EP3458623A1 - Method for producing a steel material, and steel material - Google Patents

Method for producing a steel material, and steel material

Info

Publication number
EP3458623A1
EP3458623A1 EP17724522.2A EP17724522A EP3458623A1 EP 3458623 A1 EP3458623 A1 EP 3458623A1 EP 17724522 A EP17724522 A EP 17724522A EP 3458623 A1 EP3458623 A1 EP 3458623A1
Authority
EP
European Patent Office
Prior art keywords
toughness
curing
steel material
maximum
din
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17724522.2A
Other languages
German (de)
French (fr)
Other versions
EP3458623B1 (en
EP3458623C0 (en
Inventor
Perko JOCHEN
Michael Haspel
Patrick SCHÜTZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH and Co KG
Original Assignee
Voestalpine Boehler Edelstahl GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Boehler Edelstahl GmbH and Co KG filed Critical Voestalpine Boehler Edelstahl GmbH and Co KG
Publication of EP3458623A1 publication Critical patent/EP3458623A1/en
Application granted granted Critical
Publication of EP3458623B1 publication Critical patent/EP3458623B1/en
Publication of EP3458623C0 publication Critical patent/EP3458623C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • ESU or VLBO Materials that are produced using appropriate remelting processes
  • the steel DIN 1.4418 has a high yield strength (Rpo, 2%) of about 1000 MPa, the steel DIN 1.4418 can achieve a very high cold ⁇ toughness, which typically between 50 and 150J (Charpy V-Notch) impact energy at -40 ° C is. This high level of toughness is required by the pump in passing on ⁇ cavitation.
  • the material DIN 1.4542 can not approach this toughness level and usually remains at single-digit impact values at -40 ° C.
  • the steel DIN 1.4313 is also used for pump blocks, but may due to its relation to the DIN 1.4418 civil- ren alloy layer only yield strength between 900 and 1000 MPa Errei ⁇ chen in compensation to its maximum Festig ⁇ keitshou. When using this material in the highest strength level, however, only a low level of toughness at low temperatures is achievable, in addition, the corrosion resistance by the alloy in comparison to the other two steels is significantly lower.
  • the materials DIN 1.4313 and DIN 1.4418 are here nickelmartensitisch se ⁇ kundärhärtende alloys, while the material DIN 1.4542 is a nickelmartensitisch kupferaushärtender material.
  • the object of the invention is to provide a material having even at very high casting weights improved strength at a very high level of toughness, the Cor ⁇ rosionsbe pretechnik is also increased.
  • the inventors have set themselves the goal to develop a material that has the same or higher strength than the DIN 1.4418 or DIN 1.4542, which already have a very high strength, but in addition still the very high toughness level of DIN 1.4418 reached or over ⁇ meets, on the other hand, however, the corrosion resistance of the much less solid exceeds DIN 1.4313.
  • the goal is also that these product properties are achieved in conventional melting, but the analysis is designed so that a high-purity remelt variant (ESU or VLBO) can be achieved.
  • Such a high-purity remelt variant has special advantages in terms of fatigue properties for special applications in machine or apparatus construction with high dynamic loads, as is the case, for example, with compressors or centrifuges due to their significantly lower content of oxide inclusions of smaller size.
  • VLBO vacuum arc furnace
  • the inventive material By remelting in a vacuum arc furnace (VLBO) which pour the usual Umschmelztechnolo- for highly stressed components in aerospace applications is, the inventive material, the fatigue strength can be obtained by lowering the defect size in the material increases the ⁇ . This effect is mainly due to the use of the invention material in modern high strength for aviation and space travel applications ⁇ of great importance.
  • the deliberate step to dispense with a stabilization in this alloying system is one of the essential measures according to the invention, which makes it possible to realize a material with the property profile according to the invention and with the mentioned production possibilities.
  • the invention is exemplified erläu ⁇ tert reference to a drawing.
  • Table 4 shows the mechanical properties of a non-inventive standard material in the transverse direction
  • Table 5 shows the mechanical properties of another standard material in the transverse direction
  • Table 6 shows the mechanical properties of another standard material in the transverse direction
  • Table 7 shows the mechanical properties of the material according to the invention in the transverse direction when cured at 450 ° C;
  • Table 8 shows the resistance to erosive corrosion on the basis of tensile test characteristics of the samples investigated and the mass loss of the standard materials and the inventions ⁇ to the invention material in comparison.
  • Table 1 shows a comparison of all materials mentioned in comparison to the material according to the invention (15-5MOD).
  • the material according to the invention was melted conventionally and several flat bars measuring 640 ⁇ 540 mm were produced by forging. After forging, the
  • the curing temperatures are 485 ° C in one case and 520 ° C in the other case.
  • the bars are split in the middle and fully mechanically tested in the zones bottom, middle and top in the transverse direction.
  • the mechanical testing consists of a tensile test at room temperature, a notch impact test (Charpy V-Notch) at room temperature and a notch impact test (Charpy V-Notch) at -40 ° C.
  • the steel material according to the invention has the best combination of strength and toughness.
  • Table 6 shows the results of a smaller DIN 1.4542 forging bar with the dimensions 520 x 280, which achieves only a fraction of the toughness with the same strength.
  • 15-5MOD was also the maximum with the specified analysis achievable strength potential examined. It was found that lowering the curing temperature to 450 ° C resulted in a further increase in strength to a yield strength of approx. 1177 - 1190 MPa. In this most solid state, determined by means of notch impact test at -40 ° C Zähig ⁇ ness is naturally reduced compared to curing at 485 ° C, however, the material having 20J to 78J (Table 7) shows a still higher by a multiple Kerbschlagarbeits- level than the material DIN 1.4542 at more than Loompa HOE herer yield strength, so that this WBH state is to be highly relevant in practice despite lower low temperature toughness ⁇ see.
  • the inventive method provides to melt the material with an analysis according to Table 1 conventionally large block formats up to> 10 t. Subsequently, the material is transformed in the range of 800 to 1250 ° C, followed by a heat treatment.
  • the heat treatment consists of a solution annealing at 850 to 1050 ° C, a subsequent hardening, a subsequent cooling and curing at 450 to 600 ° C, preferably the temperature range 450 to 520 ° C in striving for a maximum strength.
  • the microstructure of the inventive material is subsequently ⁇ tungsd of martensite with a maximum of 1% delta ferrite, and it is free of primary hard phases (especially based on niobium, tantalum, titanium, vanadium), the occasion austenite maximum 8 % is.
  • the inventive material is primarily used for resistant to corrosion ⁇ constant pumping blocks, but can also be used in general mechanical and apparatus.
  • the invention can be produced as a high-purity Umschmelzgüte according to the ESU or VLBO process with increased demands on fatigue strength, especially in aggregates that are dynamically heavily loaded or safety-critical structural parts in the aerospace industry.
  • the improvement in purity associated with the remelting results in the well-known improvements in the fatigue properties by reducing the defect sizes in the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The invention relates to a method for producing a steel material, particularly a corrosion-resistant steel material for pumps and similar, in which a steel corresponding to the following analysis (in wt.%) is smelted: C < 0.050; Si < 0.70; Mn < 1.00; P < 0.030; S < 0.010; Cr = 14–15.50; Mo = 0.30-0.60; Ni = 4.50-5.50; V < 0.20; W < 0.20; Cu = 2.50-4.00; Co < 0.30; Ti < 0.05; Al < 0.05; Nb < 0.05; Ta < 0.05; N < 0.05.

