EP1069202B1 - A paramagnetic, corrosion resistant austenitic steel with high elasticity, strength and toughness and a process for its manufacture - Google Patents

A paramagnetic, corrosion resistant austenitic steel with high elasticity, strength and toughness and a process for its manufacture Download PDF

Info

Publication number
EP1069202B1
EP1069202B1 EP00890207A EP00890207A EP1069202B1 EP 1069202 B1 EP1069202 B1 EP 1069202B1 EP 00890207 A EP00890207 A EP 00890207A EP 00890207 A EP00890207 A EP 00890207A EP 1069202 B1 EP1069202 B1 EP 1069202B1
Authority
EP
European Patent Office
Prior art keywords
weight
temperature
alloy
less
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00890207A
Other languages
German (de)
French (fr)
Other versions
EP1069202A1 (en
Inventor
Herbert Dipl.-Ing. Aigner
Günter Dr. Hochörtler
Josef Dipl.-Ing. Bernauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Voestalpine Boehler Edelstahl GmbH and Co KG
Original Assignee
Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Boehler Edelstahl GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3509471&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1069202(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schoeller Bleckmann Oilfield Technology GmbH and Co KG, Boehler Edelstahl GmbH and Co KG filed Critical Schoeller Bleckmann Oilfield Technology GmbH and Co KG
Publication of EP1069202A1 publication Critical patent/EP1069202A1/en
Application granted granted Critical
Publication of EP1069202B1 publication Critical patent/EP1069202B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to a method for producing a paramagnetic material, particularly corrosion-resistant in media with a high chloride concentration, with a high yield strength, strength and toughness consisting of in% by weight Max. 0.1 carbon 0.21 to 0.6 silicon 17.0 to 24.0 chromium as well as manganese and nitrogen up to 2.5 nickel up to 1.9 molybdenum Max. 0.3 copper up to 0.002 boron up to 0.8 elements of groups 4 and 5 of the periodic table Remainder iron, melting-related accompanying elements and impurities.
  • the invention further relates to an austenitic, paramagnetic material good corrosion resistance, especially in media with high Chloride concentration, and high yield strength, strength and toughness made of carbon, manganese, silicon, chromium and nitrogen, and optionally Nickel, molybdenum, copper, boron, carbide-forming elements, remainder iron, Melting-related accompanying elements and impurities.
  • the invention includes the use of one at the beginning mentioned method manufactured material.
  • High-strength materials that are paramagnetic and corrosion-resistant economic reasons mainly from chromium-manganese-iron alloys exist for chemical apparatus engineering, for facilities for electrical power generation and especially for components in the Oilfield technology used. Both the corrosion chemical and the mechanical properties of such materials are described in increasingly higher demands.
  • Iron-manganese-chromium alloys were also used for economic reasons developed that without pressure melting and the like casting process, so at Atmospheric pressure can be produced (WO 98/48070), whereby alloying measures a desired property profile of the Material should be achieved. Alloys of this type point to Improvement in corrosion resistance to a molybdenum content of over 2%, which brings advantages in particular with hole and crevice corrosion behavior.
  • molybdenum is a ferrite former and can be found in segregation areas lead to unfavorable magnetic properties of the material. Increased Nickel contents stabilize the austenite, but may also contribute higher copper concentrations worsening the mechanical Properties and intensify the crack initiation.
  • the invention aims to provide a method which Exhaustion of alloying measures includes deformation and synergistically a manufacture of a highly magnetic paramagnetic, in Media with a high chloride concentration are corrosion-resistant, ferrite-free Material with high yield strength, strength and toughness indicates.
  • Another object of the invention is a fully austenitic paramagnetic Material with good corrosion resistance and high mechanical values create.
  • the advantages achieved by the invention are essentially to be seen in that with high efficiency regarding the material costs and Manufacturing process by an alloy-technical optimization largest Corrosion resistance and a desired paramagnetic behavior of the Material can be achieved, whereby its high mechanical characteristics, especially the yield strength, without adversely affecting the above properties mentioned by a targeted cold forming increased temperature experienced a further significant improvement.
  • the carbon content of the alloy is max. 0.1% by weight, because higher levels result in both pitting and stress corrosion cracking chloride-containing media as well as intercrystalline corrosion from it manufactured parts. Compliance with this upper limit, with levels of Max. 0.06 and 0.05% by weight is preferred, as mentioned above, from Corrosion-chemical reasons important, although carbon increases the yield strength and has a strong austenite-forming effect.
  • Silicon is said to be a deoxidation metal with a concentration of at least 0.21 % By weight is present in the metal, an upper limit of 0.6% by weight being provided. Higher silicon levels lead to nitride formation and deterioration of the Resistance to stress corrosion cracking of the material. Because silicon is also strong Magnetic permeability can also have a ferrite-forming effect due to higher contents be adversely affected. A maximum content of 0.48 is advantageous % By weight effective.
  • Corrosion behavior especially resistance to Stress corrosion cracking and pitting corrosion is caused by the chromium content of the Alloy determined. It is important that a largely homogeneous Chromium distribution in the material is present; in other words, the so-called Weak spots in the passive layer due to segregation and inclusions avoided are. To be largely secured, a desired corrosion resistance too chromium contents of more than 17% by weight, preferably of more than 19% by weight required.
  • Chromium increases the solubility of the alloy for Nitrogen, however, has a ferrite-forming effect and is therefore unfavorable with regard to the desired one non-magnetic or paramagnetic behavior of the material, so that the highest chromium concentration is 24.0% by weight, preferably 22.0% by weight.
  • Nickel can increase the mechanical properties of the alloy and the stability the austenitic structure can be improved for sufficiently good ones Corrosion properties of the material, especially the Regarding stress corrosion cracking, nickel contents are less than 2.5% by weight. better, but less than 0.96 wt .-% required. Due to low nickel contents From 0.21% by weight up to the above maximum values it is possible without disadvantages in the corrosion behavior of the desired alloy, an increase in To reach yield strength.
  • the alloy element molybdenum improves the durability of the material against corrosion, especially against chloride-induced crevice and pitting corrosion.
  • this element is a strong ferrite former and the like
  • Carbide formers and formers of socialized phases are the Molybdenum caps at 1.9% by weight, but better at 1.5% by weight.
  • Low Levels from 0.28 wt .-% molybdenum up to the above limits can Precipitation-free austenite structure of the micro-chemical structure Advantages bring.
  • the element copper which is often effective against corrosion attack, has been used in the
  • the alloy according to the invention was found to have a disadvantageous effect, wherein the copper contents less than 0.3% by weight, but better less than 0.25% by weight to achieve resistance to corrosion.
  • Boron can be used to improve the hot forming behavior of the material an amount of up to 0.002% by weight, preferably up to 0.0012% by weight. Higher amounts of boron lead to grain boundary deposits, Signs of embrittlement and undesirable structures.
  • elements of group 4 and group 5 of the periodic table are particularly important for preventing stress cracking and pitting corrosion low levels of elements of group 4 and group 5 of the periodic table.
  • These elements Ti, Zr, Hg, V, Nb, Ta
  • These elements are extremely strong carbide and nitride or Carbonitride formers and have values of less than 0.8 in total % By weight, better of less than 0.48% by weight. Higher concentrations cause excretions and thereby weak points in the passive layer on the Workpiece surface, which affects the corrosion resistance.
  • the element nitrogen is a strong austenite former.
  • the yield strength and the resistance of the material to hole and Crevice corrosion due to nitrogen increased.
  • Nitrogen is in iron based alloys however, only soluble to a limited extent, with increasing chromium and manganese contents Solubility limit is increased.
  • the chromium-manganese and Nitrogen concentrations of the alloy synergistically for the invention To see material or for its properties.
  • Preferred nitrogen concentration ranges are: 0.64 to 1.3 wt .-%, in particular 0.72 to 1.2 wt .-% N.
  • manganese contents of 30% by weight and more and with nitrogen contents of 0.6% by weight and less high yield strengths cannot be achieved and embrittlement of the material can occur.
  • this or this diffusion annealing which is a homogenization of the Serves microstructure or a compensation of micro segregations become.
  • This annealing can be carried out, for example, at a temperature of around 1200 ° C up to 60 hours.
  • the hot forming of the casting which represents the first deformation step, mostly done by forging, whereby the forming temperature is higher than 850 ° C, to ensure a correspondingly favorable recrystallization of the mixed structure.
  • the forging shaped in this way is, as a rule, from the forging heat cooled down at increased speed.
  • This cooling the avoidance of Excretions, especially at the grain boundaries, can be in one Water basin or with a continuous cooling section.
  • the forging is made at a temperature below 600 ° C reshaped, a solidification of the material, in particular a desired increase in the proof stress occurs.
  • a solidification of the material in particular a desired increase in the proof stress occurs.
  • the material fully austenitic or ferrite-free; there is therefore no expected partial folding to form a structure with deformation martensite. It turned out to be proved favorable when the deformation of the forged casting in the second Step at elevated temperature, but safely below 600 ° C and then the deformed shaped part is allowed to cool to room temperature.
  • Manufacturing technology but also in terms of improved homogeneity and Material quality can be favorable if the block uses an ESR process will be produced.
  • the material quality can be further increased if the block in the first step with a degree of deformation, which is defined: output cross section through Final cross-section is at least 4 times thermoformed. This makes a fine, recrystallized, uniform ferrite-free austenite structure achieved.
  • the forging in the second step in a To transform temperature in the range of 400 to 500 ° C.
  • An austenitic, paramagnetic material with the composition mentioned with good Corrosion properties that are thermoformed at least 3.5 times and below the Elimination temperature of nitrides and associated phases, however is cold-formed above a temperature of 350 ° C, shows the slightest traces of ferrite, practically no ferrite content in the preferred ranges of the composition on and behaves essentially paramagnetically with a relative Permeability below 1.05, in particular below 1.016.
  • the yield strength R P0.2 of the material at room temperature is higher than 700 N / mm 2 .
  • the values for the impact strength at room temperature are greater than 52J and the FATT (Fracture Appearance Transition Temperature) is lower than -25 ° C.
  • Table 1 shows the chemical composition of all reference materials and, additionally, the deformation data for samples 1 to 3 and A to E.
  • Samples 4 to 6 come from comparative material that was available on the market.
  • Table 2 summarizes the results regarding the magnetic property, the mechanical values and the corrosion behavior.
  • Samples 2 and A were made from steel that was melted in the induction furnace and cast into blocks under protective gas.
  • Samples 1, 3, B to E come from ESR material.
  • the materials of samples 1 and 3 have low magnetic data with good magnetic data Yield strengths and strength values.
  • Good toughness and sufficient FATT and the corresponding oxalic acid test pattern show low hole potentials opposite, whereby the materials due to an insufficient Eliminate property profile for high loads. The causes of this are in the low chromium and manganese contents as well as in the consequence low nitrogen concentrations.
  • the material of sample 2 does have a sufficiently high chromium content, however, low manganese and the like cause nitrogen in particular poor corrosion resistance.
  • the samples A to E produced by means of the method according to the invention are significantly improved in leaps and bounds in the entirety of the usage properties. Synergistically, the respective, coordinated concentrations of the alloying elements and the solidifying cold forming of the material produced without precipitation provide superior corrosion resistance with a low relative magnetic permeability and a substantial increase in the strength values of the same. This is also shown by the test results or measured values of the freely obtained alloy samples 4 to 6.

