EP1069202B1 - Ein paramagnetischer, korrosionsbeständiger, austenitischer Stahl mit hoher Dehngrenze, Festigkeit und Zähigkeit, und Verfahren zu seiner Herstellung - Google Patents
Ein paramagnetischer, korrosionsbeständiger, austenitischer Stahl mit hoher Dehngrenze, Festigkeit und Zähigkeit, und Verfahren zu seiner Herstellung Download PDFInfo
- Publication number
- EP1069202B1 EP1069202B1 EP00890207A EP00890207A EP1069202B1 EP 1069202 B1 EP1069202 B1 EP 1069202B1 EP 00890207 A EP00890207 A EP 00890207A EP 00890207 A EP00890207 A EP 00890207A EP 1069202 B1 EP1069202 B1 EP 1069202B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- temperature
- alloy
- less
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1227—Warm rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the invention relates to a method for producing a paramagnetic material, particularly corrosion-resistant in media with a high chloride concentration, with a high yield strength, strength and toughness consisting of in% by weight Max. 0.1 carbon 0.21 to 0.6 silicon 17.0 to 24.0 chromium as well as manganese and nitrogen up to 2.5 nickel up to 1.9 molybdenum Max. 0.3 copper up to 0.002 boron up to 0.8 elements of groups 4 and 5 of the periodic table Remainder iron, melting-related accompanying elements and impurities.
- the invention further relates to an austenitic, paramagnetic material good corrosion resistance, especially in media with high Chloride concentration, and high yield strength, strength and toughness made of carbon, manganese, silicon, chromium and nitrogen, and optionally Nickel, molybdenum, copper, boron, carbide-forming elements, remainder iron, Melting-related accompanying elements and impurities.
- the invention includes the use of one at the beginning mentioned method manufactured material.
- High-strength materials that are paramagnetic and corrosion-resistant economic reasons mainly from chromium-manganese-iron alloys exist for chemical apparatus engineering, for facilities for electrical power generation and especially for components in the Oilfield technology used. Both the corrosion chemical and the mechanical properties of such materials are described in increasingly higher demands.
- Iron-manganese-chromium alloys were also used for economic reasons developed that without pressure melting and the like casting process, so at Atmospheric pressure can be produced (WO 98/48070), whereby alloying measures a desired property profile of the Material should be achieved. Alloys of this type point to Improvement in corrosion resistance to a molybdenum content of over 2%, which brings advantages in particular with hole and crevice corrosion behavior.
- molybdenum is a ferrite former and can be found in segregation areas lead to unfavorable magnetic properties of the material. Increased Nickel contents stabilize the austenite, but may also contribute higher copper concentrations worsening the mechanical Properties and intensify the crack initiation.
- the invention aims to provide a method which Exhaustion of alloying measures includes deformation and synergistically a manufacture of a highly magnetic paramagnetic, in Media with a high chloride concentration are corrosion-resistant, ferrite-free Material with high yield strength, strength and toughness indicates.
- Another object of the invention is a fully austenitic paramagnetic Material with good corrosion resistance and high mechanical values create.
- the advantages achieved by the invention are essentially to be seen in that with high efficiency regarding the material costs and Manufacturing process by an alloy-technical optimization largest Corrosion resistance and a desired paramagnetic behavior of the Material can be achieved, whereby its high mechanical characteristics, especially the yield strength, without adversely affecting the above properties mentioned by a targeted cold forming increased temperature experienced a further significant improvement.
- the carbon content of the alloy is max. 0.1% by weight, because higher levels result in both pitting and stress corrosion cracking chloride-containing media as well as intercrystalline corrosion from it manufactured parts. Compliance with this upper limit, with levels of Max. 0.06 and 0.05% by weight is preferred, as mentioned above, from Corrosion-chemical reasons important, although carbon increases the yield strength and has a strong austenite-forming effect.
- Silicon is said to be a deoxidation metal with a concentration of at least 0.21 % By weight is present in the metal, an upper limit of 0.6% by weight being provided. Higher silicon levels lead to nitride formation and deterioration of the Resistance to stress corrosion cracking of the material. Because silicon is also strong Magnetic permeability can also have a ferrite-forming effect due to higher contents be adversely affected. A maximum content of 0.48 is advantageous % By weight effective.
