EP1529853A2 - Steel for chemistry - Devices - Components - Google Patents

Steel for chemistry - Devices - Components Download PDF

Info

Publication number
EP1529853A2
EP1529853A2 EP04450192A EP04450192A EP1529853A2 EP 1529853 A2 EP1529853 A2 EP 1529853A2 EP 04450192 A EP04450192 A EP 04450192A EP 04450192 A EP04450192 A EP 04450192A EP 1529853 A2 EP1529853 A2 EP 1529853A2
Authority
EP
European Patent Office
Prior art keywords
max
component
elements
iron
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04450192A
Other languages
German (de)
French (fr)
Other versions
EP1529853B1 (en
EP1529853A3 (en
Inventor
Johann Zand
Johannes Schedelmaier
Manfred Pölzl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BHDT GmbH
Voestalpine Boehler Edelstahl GmbH and Co KG
Original Assignee
BHDT GmbH
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32686631&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1529853(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BHDT GmbH, Boehler Edelstahl GmbH filed Critical BHDT GmbH
Publication of EP1529853A2 publication Critical patent/EP1529853A2/en
Publication of EP1529853A3 publication Critical patent/EP1529853A3/en
Application granted granted Critical
Publication of EP1529853B1 publication Critical patent/EP1529853B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Definitions

  • the invention relates to an iron-based alloy for use as a material for high-pressure components with elevated working temperature, in particular tempered steel for components such as tube heat exchangers in high-pressure polyethylene plants, containing the main alloying elements in% by weight of: Carbon (C) 0.22 to 0.29 Chrome (Cr) 1.1 to 1.5 Molybdenum (Mo) 0.3 to 0.6 Nickel (Ni) 3.3 to 3.7 possibly Vanadin (V) 0.05 to 0.15 Remainder iron (Fe) furthermore sulfide and oxide forming - as well as accompanying and impurity elements. Furthermore, the invention relates to a component with increased working temperature, in particular tube heat exchanger for polyethylene - high pressure systems formed from an iron-based alloy mentioned above.
  • An increase in the tensile strength of the material caused by tempering by means of hardening and tempering also has a significant effect on the other mechanical material properties at room temperature and at elevated working temperatures.
  • An increase of the tensile strength over a value of 1000 N / mm 2 to 1100 N / mm 2 and above disproportionately increases the 0.2% yield strength of the iron base material, whereby a ratio of 0.2% yield strength (FIG. Rp 0.2 ) to tensile strength (Rm) is adversely affected.
  • the yield strength approaches tensile strength, significantly lowering the elongation at break and impact strength of the material and significantly reducing crack fracture toughness.
  • a disadvantage with thick-walled pipes is reaching the so-called leak Rupture criteria, which in the high pressure technique for safety reasons always must be fulfilled.
  • a parameter for unstable break include the critical fracture toughness such as Klc or Jlc or the critical crack length ac
  • Material-specific characteristics are mainly due to the toughness of the material dependent.
  • the invention seeks to remedy these shortcomings and sets itself the task of a Iron-based alloy of the type mentioned for use for High pressure components with increased strength at high strain and To indicate toughness values of the material.
  • Another object of the invention is to provide a component, in particular Tube heat exchanger for high-pressure polyethylene plants with improved Use characteristics and / or similar safety criteria formed from an aforementioned iron base material with high strength and at the same time favorable elongation and toughness values.
  • the mode of action of the alloy according to the invention is intended present elements are set forth, the Main alloying elements related to a thermal remuneration are functionally kinetically matched.
  • Carbon dissolves when heated in the austenite of the alloy in the solid solution and causes quenching a strain of the crystal lattice and thus hardening of the material.
  • C contents of at least 0.22% by weight are required in order to achieve a material hardness of at least 1100 N / mm 2 with a coating. If the carbon concentration exceeds 0.29% by weight, more stable carbides and reduced toughness values of the material may be present, so that a content range within narrow limits of 0.22 to 0.29% by weight C is provided.
  • chromium essentially binds Cr 23 C 6 , Cr 7 C 3 and Cr 3 C 2 carbides and to a great extent influences the hardening criteria of the material.
  • at least 1.1, but at most 1.5 wt% Cr are favorable for a desired carbide and Mischkarbid publication.
  • Molybdenum has a deleterious effect on temper embrittlement, is a stronger carbide former as chromium and iron and should be consistent with Cr with a content of at least 0.3 wt .-% in the steel present to a corresponding hardness-increasing effect exercise while tempering the part.
  • Advantageously fine Mo carbides and Mixed carbides are annealed to a Mo content of 0.6% by weight excreted what the ductility of the material at high hardness of the same promotes.
  • Nickel essentially affects the hardenability of the material and acts toughness promoting. Lower contents than 3.3% by weight are less effective, whereas higher nickel concentrations than 3.7% by weight are too strong Austenite stabilizing effect, whereby a narrow nickel content range of Alloy is justified.
  • Vanadium with contents of 0.05 to 0.15 wt .-% can be provided in the material be.
  • V as a very strong carbide former acts as a fine micro-alloying element material hardness increase due to extremely fine secondary carbide precipitations when tempering after curing in the temperature range between 450 ° C and 560 ° C. Higher contents than 0.15 wt .-% V, the hardenability undesirable influence and reduce the material toughness.
  • the iron-based alloy according to the invention has besides the Main alloying elements as the remainder of Iron and Companion as well Impurity elements.
  • Mn, Co, Cu and W are the elements Mn, Co, Cu and W incorporated in the solid solution.
  • Manganese affects the hardenability of the steel, binds off the residual sulfur content and is advantageously provided in a concentration range of 0.15 to 0.5 wt .-% in the steel. Lower levels can cause too low a sulfur activity, which increases the risk of breakage and the property profile are adversely affected.
  • Co, Cu and W are elements which can be incorporated in certain concentrations in the mixed crystal, however, they have an extremely disadvantageous effect on the ratio in concentrations above 0.31% by weight rp 0.2 , R m
  • the value for the 0.2% proof stress increases of the material in the case of sum quantities (Co, Cu and W) of greater than 0.31, resulting in a ratio with disadvantage of over 0.95.
  • the impurity elements sulfur and phosphorus cause sinking Held to a mechanical improvement expected by the skilled person Characteristics of the material, however, should be extreme in terms of the required high property profile of the tempered material values of 0.003 wt .-% S and 0.005 wt .-% P at a cumulative concentration of 0.006 wt .-% not exceed.
  • Oxygen in the steel is bonded by oxide-forming elements, wherein oxide inclusions are formed, which are the material properties, especially the toughness and elongation deteriorate. Also through Remelting processes can not completely eliminate the oxidation products Alloy are eliminated so that their oxygen content is 0.0038 maximum Wt .-% should be.
  • the grain boundary elements As, Bi, Sb, Sn, Zn and B with a sum content of less than 0.015 wt .-% in the alloy is also at high hardness values of the coated material the ductility of the same given sufficiently. A crossing of this However, cumulative concentration value promotes a deformation-free Brittle fracture tendency.
  • the strong nitride formers in the alloy according to the invention are low Have contents, but is a highest cumulative concentration of N + H of 0.01 wt .-%, with the advantage of 0.008 wt .-% required to a desired Be able to achieve property level of the material.
  • the material is hot worked by forging or rolling and a Degree of deformation greater than 4.1 times, can after a thermal Tempering of the part, in particular a rod or a pipe high Strength values and thereby significantly improved toughness properties at a Working temperature of 350 ° C can be achieved.
  • the alloy is prepared by means of pan metallurgical processes and / or using the ESU process and / or the Vacuum arc furnace process, because this production is also a Segregation in the block minimizes and thus the prerequisite for essentially creates the same material properties in the longitudinal and transverse direction of the part.
  • the further object of the invention is in a component, in particular
  • Tube heat exchanger for high-pressure polyethylene plants formed of an iron-based alloy having a composition as described above, achieved in that the component has a tensile strength Rm of the material of greater than 1100 N / mm 2 and a 0.2% yield strength at 320 ° C. of greater than 880 N / mm 2 ..
  • the wall thickness of the High pressure components are reduced because of the 0.2% yield strength at Room temperature and at an operating temperature of 320 ° C substantially spaced from the strength value and thus a high level of safety of the component is present against separation break.
  • Thinner wall thicknesses for example one Heat exchanger, also cause a higher specific heat transfer, so that the reactor with substantially reduced dimension the same performance or at the same size, the reactor has a higher performance. From Of particular importance is the "leak before crack" criterion.
  • the component in particular tube heat exchanger for high-pressure polyethylene plants
  • a tensile strength Rm of the material greater than 1170 N / mm 2
  • this has a 0.2% yield strength of greater than 1060 N / mm 2 and a 0.2% Yield point at 320 ° C of greater than 930 N / mm 2
  • a further reduction of the wall thickness of high-pressure components is possible, which can provide significant plant engineering, but also reaction kinetic advantages.
  • the mechanical property values of this aforementioned higher-strength material are measured in the direction of the longitudinal extent and transversely to the longitudinal extent of the component: Elongation A5 > 15/14% Elongation at break A4 > 17/16% Fracture necking Z > 55/45% Notched Toughness AV (RT) > 80/60 y Notched impact strength AV (-40 ° C) > 50/35 y
  • a separation fracture is achieved with a ratio of the material of 0.2 % Yield strength broken by tensile strength less than 0.94, preferably from less than 0.92.
  • the component with a crack fracture toughness J 1C of the material of greater than 150 kJ / m 2, measured according to ASTM -E 813, is preferred.
  • An essential part of the invention is a choice or setting of the current stress intensity factor to fulfill the "leak before break" criterion.
  • Table 1 shows the chemical composition of two of the invention Materials.
  • the melts were treated by ladle metallurgy and each poured into electrodes.
  • the block of the batch H 75142 was in the Vacuum arc furnace remelted and in a long forging machine 5.85 times to a rod with a diameter of 200 mm ⁇ further deformed, off which rod tubes for a heat exchanger of a polyethylene reactor were manufactured.
  • the thermal treatment of the pipe material was carried out on a Strength Rm of about Rm 1250 MPa.
  • the block of batch G 53227 was prepared by the ESU method.
  • the Further processing to heat exchanger tubes was carried out the same way as the VLBO block.
  • Table 2 shows the measured mechanical values of the material of the Rod material indicated.
  • the indication "ZVF” stands for tensile test with fine strain measurement, that for " ZVW “stands for hot tensile test at 320 ° C.
  • the indication” KR “indicates a Notched impact strength test at room temperature, those with “KK” means Notched impact strength values at reduced temperature, in the given case - 23 ° C. In order to meet the high safety requirements, the Notched impact strength of the material tested by means of three samples.
  • the designation A5 stands for the used sample length and that 5x the Sample diameter.
  • Table 2 shows the inventive comparison of the measured values Improvement of material properties and in comparison with the state of The technical progress of the technical progress concerning the increase of the Property levels of materials for high pressure components, in particular Pipe heat exchangers for plants of the chemical industry.
  • Fig. 2 shows a dependence of 0.2% strain of the Sum concentration of the elements (Co + Cu + W), Fig.3 elongation at break values of the annealed material as a function of the sum concentration of containing elements (As + Bi + Sb + Sn + Zn + B).