Abstract

Production of components made of an alloy containing (in wt.%) maximum 0.1 degrees C, 0.21-0.6 silicon, 17.0-24.0 chromium, more than 20 but less than 30 manganese, more than 0.6 but less than 1.4 nitrogen, up to 2.5 nickel, up to 1.9 molybdenum, maximum 0.3 copper, up to 0.002 boron, up to 0.8 group IV and V element, and a balance of iron comprises melting the alloy, casting under atmospheric pressure, deforming at more than 850 degrees C and rapidly cooling, followed by further deforming at less than 600 degrees C and allowing to cool.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines paramagnetischen, insbesondere in Medien mit hoher Chloridkonzentration korrosionsbeständigen Werkstoffes mit hoher Dehngrenze, Festigkeit und Zähigkeit bestehend aus in Gew.-%
   max. 0,1 Kohlenstoff
0,21 bis 0,6 Silizium
17,0 bis 24,0 Chrom sowie Mangan und Stickstoff
   bis 2,5 Nickel
   bis 1,9 Molybdän
   max. 0,3 Kupfer
   bis 0,002 Bor
   bis 0,8 Elemente der Gruppe 4 und 5 des Periodensystems
Rest Eisen, erschmelzungsbedingte Begleitelemente und Verunreinigungen.
The invention relates to a method for producing a paramagnetic material, particularly corrosion-resistant in media with a high chloride concentration, with a high yield strength, strength and toughness consisting of in% by weight
Max. 0.1 carbon
0.21 to 0.6 silicon
17.0 to 24.0 chromium as well as manganese and nitrogen
up to 2.5 nickel
up to 1.9 molybdenum
Max. 0.3 copper
up to 0.002 boron
up to 0.8 elements of groups 4 and 5 of the periodic table
Remainder iron, melting-related accompanying elements and impurities.

Weiters betrifft die Erfindung einen austenitischen, paramagnetischen Werkstoff mit guter Korrosionsbeständigkeit, insbesondere in Medien mit hoher Chloridkonzentration, und hoher Dehngrenze, Festigkeit und Zähigkeit bestehend aus Kohlenstoff, Mangan, Silizium, Chrom und Stickstoff sowie gegebenenfalls Nickel, Molybdän, Kupfer, Bor, karbidbildende Elemente, Rest Eisen, erschmelzungsbedingte Begleitelemente und Verunreinigungen.The invention further relates to an austenitic, paramagnetic material good corrosion resistance, especially in media with high Chloride concentration, and high yield strength, strength and toughness made of carbon, manganese, silicon, chromium and nitrogen, and optionally Nickel, molybdenum, copper, boron, carbide-forming elements, remainder iron, Melting-related accompanying elements and impurities.

Schließlich umfaßt die Erfindung die Verwendung eines nach dem eingangs genannten Verfahren hergestellten Werkstoffes.Finally, the invention includes the use of one at the beginning mentioned method manufactured material.

Hochfeste Werkstoffe, die paramagnetisch und korrosionsbeständig sind und aus wirtschaftlichen Gründen im wesentlichen aus Chrom- Mangan- Eisen- Legierungen bestehen, werden für den chemischen Apparatebau, bei Einrichtungen für die elektrische Energieerzeugung und insbesondere für Komponenten in der Ölfeldtechnik verwendet. Sowohl an die korrosionschemischen also auch an die mechanischen Eigenschaften derartig einzusetzender Materialien werden in zunehmendem Maße höhere Forderungen gestellt.High-strength materials that are paramagnetic and corrosion-resistant economic reasons mainly from chromium-manganese-iron alloys exist for chemical apparatus engineering, for facilities for electrical power generation and especially for components in the Oilfield technology used. Both the corrosion chemical and the mechanical properties of such materials are described in increasingly higher demands.