- Corrosion behavior especially resistance to Stress corrosion cracking and pitting corrosion is caused by the chromium content of the Alloy determined. It is important that a largely homogeneous Chromium distribution in the material is present; in other words, the so-called Weak spots in the passive layer due to segregation and inclusions avoided are. To be largely secured, a desired corrosion resistance too chromium contents of more than 17% by weight, preferably of more than 19% by weight required.
- Chromium increases the solubility of the alloy for Nitrogen, however, has a ferrite-forming effect and is therefore unfavorable with regard to the desired one non-magnetic or paramagnetic behavior of the material, so that the highest chromium concentration is 24.0% by weight, preferably 22.0% by weight.
- Nickel can increase the mechanical properties of the alloy and the stability the austenitic structure can be improved for sufficiently good ones Corrosion properties of the material, especially the Regarding stress corrosion cracking, nickel contents are less than 2.5% by weight. better, but less than 0.96 wt .-% required. Due to low nickel contents From 0.21% by weight up to the above maximum values it is possible without disadvantages in the corrosion behavior of the desired alloy, an increase in To reach yield strength.
- the alloy element molybdenum improves the durability of the material against corrosion, especially against chloride-induced crevice and pitting corrosion.
- this element is a strong ferrite former and the like
- Carbide formers and formers of socialized phases are the Molybdenum caps at 1.9% by weight, but better at 1.5% by weight.
- Low Levels from 0.28 wt .-% molybdenum up to the above limits can Precipitation-free austenite structure of the micro-chemical structure Advantages bring.
- the element copper which is often effective against corrosion attack, has been used in the
- the alloy according to the invention was found to have a disadvantageous effect, wherein the copper contents less than 0.3% by weight, but better less than 0.25% by weight to achieve resistance to corrosion.
- Boron can be used to improve the hot forming behavior of the material an amount of up to 0.002% by weight, preferably up to 0.0012% by weight. Higher amounts of boron lead to grain boundary deposits, Signs of embrittlement and undesirable structures.
- elements of group 4 and group 5 of the periodic table are particularly important for preventing stress cracking and pitting corrosion low levels of elements of group 4 and group 5 of the periodic table.
- These elements Ti, Zr, Hg, V, Nb, Ta
- These elements are extremely strong carbide and nitride or Carbonitride formers and have values of less than 0.8 in total % By weight, better of less than 0.48% by weight. Higher concentrations cause excretions and thereby weak points in the passive layer on the Workpiece surface, which affects the corrosion resistance.
- the element nitrogen is a strong austenite former.
- the yield strength and the resistance of the material to hole and Crevice corrosion due to nitrogen increased.
- Nitrogen is in iron based alloys however, only soluble to a limited extent, with increasing chromium and manganese contents Solubility limit is increased.
- the chromium-manganese and Nitrogen concentrations of the alloy synergistically for the invention To see material or for its properties.
- Preferred nitrogen concentration ranges are: 0.64 to 1.3 wt .-%, in particular 0.72 to 1.2 wt .-% N.
- manganese contents of 30% by weight and more and with nitrogen contents of 0.6% by weight and less high yield strengths cannot be achieved and embrittlement of the material can occur.
- this or this diffusion annealing which is a homogenization of the Serves microstructure or a compensation of micro segregations become.
- This annealing can be carried out, for example, at a temperature of around 1200 ° C up to 60 hours.
- the hot forming of the casting which represents the first deformation step, mostly done by forging, whereby the forming temperature is higher than 850 ° C, to ensure a correspondingly favorable recrystallization of the mixed structure.
- the forging shaped in this way is, as a rule, from the forging heat cooled down at increased speed.
- This cooling the avoidance of Excretions, especially at the grain boundaries, can be in one Water basin or with a continuous cooling section.
- the forging is made at a temperature below 600 ° C reshaped, a solidification of the material, in particular a desired increase in the proof stress occurs.
- a solidification of the material in particular a desired increase in the proof stress occurs.
- the material fully austenitic or ferrite-free; there is therefore no expected partial folding to form a structure with deformation martensite. It turned out to be proved favorable when the deformation of the forged casting in the second Step at elevated temperature, but safely below 600 ° C and then the deformed shaped part is allowed to cool to room temperature.
- Manufacturing technology but also in terms of improved homogeneity and Material quality can be favorable if the block uses an ESR process will be produced.