Abstract

Main alloying constituents (wt. %) are carbon (0.22-0.29), chromium (1.1-1.5), molybdenum (0.3-0.6), nickel (3.3-3.7) and optionally vanadium (0.05-0.15). The remainder is iron. Other minority substances which may be present include sulfide and oxide forming elements and impurities.

Description

Die Erfindung bezieht sich auf eine Eisenbasislegierung zur Verwendung als Werkstoff für Hochdruckkomponenten mit erhöhter Arbeitstemperatur, insbesondere Vergütungsstahl für Bauteile wie Rohr-Wärmetauscher in Polyethylen - Hochdruckanlagen, enthaltend die Hauptlegierungselemente in Gew.-% von: Kohlenstoff (C) 0,22 bis 0,29 Chrom (Cr) 1,1 bis 1,5 Molybdän (Mo) 0,3 bis 0,6 Nickel (Ni) 3,3 bis 3,7 gegebenenfalls Vanadin (V) 0,05 bis 0,15 Rest Eisen (Fe) weiters sulfid-und oxidbildende - sowie Begleit-und Verunreinigungs-Elemente. Weiters betrifft die Erfindung einen Bauteil mit erhöhter Arbeitstemperatur, insbesondere Rohr-Wärmetauscher für Polyethylen - Hochdruckanlagen gebildet aus einer oben genannten Eisenbasislegierung.The invention relates to an iron-based alloy for use as a material for high-pressure components with elevated working temperature, in particular tempered steel for components such as tube heat exchangers in high-pressure polyethylene plants, containing the main alloying elements in% by weight of: Carbon (C) 0.22 to 0.29 Chrome (Cr) 1.1 to 1.5 Molybdenum (Mo) 0.3 to 0.6 Nickel (Ni) 3.3 to 3.7 possibly Vanadin (V) 0.05 to 0.15 Remainder iron (Fe) furthermore sulfide and oxide forming - as well as accompanying and impurity elements. Furthermore, the invention relates to a component with increased working temperature, in particular tube heat exchanger for polyethylene - high pressure systems formed from an iron-based alloy mentioned above.

Als Werkstoffe für Bauteile, die bei erhöhten Temperaturen, zum Beispiel bei 300 bis 400°C, hohen mechanischen Beanspruchungen widerstehen müssen, wie Rohr-Wärmetauscher von chemischen Anlagen mit einerm Innendruck von 3000 bar und mehr, kommen zumeist Eisenbasislegierungen gemäß DIN Werkstoff Nr. 1.6604 bzw. Werkstoff Nr. 1.6580 bzw. Werkstoff Nr. 1.6586 sowie Werkstoff Nr. 1.6926 bzw. Werkstoff Nr. 1.6944 und Werkstoff Nr. 1.6952 zum Einsatz. Zur Erstellung der gewünschten Materialfestigkeit werden die Teile austenitisiert und von der Austenitisierungstemperatur mit hoher Abkühlungsgeschwindigkeit gehärtet bzw. abgeschreckt und danach angelassen, wobei diesem thermischen Vergüten des Werkstoffes oftmals eine Entspannungsbehandlung bei Temperaturen bis zur Anlaßtemperatur folgt.As materials for components that at elevated temperatures, for example at 300 up to 400 ° C, must withstand high mechanical stresses, such as Tube heat exchanger of chemical plants with an internal pressure of 3000 bar and more, are mostly iron-based alloys according to DIN material no. 1.6604 or material no. 1.6580 or material no. 1.6586 as well as material no. 1.6926 or material no. 1.6944 and material no. 1.6952 are used. to Creating the desired material strength, the parts are austenitized and from the Austenitisierungstemperatur hardened with high cooling rate or quenched and then tempered, this thermal quenching of Material often a relaxation treatment at temperatures up to Tempering temperature follows.