Description

Verfahren zum Herstellen eines Stahlwerkstoffs und Stahlwerksstoff Zur Herstellung von korrosiv stark belasteten Pumpen und dergleichen sind Stähle bekannt, aus denen die entsprechenden Blöcke für die Pumpen gefertigt werden, aus denen die Pumpen und Pumpenteile dann häufig spanend erzeugt werden. Die Stähle hierfür sind insbesondere genormt und hauptsächlich werden für derartige Aggregate die Stähle DIN 1.4542, DIN 1.4418, aber auch DIN 1.4313 verwendet.  Method for producing a steel material and steel material For the production of corrosively heavily loaded pumps and the like, steels are known, from which the corresponding blocks for the pumps are manufactured, from which the pumps and pump parts are then frequently produced by machining. The steels for this are in particular standardized and mainly the steels DIN 1.4542, DIN 1.4418, but also DIN 1.4313 are used for such aggregates.
Diese Stähle werden aufgrund des recht geringen Preisniveaus einerseits aber aufgrund des sehr hohen Bedarfs am Weltmarkt weitestgehend konventionell erschmolzen. Due to the very low price level, these steels are melted as conventionally as possible due to the very high demand on the world market.
Werkstoffe, die mit entsprechenden Umschmelzverfahren (ESU o- der VLBO) erzeugt werden, können aus Gründen des geringen Preisniveaus und des weltweiten Bedarfs nicht flächendeckend verwendet werden. Materials that are produced using appropriate remelting processes (ESU or VLBO) can not be used nationwide for reasons of low price levels and worldwide demand.
Um Pumpenblöcke herzustellen, werden sehr große Blockformate benötigt, so dass die Gussgewichte häufig größer 10 t betra- gen. Das bedeutet, dass ein passender Werkstoff so ausgelegt sein muss, dass auch bei Verwendung konventioneller Blockformate und konventioneller Erschmelzung durch geringe Seigerneigung möglichst gleichmäßige Produkteigenschaften erzielt wer¬ den können. Seigerungen sind hier grundsätzlich unerwünscht, da Seigerungen Ausgangspunkt von mechanischen Inhomogenitäten und gegebenenfalls Rissen sein können. Darüber hinaus kann es im Bereich von Seigerungen zu abweichenden Korrosionsbeständigkeitseigenschaften kommen. Der Stahl DIN 1.4418 besitzt eine hohe Dehngrenze (Rpo,2%) von etwa 1000 MPa, wobei der Stahl DIN 1.4418 eine sehr hohe Kalt¬ zähigkeit erreichen kann, welche typischerweise zwischen 50 und 150J (Charpy V-Notch) Kerbschlagarbeit bei -40°C beträgt. Dieses hohe Zähigkeitsniveau ist aufgrund der in Pumpen auf¬ tretenden Kavitation erforderlich. In order to produce pump blocks, very large block sizes are required so that the casting weights are frequently greater than 10 t. This means that a suitable material must be designed in such a way that uniform product properties are achieved even when using conventional block formats and conventional melting by means of low pitch ¬ the can. Segregations are fundamentally undesirable here, since segregations can be the starting point of mechanical inhomogeneities and possibly cracks. In addition, deviations in corrosion resistance properties may occur in the area of segregations. The steel DIN 1.4418 has a high yield strength (Rpo, 2%) of about 1000 MPa, the steel DIN 1.4418 can achieve a very high cold ¬ toughness, which typically between 50 and 150J (Charpy V-Notch) impact energy at -40 ° C is. This high level of toughness is required by the pump in passing on ¬ cavitation.
Der Werkstoff DIN 1.4542 kann bei gleicher Dehngrenze dieses Zähigkeitsniveau nicht annähernd erreichen und verbleibt übli- cherweise bei nur einstelligen Kerbschlagarbeitswerten bei - 40°C. With the same yield strength, the material DIN 1.4542 can not approach this toughness level and usually remains at single-digit impact values at -40 ° C.
Der Stahl DIN 1.4313 wird für Pumpenblöcke auch verwendet, kann jedoch aufgrund seiner gegenüber dem DIN 1.4418 geringe- ren Legierungslage bei Vergütung auf sein maximales Festig¬ keitsniveau nur Dehngrenzen zwischen 900 und 1000 MPa errei¬ chen. Bei der Verwendung dieses Werkstoffs in höchster Festigkeitsstufe ist allerdings nur ein geringes Zähigkeitsniveau bei tiefen Temperaturen erreichbar, wobei zusätzlich die Kor- rosionsbeständigkeit durch die Legierung im Vergleich zu den anderen beiden Stählen deutlich geringer ist. Die Werkstoffe DIN 1.4313 und DIN 1.4418 sind hierbei nickelmartensitisch se¬ kundärhärtende Legierungen, während der Werkstoff DIN 1.4542 ein nickelmartensitisch kupferaushärtender Werkstoff ist. The steel DIN 1.4313 is also used for pump blocks, but may due to its relation to the DIN 1.4418 geringe- ren alloy layer only yield strength between 900 and 1000 MPa Errei ¬ chen in compensation to its maximum Festig ¬ keitsniveau. When using this material in the highest strength level, however, only a low level of toughness at low temperatures is achievable, in addition, the corrosion resistance by the alloy in comparison to the other two steels is significantly lower. The materials DIN 1.4313 and DIN 1.4418 are here nickelmartensitisch se ¬ kundärhärtende alloys, while the material DIN 1.4542 is a nickelmartensitisch kupferaushärtender material.
Aufgabe der Erfindung ist es, einen Werkstoff zu schaffen, der auch bei sehr hohen Gussgewichten eine verbesserte Festigkeit bei einem sehr hohen Zähigkeitsniveau besitzt, wobei die Kor¬ rosionsbeständigkeit ebenfalls erhöht ist. The object of the invention is to provide a material having even at very high casting weights improved strength at a very high level of toughness, the Cor ¬ rosionsbeständigkeit is also increased.
Die Aufgabe wird mit einem Verfahren zum Herstellen eines Stahlwerkstoffs mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet . The object is achieved by a method for producing a steel material having the features of claim 1. Advantageous developments are characterized in the subclaims.
Es ist eine weitere Aufgabe einen Werkstoff zu schaffen, der entsprechend gleichartige oder höhere Festigkeiten als bekann¬ te Stähle besitzt, jedoch ein höheres Zähigkeitsniveau und ei¬ ne bessere Korrosionsbeständigkeit besitzt. It is a further object to provide a material that has correspondingly similar or greater strength than most ¬ te steels, however, a higher level of impact resistance and ei ¬ ne better corrosion resistance possesses.
Die Aufgabe wird mit einem Stahlwerkstoff mit den Merkmalen des Anspruchs 6 gelöst. The object is achieved with a steel material having the features of claim 6.