Bei im wesentlichen allen oben angeführten Verwendungsarten ist es unabdingbar, daß sich der Werkstoff vollkommen homogen,höchst amagnetisch bzw. paramagnetisch verhält. Bei Kappenringen von Generatoren mit hoher Dehngrenze und Zähigkeit beispielsweise, muß ein gegebenenfalls geringfügiges ferromagnetisches Verhalten auch in Teilen des Werkstoffes mit höchster Sicherheit ausgeschlossen sein. Für Messungen bei der Durchführung von Bohrungen, insbesondere Explorationsbohrungen in Erdöl- oder Erdgasfeldern, sind Schwerstangen aus Werkstoffen mit magnetischen Permeabilitätswerten von unter 1,02 bzw. von weniger als 1,018 erforderlich, um eine genaue Verfolgung des Ortes der Bohrung und Abweichungen von dem vorgesehenen Kurs derselben feststellen und berichtigen zu können.For essentially all of the uses listed above, it is essential that the material is completely homogeneous, highly non-magnetic or behaves paramagnetically. For generator cap rings with a high yield strength and toughness, for example, must be a slight one ferromagnetic behavior even in parts of the material with the highest security be excluded. For measurements when drilling holes, especially exploration drilling in oil or gas fields Collars made of materials with magnetic permeability values below 1.02 or less than 1.018 required to track the location closely determine the hole and deviations from the intended course of the same and to be able to correct.

Weiters ist es auch notwendig, daß Einrichtungen der Ölfeldtechnik und Bohrstrangkomponenten eine hohe mechanische Festigkeit, insbesondere eine hohe 0,2%- Dehngrenze aufweisen, um dadurch maschinen- und anlagentechnische Vorteile und eine hohe Betriebssicherheit zu erhalten. Ebenso wichtig ist in vielen Fällen eine hohe Dauerwechselfestigkeit, weil bei einer Rotation des Teiles bzw. der Schwerstangen schwellende oder wechselnde Beanspruchungen vorliegen können.Furthermore, it is also necessary that facilities of oil field technology and Drill string components have a high mechanical strength, in particular a have a high 0.2% proof stress in order to technical advantages and high operational reliability. As well in many cases it is important to have a high fatigue strength, because with one Rotation of the part or the drill collars swelling or changing Stresses can exist.

Schließlich ist von entscheidender Bedeutung das Korrosionsverhalten des Werkstoffes in wässrigen oder ölhaltigen Medien, insbesondere mit hoher Chloridkonzentration.Finally, the corrosion behavior of the Material in aqueous or oil-containing media, especially with high Chloride concentration.

Den Anforderungen der neueren Entwicklungen in der Anlagen- und Tierfbohrtechnik zufolge werden immer strengere Maßstäbe an die Werkstoffe hinsichtlich der Kombination von paramagnetischem Verhalten, hoher Dehngrenze sowie dergleichen Festigkeit und Beständigkeit gegen chloridinduzierte Spannungsrißkorrosion sowie Lochfraßkorrosion (Lochkorrosion) und Spaltkorosion gestellt. The requirements of recent developments in plant and According to Tierfbohrtechnik, materials are subject to ever stricter standards regarding the combination of paramagnetic behavior, high yield strength and the like strength and resistance to chloride-induced Stress corrosion cracking as well as pitting corrosion (pitting corrosion) and crevice corrosion posed.

Es sind Werkstoffe aus Cr-Mn-Fe- Legierungen bekannt, die hinsichtlich der mechanischen Eigenschaften und des Korrosionsverhaltens durchaus den an diese gestellten diesbezüglichen Anforderungen genügen, allein deren magnetische Permeabilitätswerte verhindern den Einsatz für Teile, die im Zusammenhang mit magnetischen Messungen eingesetzt werden und schließen beispielsweise eine Verwendung für Schwerstangen aus. Andererseits können erforderliche amagnetische Werkstoffe mit guten Festigkeitseigenschaften den Korrosionsangriffen nicht standhalten und weitgehend paramagnetische Teile mit hohem Korrosionswiderstand besitzen oft nicht die notwendigen hohen mechanischen Werte.There are materials made of Cr-Mn-Fe alloys known with regard to mechanical properties and the corrosion behavior definitely match those the relevant requirements are met, only their magnetic Permeability values prevent use for parts related to magnetic measurements are used and include, for example Use for drill collars. On the other hand, required non-magnetic materials with good strength properties Do not withstand corrosive attack and largely use paramagnetic parts high corrosion resistance often do not have the necessary high resistance mechanical values.

Es ist bekannt, durch Stickstoffgehalte die mechanischen und korrosionschemischen Eigenschaften von im wesentlichen Cr -Mn-Fe- Legierungen zu verbessern, wobei jedoch teure metallurgische Verfahren, die mit erhöhten Drücken arbeiten, erforderlich sind.It is known that the mechanical and nitrogen contents Corrosion-chemical properties of essentially Cr -Mn-Fe alloys to improve, however, using expensive metallurgical processes involving increased Press work are required.

Aus wirtschaftlichen Gründen wurden auch Eisen-Mangan-Chrom- Legierungen entwickelt, die ohne Druckschmelz- und dergleichen Gießverfahren,also bei Atmosphärendruck, herstellbar sind ( WO 98/48070), wobei durch legierungstechnische Maßnahmen ein gewünschtes Eigenschaftsprofil des Werkstoffes erreicht werden soll. Derartige Legierungen weisen durchwegs zur Verbesserung der Korrosionsbeständigkeit einen Molybdängehalt von über 2% auf, was Vorteile insbesondere beim Loch- und Spaltkorrosionsverhalten erbringt . Molybdän ist jedoch wie Chrom ein Ferritbildner und kann in Seigerungsbereichen zu ungünstigen magnetischen Eigenschaften des Materials führen. Erhöhte Nickelgehalte stabilisieren zwar den Austenit, wirken aber gegebenenfalls mit höheren Kupferkonzentrationen verschlechternd auf die mechanischen Eigenschaften und intensivieren die Rißinitiation.Iron-manganese-chromium alloys were also used for economic reasons developed that without pressure melting and the like casting process, so at Atmospheric pressure can be produced (WO 98/48070), whereby alloying measures a desired property profile of the Material should be achieved. Alloys of this type point to Improvement in corrosion resistance to a molybdenum content of over 2%, which brings advantages in particular with hole and crevice corrosion behavior. However, like chromium, molybdenum is a ferrite former and can be found in segregation areas lead to unfavorable magnetic properties of the material. Increased Nickel contents stabilize the austenite, but may also contribute higher copper concentrations worsening the mechanical Properties and intensify the crack initiation.

DE-A-3 143 096 eine Legierung für eine Verwendung für Kappenringe und Turbinenteile. Dieser Druckschrift offenbart jedoch nicht ein Kaltumformen bei erhöhten Temperatüren von 350 bis 600°C.DE-A-3 143 096 an alloy for use in cap rings and turbine parts. However, this document does not disclose cold forming at elevated temperature from 350 to 600 ° C.

Durch eine ausgewogene Konzentration der Legierungselemente wird gemäß PCT/US91/02490 versucht, eine austenitische antimagnetische rostfreie Stahllegierung zu schaffen, die bei Warmbearbeitung jedoch ohne anschließende Vergütung eine hervorragende Kombination von Eigenschaften besitzt.A balanced concentration of the alloying elements results in PCT / US91 / 02490 tried an austenitic antimagnetic stainless To create steel alloy, but with hot machining without subsequent Remuneration has an excellent combination of properties.

Um insbesondere die mechanischen Eigenschaften von amagnetischen Bohrsstrangteilen zu verbessern, wurde bereits ein Verfahren vorgeschlagen (EP-0207068 B1), bei welchem der Werkstoff einer Warm-und Kaltumformung unterworfen wird, wobei die Kaltumformung bei einer Temperatur zwischen 100°C und 700°C mit einem zumindest 5%-igen Verformungsgrad erfolgt.In particular, the mechanical properties of non-magnetic A method has already been proposed to improve drill string parts (EP-0207068 B1), in which the material is hot and cold formed is subjected to the cold forming at a temperature between 100 ° C. and 700 ° C with an at least 5% degree of deformation.

Die Erfindung setzt sich zum Ziel, ein Verfahren zu schaffen, welches bei Ausschöpfung von legierungstechnischen Maßnahmen eine Verformung einschließt und synergetisch eine Herstellung eines mit hoher Sicherheit paramagnetischen, in Medien mit hoher Chloridkonzentration korrosionsbeständigen ferritfreien Werkstoffes mit hoher Dehngrenze, Festigkeit und Zähigkeit angibt.The invention aims to provide a method which Exhaustion of alloying measures includes deformation and synergistically a manufacture of a highly magnetic paramagnetic, in Media with a high chloride concentration are corrosion-resistant, ferrite-free Material with high yield strength, strength and toughness indicates.