Eine durch ein Vergüten mittels Härtens und Anlassens bewirkte Erhöhung der Zugfestigkeit des Materials wirkt sich auch wesentlich auf die übrigen mechanischen Werkstoffeigenschaften bei Raumtemperatur und bei erhöhten Arbeitstemperaturen aus. Eine Steigerung der Zugfestigkeit über einen Wert von 1000 N/mm2 bis 1100 N/mm2 und darüber erhöht überproportional die 0,2 % Streckgrenze des Eisenbasiswerkstoffes, wodurch ein für die Sicherheit des Betriebes von Hochdruckeinrichtungen kennzeichnendes Verhältnis von 0,2 % Dehngrenze (Rp 0,2) zu Zugfestigkeit (Rm) in ungünstiger Weise beeinflusst wird. Mit anderen Worten: die Dehngrenze nähert sich der Zugfestigkeit, wobei die Bruchdehnung und die Kerbschlagzähigkeit des Materials wesentlich erniedrigt und die Rißbruchzähigkeit entscheidend verringert werden.An increase in the tensile strength of the material caused by tempering by means of hardening and tempering also has a significant effect on the other mechanical material properties at room temperature and at elevated working temperatures. An increase of the tensile strength over a value of 1000 N / mm 2 to 1100 N / mm 2 and above disproportionately increases the 0.2% yield strength of the iron base material, whereby a ratio of 0.2% yield strength (FIG. Rp 0.2 ) to tensile strength (Rm) is adversely affected. In other words, the yield strength approaches tensile strength, significantly lowering the elongation at break and impact strength of the material and significantly reducing crack fracture toughness.

Aus Gründen der Betriebssicherheit von Hochdruckkomponenten, insbesondere jener von Anlagen der chemischen Industrie, werden die vorgenannten Werkstoffe nur bis zur jener Festigkeit thermisch vergütet, bei welcher die damit zusammenhängenden Dehnungs- und Zähigkeitseigenschaften des Materials als ausreichend erachtet werden oder Vorschriften entsprechen. Als anlagentechnischer Nachteil ist damit eine große Wandstärke der Hochdruckbauteile erforderlich, gegebenenfalls eine Beeinflussung einer Reaktionskinetik der chemischen Stoffe und eine geringe Wirtschaftlichkeit des Reaktors bzw. der Einrichtung gegeben. Werden beispielsweise Hochdruckwärmetauscher zur Einstellung ausreichend hoher Dehnungs- und Zähigkeitswerte des Werkstoffes mit erforderlicher Festigkeit desselben ausgelegt, so muß der Belastung entsprechend die Wandstärke groß dimensioniert sein, womit ein geringer spezifischer Wärmedurchgang verbunden ist, was große dickwandige Reaktoren erfordert.For reasons of operational safety of high pressure components, in particular those of equipment of the chemical industry, become the aforementioned materials only up to that strength thermally tempered, in which the so related elongation and toughness properties of the material as be considered sufficient or comply with regulations. As plant engineering Disadvantage is thus a large wall thickness of the high pressure components required optionally influencing a reaction kinetics of the chemical substances and given a low cost of the reactor or the device. If, for example, high-pressure heat exchangers are sufficient for adjustment high elongation and toughness values of the material with required strength the same designed, the load must be according to the wall thickness large be dimensioned, which is associated with a low specific heat transfer, which requires large thick-walled reactors.

Ein Nachteil bei dickwandigen Rohren ist ein Erreichen des sogenannten Leck vor Bruch - Kriteriums, welches in der Hochdrucktechnik aus Sicherheitsgründen immer erfüllt sein muß. Mit anderen Worten: Wenn im Betrieb eines Reaktors in der Rohrwand ein Riss wächst, so muß dieser zuerst die Außenoberfläche erreichen ( = Leck), bevor ein instabiler Bruch eintritt. Als Kennwert für instabilen Bruch zählen die kritischen Bruchzähigkeiten wie Klc bzw. Jlc oder die kritische Risslänge ac. Diese materialspezifischen Kennwerte sind vor allem von der Zähigkeit des Materials abhängig.A disadvantage with thick-walled pipes is reaching the so-called leak Rupture criteria, which in the high pressure technique for safety reasons always must be fulfilled. In other words, when in operation of a reactor in the Pipe wall a crack grows, it must first reach the outer surface (= Leak) before an unstable break occurs. As a parameter for unstable break include the critical fracture toughness such as Klc or Jlc or the critical crack length ac Material-specific characteristics are mainly due to the toughness of the material dependent.

Die Erfindung will diese Mängel beseitigen und stellt sich die Aufgabe, eine Eisenbasislegierung der eingangs genannten Art zur Verwendung für Hochdruckkomponenten mit erhöhter Festigkeit bei hohen Dehnungs-und Zähigkeitswerten des Werkstoffes anzugeben.The invention seeks to remedy these shortcomings and sets itself the task of a Iron-based alloy of the type mentioned for use for High pressure components with increased strength at high strain and To indicate toughness values of the material.

Ein weiteres Ziel der Erfindung ist die Schaffung eines Bauteiles, insbesondere Rohr-Wärmetauscher für Polyethylen-Hochdruckanlagen mit verbesserten Gebrauchseigenschaften und/oder dergleichen Sicherheitskriterien gebildet aus einem vorgenannten Eisenbasiswerkstoff mit hoher Festigkeit und gleichzeitig günstigen Dehnungs-und Zähigkeitswerten.Another object of the invention is to provide a component, in particular Tube heat exchanger for high-pressure polyethylene plants with improved Use characteristics and / or similar safety criteria formed from an aforementioned iron base material with high strength and at the same time favorable elongation and toughness values.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass eine Eisenbasislegierung verwendet wird, deren sulfid-und oxid bildenden sowie Begleit- und Verunreinigungselemente Einzelkonzentrationen und/oder Summengehalte für gleichartig wirkende Elementegruppen Werte in Gew.-% aufweisen und zwar: - im Mischkristall einlagerbare Elemente: Mangan (Mn) = MIN 0,15 MAX 0,5 Co + Cu + W = MAX 0,31 -Verunreinigungselemente Schwefel (S) = MAX 0,003 Phosphor (P) = MAX 0,005 P + S = MAX 0,006 - Sauerstoff (O) = MAX 0,0038 - Oxidbildende Elemente    Silizium (Si) = MIN 0,10 MAX 0,25    Aluminium (Al) = MIN 0,008 MAX 0,02    Kalzium (Ca) = MIN 0,0001 MAX 0,0008    Magnesium (Mg) = MIN 0,0001 MAX 0,0006    Ca + Mg = MIN 0,00012 MAX 0,0008 - Monokarbidbildende Elemente Ti + Nb + Ta + Zr + Hf = MAX 0,01 - Korngrenzen-Belegungselemente As + Bi + Sb + Sn + Zn + B =MAX0,015 - Gase Stickstoff (N) = MAX 0,001 N + H = MAX 0,01 vorzugsweise = MAX 0,008 und der Werkstoff einen Verformungsgrad von größer 4,1-fach besitzt, wobei die Komponenten bzw. Bauteile nach einer thermischen Vergütung weitgehend isotrope mechanische Eigenschaften und hohe Festigkeit und Zähigkeit bei einer Arbeitstemperatur bis 350°C aufweisen.The object is achieved according to the invention in that an iron-based alloy is used whose sulfide-forming and oxide-forming as well as accompanying and impurity elements have individual concentrations and / or sum amounts for equivalent-acting element groups values in% by weight: - embedded in solid solution elements: Manganese (Mn) = MIN 0.15 MAX 0.5 Co + Cu + W = MAX 0.31 -Verunreinigungselemente Sulfur (S) = MAX 0.003 Phosphorus (P) = MAX 0.005 P + S = MAX 0.006 - oxygen (O) = MAX 0.0038 - Oxide-forming elements Silicon (Si) = MIN 0.10 MAX 0.25 Aluminum (Al) = MIN 0.008 MAX 0.02 Calcium (Ca) = MIN 0.0001 MAX 0.0008 Magnesium (Mg) = MIN 0.0001 MAX 0.0006 Ca + Mg = MIN 0.00012 MAX 0.0008 Monocarbide-forming elements Ti + Nb + Ta + Zr + Hf = MAX 0.01 Grain boundary occupying elements As + Bi + Sb + Sn + Zn + B = MAX0,015 - gases Nitrogen (N) = MAX 0.001 N + H = MAX 0.01 preferably = MAX 0.008 and the material has a degree of deformation of greater than 4.1 times, wherein the components or components after thermal annealing have largely isotropic mechanical properties and high strength and toughness at a working temperature up to 350 ° C.