Die Erfinder haben es sich zum Ziel gesetzt, einen Werkstoff zu entwickeln, der eine gleiche oder höhere Festigkeit besitzt als der DIN 1.4418 oder der DIN 1.4542, welche an sich schon eine sehr hohe Festigkeit besitzen, aber zusätzlich noch das sehr hohe Zähigkeitsniveau des DIN 1.4418 erreicht oder über¬ trifft, auf der anderen Seite aber die Korrosionsbeständigkeit des deutlich weniger festen DIN 1.4313 übertrifft. Das Ziel ist dabei jedoch zusätzlich, dass diese Produkteigenschaften bei konventioneller Erschmelzung erreicht werden, die Analyse aber so ausgelegt ist, dass auch eine hochreine Um- schmelzvariante (ESU oder VLBO) erreichbar ist. Eine solche hochreine Umschmelzvariante besitzt durch ihren deutlich ge- ringeren Gehalt an oxidischen Einschlüssen geringerer Größe besondere Vorteile bezüglich der Ermüdungseigenschaften für Sonderanwendungen im Maschinen- oder Apparatebau mit hohen dynamischen Belastungen, wie dies zum Beispiel bei Verdichtern oder Zentrifugen der Fall ist. Durch Umschmelzen im Vakuum- lichtbogenofen (VLBO) , welches die übliche Umschmelztechnolo- gie für hochbelastete Bauteile in Luftfahrtsanwendungen darstellt, kann beim erfindungsgemäßen Werkstoff durch Absenken der Defektgrößen im Werkstoff die Dauerfestigkeit erhöht wer¬ den. Dieser Effekt ist vor allem bei Anwendung des erfindungs- gemäßen Werkstoffes in hoher Festigkeit für Luft- und Raum¬ fahrtanwendungen von großer Bedeutung. The inventors have set themselves the goal to develop a material that has the same or higher strength than the DIN 1.4418 or DIN 1.4542, which already have a very high strength, but in addition still the very high toughness level of DIN 1.4418 reached or over ¬ meets, on the other hand, however, the corrosion resistance of the much less solid exceeds DIN 1.4313. However, the goal is also that these product properties are achieved in conventional melting, but the analysis is designed so that a high-purity remelt variant (ESU or VLBO) can be achieved. Such a high-purity remelt variant has special advantages in terms of fatigue properties for special applications in machine or apparatus construction with high dynamic loads, as is the case, for example, with compressors or centrifuges due to their significantly lower content of oxide inclusions of smaller size. By remelting in a vacuum arc furnace (VLBO) which pour the usual Umschmelztechnolo- for highly stressed components in aerospace applications is, the inventive material, the fatigue strength can be obtained by lowering the defect size in the material increases the ¬. This effect is mainly due to the use of the invention material in modern high strength for aviation and space travel applications ¬ of great importance.
Um erfindungsgemäß derartige Werkstoffeigenschaften zu erzeu- gen, muss die nickelmartensitisch sekundärhärtende Arbeitswei¬ se einerseits und die nickelmartensitisch kupferaushärtende Arbeitsweise andererseits verlassen werden und ein neuer Weg eingeschlagen werden. Erfindungsgemäß wird bei dem neuen Stahlwerkstoff Kupfer zum Aushärten verwendet. Die Erfinder haben erkannt, dass Delta- Ferrit als Gefügebestandteil die Zähigkeit vermindert, wobei durch ein optimales Verhältnis der Austenit- zu Ferrit stabi¬ lisierenden Elemente diese Phase möglichst minimiert wird und herstellbedingt alles unternommen wird, um die Delta-Ferrit- Phase durch geeignete Gießtechnologie und Verformung bei opti¬ mierter Temperatur gering zu halten. In order to gen erzeu- invention such material properties that nickelmartensitisch sekundärhärtende Arbeitswei ¬ se must on the one hand and the nickelmartensitisch kupferaushärtende operation will leave the other, and a new path will be taken. According to the invention, copper is used for curing in the new steel material. The inventors have recognized that delta ferrite reduces the toughness structural component, this phase is minimized as possible by an optimum ratio of austenite to ferrite stable ¬ lisierenden elements and its preparation process everything is done to the delta ferrite phase by suitable casting technology to hold and deformation at opti mized ¬ temperature low.
Eine Niobstabilisierung, wie sie beispielsweise im DIN 1.4542 verwendet wird, wird vollkommen vermieden, so dass erfindungs¬ gemäß keine groben Primärkarbide gebildet werden. A Niobstabilisierung, as used for example in the DIN 1.4542, is completely avoided so that no coarse primary carbides are formed Invention ¬ invention.
Die Erfinder haben erkannt, dass Werkstoffkonzepte wie der DIN 1.4542 aus einer Zeit stammen, in der die Anlagentechnik in der Schmelzmetallurgie es noch nicht gesichert ermöglichte, den Kohlenstoffgehalt von hochchromhaltigen Schmelzen zu reduzieren . The inventors have realized that material concepts such as DIN 1.4542 originate from a time when the technology of smelting metallurgy has not yet made it possible to reduce the carbon content of melts containing high chromium.
Aus diesem Grund wurde häufig der Weg gegangen, den für die Korrosionsbeständigkeit schädlichen Kohlenstoff durch starke Karbidbildner wie Titan oder Niob durch die Bildung von Mono- karbiden abzubinden und die Bildung von Chromkarbiden zu verhindern. Diese Legierungstechnik wurde sowohl bei austeniti- schen Werkstoffen, als auch bei martensitischen Werkstoffen wie dem DIN 1.4542 verwendet, und ist noch heute in den internationalen Normen für diesen Werkstoff vorgeschrieben. For this reason, the path has often been taken to bind carbon, which is detrimental to corrosion resistance, by strong carbide formers such as titanium or niobium through the formation of monocarbides and to prevent the formation of chromium carbides. This alloying technique was used for austenitic materials as well as for martensitic materials as used in DIN 1.4542, and is still required by international standards for this material.
Der bewusste Schritt auf eine Stabilisierung in diesem Legie- rungssystem zu verzichten ist eine der wesentlichen erfindungsgemäßen Maßnahmen, die es erlaubt einen Werkstoff mit dem erfindungsgemäßen Eigenschaftsprofil und mit den genannten Herstellmöglichkeiten zu realisieren. Die Erfindung wird anhand einer Zeichnung beispielhaft erläu¬ tert . The deliberate step to dispense with a stabilization in this alloying system is one of the essential measures according to the invention, which makes it possible to realize a material with the property profile according to the invention and with the mentioned production possibilities. The invention is exemplified erläu ¬ tert reference to a drawing.
Es zeigen dabei: Tabelle 1 die chemische Analyse der Normwerkstoffe, basierend auf EN 10088-3 im Vergleich zum erfindungsgemäßen Werkstoff (15-5MOD); 1 shows the chemical analysis of the standard materials, based on EN 10088-3 in comparison to the material according to the invention (15-5MOD);