- the material quality can be further increased if the block in the first step with a degree of deformation, which is defined: output cross section through Final cross-section is at least 4 times thermoformed. This makes a fine, recrystallized, uniform ferrite-free austenite structure achieved.
- the forging in the second step in a To transform temperature in the range of 400 to 500 ° C.
- An austenitic, paramagnetic material with the composition mentioned with good Corrosion properties that are thermoformed at least 3.5 times and below the Elimination temperature of nitrides and associated phases, however is cold-formed above a temperature of 350 ° C, shows the slightest traces of ferrite, practically no ferrite content in the preferred ranges of the composition on and behaves essentially paramagnetically with a relative Permeability below 1.05, in particular below 1.016.
- the yield strength R P0.2 of the material at room temperature is higher than 700 N / mm 2 .
- the values for the impact strength at room temperature are greater than 52J and the FATT (Fracture Appearance Transition Temperature) is lower than -25 ° C.
- Table 1 shows the chemical composition of all reference materials and, additionally, the deformation data for samples 1 to 3 and A to E.
- Samples 4 to 6 come from comparative material that was available on the market.
- Table 2 summarizes the results regarding the magnetic property, the mechanical values and the corrosion behavior.
- Samples 2 and A were made from steel that was melted in the induction furnace and cast into blocks under protective gas.
- Samples 1, 3, B to E come from ESR material.
- the materials of samples 1 and 3 have low magnetic data with good magnetic data Yield strengths and strength values.
- Good toughness and sufficient FATT and the corresponding oxalic acid test pattern show low hole potentials opposite, whereby the materials due to an insufficient Eliminate property profile for high loads. The causes of this are in the low chromium and manganese contents as well as in the consequence low nitrogen concentrations.
- the material of sample 2 does have a sufficiently high chromium content, however, low manganese and the like cause nitrogen in particular poor corrosion resistance.
- the samples A to E produced by means of the method according to the invention are significantly improved in leaps and bounds in the entirety of the usage properties. Synergistically, the respective, coordinated concentrations of the alloying elements and the solidifying cold forming of the material produced without precipitation provide superior corrosion resistance with a low relative magnetic permeability and a substantial increase in the strength values of the same. This is also shown by the test results or measured values of the freely obtained alloy samples 4 to 6.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Heat Treatment Of Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Sampling And Sample Adjustment (AREA)
- Earth Drilling (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Heat Treatment Of Articles (AREA)
Description
max. 0,1 Kohlenstoff
0,21 bis 0,6 Silizium
17,0 bis 24,0 Chrom sowie Mangan und Stickstoff
bis 2,5 Nickel
bis 1,9 Molybdän
max. 0,3 Kupfer
bis 0,002 Bor
bis 0,8 Elemente der Gruppe 4 und 5 des Periodensystems
Rest Eisen, erschmelzungsbedingte Begleitelemente und Verunreinigungen.
0,64 bis 1,3 Gew.-%, insbesondere 0,72 bis 1,2 Gew.-% N. Niedrige Mangangehalte von 20 Gew.-% und geringer sowie hohe Stickstoffkonzentrationen von 1,4 Gew.-% und größer führen auf Grund einer sprunghaften Abnahme der Stickstofflöslichkeit der Legierung bei der Erstarrung zu porösen bzw. undichten Gußstücken. Bei Mangangehalten von 30 Gew.-% und mehr sowie bei Stickstoffanteilen von 0,6 Gew.-% und weniger sind erforderlich hohe Dehngrenzen nicht erreichbar und eine Versprödung des Materials kann auftreten.
In Tabelle 1 sind chemische Zusammensetzung sämtlicher Vergleichswerkstoffe und von den Proben 1 bis 3 sowie A bis E zusätzlich die Verformungsdaten angegeben. Die Proben 4 bis 6 stammen aus Vergleichsmaterial, das am Markt verfügbar war.
In Tabelle 2 sind die Ergebnisse betreffend die magnetische Eigenschaft, die mechanischen Werte und das Korrosionsverhalten zusammengestellt.
Die Proben 1,3, B bis E stammen aus ESU-Material.