Die mit der Erfindung erreichten Vorteile sind im Wesentlichen darin zu sehen, dass durch eine Einstellung oder eine Maximierung von Gehalten an bestimmten Elementen und/oder Elementengruppen im Werkstoff eine Mikrogefüge-Darstellung durch thermisches Vergüten ermöglicht ist, die sowohl eine hohe Materialfestigkeit als auch eine wesentlich verbesserte Zähigkeit und günstigere Dehnungswerte erbringt.The advantages achieved by the invention are essentially to be seen in that by setting or maximizing levels of specific ones Elements and / or element groups in the material a microstructure representation is made possible by thermal quenching, which is both a high material strength as well as a much improved toughness and more favorable elongation values he brings.

Es ist dem Fachmann bekannt und Stand der Technik, dass mit sinkender Konzentration der Verunreinigungselemente einer Legierung die Eigenschaftswerte des Werkstoffes beeinflusst und einige oftmals verbessert werden können. Hochreine Legierungen neigen jedoch zu einer Grobkombildung bei einer Wärmebehandlung, was einen nachteiligen Einfluß auf bestimmte Materialwerte haben kann.It is known to the skilled person and prior art that with sinking Concentration of the impurity elements of an alloy the property values of the material and some can often be improved. High purity alloys, however, tend to be coarse in one Heat treatment, which adversely affects certain material values may have.

Bei Entwicklungsarbeiten wurde überraschend gefunden, dass legierungstechnisch durch Absenken oder Festlegen der Konzentrationen einiger Elemente oder Elementengruppen eine vorteilhafte Mikrostruktur nach einem thermischen Vergüten des erfindungsgemäßen Stahles erreichbar ist, wobei auch bei einer hohen Materialhärte vergleichsweise wesentlich verbesserte Dehnungs,- Einschnürungsund Zähigkeitswerte des Werkstoffes vorliegen. Diese sprunghaften Verbesserungen sind wissenschaftlich noch nicht restlos geklärt, es wird jedoch angenommen, dass diese diskontinuierlichen Eigenschaftsveränderungen mit einer Vermeidung von Anlaß-Versprödungsphänomenen und/oder einem Unterbinden einer Komgrenzenbelegung beim Entspannen des Teiles bei höheren Temperaturen zu begründen sind. In development work it was surprisingly found that alloy technology by lowering or setting the concentrations of some elements or Element groups an advantageous microstructure after thermal quenching of the steel according to the invention can be reached, wherein even at a high Material hardness comparatively much improved strain, - constriction and Toughness values of the material are present. These leaps and bounds Improvements have not yet been scientifically clarified, but it is assumed that these discontinuous property changes with a Avoidance of temper embrittlement phenomena and / or inhibition a grain boundary when relaxing the part at higher Temperatures are justified.

In der Folge soll die Wirkungsweise der in der erfindungsgemäßen Legierung vorliegenden Elemente näher dargelegt werden, wobei die Hauptlegierungselemente bezogen auf eine thermische Vergütung wirkungskinetisch aufeinander abgestimmt sind.As a result, the mode of action of the alloy according to the invention is intended present elements are set forth, the Main alloying elements related to a thermal remuneration are functionally kinetically matched.

Kohlenstoff löst sich bei der Erwärmung in das Austenitgebiet der Legierung im Mischkristall und bewirkt beim Abschrecken eine Verspannung des Kristallgitters und dadurch eine Härtung des Werkstoffes. In der Legierung nach der Erfindung sind C-Gehalte von mindestens 0,22 Gew.-% erforderlich, um bei einer Vergütung eine Materialhärte von mindestens 1100 N/mm2 zu erreichen. Übersteigt die Kohlenstoffkonzentration 0,29 Gew.-%, können stabilere Karbide im und emiedrigte Zähigkeitswerte des Werkstoffes vorliegen, so dass ein Gehaltsbereich in engen Grenzen von 0,22 bis 0,29 Gew.-% C vorgesehen ist.Carbon dissolves when heated in the austenite of the alloy in the solid solution and causes quenching a strain of the crystal lattice and thus hardening of the material. In the alloy according to the invention, C contents of at least 0.22% by weight are required in order to achieve a material hardness of at least 1100 N / mm 2 with a coating. If the carbon concentration exceeds 0.29% by weight, more stable carbides and reduced toughness values of the material may be present, so that a content range within narrow limits of 0.22 to 0.29% by weight C is provided.

Chrom bindet je nach den Konzentrationen der Elemente im Wesentlichen Cr23C6, Cr7C3 und Cr3C2 Karbide und beeinlußt im hohen Maße die Härtungskriterien des Werkstoffes. Um ein gewünschtes Eigenschaftsprofil des Werkstoffes zu erreichen, sind mindestens 1,1, höchstens jedoch 1,5 Gew.-% Cr günstig für eine gewünschte Karbid- und Mischkarbidausbildung.Depending on the concentrations of the elements, chromium essentially binds Cr 23 C 6 , Cr 7 C 3 and Cr 3 C 2 carbides and to a great extent influences the hardening criteria of the material. In order to achieve a desired property profile of the material, at least 1.1, but at most 1.5 wt% Cr are favorable for a desired carbide and Mischkarbidausbildung.

Molybdän wirkt mindernd auf eine Anlaßversprödung, ist ein stärkerer Karbidbildner als Chrom und Eisen und soll im Einklang mit Cr mit einem Gehalt von mindestens 0,3 Gew.-% im Stahl vorliegen, um eine entsprechende härtesteigernde Wirkung beim Vergüten des Teiles auszuüben. Vorteilhaft feine Mo-Karbide und Mischkarbide werden beim Anlassen bis einem Mo-Gehalt von 0,6 Gew.-% ausgeschieden, was die Duktilität des Werkstoffes bei hoher Härte desselben fördert.Molybdenum has a deleterious effect on temper embrittlement, is a stronger carbide former as chromium and iron and should be consistent with Cr with a content of at least 0.3 wt .-% in the steel present to a corresponding hardness-increasing effect exercise while tempering the part. Advantageously fine Mo carbides and Mixed carbides are annealed to a Mo content of 0.6% by weight excreted what the ductility of the material at high hardness of the same promotes.

Nickel beeinflußt im Wesentlichen die Härtbarkeit des Werkstoffes und wirkt zähigkeitsfördernd. Geringere Nckelgehalte als 3,3 Gew.-% sind wenig wirksam, wohingegen höhere Nickelkonzentrationen als 3,7 Gew.-% eine zu starke Austenitstabilisierungswirkung besitzt, wodurch ein enger Nickelgehaltsbereich der Legierung begründet ist.Nickel essentially affects the hardenability of the material and acts toughness promoting. Lower contents than 3.3% by weight are less effective, whereas higher nickel concentrations than 3.7% by weight are too strong Austenite stabilizing effect, whereby a narrow nickel content range of Alloy is justified.