Tabelle 2 die mechanischen Eigenschaften des erfindungsgemäßen Table 2, the mechanical properties of the invention
Werkstoffs in Querrichtung bei einer Aushärtung bei Material in the transverse direction at a curing at
520°C; 520 ° C;
Tabelle 3 die mechanischen Eigenschaften des erfindungsgemäßen Table 3, the mechanical properties of the invention
Werkstoffs in Querrichtung bei einer Aushärtung bei 485°C;  Transverse material when cured at 485 ° C;
Tabelle 4 die mechanischen Eigenschaften eines nicht erfindungsgemäßen Normwerkstoffs in Querrichtung; Tabelle 5 die mechanischen Eigenschaften eines weiteren Normwerkstoffs in Querrichtung; Table 4 shows the mechanical properties of a non-inventive standard material in the transverse direction; Table 5 shows the mechanical properties of another standard material in the transverse direction;
Tabelle 6 die mechanischen Eigenschaften eines weiteren Normwerkstoffs in Querrichtung; Tabelle 7 die mechanischen Eigenschaften des erfindungsgemäßen Werkstoffs in Querrichtung bei einer Aushärtung bei 450°C; Table 6 shows the mechanical properties of another standard material in the transverse direction; Table 7 shows the mechanical properties of the material according to the invention in the transverse direction when cured at 450 ° C;
Tabelle 8 die Beständigkeit gegen abtragende Korrosion anhand von Zugversuchskennwerten der untersuchten Proben und der Massenverlust der Normwerkstoffe und des erfin¬ dungsgemäßen Werkstoffs im Vergleich. Table 8 shows the resistance to erosive corrosion on the basis of tensile test characteristics of the samples investigated and the mass loss of the standard materials and the inventions ¬ to the invention material in comparison.
Tabelle 1 zeigt eine Gegenüberstellung aller genannten Werkstoffe im Vergleich zum erfindungsgemäßen Werkstoff (15-5MOD). Der erfindungsgemäße Werkstoff wurde konventionell erschmolzen und es wurden mehrere Flachstäbe mit der Abmessung 640 x 540 mm durch Schmieden hergestellt. Nach dem Schmieden wird derTable 1 shows a comparison of all materials mentioned in comparison to the material according to the invention (15-5MOD). The material according to the invention was melted conventionally and several flat bars measuring 640 × 540 mm were produced by forging. After forging, the
Werkstoff bei 950°C lösungsgeglüht, gehärtet und anschließend ausgehärtet . Material solution-treated at 950 ° C, hardened and then cured.
Die Aushärtetemperaturen betragen in einem Fall 485°C und im anderen Fall 520°C. The curing temperatures are 485 ° C in one case and 520 ° C in the other case.
Nach der Wärmebehandlung werden die Stäbe mittig geteilt und in den Zonen Boden, Mitte und Schopf in Querrichtung vollständig mechanisch erprobt. After the heat treatment, the bars are split in the middle and fully mechanically tested in the zones bottom, middle and top in the transverse direction.
Die mechanische Erprobung besteht hierbei aus einem Zugversuch bei Raumtemperatur, ein Kerbschlagversuch (Charpy V-Notch) bei Raumtemperatur und ein Kerbschlagversuch (Charpy V-Notch) bei -40°C. The mechanical testing consists of a tensile test at room temperature, a notch impact test (Charpy V-Notch) at room temperature and a notch impact test (Charpy V-Notch) at -40 ° C.
Die Analyse gemäß Tabelle 1 zeigt, dass im Sollzustand des er¬ findungsgemäßen Stahlwerkstoffes insbesondere die Mangan- und Phosphorgehalte zurückgenommen sind, insbesondere auch der Schwefelgehalt. Der Chromgehalt liegt zwischen dem der Werk- Stoffe DIN 1.4313 und DIN 1.4418, wobei jedoch letztlich der Stickstoffgehalt besonders niedrig ist und zudem Kupfer vor¬ handen ist. Die mechanischen Eigenschaften in den beiden Aushärtezuständen sind in den Tabellen 2 und 3 dargestellt und zeigen, dass sich die Festigkeit um ca. 100 MPa unterscheidet und mit den fest¬ gelegten Wärmebehandlungen eine Dehngrenze von ca. 1000 bzw. 1100 MPa erreicht werden können. Die Besonderheit am erfin- dungsgemäßen Werkstoff ist jedoch ein beeindruckend hohes Zä¬ higkeitsniveau auch bei tiefen Temperaturen. The analysis according to Table 1 shows that in the target state of he ¬ inventive steel material, in particular the manganese and phosphorus contents are withdrawn, especially the sulfur content. The chromium content lies between that of the Materials DIN 1.4313 and DIN 1.4418, but ultimately the nitrogen content is particularly low, and also copper is above ¬ handen. The mechanical properties in the two Aushärtezuständen are shown in Tables 2 and 3 and show that the strength differs by about 100 MPa and with the fest ¬ laid heat treatments a yield strength of about 1000 and 1100 MPa can be achieved. However, the special feature of the inventions to the invention material is an impressively high Zä ¬ higkeitsniveau even at low temperatures.
Diese hervorragende Eigenschaftskombination ist auf die erfindungsgemäße Erkenntnis zurückzuführen, dass Delta-Ferrit durch passende Analysenauslegung weitestgehend vermieden werden kann. Weiters ist bei der Erfindung die Höchstmenge an Niob stark beschränkt, so dass eine Niobstabilisierung ausscheidet und die Niobgehalte so niedrig sind, dass zähigkeitsvermin- dernde Hartphasen vermieden werden. This excellent combination of properties is due to the invention knowledge that delta ferrite can be largely avoided by appropriate analysis design. Furthermore, in the invention, the maximum amount of niobium is severely limited, so that niobium stabilization is eliminated and the niobium contents are so low that toughness-reducing hard phases are avoided.
Zum Vergleich sind in Tabelle 4 und Tabelle 5 Vergleichsdaten der Werkstoffe DIN 1.4313 und DIN 1.4418 aufgeführt, wobei diese ebenfalls aus Schmiedestäben im gleichen Abmessungsbe¬ reich ermittelt wurden. In Table 4 and Table 5. Comparative data of the materials DIN 1.4313 and 1.4418 DIN are listed for comparison, these were also determined in the same wrought rods Abmessungsbe ¬ rich.
Der erfindungsgemäße Stahlwerkstoff weist dabei die beste Kom¬ bination aus Festigkeit und Zähigkeit auf. The steel material according to the invention has the best combination of strength and toughness.
Tabelle 6 zeigt die Ergebnisse von einem kleineren DIN 1.4542 Schmiedestab mit den Abmessungen 520 x 280, der bei gleicher Festigkeit nur noch einen Bruchteil der Zähigkeit erreicht. Table 6 shows the results of a smaller DIN 1.4542 forging bar with the dimensions 520 x 280, which achieves only a fraction of the toughness with the same strength.