Weiters ist es Aufgabe der Erfindung, einen vollaustenitischen paramagnetischen Werkstoff mit guter Korrosionsbeständigkeit und hohen mechanischen Werten zu erstellen.Another object of the invention is a fully austenitic paramagnetic Material with good corrosion resistance and high mechanical values create.

Das erfindungsgemäße Ziel wird bei einem Verfahren gemaß den Ansprüchen 1 bis 19 erreicht. The aim of the invention is achieved in a method according to claims 1 to 19.

Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, daß bei hoher Wirtschaftlichkeit betreffend die Werkstoffkosten und das Herstellverfahren durch eine legierungstechnische Optimierung größte Korrosionsbeständigkeit und ein gewünscht paramagnetisches Verhalten des Materials erreicht werden, wobei dessen hohe mechanischen Kennwerte, insbesondere die Dehngrenze, ohne nachteilige Auswirkungen auf die oben angeführten Eigenschaften durch eine gezielt ausgerichtete Kaltumformung bei erhöhter Temperatur eine weitere wesentliche Verbesserung erfahren.The advantages achieved by the invention are essentially to be seen in that with high efficiency regarding the material costs and Manufacturing process by an alloy-technical optimization largest Corrosion resistance and a desired paramagnetic behavior of the Material can be achieved, whereby its high mechanical characteristics, especially the yield strength, without adversely affecting the above properties mentioned by a targeted cold forming increased temperature experienced a further significant improvement.

Der Kohlenstoffgehalt der Legierung ist mit max. 0,1 Gew.-% nach oben begrenzt, weil höhere Gehalte sowohl zu einer Loch- und Spannungsrißkorrosion in chloridhaltigen Medien als auch zu einer interkristallinen Korrosion von daraus gefertigten Teilen führen. Die Einhaltung dieser Obergrenze, wobei Gehalte von max. 0,06 und 0,05 Gew.-% bevorzugt sind, ist, wie oben erwähnt, aus korrosionschemischen Gründen wichtig, obwohl Kohlenstoff die Dehngrenze erhöht und stark austenitbildend wirkt.The carbon content of the alloy is max. 0.1% by weight, because higher levels result in both pitting and stress corrosion cracking chloride-containing media as well as intercrystalline corrosion from it manufactured parts. Compliance with this upper limit, with levels of Max. 0.06 and 0.05% by weight is preferred, as mentioned above, from Corrosion-chemical reasons important, although carbon increases the yield strength and has a strong austenite-forming effect.

Silizium soll als Desoxidationsmetall mit einer Konzentration von mindestens 0,21 Gew.-% im Metall vorliegen, wobei eine Obergrenze mit 0,6 Gew.-% vorgesehen ist. Höhere Gehalte an Silizium führen zu Nitridbildungen und zur Verschlechterung der Beständigkeit gegen Spannungsrißkorrosion des Materials. Weil Silizium auch stark ferritbildend wirkt, kann durch höhere Gehalte auch die magnetische Permeabilität nachteilig beeinflußt werden. In vorteilhafter Weise ist ein Höchstgehalt von 0,48 Gew.-% wirksam.Silicon is said to be a deoxidation metal with a concentration of at least 0.21 % By weight is present in the metal, an upper limit of 0.6% by weight being provided. Higher silicon levels lead to nitride formation and deterioration of the Resistance to stress corrosion cracking of the material. Because silicon is also strong Magnetic permeability can also have a ferrite-forming effect due to higher contents be adversely affected. A maximum content of 0.48 is advantageous % By weight effective.

Das Korrosionsverhalten, insbesondere eine Beständigkeit gegen Spannungsrißkorrosion und Lochkorrosion wird durch den Chromgehalt der Legierung bestimmt. Dabei ist wichtig, daß eine weitgehend homogene Chromverteilung im Werkstoff vorliegt; mit anderen Worten, daß sogenannte Schwachstellen der Passivschicht durch Seigerungen und Einschlüsse vermieden sind. Um weitgehend gesichert, eine gewünschte Korrosionsbeständigkeit zu erreichen, sind Chromgehalte von größer als 17 Gew.-%, vorzugweise von mehr als 19 Gew.-% erforderlich. Chrom erhöht zwar die Löslichkeit der Legierung für Stickstoff, wirkt jedoch ferritbildend und somit ungünstig bezüglich des gewünschten amagnetischen bzw. paramagnetischen Verhaltens des Materials, so daß die höchste Chromkonzentration 24,0 Gew.-%, bevorzugt 22,0 Gew.-% beträgt.Corrosion behavior, especially resistance to Stress corrosion cracking and pitting corrosion is caused by the chromium content of the Alloy determined. It is important that a largely homogeneous Chromium distribution in the material is present; in other words, the so-called Weak spots in the passive layer due to segregation and inclusions avoided are. To be largely secured, a desired corrosion resistance too chromium contents of more than 17% by weight, preferably of more than 19% by weight required. Chromium increases the solubility of the alloy for Nitrogen, however, has a ferrite-forming effect and is therefore unfavorable with regard to the desired one non-magnetic or paramagnetic behavior of the material, so that the highest chromium concentration is 24.0% by weight, preferably 22.0% by weight.

Durch Nickel können zwar die mechanischen Werte der Legierung und die Stabilität der austenitischen Struktur verbessert werden, für ausreichend gute Korrosionseigenschaften des Werkstoffes, insbesondere die Spannungsrißkorrosion betreffend, sind Nickelgehalte geringer als 2,5 Gew.-% besser, jedoch kleiner als 0,96 Gew.-% gefordert. Durch niedrige Nickelgehalte ab 0,21 Gew.-% aufwärts bis zu obigen Maximalwerten ist es möglich, ohne Nachteile im Korrosionsverhalten der gewünschten Legierung, eine Erhöhung der Dehngrenze zu erreichen.Nickel can increase the mechanical properties of the alloy and the stability the austenitic structure can be improved for sufficiently good ones Corrosion properties of the material, especially the Regarding stress corrosion cracking, nickel contents are less than 2.5% by weight. better, but less than 0.96 wt .-% required. Due to low nickel contents From 0.21% by weight up to the above maximum values it is possible without disadvantages in the corrosion behavior of the desired alloy, an increase in To reach yield strength.

Das Legierungselement Molybdän verbessert die Beständigkeit des Werkstoffes gegen Korrosion, insbesondere gegen chloridinduzierte Spalt- und Lochkorrosion. Weil jedoch dieses Element ein starken Ferritbildner und ein dergleichen Karbidbildner sowie Bildner von vergesellschafteten Phasen ist, liegen die Molybdänobergrenzen bei 1,9 Gew.-%, besser jedoch bei 1,5 Gew.-%. Geringe Gehalte ab 0,28 Gew.-% Molybdän aufwärts bis zu obigen Grenzwerten können ausscheidungsfreier Austenitstruktur des Gefüges korrosionschemisch Vorteile bringen.The alloy element molybdenum improves the durability of the material against corrosion, especially against chloride-induced crevice and pitting corrosion. However, because this element is a strong ferrite former and the like Carbide formers and formers of socialized phases are the Molybdenum caps at 1.9% by weight, but better at 1.5% by weight. low Levels from 0.28 wt .-% molybdenum up to the above limits can Precipitation-free austenite structure of the micro-chemical structure Advantages bring.