Vanadin mit Gehalten von 0,05 bis 0,15 Gew.-% kann im Werkstoff vorgesehen sein. V als sehr starker Karbidbildner wirkt als Mikrolegierungselement kornfeinend durch eine äußerst feine Sekundärkarbidausscheidungen materialhärtesteigernd beim Anlassen nach dem Härten im Temperaturbereich zwischen 450°C und 560°C. Höhere Gehalte als 0,15 Gew.-% V können die Härtbarkeit ungewünscht beeinflussen und die Materialzähigkeit reduzieren.Vanadium with contents of 0.05 to 0.15 wt .-% can be provided in the material be. V as a very strong carbide former acts as a fine micro-alloying element material hardness increase due to extremely fine secondary carbide precipitations when tempering after curing in the temperature range between 450 ° C and 560 ° C. Higher contents than 0.15 wt .-% V, the hardenability undesirable influence and reduce the material toughness.

Die erfindungsgemäße Eisenbasislegierung besitzt neben den Hauptlegierungselementen als Rest Eisen und Begleit- sowie Verunreinigungselemente.The iron-based alloy according to the invention has besides the Main alloying elements as the remainder of Iron and Companion as well Impurity elements.

Eine Gruppe dieser Begleit- und Verunreinigungselemente sind die Elemente Mn,Co, Cu und W, die im Mischkristall eingelagert sind.
Mangan wirkt sich auf die Härtbarkeit des Stahles aus, bindet den Restschwefelgehalt ab und ist vorteilhaft in einem Konzentrationsbereich von 0,15 bis 0,5 Gew.-% im Stahl vorgesehen. Geringere Gehalte können eine zu geringe Schwefelaktivität bewirken, wodurch die Bruchgefahr erhöht und das Eigenschaftsprofil nachteilig beeinflußt werden. Co, Cu und W sind zwar Elemente, die in gewissen Gehalten im Mischkristall eingelagert vorliegen können, wirken jedoch in Konzentrationen über 0,31 Gew.-% äußerst nachteilig auf das Verhältnis Rp0,2. Rm
One group of these companion and impurity elements are the elements Mn, Co, Cu and W incorporated in the solid solution.
Manganese affects the hardenability of the steel, binds off the residual sulfur content and is advantageously provided in a concentration range of 0.15 to 0.5 wt .-% in the steel. Lower levels can cause too low a sulfur activity, which increases the risk of breakage and the property profile are adversely affected. Although Co, Cu and W are elements which can be incorporated in certain concentrations in the mixed crystal, however, they have an extremely disadvantageous effect on the ratio in concentrations above 0.31% by weight rp 0.2 , R m

Bei gegebener hoher Zugfestigkeit erhöht sich der Wert für die 0,2 % Dehngrenze des Werkstoffes bei Summengehalten ( Co, Cu und W) von größer 0,31 sprunghaft, wodurch sich ein Verhältniswert mit Nachteil von über 0,95 einstellt.For a given high tensile strength, the value for the 0.2% proof stress increases of the material in the case of sum quantities (Co, Cu and W) of greater than 0.31, resulting in a ratio with disadvantage of over 0.95.

Die Verunreinigungselemente Schwefel und Phosphor führen bei sinkenden Gehalten zu einer vom Fachmann erwarteten Verbesserung der mechanischen Eigenschaften des Werkstoffes, sollen jedoch im Hinblick auf das geforderte extrem hohe Eigenschaftsprofil des vergüteten Werkstoffes Werte von 0,003 Gew.-% S und 0,005 Gew.-% P bei einer Summenkonzentration von 0,006 Gew.-% nicht übersteigen. The impurity elements sulfur and phosphorus cause sinking Held to a mechanical improvement expected by the skilled person Characteristics of the material, however, should be extreme in terms of the required high property profile of the tempered material values of 0.003 wt .-% S and 0.005 wt .-% P at a cumulative concentration of 0.006 wt .-% not exceed.

Gelöster Sauerstoff im Stahl wird durch oxidbildende Elemente abgebunden, wobei oxidische Einschlüsse gebildet werden, welche die Werkstoffeigenschaften, insbesondere die Zähigkeit und Dehnung verschlechtem. Auch durch Umschmelzprozesse können die Oxidationsprodukte nicht vollkommen aus der Legierung eliminiert werden, so dass deren Sauerstoffgehalt maximal 0,0038 Gew.-% betragen soll.Dissolved oxygen in the steel is bonded by oxide-forming elements, wherein oxide inclusions are formed, which are the material properties, especially the toughness and elongation deteriorate. Also through Remelting processes can not completely eliminate the oxidation products Alloy are eliminated so that their oxygen content is 0.0038 maximum Wt .-% should be.

Um bei einer vorgesehenen Erschmelzung, Bearbeitung und Vergütung des Werkstoffes auf höchste Härte gute weitere Eigenschaftswerte zu erhalten, ist es wichtig, die oxidbildenden Elemente in den vorgesehenen Gehalten einzustellen, um einerseits die vollständige Desoxidation unter Bildung von günstigen Mischoxiden in feinstverteilter Form zu erhalten und andererseits eine Korngrenzenbelegung, die eine sprunghafte Zähigkeitsminderung bewirken kann, mit Sicherheit auszuschalten. Von besonderer Wichtigkeit ist dabei der Gehalt von Ca und Mg, welcher Summengehalt im Bereich zwischen 0,00012 Gew.-% und 0,0008 Gew.-% liegen soll.In case of intended fusion, processing and remuneration of the Material to get the highest hardness good further property values, it is important to adjust the oxide-forming elements in the intended levels to on the one hand, the complete deoxidation to form favorable mixed oxides in to obtain finely divided form and on the other hand, a grain boundary assignment, the can cause a sudden toughness reduction, with certainty off. Of particular importance is the content of Ca and Mg, which Summengehalt in the range between 0.00012 wt .-% and 0.0008 wt .-% are should.

Es wurde im Hinblick auf eine günstige Wirkung von V überraschend gefunden, dass die weiteren monokarbidbildenden Elemente Ti, Nb, Zr und Hf sich durchwegs nachteilig auf die Zähigkeit und Trennbruchempfindlichkeit des auf hohe Festigkeit vergüteten Werkstoffes auswirken, was eine höchste Summenkonzentration dieser Elemente in der Legierung von MAX 0,01 Gew.-% begründet.It was surprisingly found in view of a favorable effect of V, that the other monocarbide-forming elements Ti, Nb, Zr and Hf are consistent adversely affecting the toughness and breaking susceptibility of high strength tempered material, resulting in a maximum sum concentration of this Elements in the alloy of MAX 0.01 wt .-% justified.

Wenn, wie erfindungsgemäß vorgesehen ist, die Komgrenzenbelegungselemente As,Bi,Sb,Sn,Zn und B mit einem Summengehalt von weniger als 0,015 Gew.-% in der Legierung vorliegen, ist auch bei hohen Härtewerten des vergüteten Materiales die Duktilität desselben in ausreichendem Maße gegeben. Ein Überschreiten dieses Summenkonzentrationswertes fördert jedoch eine verformungslose Trennbruchneigung.If, as provided according to the invention, the grain boundary elements As, Bi, Sb, Sn, Zn and B with a sum content of less than 0.015 wt .-% in the alloy is also at high hardness values of the coated material the ductility of the same given sufficiently. A crossing of this However, cumulative concentration value promotes a deformation-free Brittle fracture tendency.

