Werkstoff geschaffen wird, der sehr hohe Festigkeit, Korrosionsbeständigkeit und Zähigkeit in einer Weise erreicht, die zuvor nicht miteinander kombinierbar gewesen wäre.The advantage of the invention is that, on the one hand, a very precise analysis procedure and, on the other hand, a conversion of the analysis and the reduction of the delta ferrite and primary hard phases create a material that achieves very high strength, corrosion resistance and toughness in a way that previously could not be combined.
Claims (2)
- Steel material for the manufacture of pumps or the like, characterised in that the steel material features the following analysis in wt%:
- Method for manufacturing a steel material for pumps and the like according to claim 1, wherein a steel material corresponding to the following analysis in wt% is melted:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016109253.3A DE102016109253A1 (en) | 2016-05-19 | 2016-05-19 | Method for producing a steel material and steel material |
PCT/EP2017/061290 WO2017198530A1 (en) | 2016-05-19 | 2017-05-11 | Method for producing a steel material, and steel material |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3458623A1 EP3458623A1 (en) | 2019-03-27 |
EP3458623B1 true EP3458623B1 (en) | 2023-07-05 |
EP3458623C0 EP3458623C0 (en) | 2023-07-05 |
Family
ID=58739020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17724522.2A Active EP3458623B1 (en) | 2016-05-19 | 2017-05-11 | Method for producing a steel material, and steel material |
Country Status (11)
Country | Link |
---|---|
US (1) | US11486015B2 (en) |
EP (1) | EP3458623B1 (en) |
JP (1) | JP6836280B2 (en) |
KR (1) | KR20190009335A (en) |
CN (1) | CN109689913A (en) |
AU (1) | AU2017267098B2 (en) |
BR (1) | BR112018073760B1 (en) |
CA (1) | CA3024661C (en) |
DE (1) | DE102016109253A1 (en) |
SG (1) | SG11201810271VA (en) |
WO (1) | WO2017198530A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3850114A1 (en) | 2019-10-31 | 2021-07-21 | Deutsche Edelstahlwerke Specialty Steel GmbH & Co.KG | Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1553841B2 (en) * | 1966-03-22 | 1974-06-06 | Wuerttembergische Metallwarenfabrik, 7340 Geislingen | Use of an austenitic work-hardened stainless steel alloy for knife blades |
US3622307A (en) | 1968-05-15 | 1971-11-23 | Armco Steel Corp | Precipitation-hardenable chromium-nickel stainless steel |
US3574601A (en) * | 1968-11-27 | 1971-04-13 | Carpenter Technology Corp | Corrosion resistant alloy |
AT377785B (en) * | 1983-06-28 | 1985-04-25 | Ver Edelstahlwerke Ag | CHROMED ALLOY |
US4769213A (en) | 1986-08-21 | 1988-09-06 | Crucible Materials Corporation | Age-hardenable stainless steel having improved machinability |
DE3825634C2 (en) * | 1988-07-28 | 1994-06-30 | Thyssen Stahl Ag | Process for the production of hot baths or heavy plates |
JP2672437B2 (en) * | 1992-09-07 | 1997-11-05 | 新日本製鐵株式会社 | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance |
JP2962098B2 (en) * | 1993-04-09 | 1999-10-12 | 日本鋼管株式会社 | Method for producing 110 Ksi grade high strength corrosion resistant martensitic stainless steel pipe |
US5496421A (en) * | 1993-10-22 | 1996-03-05 | Nkk Corporation | High-strength martensitic stainless steel and method for making the same |
JP3228008B2 (en) * | 1993-10-22 | 2001-11-12 | 日本鋼管株式会社 | High-strength martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same |
JPH07179943A (en) * | 1993-12-22 | 1995-07-18 | Nippon Steel Corp | Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance |
JP3446394B2 (en) * | 1995-05-11 | 2003-09-16 | 大同特殊鋼株式会社 | Precipitation hardening stainless steel |
CA2362123A1 (en) | 1999-03-08 | 2000-09-14 | Crs Holdings, Inc. | An enhanced machinability precipitation-hardenable stainless steel for critical applications |