Im Rahmen der Entwicklung des erfindungsgemäßen Werkstoffes 15-5MOD wurde auch das mit der festgelegten Analyse maximal erzielbare Festigkeitspotenzial untersucht. Dabei zeigte sich, dass durch eine Absenkung der Aushärtetemperatur auf 450 °C eine weitere Festigkeitserhöhung auf eine Dehngrenze von ca. 1177 - 1190 MPa erzielen lässt. In diesem höchstfesten Zustand ist die mittels Kerbschlagversuch bei -40°C ermittelte Zähig¬ keit naturgemäß gegenüber einer Aushärtung bei 485°C verringert, allerdings zeigt der Werkstoff mit 20J bis 78J (Tabelle 7) ein noch immer um ein Vielfaches höheres Kerbschlagarbeits- niveau als der Werkstoff DIN 1.4542 bei um mehr als lOOMPa hö- herer Dehngrenze, sodass auch dieser WBH Zustand trotz geringerer Tieftemperaturzähigkeit als äußerst praxisrelevant anzu¬ sehen ist. As part of the development of the material according to the invention 15-5MOD was also the maximum with the specified analysis achievable strength potential examined. It was found that lowering the curing temperature to 450 ° C resulted in a further increase in strength to a yield strength of approx. 1177 - 1190 MPa. In this most solid state, determined by means of notch impact test at -40 ° C Zähig ¬ ness is naturally reduced compared to curing at 485 ° C, however, the material having 20J to 78J (Table 7) shows a still higher by a multiple Kerbschlagarbeits- level than the material DIN 1.4542 at more than Loompa HOE herer yield strength, so that this WBH state is to be highly relevant in practice despite lower low temperature toughness ¬ see.
Da der Werkstoff neben einer hohen Festigkeit und hiermit ver- bunden einer hohen Zähigkeit auch eine ausreichende Korrosi¬ onsbeständigkeit aufweisen muss, wurden auch zusätzliche Kor¬ rosionsuntersuchungen durchgeführt . Since the material in addition to high strength and a high toughness hereby comparable connected must also have sufficient corrosion- ¬ onsbeständigkeit, additional Cor ¬ rosionsuntersuchungen were performed.
Ermittelt wurde der Masseverlust bei abtragender Korrosion in 20%-iger Essigsäure, die mit Schwefelsäure auf pH = 1,6 ange¬ säuert wurde. Die Prüfdauer beträgt 24 Stunden. Die Ergebnisse (Tabelle 8) zeigen, dass die Werkstoffe DIN 1.4418, DIN 1.4542 und der erfindungsgemäße Werkstoff kaum Abtrag zeigen und die Korrosionsbeständigkeit unter diesen Bedingungen als gleich- wertig eingestuft werden kann. Der Werkstoff DIN 1.4313 zeigt erwartungsgemäß aufgrund seines geringeren Legierungsgehaltes signifikanten Masseverlust. Hierbei wird besonders deutlich, dass der erfindungsgemäße Werkstoff es vermag, sowohl die Fes¬ tigkeit als auch die Zähigkeit noch einmal zu verbessern bei einer gleichbleibenden Korrosionsbeständigkeit. The loss in mass of ablative corrosion in 20% acetic acid, which was acidified with sulfuric acid to pH = 1.6 is ¬ was determined. The test duration is 24 hours. The results (Table 8) show that the materials DIN 1.4418, DIN 1.4542 and the material according to the invention hardly show any removal and the corrosion resistance can be classified as equivalent under these conditions. As expected, the material DIN 1.4313 shows significant mass loss due to its lower alloy content. Here, both the Fes ¬ ACTION and the toughness is particularly clear that the material according to the invention is able to once again improve at a steady corrosion resistance.
Das erfindungsgemäße Verfahren sieht vor, den Werkstoff mit einer Analyse entsprechend Tabelle 1 konventionell zu großen Blockformaten bis > 10 t zu erschmelzen. Anschließend wird das Material im Bereich von 800 bis 1250°C umgeformt, gefolgt von einer Wärmebehandlung. Die Wärmebehandlung besteht aus einem Lösungsglühen bei 850 bis 1050°C, einem anschließenden Härten, einem anschließenden Abkühlen und Aushärten bei 450 bis 600°C, bevorzugt wird der Temperaturbereich 450 bis 520°C beim Anstreben einer maximalen Festigkeit . The inventive method provides to melt the material with an analysis according to Table 1 conventionally large block formats up to> 10 t. Subsequently, the material is transformed in the range of 800 to 1250 ° C, followed by a heat treatment. The heat treatment consists of a solution annealing at 850 to 1050 ° C, a subsequent hardening, a subsequent cooling and curing at 450 to 600 ° C, preferably the temperature range 450 to 520 ° C in striving for a maximum strength.
Das Gefüge des erfindungsgemäßen Materials besteht anschlie¬ ßend aus Martensit mit maximal 1% Delta-Ferrit, wobei es frei von primären Hartphasen (vor allen Dingen auf Basis Niob, Tantal, Titan, Vanadium) ist, wobei der Anlass-Austenitgehalt ma- ximal 8% beträgt. The microstructure of the inventive material is subsequently ¬ ßend of martensite with a maximum of 1% delta ferrite, and it is free of primary hard phases (especially based on niobium, tantalum, titanium, vanadium), the occasion austenite maximum 8 % is.
Das erfindungsgemäße Material wird primär für korrosionsbe¬ ständige Pumpenblöcke verwendet, kann aber auch im allgemeinen Maschinen- und Apparatebau verwendet werden. The inventive material is primarily used for resistant to corrosion ¬ constant pumping blocks, but can also be used in general mechanical and apparatus.
Erfindungsgemäß kann bei gesteigerten Anforderungen an die Ermüdungsfestigkeit, insbesondere bei Aggregaten, die dynamisch stark belastet sind oder bei sicherheitskritischen Konstruktionsteilen in der Luft- und Raumfahrtindustrie, das Material auch als hochreine Umschmelzgüte entsprechend dem ESU- oder VLBO-Verfahren erzeugt werden. Durch die mit dem Umschmelzen verbundene Reinheitsgradverbesserung ergeben sich die hinreichlich bekannten Verbesserungen der Ermüdungseigenschaften durch Absenken der Defektgrößen im Werkstoff. According to the invention can be produced as a high-purity Umschmelzgüte according to the ESU or VLBO process with increased demands on fatigue strength, especially in aggregates that are dynamically heavily loaded or safety-critical structural parts in the aerospace industry. The improvement in purity associated with the remelting results in the well-known improvements in the fatigue properties by reducing the defect sizes in the material.
Bei der Erfindung ist von Vorteil, dass durch eine sehr genaue Analysenführung einerseits und andererseits durch eine Umstel¬ lung der Analyse und die Verminderung des Delta-Ferrits und primärer Hartphasen ein Werkstoff geschaffen wird, der sehr hohe Festigkeit, Korrosionsbeständigkeit und Zähig¬ keit in einer Weise erreicht, die zuvor nicht miteinander kombinierbar gewesen wäre. In the invention, it is advantageous that a material is created by a very precise analysis on the one hand and on the other hand by a Umstel ¬ ment analysis and the reduction of delta ferrite and primary hard phases, the very high strength, corrosion resistance and Zähig ¬ ness achieved in a way that would not previously been combined.