Claims (19)
- Verfahren zur Herstellung eines paramagnetischen austenitischen, in Medien mit hoher Chloridkonzentration korrosionsbeständigen Stahlgegenstandes mit hoher Dehngrenze, Festigkeit und Zähigkeit, bestehend aus einer Legierung in Gew.-%
max. 0,10 Kohlenstoff
0,21 bis 0,6 Silizium
mehr als 20,0 bis weniger als 30,0 Mangan
mehr als 0,6 bis weniger als 1,4 Stickstoff
17,0 bis 24,0 Chrom
bis 2,5 Nickel
bis 1,9 Molybdän
max. 0,3 Kupfer
bis 0,002 Bor
bis 0,8 Karbidbildende Elemente der Gruppe 4 und 5 des Periodensystems
Rest Eisen, erschmelzungsbedingte Begleitelemente und Verunreinigungen, welche Legierung erschmolzen, unter Atmosphärendruck zu einem Block oder Gußstück erstarren gelassen und der gebildete Block bzw. das Gußstück in einem ersten Schritt einer Warmumformung bei einer Umformtemperatur von höher als 850°C unterworfen und darauffolgend mit erhöhter Geschwindigkeit abgekühlt wird, wonach in einem zweiten Schritt eine weitere Umformung des Schmiedestückes bei einer erhöhten Temperatur von unter 600°C, jedoch über 350°C, erfolgt und danach der Umformteil auf Raumtemperatur erkalten gelassen und der Gegenstand daraus gefertigt wird. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Legierung bestehend aus in Gew.-%
max. 0,06 vorzugsweise max. 0,05 Kohlenstoff
0,21 bis 0,48 Silizium
19,0 bis 22,0 Chrom sowie
20,5 bis 29,5 Mangan
0,64 bis 1,3 Stickstoff
0,21 bis 0,96 Nickel
0,28 bis 1,5 Molybdän
max. 0,25 Kupfer
bis 0,0012 Bor
bis 0,48 karbidbildende Elemente
Rest Eisen, erschmelzungsbedingte Begleitetemente und Verunreinigungen erschmolzen und verarbeitet wird. - Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der Legierung ein Gehalt in Gew.-% von
21,5 bis 25,0 Mangan
0,72 bis 1,2 Stickstoff
eingestellt wird. - Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Block nach einem ESU-Verfahren hergestellt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nach dem ersten Schritt der umgeformte Block einer Zwischenglühung bei einer Glühtemperatur von über 850°C und darauffolgend einer Abkühlung mit erhöhter Geschwindigkeit unterworfen wird.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Block im ersten Schritt mit einem Umformgrad von mindestens 3,5fach warmverformt wird.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Schmiedestück im zweiten Schritt mit einer Umformung von kleiner als 35 %, vorzugsweise mit einem Bereich von 5% bis 20%, verformt wird.
- Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Schmiedestück im zweiten Schritt bei einer Temperatur im Bereich von 400 bis 500° C umgeformt wird.
- Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Schmiedestück nach der Warmumformung im ersten Schritt verstärkt unter eine Temperatur von 600°C abgekühlt und gehalten und nach einem Temperaturausgleich über den Querschnitt der Umformung im zweiten Schritt zugeführt wird.
- Austenitischer, paramagnetischer Stahlgegenstand mit guter Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration und hoher Dehngrenze, Festigkeit und Zähigkeit, bestehend aus einer Legierung in Gew.-%
max. 0,10 Kohlenstoff
0,21 bis 0,6 Silizium
mehr als 20,0 bis weniger als 30,0 Mangan
mehr als 0,6 bis weniger als 1,4 Stickstoff
17,0 bis 24,0 Chrom
bis 2,5 Nickel
bis 1,9 Molybdän
max. 0,3 Kupfer
bis 0,002 Bor
bis 0,8 karbidbildende Elemente der Gruppe 4 and 5 des Periodensystems Rest im wesentlichen Eisen, welcher Werkstoff gemäß dem Verfahren nach Anspruch 1 hergestellt ist und mit einem Umformgrad von mindestens 3,5-fach warmverformt und unterhalb der Ausscheidungstemperatur von Nitriden sowie von vergesellschafteten Phasen, jedoch bei erhöhter Temperatur von unter 600°C und über 350°C kaltverformt ist und der Gegenstand eine Dehngrenze RP0,2 von größer as 700 N/mm2 bei Raumtemperatur, eine Kerbschlagzähigkeit bei gleicher Temperatur von über 52 J und eine FATT von unter-25°C aufweist. - Werkstoff nach Anspruch 10, dadurch gekennzeichnet, daß die Legierung weniger als 0,06 Gew.-% Kohlenstoff enthält.