CN1446152A (en) * | 2000-08-01 | 2003-10-01 | 日新制钢株式会社 | Stainless steel fuel tank for motor vehicle |
JP2002173742A (en) * | 2000-12-04 | 2002-06-21 | Nisshin Steel Co Ltd | High strength austenitic stainless steel strip having excellent shape flatness and its production method |
JP3696552B2 (en) * | 2001-04-12 | 2005-09-21 | 日新製鋼株式会社 | Soft stainless steel plate with excellent workability and cold forgeability |
JP4240189B2 (en) * | 2001-06-01 | 2009-03-18 | 住友金属工業株式会社 | Martensitic stainless steel |
JP4144283B2 (en) * | 2001-10-18 | 2008-09-03 | 住友金属工業株式会社 | Martensitic stainless steel |
JP5744575B2 (en) * | 2010-03-29 | 2015-07-08 | 新日鐵住金ステンレス株式会社 | Double phase stainless steel sheet and strip, manufacturing method |
EP2947167B1 (en) * | 2013-01-16 | 2016-12-07 | JFE Steel Corporation | Stainless steel seamless tube for use in oil well and manufacturing process therefor |
BR102014005015A8 (en) * | 2014-02-28 | 2017-12-26 | Villares Metals S/A | martensitic-ferritic stainless steel, manufactured product, process for producing forged or rolled bars or parts of martensitic-ferritic stainless steel and process for producing all seamless martensitic-ferritic stainless steel |
CN104328353B (en) * | 2014-12-01 | 2017-08-11 | 什邡新工金属材料有限公司 | A kind of rare-earth type 0Cr17Ni4Cu4Nb martensitic precipitations and preparation method thereof |
WO2017168874A1 (en) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | High-strength seamless stainless-steel pipe for oil well |
-
2016
- 2016-05-19 DE DE102016109253.3A patent/DE102016109253A1/en not_active Withdrawn
-
2017
- 2017-05-11 BR BR112018073760-7A patent/BR112018073760B1/en active IP Right Grant
- 2017-05-11 CA CA3024661A patent/CA3024661C/en active Active
- 2017-05-11 SG SG11201810271VA patent/SG11201810271VA/en unknown
- 2017-05-11 US US16/302,141 patent/US11486015B2/en active Active
- 2017-05-11 CN CN201780038400.3A patent/CN109689913A/en active Pending
- 2017-05-11 AU AU2017267098A patent/AU2017267098B2/en active Active
- 2017-05-11 JP JP2018560954A patent/JP6836280B2/en active Active
- 2017-05-11 WO PCT/EP2017/061290 patent/WO2017198530A1/en unknown
- 2017-05-11 KR KR1020187036492A patent/KR20190009335A/en not_active Application Discontinuation
- 2017-05-11 EP EP17724522.2A patent/EP3458623B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3458623A1 (en) | 2019-03-27 |
WO2017198530A1 (en) | 2017-11-23 |
CN109689913A (en) | 2019-04-26 |
KR20190009335A (en) | 2019-01-28 |
DE102016109253A1 (en) | 2017-12-07 |
US20190211410A1 (en) | 2019-07-11 |
JP6836280B2 (en) | 2021-02-24 |
CA3024661C (en) | 2021-10-12 |
CA3024661A1 (en) | 2017-11-23 |
AU2017267098B2 (en) | 2019-10-31 |
US11486015B2 (en) | 2022-11-01 |
JP2019518871A (en) | 2019-07-04 |
EP3458623C0 (en) | 2023-07-05 |
BR112018073760A2 (en) | 2019-04-09 |
BR112018073760B1 (en) | 2022-10-18 |
BR112018073760A8 (en) | 2021-10-05 |
AU2017267098A1 (en) | 2018-12-13 |
SG11201810271VA (en) | 2018-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2956562B1 (en) | Nickel-cobalt alloy | |
DE60202598T2 (en) | ULTRA-HIGH-RESISTANCE EXTRACTOR-STAINLESS STAINLESS STEEL AND LONG-TERM STRIP MANUFACTURED THEREFROM | |
DE69406512T2 (en) | Steam turbine rotor and process for its manufacture | |
DE69429610T2 (en) | High strength martensitic stainless steel and process for its manufacture | |
EP1538232B1 (en) | Corrosion resistant austenitic steel | |
DE102006005250B4 (en) | Iron-nickel alloy | |
DE69811200T2 (en) | TEMPERED STEEL WITH EXCELLENT PREVENTION OF SECONDARY RECRISTALIZATION DURING CARBONING, METHOD FOR THE PRODUCTION THEREOF, SEMI-PRODUCT FOR PARTS TO BE CARBONED | |
DE69706224T2 (en) | Heat resistant steel and steam turbine rotor | |