Das oft gegen Korrosionsangriff effektive Element Kupfer hat sich bei der erfindungsgemäßen Legierung jeoch als nachteilig wirkend herausgestellt, wobei die Kupfergehalte kleiner als 0,3 Gew.-%, besser jedoch kleiner als 0,25 Gew.-% sind, um Resistenz gegen Korrosion zu erreichen.The element copper, which is often effective against corrosion attack, has been used in the However, the alloy according to the invention was found to have a disadvantageous effect, wherein the copper contents less than 0.3% by weight, but better less than 0.25% by weight to achieve resistance to corrosion.

Bor kann zur Verbesserung des Warmumformverhaltens des Materials diesem in einer Menge bis zu 0,002 Gew.-%, vorzugsweise bis 0,0012 Gew.-% zulegiert sein. Höhere Mengen an Bor führen zu Korngrenzenausscheidungen, Versprödungserscheinungen und unerwünschten Gefügestrukturen.Boron can be used to improve the hot forming behavior of the material an amount of up to 0.002% by weight, preferably up to 0.0012% by weight. Higher amounts of boron lead to grain boundary deposits, Signs of embrittlement and undesirable structures.

Besonders wichtig für eine Verhinderung der Spannungsriß-und Lochkorrosion sind niedrige Gehalte der Elemente der Gruppe 4 und Gruppe 5 des Periodensystems. Diese Elemente ( Ti, Zr, Hg, V, Nb, Ta) sind äußerst starke Karbid- und Nitrid- bzw. Karbonitridbildner und weisen in der Gesamtheit Werte von geringer als 0,8 Gew.-%, besser von geringer als 0,48 Gew.-% auf. Höhere Konzentrationen bewirken Ausscheidungen und dadurch Schwachstellen in der Passivschicht an der Werkstückoberfläche, wodurch die Korrosionsbeständigkeit beeinträchtigt ist.Are particularly important for preventing stress cracking and pitting corrosion low levels of elements of group 4 and group 5 of the periodic table. These elements (Ti, Zr, Hg, V, Nb, Ta) are extremely strong carbide and nitride or Carbonitride formers and have values of less than 0.8 in total % By weight, better of less than 0.48% by weight. Higher concentrations cause excretions and thereby weak points in the passive layer on the Workpiece surface, which affects the corrosion resistance.

Legierungstechnisch stellt das Element Stickstoff einen starken Austenitbildner dar. Außerdem werden die Dehngrenze und die Resistenz des Werkstoffes gegen Lochund Spaltkorrosion durch Stickstoff erhöht. Stickstoff ist in Eisenbasislegierungen jedoch nur begrenzt löslich, wobei durch steigende Chrom- und Mangangehalte die Löslichkeitsgrenze erhöht wird. Im wesentlichen sind daher die Chrom-Mangan- und Stickstoffkonzentrationen der Legierung synergetisch für den erfindungsgemäßen Werkstoff bzw. für dessen Eigenschaften zu sehen. Einen Chromgehalt von 17,0 bis 24,0 Gew.-%, vorzugsweise von 19,0 bis 22,0 Gew.-%, besitzt, wie vorher dargelegt, der Werkstoff hauptsächlich aus Gründen der Korrosionsbeständigkeit und des paramagnetischen Verhaltens wegen. Der Mangangehalt von mehr als 20 Gew.-%, jedoch weniger als 30 Gew.-%, wobei die bevorzugten Konzentrationsbereiche zwischen 20,5 bzw. 21,5 und 29,5 bzw. 25,0 Gew.-% liegen, ist einerseits zur Erhöhung der Stickstofflöslichkeit und andererseits zur Stabilisierung der austenitischen bzw. ferritfreien Gefügestruktur vorgesehen. Schließlich dient der Stickstoffgehalt von mehr als 0,6 Gew.-%, jedoch niedriger als 1,4 Gew.-%, im wesentlichen der Erreichbarkeit von hohen Dehngrenzenwerten. In terms of alloying, the element nitrogen is a strong austenite former. In addition, the yield strength and the resistance of the material to hole and Crevice corrosion due to nitrogen increased. Nitrogen is in iron based alloys however, only soluble to a limited extent, with increasing chromium and manganese contents Solubility limit is increased. The chromium-manganese and Nitrogen concentrations of the alloy synergistically for the invention To see material or for its properties. A chromium content of 17.0 to 24.0% by weight, preferably from 19.0 to 22.0% by weight, as before explained the material mainly for reasons of corrosion resistance and the paramagnetic behavior. The manganese content of more than 20 % By weight, but less than 30% by weight, the preferred ones Concentration ranges between 20.5 or 21.5 and 29.5 or 25.0% by weight lie on the one hand to increase nitrogen solubility and on the other hand to Stabilization of the austenitic or ferrite-free structure is provided. Finally, the nitrogen content is greater than 0.6% by weight, but less than 1.4% by weight, essentially the accessibility of high yield strength values.

Bevorzugte Stickstoffkonzentrationsbereiche sind:
0,64 bis 1,3 Gew.-%, insbesondere 0,72 bis 1,2 Gew.-% N. Niedrige Mangangehalte von 20 Gew.-% und geringer sowie hohe Stickstoffkonzentrationen von 1,4 Gew.-% und größer führen auf Grund einer sprunghaften Abnahme der Stickstofflöslichkeit der Legierung bei der Erstarrung zu porösen bzw. undichten Gußstücken. Bei Mangangehalten von 30 Gew.-% und mehr sowie bei Stickstoffanteilen von 0,6 Gew.-% und weniger sind erforderlich hohe Dehngrenzen nicht erreichbar und eine Versprödung des Materials kann auftreten.
Preferred nitrogen concentration ranges are:
0.64 to 1.3 wt .-%, in particular 0.72 to 1.2 wt .-% N. Low manganese contents of 20 wt .-% and lower and high nitrogen concentrations of 1.4 wt .-% and larger due to an abrupt decrease in the nitrogen solubility of the alloy when it solidifies into porous or leaky castings. With manganese contents of 30% by weight and more and with nitrogen contents of 0.6% by weight and less, high yield strengths cannot be achieved and embrittlement of the material can occur.

Wenn, wie aus Gründen der Werkstoffgüte und der Wirtschaftlichkeit vorgesehen ist, der Gußblock oder das Gußstück unter Atmosphärendruck erstarrt ist, kann dieser bzw. dieses einer Diffusionsglühung, die einer Homogenisierung der Mikrostuktur bzw. einem Ausgleich der Mikroseigerungen dient, unterworfen werden. Diese Glühung kann beispielsweise bei einer Temperatur um 1200 °C mit einer Dauer bis 60 Stunden durchgeführt werden.If, as intended for reasons of material quality and economy is, the casting block or the casting has solidified under atmospheric pressure, can this or this diffusion annealing, which is a homogenization of the Serves microstructure or a compensation of micro segregations become. This annealing can be carried out, for example, at a temperature of around 1200 ° C up to 60 hours.

Die Warmumformung des Gußstückes, die den ersten Verformungsschritt darstellt, erfolgt meist durch Schmieden, wobei die Umformtemperatur höher als 850°C liegt, um eine entsprechend günstige Rekristallisation des Mischgefüges sicherzustellen. Das derart geformte Schmiedestück wird, in der Regel aus der Schmiedehitze, mit erhöhter Geschwindigkeit abgekühlt. Diese Abkühlung, die der Vermeidung von Ausscheidungen, insbesondere an den Korngrenzen dient, kann in einem Wasserbecken oder mit einer Durchlaufkühlstrecke vorgenommen werden. Dabei kann auch von Vorteil sein, wenn nach dem ersten Schritt der umgeformte Block einer Zwischenglühung bei einer Glühtemperatur von über 850°C und darauffolgend einer Abkühlung mit erhöhter Geschwindigkeit unterworfen wird, weil dadurch gegebenenfalls gebildete Ausscheidungen wieder in Lösung gebracht werden.The hot forming of the casting, which represents the first deformation step, mostly done by forging, whereby the forming temperature is higher than 850 ° C, to ensure a correspondingly favorable recrystallization of the mixed structure. The forging shaped in this way is, as a rule, from the forging heat cooled down at increased speed. This cooling, the avoidance of Excretions, especially at the grain boundaries, can be in one Water basin or with a continuous cooling section. there can also be advantageous if after the first step the deformed block intermediate annealing at an annealing temperature of over 850 ° C and thereafter is subjected to cooling at an increased rate because it does so any precipitates formed are brought back into solution.