Obwohl die starken Nitridbildner in der erfindungsgemäßen Legierung niedrige Gehalte aufweisen, ist jedoch eine höchste Summenkontentration von N + H von 0,01 Gew.-% ,mit Vorteil von 0,008 Gew.-% erforderlich, um ein gewünschtes Eigenschaftsniveau des Werkstoffes erreichen zu können.Although the strong nitride formers in the alloy according to the invention are low Have contents, but is a highest cumulative concentration of N + H of 0.01 wt .-%, with the advantage of 0.008 wt .-% required to a desired Be able to achieve property level of the material.

Wenn der Werkstoff durch Schmieden oder Walzen warmumgeformt ist und einen Verformungsgrad von größer 4,1-fach besitzt, können nach einem thermischen Vergüten des Teiles, insbesondere einer Stange oder eines Rohres hohe Festigkeitswerte und dabei wesentlich verbesserte Zähigkeitseigenschaften bei einer Arbeitstemperatur von 350°C erreicht werden.If the material is hot worked by forging or rolling and a Degree of deformation greater than 4.1 times, can after a thermal Tempering of the part, in particular a rod or a pipe high Strength values and thereby significantly improved toughness properties at a Working temperature of 350 ° C can be achieved.

Eine weitere Erhöhung des erreichbaren Eigenschaftsniveaus von Bauteilen kann bei einer Verwendung einer erfindungsgemäßen Legierung erreicht werden, wenn eine oder mehrere der Einzelkonzentrationen und Summengehalte der Elemente in Gew.-% von: Mn = MIN 0,15 MAX 0,4 Co +Cu + W = MAX 0,24 S = MAX 0,0008 S + P = MAX 0,005 O = MAX 0,0011 Si = MIN 0,1 MAX 0,20 AL = MIN 0,005 MAX 0,018 Ca + Mg = MIN 0,0001 MAX 0,0006 Ti+NB+TA+Zr+HF = MIN 0,001 MAX 0,008 As+Bi+Sb+Sn+Zn+B = MAX 0,010 N + H = MAX 0,008 gegeben sind.A further increase in the achievable property level of components can be achieved when using an alloy according to the invention, if one or more of the individual concentrations and total contents of the elements in% by weight of: Mn = MIN 0.15 MAX 0.4 Co + Cu + W = MAX 0.24 S = MAX 0.0008 S + P = MAX 0.005 O = MAX 0.0011 Si = MIN 0.1 MAX 0.20 AL = MIN 0.005 MAX 0.018 Ca + Mg = MIN 0.0001 MAX 0.0006 Ti + NB + Ta + Zr + HF = MIN 0.001 MAX 0.008 As + Bi + Sb + Sn + Zn + B = MAX 0.010 N + H = MAX 0.008 given are.

Mit Vorteil wird die Legierung mittels pfannenmetallurgischer Verfahren und/oder unter Verwendung des ESU-Prozesses und/oder des Vakuum-Lichtbogenofen-Prozesses hergestellt, weil diese Herstellung auch eine Seigerung im Block minimiert und somit die Voraussetzung für im Wesentlichen gleiche Materialeigenschaften in Längs-und Querrichtung des Teiles schafft.Advantageously, the alloy is prepared by means of pan metallurgical processes and / or using the ESU process and / or the Vacuum arc furnace process, because this production is also a Segregation in the block minimizes and thus the prerequisite for essentially creates the same material properties in the longitudinal and transverse direction of the part.

Das weitere Ziel der Erfindung wird bei einem Bauteil, insbesondereThe further object of the invention is in a component, in particular

Rohr-Wärmetauscher für Polyethylen-Hochdruckanlagen, gebildet aus einer Eisenbasislegierung mit einer Zusammensetzung gemäß den vorstehenden Angaben dadurch erreicht, dass das Bauteil auf eine Zugfestgkeit Rm des Werkstoffes von größer 1100 N/mm2 aufweist und eine 0,2% Streckgrenze bei 320°C von größer 880 N/mm2 besitzt..Tube heat exchanger for high-pressure polyethylene plants, formed of an iron-based alloy having a composition as described above, achieved in that the component has a tensile strength Rm of the material of greater than 1100 N / mm 2 and a 0.2% yield strength at 320 ° C. of greater than 880 N / mm 2 ..

Unter Nutzung der hohen Materialfestigkeit kann die Wandstärke der Hochdruckkomponenten verringert werden, weil die 0,2% Streckgrenze bei Raumtemperatur und bei einer Arbeitsstemperatur von 320°C wesentlich beabstandet vom Festigkeitswert ist und dadurch eine hohe Sicherheit des Bauteiles gegen Trennbruch vorliegt. Dünnere Wandstärken, beispielsweise eines Wärmetauschers, bewirken auch einen höheren spezifischen Wärmedurchgang, so dass der Reaktor mit wesentlich verminderter Dimension die gleiche Leistung erbringt oder bei gleicher Größe der Reaktor eine höhere Leistung besitzt. Von besonderer Bedeutung ist dabei das "Leck vor Riß" - Kriterium.Using the high material strength, the wall thickness of the High pressure components are reduced because of the 0.2% yield strength at Room temperature and at an operating temperature of 320 ° C substantially spaced from the strength value and thus a high level of safety of the component is present against separation break. Thinner wall thicknesses, for example one Heat exchanger, also cause a higher specific heat transfer, so that the reactor with substantially reduced dimension the same performance or at the same size, the reactor has a higher performance. From Of particular importance is the "leak before crack" criterion.

Erfindungsgemäß ist dabei vorgesehen, dass folgende mechanische Eigenschaftenschaftswerte gemessen in Richtung der Längserstreckung und/quer zur Längserstreckung des Bauteiles vorliegen: Bruchdehnung A5 > 16/14 % Bruchdehnung A4 > 18/16 % Brucheinschnürung Z > 55/45 % Kerbschlagzähigkeit AV (RT) > 80/60 J Kerbschlagzähigkeit AV (-40°C) > 50/40 J According to the invention, it is provided that the following mechanical property values measured in the direction of the longitudinal extent and / transverse to the longitudinal extent of the component are present: Elongation A5 > 16/14% Elongation at break A4 > 18/16% Fracture necking Z > 55/45% Notched Toughness AV (RT) > 80/60 y Notched impact strength AV (-40 ° C) > 50/40 y

Wenn das Bauteil, insbesondere Rohr-Wärmetauscher für Polyethylen-Hochdruckanlagen, auf eine Zugfestigkeit Rm des Werkstoffes von größer 1170 N/mm2 vergütet ist, dieser eine 0,2% Streckgrenze von größer 1060 N/mm2 aufweist und eine 0,2% Streckgrenze bei 320°C von größer 930 N/mm2 besitzt, ist eine weitere Verringerung der Wandstärke von Hochdruckkomponenten möglich, was wesentliche anlagentechnische, aber auch reaktionskinetische Vorteile erbringen kann.If the component, in particular tube heat exchanger for high-pressure polyethylene plants, is tempered to a tensile strength Rm of the material greater than 1170 N / mm 2 , this has a 0.2% yield strength of greater than 1060 N / mm 2 and a 0.2% Yield point at 320 ° C of greater than 930 N / mm 2 , a further reduction of the wall thickness of high-pressure components is possible, which can provide significant plant engineering, but also reaction kinetic advantages.