- Werkstoff nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Legierung weniger als 0,49 Gew.-% Silizium enthält.
- Werkstoff nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß die Legierung 19,0 bis 22,0 Gew.-% Chrom enthält.
- Werkstoff nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß die Legierung in Gew.-% mindestens 21,5 bis 29,5, insbesondere etwa 25,0, Mangan enthält.
- Werkstoff nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß die Legierung in Gew.-% mindestens 0,64, vorzugsweise 0,72 bis 1,3, insbesondere 1,2, Stickstoff enthält.
- Werkstoff nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß die Legierung in Gew.-% 0,21 bis 0,96 Nickel enthält.
- Werkstoff nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, daß die Legierung in Gew.-% 0,28 bis 1,5 Molybdän enthält.
- Werkstoff nach einem der Ansprüche 10 bis 17, der eine relative magnetische Permeabilität von unter 1,05, insbesondere von unter 1,016, besitzt.
- Werkstoff nach einem der Ansprüche 10 bis 18, der eine Dehngrenze RP0,2 von größer als 700 N/mm2 bei Raumtemperatur, eine Kerbschlagzähigkeit bei gleicher Temperatur von größer als 120 J aufweist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT123299 | 1999-07-15 | ||
AT0123299A AT407882B (de) | 1999-07-15 | 1999-07-15 | Verfahren zur herstellung eines paramagnetischen, korrosionsbeständigen werkstoffes u.dgl. werkstoffe mit hoher dehngrenze, festigkeit und zähigkeit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1069202A1 EP1069202A1 (de) | 2001-01-17 |
EP1069202B1 true EP1069202B1 (de) | 2002-12-11 |
Family
ID=3509471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00890207A Expired - Lifetime EP1069202B1 (de) | 1999-07-15 | 2000-06-29 | Ein paramagnetischer, korrosionsbeständiger, austenitischer Stahl mit hoher Dehngrenze, Festigkeit und Zähigkeit, und Verfahren zu seiner Herstellung |
Country Status (6)
Country | Link |
---|---|
US (1) | US6454879B1 (de) |
EP (1) | EP1069202B1 (de) |
AT (2) | AT407882B (de) |
CA (1) | CA2313975C (de) |
DE (1) | DE50000903D1 (de) |
ES (1) | ES2187434T3 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT407882B (de) | 1999-07-15 | 2001-07-25 | Schoeller Bleckmann Oilfield T | Verfahren zur herstellung eines paramagnetischen, korrosionsbeständigen werkstoffes u.dgl. werkstoffe mit hoher dehngrenze, festigkeit und zähigkeit |
US20060065327A1 (en) * | 2003-02-07 | 2006-03-30 | Advance Steel Technology | Fine-grained martensitic stainless steel and method thereof |
AT412727B (de) | 2003-12-03 | 2005-06-27 | Boehler Edelstahl | Korrosionsbeständige, austenitische stahllegierung |
EP2035593B1 (de) * | 2006-06-23 | 2010-08-11 | Jorgensen Forge Corporation | Austenitischer paramagnetischer korrosionsfreier stahl |
US7658883B2 (en) * | 2006-12-18 | 2010-02-09 | Schlumberger Technology Corporation | Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same |
US9347121B2 (en) | 2011-12-20 | 2016-05-24 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
SI2924131T1 (sl) * | 2014-03-28 | 2019-12-31 | Outokumpu Oyj | Avstenitno visokomangansko nerjavno jeklo |
JP6451545B2 (ja) * | 2015-08-05 | 2019-01-16 | 新日鐵住金株式会社 | 高圧水素ガス用高Mn鋼鋼材およびその製造方法、ならびにその鋼材からなる、配管、容器、バルブおよび継手 |
DE102018133255A1 (de) | 2018-12-20 | 2020-06-25 | Voestalpine Böhler Edelstahl Gmbh & Co Kg | Superaustenitischer Werkstoff |
DE102018133251A1 (de) | 2018-12-20 | 2020-06-25 | Schoeller-Bleckmann Oilfield Technology Gmbh | Bohrstrangkomponente mit hoher Korrosionsbeständigkeit und Verfahren zu ihrer Herstellung |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936297A (en) * | 1972-05-08 | 1976-02-03 | Allegheny Ludlum Industries, Inc. | Method of producing austenitic stainless steel |
US3907551A (en) * | 1973-04-30 | 1975-09-23 | Allegheny Ludlum Ind Inc | Corrosion resistant austenitic steel |
US3847599A (en) * | 1973-10-04 | 1974-11-12 | Allegheny Ludlum Ind Inc | Corrosion resistant austenitic steel |