Im zweiten Schritt wird das Schmiedestück bei einer Temperatur von unter 600°C umgeformt, wobei eine Verfestigung des Werkstoffes, insbesondere eine gewünschte Erhöhung der Dehngrenze eintritt. Trotz des hohen Chrom- und insbesondere Mangangehaltes bleibt in überraschender Weise der Werkstoff vollaustenitisch bzw. ferritfrei; es erfolgt also kein erwartetes teilweises Umklappen unter Ausbildung eines Gefüges mit Verformungsmartensit. Es hat sich dabei als günstig erwiesen, wenn die Verformung des geschmiedeten Gußstückes im zweiten Schritt bei erhöhter Temperatur, jedoch sicher unter 600°C erfolgt und anschließend der verformte Umformteil auf Raumtemperatur erkalten gelassen wird. Fertigungstechnisch, jedoch auch hinsichtlich einer verbesserten Homogenität und Werkstoffgüte kann es günstig sein, wenn der Block nach einem ESU-Verfahren hergestellt wird.In the second step, the forging is made at a temperature below 600 ° C reshaped, a solidification of the material, in particular a desired increase in the proof stress occurs. Despite the high chrome and Manganese content, in particular, surprisingly remains the material fully austenitic or ferrite-free; there is therefore no expected partial folding to form a structure with deformation martensite. It turned out to be proved favorable when the deformation of the forged casting in the second Step at elevated temperature, but safely below 600 ° C and then the deformed shaped part is allowed to cool to room temperature. Manufacturing technology, but also in terms of improved homogeneity and Material quality can be favorable if the block uses an ESR process will be produced.

Die Werkstoffgüte kann weiter gesteigert werden, wenn der Block im ersten Schritt mit einem Umformgrad, welcher definiert ist: Ausgangsquerschnitt durch Endquerschnitt von mindestens 4-fach warmverformt wird. Dadurch wird ein feines, rekristallisiertes, gleichmäßiges ferritfreies Austenitgefüge erreicht.The material quality can be further increased if the block in the first step with a degree of deformation, which is defined: output cross section through Final cross-section is at least 4 times thermoformed. This makes a fine, recrystallized, uniform ferrite-free austenite structure achieved.

Nach einem Abkühlen mit erhöhter Geschwindigkeit von einer Temperatur von über 850°C, was zur Verhinderung einer Ausscheidungsbildung dient, wird das Schmiedestück im zweiten Schritt mit einer Umformung in %, definiert als Ausgangsquerschnitt minus Endquerschnitt gebrochen durch Ausgangsquerschnitt mal 100 von kleiner 35 % verformt, wodurch die Dehngrenze und die Festigkeit des Materials erhöht werden. Im Sinne gleichmäßiger Erhöhung der mechanischen Werte hat sich ein rekristallisationsfreier Verformungsbereich von 5 % bis 20 % herausgestellt.After cooling at an elevated rate from a temperature above 850 ° C, which serves to prevent the formation of excretions, it will Forging in the second step with a deformation in%, defined as Output cross-section minus final cross-section broken by output cross-section times 100 deformed by less than 35%, whereby the yield strength and the strength of the Material can be increased. In the sense of an even increase in mechanical A recrystallization-free deformation range of 5% to 20% exposed.

Sowohl für eine Durchführung der Kaltumformung als auch für eine wirkungsvolle tiefgreifende und versprödungsfreie Verbesserung der Werkstoffeigenschaften und eine sichere Vermeidung des Auftretens von Verformungsmartensit hat es sich als besonders vorteilhaft herausgestellt, das Schmiedestück im zweiten Schritt bei einer Temperatur im Bereich von 400 bis 500°C umzuformen.Both for performing cold forming as well as for an effective one profound and embrittlement-free improvement of the material properties and a safe avoidance of the occurrence of deformation martensite has proven to be particularly advantageous, the forging in the second step in a To transform temperature in the range of 400 to 500 ° C.

Ein gemäß dem vorstehenden Verfahren hergestellter austenitischer, paramagnetischer Werkstoff mit der genannten Zusammensetzung mit guten Korrosionseigenschaften, der mindestens 3,5-fach warmverformt und unterhalb der Ausscheidungstemperatur von Nitriden sowie vergesellschafteten Phasen, jedoch über einer Temperatur von 350°C kaltverformt ist, weist geringste Spuren von Ferrit, in den bevorzugten Bereichen der Zusammensetzung praktisch keinen Ferritgehalt auf und verhält sich im wesentlichen paramagnetisch mit einer relativen Permeabilität ur von unter 1,05, insbesondere von unter 1,016.An austenitic, paramagnetic material with the composition mentioned with good Corrosion properties that are thermoformed at least 3.5 times and below the Elimination temperature of nitrides and associated phases, however is cold-formed above a temperature of 350 ° C, shows the slightest traces of ferrite, practically no ferrite content in the preferred ranges of the composition on and behaves essentially paramagnetically with a relative Permeability below 1.05, in particular below 1.016.

Die Dehngrenze RP0,2 des Werkstoffes bei Raumtemperatur liegt höher als 700 N/mm2. Die Werte für die Kerbschlagzähigkeit bei Raumtemperatur sind größer als 52J und die FATT (Fracture Appearance Transition Temperature) ist tiefer als -25°C. Der erfindungsgemäße Werkstoff weist weiters eine Dauerwechselfestigkeit von größer als + 400 N/mm2 bei N = 107 Lastwechsel auf und besitzt ein Lochpotential in neutralen Lösungen (entsprechend ASTM G5/87) bei Raumtemperatur von größer als 700 mVH/1000ppm Chloride und/oder 200mVH /80000ppm Chloride.The yield strength R P0.2 of the material at room temperature is higher than 700 N / mm 2 . The values for the impact strength at room temperature are greater than 52J and the FATT (Fracture Appearance Transition Temperature) is lower than -25 ° C. The material according to the invention also has a fatigue strength of greater than + 400 N / mm 2 at N = 10 7 load changes and has a hole potential in neutral solutions (according to ASTM G5 / 87) at room temperature of greater than 700 mV H / 1000ppm chlorides and / or 200mV H / 80000ppm chlorides.

Anhand von Beispielen wird die Erfindung näher erläutert.
In Tabelle 1 sind chemische Zusammensetzung sämtlicher Vergleichswerkstoffe und von den Proben 1 bis 3 sowie A bis E zusätzlich die Verformungsdaten angegeben. Die Proben 4 bis 6 stammen aus Vergleichsmaterial, das am Markt verfügbar war.
In Tabelle 2 sind die Ergebnisse betreffend die magnetische Eigenschaft, die mechanischen Werte und das Korrosionsverhalten zusammengestellt.
The invention is explained in more detail with the aid of examples.
Table 1 shows the chemical composition of all reference materials and, additionally, the deformation data for samples 1 to 3 and A to E. Samples 4 to 6 come from comparative material that was available on the market.
Table 2 summarizes the results regarding the magnetic property, the mechanical values and the corrosion behavior.

Die Proben 2 und A wurden aus einem Stahl, der im Induktionsofen erschmolzen wurde und unter Schutzgas zu Blöcken gegossen wurde, hergestellt.
Die Proben 1,3, B bis E stammen aus ESU-Material.
Samples 2 and A were made from steel that was melted in the induction furnace and cast into blocks under protective gas.
Samples 1, 3, B to E come from ESR material.