Nach der Erfindung sind die mechanischen Eigenschaftswerte dieses vorgenannten höherfesten Werkstoffes gemessen in Richtung Längserstreckung und quer zur Längserstreckung des Bauteiles: Bruchdehnung A5 > 15/14 % Bruchdehnung A4 > 17/16 % Brucheinschnürung Z > 55/45 % Kerbschlagzähigkeit AV (RT) > 80/60 J Kerbschlagzähigkeit AV (-40°C) > 50/35 J According to the invention, the mechanical property values of this aforementioned higher-strength material are measured in the direction of the longitudinal extent and transversely to the longitudinal extent of the component: Elongation A5 > 15/14% Elongation at break A4 > 17/16% Fracture necking Z > 55/45% Notched Toughness AV (RT) > 80/60 y Notched impact strength AV (-40 ° C) > 50/35 y

Besonders hohe Sicherheit gegen Versagen, insbesondere gegen ein Auftreten eines Trennbruches wird erreicht mit einem Verhältniswert des Werkstoffes von 0,2 % Streckgrenze gebrochen durch Zugfestigkeit von kleiner 0,94, vorzugsweise von kleiner 0,92.Particularly high security against failure, especially against occurrence A separation fracture is achieved with a ratio of the material of 0.2 % Yield strength broken by tensile strength less than 0.94, preferably from less than 0.92.

Erfindungsgemäß bevorzugt ist das Bauteil mit einer Rissbruchzähigkeit J1C des Werkstoffes von größer 150 kJ/m2 gemessen nach ASTM - E 813.According to the invention, the component with a crack fracture toughness J 1C of the material of greater than 150 kJ / m 2, measured according to ASTM -E 813, is preferred.

Ein wesentlicher Bestandteil der Erfindung ist eine Wahl bzw. Einstellung des aktuellen Spannungsintensitätsfaktors zur Erfüllung des "Leck vor Bruch"-Kriteriums.An essential part of the invention is a choice or setting of the current stress intensity factor to fulfill the "leak before break" criterion.

Anhand von Untersuchungsergebnissen soll die Erfindung näher weiter dargelegt werden.On the basis of investigation results, the invention is set forth in more detail become.

Aus Tabelle 1 geht die chemische Zusammensetzung von zwei erfindungsgemäßen Werkstoffen hervor. Die Schmelzen wurden pfannenmetallurgisch behandelt und jeweils zu Elektroden gegossen. Der Block der Charge H 75142 wurde im Vakuum-Lichtbogenofen umgeschmolzen und in einer Langschmiedemaschine 5,85-fach zu einem Stab mit einem Durchmesser von 200 mm  weiterverformt, aus welchem Stab Rohre für einen Wärmetauscher eines Polyethylen-Reaktors hergestellt wurden. Die thermische Vergütung des Rohrwerkstoffes erfolgte auf eine Festigkeit Rm von etwa Rm 1250 MPa.Table 1 shows the chemical composition of two of the invention Materials. The melts were treated by ladle metallurgy and each poured into electrodes. The block of the batch H 75142 was in the Vacuum arc furnace remelted and in a long forging machine 5.85 times to a rod with a diameter of 200 mm  further deformed, off which rod tubes for a heat exchanger of a polyethylene reactor were manufactured. The thermal treatment of the pipe material was carried out on a Strength Rm of about Rm 1250 MPa.

Der Block der Charge G 53227 wurde nach dem ESU-Verfahren hergestellt. Die Weiterverarbeitung zu Wärmetauscherrohren erfolgte gleich wie biem VLBO- Block.The block of batch G 53227 was prepared by the ESU method. The Further processing to heat exchanger tubes was carried out the same way as the VLBO block.

Fig. 1 zeigt die Stellen vom bearbeiteten Stab 1 mit einem Durchmesser von 190 mm , von welchen die Proben entnommen wurden. Es bedeuten : 2 = Zugproben, 3 = Kerbschlagproben, 4 = SonderprobenFig. 1 shows the points of the processed rod 1 with a diameter of 190 mm , from which the samples were taken. It means: 2 = tensile tests, 3 = impact tests, 4 = special samples

In Tabelle 2 sind die gemessenen mechanischen Kenntwerte des Werkstoffes vom Stabmaterial angegeben. Table 2 shows the measured mechanical values of the material of the Rod material indicated.

Die Angabe "ZVF" steht für Zugversuch mit Feindehnungsmessung, jene für" ZVW" steht für Warmzugversuch bei 320°C. Die Angabe "KR" weist auf eine Kerbschlagzähigkeitsprüfung bei Raumtemperatur hin, jene mit "KK" bedeutet Kerbschlagzähigkeitswerte bei erniedrigter Temperatur, im gegebenen Fall - 23 °C. Um den hohen Sicherheitsanforderungen Rechnung zu tragen, wurde die Kerbschlagzähigkeit des Werkstoffes mittels dreier Proben geprüft.The indication "ZVF" stands for tensile test with fine strain measurement, that for " ZVW "stands for hot tensile test at 320 ° C. The indication" KR "indicates a Notched impact strength test at room temperature, those with "KK" means Notched impact strength values at reduced temperature, in the given case - 23 ° C. In order to meet the high safety requirements, the Notched impact strength of the material tested by means of three samples.

Die Bezeichnung A5 steht für die verwendete Probenlänge und zwar 5x dem Probendurchmesser.The designation A5 stands for the used sample length and that 5x the Sample diameter.

Die Tabelle 2 zeigt im Vergleich der Messwerte die erfindungsgemäße Verbesserung der Materialeigenschaften und im Vergleich mit dem Stand der Technik dem Fachmann den technischen Fortschritt betreffend die Steigerung des Eigenschaftsniveaus von Werkstoffen für Hochdruckkomponenten, insbesondere Rohr-Wärmetauscher für Anlagen der chemischen Industrie.Table 2 shows the inventive comparison of the measured values Improvement of material properties and in comparison with the state of The technical progress of the technical progress concerning the increase of the Property levels of materials for high pressure components, in particular Pipe heat exchangers for plants of the chemical industry.

Die Wirkmechanismen, die zu den erfindungsgemäßen Verbesserungen der Eigenschaften des hochvergüteten Werkstoffes führen, wurden durch umfangreiche Untersuchungen bestätigt.The mechanisms of action leading to the improvements according to the invention Characteristics of the highly tempered material have been due to extensive Investigations confirmed.

Dazu zeigt Fig. 2 eine Abhängigkeit der 0,2 % Dehnung von der Summenkonzentration der Elemente (Co+Cu+W), Fig.3 Bruchdehnungswerte des vergüteten Werkstoffes in Abhängigkeit von der Summenkonzentration der enthaltenden Elemente (As+Bi+Sb+Sn+Zn+B).For this purpose, Fig. 2 shows a dependence of 0.2% strain of the Sum concentration of the elements (Co + Cu + W), Fig.3 elongation at break values of the annealed material as a function of the sum concentration of containing elements (As + Bi + Sb + Sn + Zn + B).

Aus Fig. 2 ist deutlich eine sprunghafte Erhöhung der 0,2% Dehnwerte des Materials ersichtlich, wenn dieses erhöhte Werte der Konzentrationen von ( Co+Cu+W) aufweist.From Fig. 2 is clearly a jump increase in 0.2% elongation values of the material seen when this increased levels of the concentrations of (Co + Cu + W) having.