Claims

Patentansprüche claims
1. Verfahren zum Herstellen eines Stahlwerkstoffes, insbesonde- re eines korrosionsbeständigen Stahlwerkstoffes für Pumpen und dergleichen, wobei ein Stahl entsprechend der folgenden Analyse (in Gew-%) erschmolzen wird: 1. A method for producing a steel material, in particular a corrosion-resistant steel material for pumps and the like, wherein a steel is melted (in% by weight) according to the following analysis:
C < 0,050; C <0.050;
Si < 0,70; Si <0.70;
Mn < 1,00;  Mn <1.00;
P < 0,030;  P <0.030;
S < 0,010;  S <0.010;
Cr = 14-15,50;  Cr = 14-15.50;
Mo = 0,30-0, 60; Mo = 0.30-0, 60;
Ni = 4,50-5,50;  Ni = 4.50-5.50;
V < 0,20;  V <0.20;
W < 0,20;  W <0.20;
Cu = 2,50-4, 00;  Cu = 2.50-4.00;
Co < 0,30; Co <0.30;
Ti < 0,05;  Ti <0.05;
AI < 0,05;  AI <0.05;
Nb < 0,05;  Nb <0.05;
Ta < 0,05;  Ta <0.05;
N < 0, 05; N <0, 05;
Rest Eisen und erschmelzungsbedingte Verunreinigungen. Remaining iron and impurities caused by melting.
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
dadurch gekennzeichnet, characterized,
dass der Werkstoff konventionell oder ESU oder VLBO erschmol¬ zen wird und bei 800°C bis 1250°C umgeformt wird, wobei eine Wärmebehandlung folgt mit einem Lösungsglühen bei 850 °C bis 1050°C, gefolgt von einem Härten, Abkühlen und einem Aushärten bei 450°C bis 600°C, vorzugsweise 450°C bis 520°C je nach be¬ nötigen mechanischen Eigenschaften. that the material conventionally or ESU or VLBO erschmol ¬ zen is and is converted at 800 ° C to 1250 ° C, wherein a heat treatment is followed by solution annealing at 850 ° C to 1050 ° C, followed by curing, cooling and curing at 450 ° C to 600 ° C, preferably 450 ° C to 520 ° C depending on be ¬ necessary mechanical properties.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
dadurch gekennzeichnet, characterized,
dass der Werkstoff mit der folgenden Analyse erschmolzen wird: that the material is melted with the following analysis:
C < 0,030; C <0.030;
Si < 0,40;  Si <0.40;
Mn < 0, 60; Mn <0.60;
P < 0, 025;  P <0, 025;
S < 0,005;  S <0.005;
Cr = 14,20-14, 60  Cr = 14.20-14, 60
Mo <0, 30-0, 45;  Mo <0, 30-0, 45;
Ni < 4,80-5,20; Ni <4.80-5.20;
V < 0,10;  V <0.10;
W < 0,10;  W <0.10;
Cu = 3, 00-3,70;  Cu = 3.00-3.70;
Co < 0,15;  Co <0.15;
Ti < 0,010; Ti <0.010;
AI < 0,030;  AI <0.030;
Nb < 0,02;  Nb <0.02;
Ta < 0,02;  Ta <0.02;
N < 0,02;  N <0.02;
Rest Eisen und erschmelzungsbedingte Verunreinigungen. Remaining iron and impurities caused by melting.
4. Verfahren nach einem der vorhergehenden Ansprüche, 4. The method according to any one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass der Niobgehalt so niedrig ist, dass zähigkeitsvermindern- de Hartphasen vermieden werden. that the niobium content is so low that toughness-reducing hard phases are avoided.
5. Verfahren nach einem der vorhergehenden Ansprüche, 5. The method according to any one of the preceding claims,
dadurch gekennzeichnet, dass die Wärmebehandlung, das Härten, das Abkühlen und Aushärten so durchgeführt werden, dass das Gefüge anschließend aus Martensit mit maximal 1% Deltaferrit besteht und frei von pri¬ mären Hartphasen ist, wobei der Anlass-Austenitgehalt maximal 8 ~6 beträgt . characterized, that the heat treatment, curing, cooling and hardening are carried out so that the structure then consists of martensite with a maximum of 1% delta ferrite and free of pri ¬ tales hard phases, being the cause austenite content is a maximum of 8 ~. 6
6. Werkstoff insbesondere zur Herstellung von Pumpen oder dergleichen, insbesondere Stahlwerkstoff hergestellt nach einem Verfahren der vorhergehenden Ansprüche, 6. Material in particular for the production of pumps or the like, in particular steel material produced by a method of the preceding claims,