Die Werkstoffe der Proben 1 und 3 weisen bei guten magnetischen Daten niedrige Dehngrenzen und Festigkeitswerte auf. Guter Zähigkeit und ausreichender FATT sowie entsprechendem Oxalsäuretestbild stehen niedrige Lochpotentiale gegenüber, wodurch die Werkstoffe auf Grund eines unzureichenden Eigenschaftsprofiles für hohe Beanspruchungen ausscheiden. Die Ursachen dafür liegen in den niedrigen Chrom- und Mangangehalten sowie den in der Folge niedrigen Stickstoffkonzentrationen. The materials of samples 1 and 3 have low magnetic data with good magnetic data Yield strengths and strength values. Good toughness and sufficient FATT and the corresponding oxalic acid test pattern show low hole potentials opposite, whereby the materials due to an insufficient Eliminate property profile for high loads. The causes of this are in the low chromium and manganese contents as well as in the consequence low nitrogen concentrations.

Das Material der Probe 2 weist zwar einen ausreichend hohen Chromgehalt auf, niedrige Mangan- und dergleichen Stickstoffwerte bewirken jedoch insbesondere schlechte Korrosionsbeständigkeit.The material of sample 2 does have a sufficiently high chromium content, however, low manganese and the like cause nitrogen in particular poor corrosion resistance.

Die mittels des erfindungsgemäßen Verfahrens hergestellten Proben A bis E sind in der Gesamtheit der Gebrauchseigenschaften deutlich sprunghaft verbessert. Synergetisch erbringen die jeweiligen, aufeinander abgestimmten Konzentrationen der Legierungselemente und die verfestigende Kaltumformung des ausscheidungsfrei erstellten Werkstoffes eine überlegene Korrosionsbeständigkeit bei einer geringen relativen magnetischen Permeabilität und eine wesentliche Erhöhung der Festigkeitswerte desselben. Dies wird auch durch die Untersuchungsergebnisse bzw. Meßwerte der frei erhaltenen Legierungsproben 4 bis 6 gezeigt.

Figure 00120001
Figure 00130001
The samples A to E produced by means of the method according to the invention are significantly improved in leaps and bounds in the entirety of the usage properties. Synergistically, the respective, coordinated concentrations of the alloying elements and the solidifying cold forming of the material produced without precipitation provide superior corrosion resistance with a low relative magnetic permeability and a substantial increase in the strength values of the same. This is also shown by the test results or measured values of the freely obtained alloy samples 4 to 6.
Figure 00120001
Figure 00130001

Claims (19)

  1. A process for producing a paramagnetic austenitic steel article which is corrosion-resistant in media with a high chloride concentration and which has a high yield stress, strength and toughness, consisting of an alloy in % by weight max. 0·10 carbon 0·21 to 0·6 silicon more than 20·0 to less than 30·0 manganese more than 0·6 to less than 1·4 nitrogen 17·0 to 24·0 chromium up to 2·5 nickel up to 1·9 molybdenum max. 0·3 copper up to 0·002 boron up to 0·8 elements of Groups 4 and 5 of the Periodic System,
    remainder iron, accompanying elements caused by the melting and impurities, which alloy is melted and allowed to solidify under atmospheric pressure to form an ingot or cast part, and the ingot or the cast part formed is subjected in a first step to a hot shaping at a shaping temperature of over 850°C and after that it is cooled at an increased rate, after which a further shaping of the forged part takes place in a second step at an elevated temperature of under 600°C, but over 350°C, and after that the shaped part is allowed to cool to room temperature and the article is produced therefrom.
  2. A process according to Claim 1, characterized in that an alloy consisting, in % by weight, of max. 0·06 preferably max. 0·05 carbon 0·21 to 0·48 silicon 19·0 to 22·0 chromium 20·5 to 29·5 manganese 0·64 to 1·3 nitrogen 0·21 to 0·96 nickel 0·28 to 1·5 molybdenum max. 0·25 copper up to 0·0012 boron up to 0·48 carbide-forming elements
    remainder iron, accompanying elements caused by the melting and impurities, is melted and processed.
  3. A process according to Claim 1 or 2, characterized in that a content, in % by weight, of 21·5 to 25·0 manganese 0·72 to 1·2 nitrogen
    is set.
  4. A process according to one of Claims 1 to 3, characterized in that the ingot is produced in accordance with an electroslag re-melting process.
  5. A process according to Claim 1, characterized in that after the first step the shaped ingot is subjected to an intermediate annealing at an annealing temperature of over 850°C and after that it is subjected to a cooling at an increased rate.
  6. A process according to one of Claims 1 to 5, characterized in that the ingot is hot-shaped in a first step with a degree of deformation of at least 3·5 times.
  7. A process according to one of Claims 1 to 6, characterized in that the forged part is shaped in a second step with a deformation of less than 35%, preferably in a range of from 5% to 20%.
  8. A process according to one of Claims 1 to 7, characterized in that the forged part is shaped in a second step at a temperature in the range of from 400 to 500°C.
  9. A process according to one of Claims 1 to 8, characterized in that the forged part is cooled intensely to below a temperature of 600°C after the hot shaping in the first step and is held there, and after a temperature equalization over the cross-section is supplied to the deformation in the second step.
  10. An austenitic, paramagnetic steel article with a good corrosion-resistance in media with a high chloride concentration and a high yield stress, strength and toughness, consisting of an alloy in % by weight max. 0·10 carbon 0·21 to 0·6 silicon
    more than 20·0 to less than 30·0 manganese more than 0·6 to less than 1·4 nitrogen 17·0 to 24·0 chromium up to 2·5 nickel up to 1·9 molybdenum max. 0·3 copper up to 0·002 boron up to 0·8 carbide-forming elements of Groups 4 and 5 of the
    Periodic System,
    remainder substantially iron, which material is produced in accordance with the process according to Claim 1, is hot-shaped with a degree of deformation of at least 3·5 times and is cold-shaped below the precipitation temperature of nitrides and of commercially produced phases, but at an elevated temperature of under 600°C and over 350°C and the article has a yield stress RP0·2 of more than 700 N/mm2 at room temperature, a notched-bar impact toughness at the same temperature of more than 52 J and an FATT (fracture appearance transition temperature) of under -25°C.
  11. A material according to Claim 10, characterized in that the alloy contains less than 0·06% by weight of carbon.
  12. A material according to Claim 10 or 11, characterized in that the alloy contains less than 0·49% by weight of silicon.
  13. A material according to one of Claims 10 to 12, characterized in that the alloy contains from 19·0 to 22·0% by weight of chromium.
  14. A material according to one of Claims 10 to 13, characterized in that the alloy contains at least from 21·5 to 29·5, and in particular approximately 25·0, of manganese in % by weight.
  15. A material according to one of Claims 10 to 14, characterized in that the alloy contains at least 0·64, preferably from 0·72 to 1·3, and in particular 1·2, of nitrogen in % by weight.
  16. A material according to one of Claims 10 to 15, characterized in that the alloy contains from 0·21 to 0·96 of nickel in % by weight.
  17. A material according to one of Claims 10 to 16, characterized in that the alloy contains from 0·28 to 1·5 of molybdenum in % by weight.
  18. A material according to one of Claims 10 to 17, which has a relative magnetic permeability of under 1·05, and in particular of under 1·016.
  19. A material according to one of Claims 10 to 18, which has a yield stress RP0·2 of more than 700 N/mm2 at room temperature, and a notched-bar impact toughness at the same temperature of more than 120 J.
EP00890207A 1999-07-15 2000-06-29 A paramagnetic, corrosion resistant austenitic steel with high elasticity, strength and toughness and a process for its manufacture Expired - Lifetime EP1069202B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0123299A AT407882B (en) 1999-07-15 1999-07-15 METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY
AT123299 1999-07-15

Publications (2)

Publication Number Publication Date
EP1069202A1 EP1069202A1 (en) 2001-01-17
EP1069202B1 true EP1069202B1 (en) 2002-12-11

Family

ID=3509471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00890207A Expired - Lifetime EP1069202B1 (en) 1999-07-15 2000-06-29 A paramagnetic, corrosion resistant austenitic steel with high elasticity, strength and toughness and a process for its manufacture