US3938990A (en) * | 1973-11-28 | 1976-02-17 | Allegheny Ludlum Industries, Inc. | Method of making corrosion resistant austenitic steel |
US4217136A (en) * | 1974-05-01 | 1980-08-12 | Allegheny Ludlum Steel Corporation | Corrosion resistant austenitic stainless steel |
DE3143096A1 (de) * | 1980-11-05 | 1982-05-19 | General Electric Co., Schenectady, N.Y. | "legierung auf eisenbasis, verfahren zu ihrer herstellung und damit hergestellte gegenstaende" |
CA1205659A (en) * | 1981-03-20 | 1986-06-10 | Masao Yamamoto | Corrosion-resistant non-magnetic steel and retaining ring for a generator made of it |
AT381658B (de) | 1985-06-25 | 1986-11-10 | Ver Edelstahlwerke Ag | Verfahren zur herstellung von amagnetischen bohrstrangteilen |
JPH089113B2 (ja) * | 1987-07-16 | 1996-01-31 | 三菱マテリアル株式会社 | 耐食耐摩耗性に優れたFe基肉盛合金 |
US4935027A (en) | 1989-08-21 | 1990-06-19 | Inbae Yoon | Surgical suture instrument with remotely controllable suture material advancement |
DE3940438C1 (de) * | 1989-12-07 | 1991-05-23 | Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De | |
US5094812A (en) * | 1990-04-12 | 1992-03-10 | Carpenter Technology Corporation | Austenitic, non-magnetic, stainless steel alloy |
FR2672904B1 (fr) * | 1991-02-14 | 1993-05-07 | Aubert & Duval Acieries | Acier inoxydable amagnetique a base manganese-chrome resistant a la corrosion sous contrainte, procede de fabrication d'une barre en acier amagnetique de grande longueur. |
DE19758613C2 (de) | 1997-04-22 | 2000-12-07 | Krupp Vdm Gmbh | Hochfeste und korrosionsbeständige Eisen-Mangan-Chrom-Legierung |
AT407882B (de) | 1999-07-15 | 2001-07-25 | Schoeller Bleckmann Oilfield T | Verfahren zur herstellung eines paramagnetischen, korrosionsbeständigen werkstoffes u.dgl. werkstoffe mit hoher dehngrenze, festigkeit und zähigkeit |
-
1999
- 1999-07-15 AT AT0123299A patent/AT407882B/de not_active IP Right Cessation
-
2000
- 2000-06-29 AT AT00890207T patent/ATE229575T1/de active
- 2000-06-29 ES ES00890207T patent/ES2187434T3/es not_active Expired - Lifetime
- 2000-06-29 DE DE50000903T patent/DE50000903D1/de not_active Expired - Lifetime
- 2000-06-29 EP EP00890207A patent/EP1069202B1/de not_active Expired - Lifetime
- 2000-07-14 CA CA002313975A patent/CA2313975C/en not_active Expired - Lifetime
- 2000-07-14 US US09/617,541 patent/US6454879B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ATE229575T1 (de) | 2002-12-15 |
EP1069202A1 (de) | 2001-01-17 |
AT407882B (de) | 2001-07-25 |
CA2313975A1 (en) | 2001-01-15 |
US6454879B1 (en) | 2002-09-24 |
DE50000903D1 (de) | 2003-01-23 |
ES2187434T3 (es) | 2003-06-16 |
ATA123299A (de) | 2000-11-15 |
CA2313975C (en) | 2005-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AT405058B (de) | Austenitische, antimagnetische, rostfreie stahllegierung | |
DE3445056C2 (de) | ||
DE602004000140T2 (de) | Rostfreier austenitischer Stahl | |
DE602004002492T2 (de) | Rostfreier austenitischer Stahl und Verfahren zu dessen Herstellung | |
DE69834932T2 (de) | Ultrahochfeste, schweissbare stähle mit ausgezeichneter ultratief-temperaturzähigkeit | |
DE3280440T2 (de) | Verfahren zur Herstellung eines nichtmagnetisches Stahles, beständig gegen Rissbildungskorrosion. | |
DE69811200T2 (de) | Einsatzstahl mit hervorragender verhinderung der sekundärrekristallisation während der aufkohlung, verfahren zu dessen herstellung, halbzeug für aufzukohlende teile | |
DE69406512T2 (de) | Rotor für Dampfturbinen und Verfahren zu seiner Herstellung | |
AT412727B (de) | Korrosionsbeständige, austenitische stahllegierung | |
EP0091897B1 (de) | Kaltverfestigender austenitischer Manganhartstahl und Verfahren zur Herstellung desselben | |
DE69702428T2 (de) | Hochfester und hochzäher wärmebeständiger Gussstahl | |
DE60115232T2 (de) | Stahllegierung, werkzeug zum plastiggiessen und zähgehärteter rohling für plastikgiesswerkzeuge | |