dadurch gekennzeichnet, characterized,
dass der Stahlwerkstoff die folgende Analyse aufweist: that the steel material has the following analysis:
C < 0,050; C <0.050;
Si < 0,70;  Si <0.70;
Mn < 1, 00; Mn <1.00;
P < 0,030;  P <0.030;
S < 0,010;  S <0.010;
Cr = 14-15,50;  Cr = 14-15.50;
Mo = 0,30-0, 60;  Mo = 0.30-0, 60;
Ni = 4,50-5,50; Ni = 4.50-5.50;
V < 0,20;  V <0.20;
W < 0,20;  W <0.20;
Cu = 2,50-4, 00;  Cu = 2.50-4.00;
Co < 0,30;  Co <0.30;
Ti < 0,05; Ti <0.05;
AI < 0,05;  AI <0.05;
Nb < 0,05;  Nb <0.05;
Ta < 0,05;  Ta <0.05;
N < 0,05.  N <0.05.
7. Werkstoff nach Anspruch 6, 7. Material according to claim 6,
dadurch gekennzeichnet, characterized,
dass der Werkstoff die folgende Analyse besitzt: C < 0,030; that the material has the following analysis: C <0.030;
Si < 0,40;  Si <0.40;
Mn < 0,60;  Mn <0.60;
P < 0, 025;  P <0, 025;
S < 0 , 005 ;  S <0, 005;
Cr = 14,20-14, 60;  Cr = 14.20-14, 60;
Mo < 0,30-0,45;  Mo <0.30-0.45;
Ni < 4,80-5,20;  Ni <4.80-5.20;
V < 0,10;  V <0.10;
W < 0, 10;  W <0.10;
Cu = 3, 00-3,70;  Cu = 3.00-3.70;
Co < 0,15;  Co <0.15;
Ti < 0,010;  Ti <0.010;
AI < 0,030;  AI <0.030;
Nb < 0, 02;  Nb <0, 02;
Ta < 0,02;  Ta <0.02;
N < 0,02;  N <0.02;
8. Werkstoff nach Anspruch 6 oder 7, 8. Material according to claim 6 or 7,
dadurch gekennzeichnet,  characterized,
dass das Gefüge des Werkstoffs aus Martensit mit maximal 1% Deltaferrit besteht, wobei das Gefüge frei von primären Hart¬ phasen, insbesondere auf Basis Niob, Tantal, Titan oder Vana¬ dium ist und der Anlass-Austenitgehalt maximal 8% beträgt. that the structure of the martensite material with a maximum of 1% delta ferrite, wherein the structure is free of primary Hart ¬ phases, in particular based on niobium, tantalum, titanium or Vana ¬ dium and the tempering Austenitgehalt is a maximum of 8%.
9. Werkstoff nach einem der Ansprüche 6 bis 8, 9. Material according to one of claims 6 to 8,
dadurch gekennzeichnet,  characterized,
dass das Material konventionell oder in ESU- oder in VLBO- Verfahren erschmolzen ist.  that the material is melted conventionally or in ESU or VLBO processes.
10. Werkstoff nach einem der Ansprüche 6 bis 9, dadurch gekenn¬ zeichnet, 10. Material according to one of claims 6 to 9, characterized marked ¬ characterized
dass das Material bei einer Aushärtetemperatur von 520°C eine Dehngrenze von ca. 1000 MPa bei einer Zähigkeit bei -40°C von über 70 J erreicht und bei einer Aushärtetemperatur von 485°C eine Dehngrenze von ca. 1100 MPa bei einer Zähigkeit bei -40°C von über 60 J erreicht. that the material at a curing temperature of 520 ° C a yield strength of about 1000 MPa with a toughness at -40 ° C of reaches over 70 J and reaches a yield strength of about 1100 MPa at a curing temperature of 485 ° C with a toughness at -40 ° C of more than 60 J.
EP17724522.2A 2016-05-19 2017-05-11 Method for producing a steel material, and steel material Active EP3458623B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016109253.3A DE102016109253A1 (en) 2016-05-19 2016-05-19 Method for producing a steel material and steel material
PCT/EP2017/061290 WO2017198530A1 (en) 2016-05-19 2017-05-11 Method for producing a steel material, and steel material

Publications (3)

Publication Number Publication Date
EP3458623A1 true EP3458623A1 (en) 2019-03-27
EP3458623B1 EP3458623B1 (en) 2023-07-05
EP3458623C0 EP3458623C0 (en) 2023-07-05

Family

ID=58739020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17724522.2A Active EP3458623B1 (en) 2016-05-19 2017-05-11 Method for producing a steel material, and steel material

Country Status (11)