Country Status (6)

Country Link
US (1) US6454879B1 (en)
EP (1) EP1069202B1 (en)
AT (2) AT407882B (en)
CA (1) CA2313975C (en)
DE (1) DE50000903D1 (en)
ES (1) ES2187434T3 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT407882B (en) 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY
US20060065327A1 (en) * 2003-02-07 2006-03-30 Advance Steel Technology Fine-grained martensitic stainless steel and method thereof
AT412727B (en) * 2003-12-03 2005-06-27 Boehler Edelstahl CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
WO2008127262A2 (en) * 2006-06-23 2008-10-23 Jorgensen Forge Corporation Austenitic paramagnetic corrosion resistant steel
US7658883B2 (en) * 2006-12-18 2010-02-09 Schlumberger Technology Corporation Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same
US9347121B2 (en) 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
PT2924131T (en) * 2014-03-28 2019-10-30 Outokumpu Oy Austenitic high-manganese stainless steel
JP6451545B2 (en) * 2015-08-05 2019-01-16 新日鐵住金株式会社 High Mn steel for high-pressure hydrogen gas, method for producing the same, and piping, container, valve and joint made of the steel
DE102018133251A1 (en) 2018-12-20 2020-06-25 Schoeller-Bleckmann Oilfield Technology Gmbh Drill string component with high corrosion resistance and process for their manufacture
DE102018133255A1 (en) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Super austenitic material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936297A (en) * 1972-05-08 1976-02-03 Allegheny Ludlum Industries, Inc. Method of producing austenitic stainless steel
US3907551A (en) * 1973-04-30 1975-09-23 Allegheny Ludlum Ind Inc Corrosion resistant austenitic steel
US3847599A (en) * 1973-10-04 1974-11-12 Allegheny Ludlum Ind Inc Corrosion resistant austenitic steel
US3938990A (en) * 1973-11-28 1976-02-17 Allegheny Ludlum Industries, Inc. Method of making corrosion resistant austenitic steel
US4217136A (en) * 1974-05-01 1980-08-12 Allegheny Ludlum Steel Corporation Corrosion resistant austenitic stainless steel
DE3143096A1 (en) * 1980-11-05 1982-05-19 General Electric Co., Schenectady, N.Y. Iron-based alloy, process for producing it, and articles manufactured with it
CA1205659A (en) * 1981-03-20 1986-06-10 Masao Yamamoto Corrosion-resistant non-magnetic steel and retaining ring for a generator made of it
AT381658B (en) * 1985-06-25 1986-11-10 Ver Edelstahlwerke Ag METHOD FOR PRODUCING AMAGNETIC DRILL STRING PARTS
JPH089113B2 (en) * 1987-07-16 1996-01-31 三菱マテリアル株式会社 Fe-based overlay alloy with excellent corrosion and wear resistance
US4935027A (en) 1989-08-21 1990-06-19 Inbae Yoon Surgical suture instrument with remotely controllable suture material advancement
DE3940438C1 (en) * 1989-12-07 1991-05-23 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
US5094812A (en) * 1990-04-12 1992-03-10 Carpenter Technology Corporation Austenitic, non-magnetic, stainless steel alloy
FR2672904B1 (en) * 1991-02-14 1993-05-07 Aubert & Duval Acieries NON-MAGNETIC STAINLESS STEEL BASED ON MANGANESE-CHROME RESISTANT TO CORROSION UNDER STRESS, METHOD OF MANUFACTURING A LONG-LENGTH NON-MAGNETIC STEEL BAR.
DE19758613C2 (en) 1997-04-22 2000-12-07 Krupp Vdm Gmbh High-strength and corrosion-resistant iron-manganese-chrome alloy
AT407882B (en) 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY

Also Published As

Publication number Publication date
ATA123299A (en) 2000-11-15
DE50000903D1 (en) 2003-01-23
AT407882B (en) 2001-07-25
CA2313975A1 (en) 2001-01-15
EP1069202A1 (en) 2001-01-17
ATE229575T1 (en) 2002-12-15
CA2313975C (en) 2005-06-28
US6454879B1 (en) 2002-09-24
ES2187434T3 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
AT405058B (en) AUSTENITIC, ANTI-MAGNETIC, STAINLESS STEEL ALLOY
DE3445056C2 (en)
DE602004000140T2 (en) Stainless austenitic steel
DE602004002492T2 (en) Austenitic stainless steel and process for its production
DE69834932T2 (en) ULTRA-HIGH-RESISTANT, WELDABLE STEEL WITH EXCELLENT ULTRATED TEMPERATURE TOOLNESS
AT412727B (en) CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
EP0091897B1 (en) Strain hardening austenitic manganese steel and process for the manufacture thereof
DE3248987C2 (en) Tough heat and wear resistant alloy
DE69831733T2 (en) STEEL AND METHOD FOR PRODUCING BEARING PARTS
DE60205419T2 (en) Low alloy and heat resistant steel, heat treatment process and turbine rotor
DE60115232T2 (en) STEEL ALLOY, TOOL FOR PLASTIC DIE CASTING AND TOOTH-CURRENT COATING FOR PLASTIC DIE CASTING TOOLS
DE19712020A1 (en) Fully martensitic steel alloy
DE1483218C3 (en) Process for producing a heat-resistant, ferritic Cr-Mo-V steel with high creep strength and improved creep elongation
EP1069202B1 (en) A paramagnetic, corrosion resistant austenitic steel with high elasticity, strength and toughness and a process for its manufacture
EP3899063B1 (en) Super austenitic material
DE2800444C2 (en) Use of a Cr-Mo steel
DE602004008134T2 (en) Dispersion-cured precipitation-hardenable nickel-iron-chromium alloy and associated method
EP1420077B1 (en) Inert material with high hardness for elements used at high temperature
DE10244972B4 (en) Heat resistant steel and method of making the same
DE19920324B4 (en) Use of a steel with excellent fracture splittability and fatigue strength in connecting rods
DE19909810B4 (en) Hot work die steel and this comprehensive component for high temperature use
DE60014331T2 (en) DEPENDABLE AND STAINLESS STEEL WITH IMPROVED PROCESSABILITY FOR SPECIAL APPLICATION purposes
DE60126646T2 (en) STEEL ALLOY, HOLDER AND BRACKET PARTS FOR PLASTIC TOOLS AND GUARANTEED COVERS FOR HOLDER AND HOLDER PARTS
DE102018133251A1 (en) Drill string component with high corrosion resistance and process for their manufacture
DE69938617T2 (en) Steel for casting molds and method of manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010331

17Q First examination report despatched

Effective date: 20010523

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021211

REF Corresponds to:

Ref document number: 229575

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50000903

Country of ref document: DE

Date of ref document: 20030123

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030311

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030311

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2187434

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030629

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1069202E

Country of ref document: IE

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: EDELSTAHL WITTEN KREFELD GMBH

Effective date: 20030911

NLR1 Nl: opposition has been filed with the epo

Opponent name: EDELSTAHL WITTEN KREFELD GMBH

BERE Be: lapsed

Owner name: *SCHOELLER-BLECKMANN OILFIELD TECHNOLOGY G.M.B.H.

Effective date: 20030630

Owner name: *BOHLER EDELSTAHL G.M.B.H. & CO. K.G.

Effective date: 20030630

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20060425

NLR2 Nl: decision of opposition

Effective date: 20060425

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190619

Year of fee payment: 20

Ref country code: IT

Payment date: 20190619

Year of fee payment: 20

Ref country code: FI

Payment date: 20190618

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190624

Year of fee payment: 20

Ref country code: FR

Payment date: 20190626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190723

Year of fee payment: 20

Ref country code: DE

Payment date: 20190624

Year of fee payment: 20

Ref country code: AT

Payment date: 20190618

Year of fee payment: 20

Ref country code: GB

Payment date: 20190624

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50000903

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200628

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200628

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 229575

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200628

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200630