DE19712020A1 (de) | Vollmartensitische Stahllegierung | |
DE69517533T2 (de) | Korrosionsfestes magnetmaterial | |
DE1483218C3 (de) | Verfahren zum Herstellen eines warmfesten, ferritischen Cr-Mo-V-Stahles mit hoher Zeitstandfestigkeit und verbesserter Zeitbruchdehnung | |
EP1069202B1 (de) | Ein paramagnetischer, korrosionsbeständiger, austenitischer Stahl mit hoher Dehngrenze, Festigkeit und Zähigkeit, und Verfahren zu seiner Herstellung | |
DE69601340T2 (de) | Hochfester, hochzaher warmebestandiger stahl und verfahren zu seiner herstellung | |
EP3899063B1 (de) | Superaustenitischer werkstoff | |
DE10244972B4 (de) | Wärmefester Stahl und Verfahren zur Herstellung desselben | |
DE2800444A1 (de) | Legierter stahl | |
DE69902132T2 (de) | Hochfester und nichtmagnetischer rostfreier Stahl und Verfahren zu seiner Herstellung | |
DE19920324B4 (de) | Verwendung eines Stahls mit ausgezeichneter Bruchspaltbarkeit und Dauerfestigkeit in Pleuelstangen | |
DE60014331T2 (de) | Ausscheidungshätbarer und rostfreier stahl mit verbesserter verarbeitbarkeit für besonderen einsatzzwecke | |
DE69123859T2 (de) | Ferritischer hitzebeständiger Stahl mit hohem Stickstoffgehalt und Verfahren zu seiner Herstellung | |
DE60126646T2 (de) | Stahllegierung, halter und haltereinzelteile für kunststoff-formwerkzeuge und vergütete rohlinge für halter und haltereinzelteile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010331 |
|
17Q | First examination report despatched |
Effective date: 20010523 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021211 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021211 |
|
REF | Corresponds to: |
Ref document number: 229575 Country of ref document: AT Date of ref document: 20021215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50000903 Country of ref document: DE Date of ref document: 20030123 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030311 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030311 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2187434 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030629 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030630 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030630 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 1069202E Country of ref document: IE |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: EDELSTAHL WITTEN KREFELD GMBH Effective date: 20030911 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EDELSTAHL WITTEN KREFELD GMBH |
|
BERE | Be: lapsed |
Owner name: *SCHOELLER-BLECKMANN OILFIELD TECHNOLOGY G.M.B.H. Effective date: 20030630 Owner name: *BOHLER EDELSTAHL G.M.B.H. & CO. K.G. Effective date: 20030630 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20060425 |
|
NLR2 | Nl: decision of opposition |
Effective date: 20060425 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190619 Year of fee payment: 20 Ref country code: IT Payment date: 20190619 Year of fee payment: 20 Ref country code: FI Payment date: 20190618 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190624 Year of fee payment: 20 Ref country code: FR Payment date: 20190626 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20190723 Year of fee payment: 20 Ref country code: DE Payment date: 20190624 Year of fee payment: 20 Ref country code: AT Payment date: 20190618 Year of fee payment: 20 Ref country code: GB Payment date: 20190624 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50000903 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20200628 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20200628 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 229575 Country of ref document: AT Kind code of ref document: T Effective date: 20200629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20200628 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20201006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20200630 |