EP1780293B1 (en) | Procedure for manufacturing of steel starting material by warm deforming | |
DE3781203T2 (en) | ALLOY STEEL PRODUCT, BLOCKS AND OTHER FORGED AND CAST PIECES MADE THEREOF AND A METHOD FOR PRODUCING THIS STEEL. | |
DE69606061T2 (en) | HIGH-STRENGTH, SCREEN-RESISTANT, HARDENED, STAINLESS STEEL | |
EP2059623A1 (en) | Rustproof austenitic cast steel, method for production and use thereof | |
DE1301586B (en) | Austenitic precipitation hardenable steel alloy and process for its heat treatment | |
EP1274872B1 (en) | Method for the production of nitrogen alloyed steel, spray compacted steel | |
EP2662461A1 (en) | Iron-chromium-manganese-nickel alloy | |
DE102008040689B4 (en) | Ball studs and sleeves made of high manganese steel | |
WO2020127788A1 (en) | Superaustenitic material | |
EP3458623B1 (en) | Method for producing a steel material, and steel material | |
DE60201984T2 (en) | TOOL STEEL OF HIGH TENSILE, METHOD FOR PRODUCING PARTS FROM THIS STEEL AND PARTS MANUFACTURED THEREOF | |
WO2020127786A1 (en) | Drill string component with high corosion resistance, and method for the production of same | |
DE69502609T2 (en) | CAVITATION RESISTANT FLUIDUM VAN WHEELS AND METHOD FOR THEIR PRODUCTION | |
EP3061838B1 (en) | Blank bainite long product and method for producing the same | |
DE112017006053T5 (en) | HIGH-TEN AND HIGH-TIMING TUBE FOR A PERFORIER PISTOL AND METHOD OF MANUFACTURING THEREOF | |
EP4211279A1 (en) | Hot-rolled flat steel product and method for producing a hot-rolled flat steel product | |
DE19823911B4 (en) | Stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181211 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HASPEL, MICHAEL Inventor name: PERKO, JOCHEN Inventor name: SCHUETZ, PATRIC |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40001250 Country of ref document: HK |
|
17Q | First examination report despatched |
Effective date: 20200204 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502017015009 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C22C0038020000 Ipc: C22C0038000000 Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C22C0038020000 Ipc: C22C0038000000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 6/00 20060101ALI20221219BHEP Ipc: C22C 38/46 20060101ALI20221219BHEP Ipc: C22C 38/44 20060101ALI20221219BHEP Ipc: C22C 38/42 20060101ALI20221219BHEP Ipc: C22C 38/04 20060101ALI20221219BHEP Ipc: C21D 1/26 20060101ALI20221219BHEP Ipc: C21D 1/18 20060101ALI20221219BHEP Ipc: C22C 38/02 20060101ALI20221219BHEP Ipc: C22C 38/52 20060101ALI20221219BHEP Ipc: C22C 38/50 20060101ALI20221219BHEP Ipc: C22C 38/48 20060101ALI20221219BHEP Ipc: C22C 38/00 20060101AFI20221219BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230126 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1584897 Country of ref document: AT Kind code of ref document: T Effective date: 20230715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017015009 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20230705 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20230713 |
|
P04 | Withdrawal of opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230710 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231005 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231105 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231006 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017015009 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240408 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 8 Effective date: 20240528 |
|
U1N | Appointed representative for the unitary patent procedure changed [after the registration of the unitary effect] |
Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB; DE |