Country Link
US (1) US11486015B2 (en)
EP (1) EP3458623B1 (en)
JP (1) JP6836280B2 (en)
KR (1) KR20190009335A (en)
CN (1) CN109689913A (en)
AU (1) AU2017267098B2 (en)
BR (1) BR112018073760B1 (en)
CA (1) CA3024661C (en)
DE (1) DE102016109253A1 (en)
SG (1) SG11201810271VA (en)
WO (1) WO2017198530A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084025A1 (en) 2019-10-31 2021-05-06 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Kg Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1553841B2 (en) * 1966-03-22 1974-06-06 Wuerttembergische Metallwarenfabrik, 7340 Geislingen Use of an austenitic work-hardened stainless steel alloy for knife blades
US3622307A (en) 1968-05-15 1971-11-23 Armco Steel Corp Precipitation-hardenable chromium-nickel stainless steel
US3574601A (en) * 1968-11-27 1971-04-13 Carpenter Technology Corp Corrosion resistant alloy
AT377785B (en) * 1983-06-28 1985-04-25 Ver Edelstahlwerke Ag CHROMED ALLOY
US4769213A (en) 1986-08-21 1988-09-06 Crucible Materials Corporation Age-hardenable stainless steel having improved machinability
DE3825634C2 (en) * 1988-07-28 1994-06-30 Thyssen Stahl Ag Process for the production of hot baths or heavy plates
JP2672437B2 (en) * 1992-09-07 1997-11-05 新日本製鐵株式会社 Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2962098B2 (en) * 1993-04-09 1999-10-12 日本鋼管株式会社 Method for producing 110 Ksi grade high strength corrosion resistant martensitic stainless steel pipe
JP3228008B2 (en) * 1993-10-22 2001-11-12 日本鋼管株式会社 High-strength martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same
US5496421A (en) * 1993-10-22 1996-03-05 Nkk Corporation High-strength martensitic stainless steel and method for making the same
JPH07179943A (en) 1993-12-22 1995-07-18 Nippon Steel Corp Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP3446394B2 (en) * 1995-05-11 2003-09-16 大同特殊鋼株式会社 Precipitation hardening stainless steel
CA2362123A1 (en) 1999-03-08 2000-09-14 Crs Holdings, Inc. An enhanced machinability precipitation-hardenable stainless steel for critical applications
WO2002009964A1 (en) * 2000-08-01 2002-02-07 Nisshin Steel Co., Ltd. Stainless steel fuel tank for automobile
JP2002173742A (en) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd High strength austenitic stainless steel strip having excellent shape flatness and its production method
JP3696552B2 (en) * 2001-04-12 2005-09-21 日新製鋼株式会社 Soft stainless steel plate with excellent workability and cold forgeability
JP4240189B2 (en) * 2001-06-01 2009-03-18 住友金属工業株式会社 Martensitic stainless steel
JP4144283B2 (en) * 2001-10-18 2008-09-03 住友金属工業株式会社 Martensitic stainless steel
JP5744575B2 (en) * 2010-03-29 2015-07-08 新日鐵住金ステンレス株式会社 Double phase stainless steel sheet and strip, manufacturing method
CN104937126B (en) * 2013-01-16 2017-09-15 杰富意钢铁株式会社 Oil well stainless-steel seamless pipe and its manufacture method
BR102014005015A8 (en) * 2014-02-28 2017-12-26 Villares Metals S/A martensitic-ferritic stainless steel, manufactured product, process for producing forged or rolled bars or parts of martensitic-ferritic stainless steel and process for producing all seamless martensitic-ferritic stainless steel
CN104328353B (en) * 2014-12-01 2017-08-11 什邡新工金属材料有限公司 A kind of rare-earth type 0Cr17Ni4Cu4Nb martensitic precipitations and preparation method thereof
JP6460229B2 (en) * 2016-03-29 2019-01-30 Jfeスチール株式会社 High strength stainless steel seamless steel pipe for oil well

Also Published As

Publication number Publication date
JP2019518871A (en) 2019-07-04
JP6836280B2 (en) 2021-02-24
CA3024661A1 (en) 2017-11-23
BR112018073760A8 (en) 2021-10-05
US20190211410A1 (en) 2019-07-11
SG11201810271VA (en) 2018-12-28
WO2017198530A1 (en) 2017-11-23
KR20190009335A (en) 2019-01-28
AU2017267098A1 (en) 2018-12-13
AU2017267098B2 (en) 2019-10-31
BR112018073760A2 (en) 2019-04-09
EP3458623B1 (en) 2023-07-05
BR112018073760B1 (en) 2022-10-18
CN109689913A (en) 2019-04-26
EP3458623C0 (en) 2023-07-05
CA3024661C (en) 2021-10-12
US11486015B2 (en) 2022-11-01
DE102016109253A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
EP1780293B2 (en) Procedure for manufacturing of steel starting material by warm deforming
EP3504349B1 (en) Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type
DE102010026808B4 (en) Corrosion-resistant austenitic phosphorous-alloyed steel casting with TRIP or TWIP properties and its use
EP2557184A1 (en) Hot-rolled profiled steel reinforcement for reinforced concrete with improved fire resistance and method for producing same
EP1430161B1 (en) High-strength duplex/triplex steel for lightweight construction and use thereof
DE1483218C3 (en) Process for producing a heat-resistant, ferritic Cr-Mo-V steel with high creep strength and improved creep elongation
EP3899063B1 (en) Super austenitic material
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
EP3850114A1 (en) Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component
EP2662461A1 (en) Iron-chromium-manganese-nickel alloy
DE112006003553B4 (en) Thick steel plate for a welded construction having excellent strength and toughness in a central region of thickness and small property changes by its thickness and production process therefor
EP0455625B1 (en) High strength corrosion-resistant duplex alloy
EP2103704A1 (en) Hot-rolled long product and method for its manufacture
EP3899065A1 (en) Drill string component with high corosion resistance, and method for the production of same
EP1069202B1 (en) A paramagnetic, corrosion resistant austenitic steel with high elasticity, strength and toughness and a process for its manufacture
EP3458623A1 (en) Method for producing a steel material, and steel material
DE60201984T2 (en) TOOL STEEL OF HIGH TENSILE, METHOD FOR PRODUCING PARTS FROM THIS STEEL AND PARTS MANUFACTURED THEREOF
EP0897018B1 (en) Duplex stainless steel with high tensile strength and good corrosion properties
EP2478988B1 (en) Filler material for welding based on iron
DE2326882A1 (en) PROCESS FOR PRODUCING HIGH STRENGTH STEEL WITH LOW PROPORTION TO DELAYED BREAKAGE
DE69938617T2 (en) Steel for casting molds and method of manufacture
DE19921286A1 (en) Heat treatment process for the production of surface-hardened long and flat products from unalloyed or low-alloy steels
DE10231125A1 (en) High strength duplex / triplex lightweight engineering steel and its use
EP1529853A2 (en) Steel for chemistry - Devices - Components
EP1405930B1 (en) The use of a steel alloy for fuel injection components

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HASPEL, MICHAEL

Inventor name: PERKO, JOCHEN

Inventor name: SCHUETZ, PATRIC

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40001250

Country of ref document: HK

17Q First examination report despatched

Effective date: 20200204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017015009

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038020000

Ipc: C22C0038000000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C22C0038020000

Ipc: C22C0038000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 6/00 20060101ALI20221219BHEP

Ipc: C22C 38/46 20060101ALI20221219BHEP

Ipc: C22C 38/44 20060101ALI20221219BHEP

Ipc: C22C 38/42 20060101ALI20221219BHEP

Ipc: C22C 38/04 20060101ALI20221219BHEP

Ipc: C21D 1/26 20060101ALI20221219BHEP

Ipc: C21D 1/18 20060101ALI20221219BHEP

Ipc: C22C 38/02 20060101ALI20221219BHEP

Ipc: C22C 38/52 20060101ALI20221219BHEP

Ipc: C22C 38/50 20060101ALI20221219BHEP

Ipc: C22C 38/48 20060101ALI20221219BHEP

Ipc: C22C 38/00 20060101AFI20221219BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1584897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017015009

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230705

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230713

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230710

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017015009

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240408