Eine Verringerung der Bruchdehnung ist mit erhöhten Gehalten von (As+Bi+Sb+Sn+Zn+B) verbunden. Chemische Elemente H75142 G53227 C: 0,25 0,23 Cr: 1,27 1,37 Mo: 0,43 0,43 Ni: 3,43 3,42 V: 0,10 0,093 Mn: 0,31 0,32 Co: 0,05 0,02 Cu: 0,02 0,02 W: 0,02 0,05 Co+Cu+W: 0,09 0,09 S: 0,0005 0,0006 P: 0,003 0,003 S+p: 0,0035 0,0036 O: 0,0009 0,0011 Si: 0,19 0,18 Al: 0,014 0,011 Ca: 0,0002 0,0002 Mg: 0,0002 0,0002 Ca+Mg: 0,0004 0,0004 Ti: 0,001 0,001 Nb: 0,001 0,001 Ta: 0,002 0,002 Zr: 0,002 0,002 Hf: Ti+Nb+Ta+Zr+Hf: 0.006 0. 006 As: 0,0032 0,0029 BI: 0,0005 0,0005 Sb: 0,0005 0,0007 Sn: 0,004 0,0036 Zn: 0,0005 0,0017 B: 0,0005 0,0005 As+Bi+Sb+Sn+Zn+B: 0,0092 0,0099 N: 0,0045 0,0081 H: 0,00005 0,00008 N+H: 0,00455 0,00818 ESU G53227 VLBO H75142 ZVF- außen / längs Rp0,2 [MPa] 1157 1158 Rm [MPa] 1258 1267 Rp0,2/Rm 0,920 0,914 A5[%] 16 17 Z[%] 63 66 ZVF- Innen / längs Rp0,2 [MPa] 1159 1190 Rm [MPa] 1259 1284 Rp0,2/Rm 0,921 0,927 A5 [%] 16 16 Z[%] 66 68 ZVF- außen / quer Rp0,2 [MPa] 1170 1163 Rm [MPa] 1270 1275 Rp0,2/Rm 0,921 0,912 A5[%] 15 16 Z [%] 53 63 ZVF- innen / quer Rp0,2 [MPa] 1134 1144 Rm [MPa] 1245 1246 Rp0,2/Rm 0,911 0,918 A5 [%] 14 15 Z[%] 57 59 ZVW 320°C - außen / längs Rp0,2 [MPa] 987 995 Rm [MPa] 1126 1144 A5 [%] 18 19 Z[%] 70 69 ZVW 320°C - innen / längs Rp0,2 [MPa] 1028 1025 Rm [MPa] 1154 1162 A5 [%] 17 20 Z [%] 71 69 KR-RT[J] außen / längs 89/100/97 97/105/109 Innen / längs 91/92/90 95/93/96 außen / quer 86/83/83 99/88/92 Innen / quer 82/85/82 95/93/85 KK - 23°C[J] außen / längs 64/70/68 69/72/79 Innen / längs 60/65/57 79/78/81 außen / quer 56/55/54 76/75/75 innen / quer 55/51/55 69/74/77 A reduction in elongation at break is associated with increased contents of (As + Bi + Sb + Sn + Zn + B). Chemical elements H75142 G53227 C: 0.25 0.23 Cr: 1.27 1.37 Not a word: 0.43 0.43 Ni: 3.43 3.42 V: 0.10 0.093 Mn: 0.31 0.32 Co: 0.05 0.02 Cu: 0.02 0.02 W: 0.02 0.05 Co + Cu + W: 0.09 0.09 S: 0.0005 0.0006 P: 0,003 0,003 S + p: 0.0035 0.0036 O: 0.0009 0.0011 Si: 0.19 0.18 al: 0,014 0.011 Ca: 0.0002 0.0002 mg: 0.0002 0.0002 Ca + Mg: 0.0004 0.0004 Ti: 0.001 0.001 Nb: 0.001 0.001 Ta: 0,002 0,002 Zr: 0,002 0,002 Hf: - - Ti + Nb + Ta + Zr + Hf: 0006 0. 006 As: 0.0032 0.0029 BI: 0.0005 0.0005 sb: 0.0005 0.0007 Sn: 0,004 0.0036 Zn: 0.0005 0.0017 B: 0.0005 0.0005 As + Bi + Sb + Sn + Zn + B: 0.0092 0.0099 N: 0.0045 0.0081 H: 0.00005 0.00008 N + H: 0.00455 0.00818 ESU G53227 VLBO H75142 ZVF- outside / longitudinal Rp0.2 [MPa] 1157 1158 Rm [MPa] 1258 1267 Rp0.2 / Rm 0.920 0.914 A5 [%] 16 17 Z [%] 63 66 ZVF- inside / longitudinal Rp0.2 [MPa] 1159 1190 Rm [MPa] 1259 1284 Rp0.2 / Rm 0.921 0.927 A5 [%] 16 16 Z [%] 66 68 ZVF- outside / across Rp0.2 [MPa] 1170 1163 Rm [MPa] 1270 1275 Rp0.2 / Rm 0.921 0.912 A5 [%] 15 16 Z [%] 53 63 ZVF inside / crosswise Rp0.2 [MPa] 1134 1144 Rm [MPa] 1245 1246 Rp0.2 / Rm 0.911 0.918 A5 [%] 14 15 Z [%] 57 59 ZVW 320 ° C - outside / longitudinal Rp0.2 [MPa] 987 995 Rm [MPa] 1126 1144 A5 [%] 18 19 Z [%] 70 69 ZVW 320 ° C - inside / longitudinal Rp0.2 [MPa] 1028 1025 Rm [MPa] 1154 1162 A5 [%] 17 20 Z [%] 71 69 KR-RT [J] outside / longitudinal 89/100/97 97/105/109 Inside / longitudinal 91/92/90 95/93/96 outside / across 86/83/83 99/88/92 Inside / across 82/85/82 95/93/85 KK - 23 ° C [Y] outside / longitudinal 64/70/68 69/72/79 Inside / longitudinal 60/65/57 79/78/81 outside / across 56/55/54 76/75/75 inside / across 55/51/55 69/74/77

Claims (10)

Eisenbasislegierung zur Verwendung als Werkstoff für Hochdruckkomponenten mit erhöhter Arbeitstemperatur, insbesondere Vergütungsstahl für Bauteile wie Rohr-Wärmetauscher in Polyethylen-Hochdruckanlagen, enthaltend die Hauptlegierungselemente in Gew.-% von: Kohlenstoff (C) 0,22 bis 0,29 Chrom (Cr) 1,1 bis 1,5 Molybdän (Mo) 0,3 bis 0,6 Nickel (Ni) 3,3 bis 3,7 gegebenenfalls Vanadin (V) 0,05 bis 0,15 Rest Eisen (Fe),
weiters sulfid- und oxidbildende- sowie Begleit- und Verunreinigungs-Elemente, wobei deren Einzelkonzentrationen und Summengehalte für gleichartig wirkende Elementengruppen Werte in Gew.-% aufweisen und zwar: - im Mischkristalleinlagerbare Elemente:    Mangan (Mn) = MIN 0,15 MAX 0,5    Kobalt (Co)    Kupfer (Cu) Co + Cu + W = MAX 0,31    Wolfram (W) - Verunreinigungselemente:    Schwefel (S) = MAX 0,003    Phosphor (P) = MAX 0,005    Schwefel (S) + Phosphor (P) S+P = MAX 0,006 - Sauerstoff (O) = MAX 0,0038 - Oxidbildende Elemente    Silizium (Si) = MIN 0,10 MAX 0,25    Aluminium (Al) = MIN 0,008 MAX 0,02    Kalzium (Ca) = MIN 0,0001 MAX 0,0008    Magnesium (Mg) = MIN 0,0001 MAX 0,0006    Magnesium (Mg) + Kalzium (Ca)    Ca + Mg = MIN 0,00012 MAX 0,0008 - Moniokarbidbildende Elemente    Titan (Ti)    Niob (Nb)    Tantal (Ta) Ti + Nb + Ta + Zr + Hf = MAX 0,01    Zirkon (Zr)    Hafnium (Hf) - Kongrenzen - Belegungselemente    Arsen (As)    Wismuth (Bi)    Antimon (Sb) As + Bi + Sb + Sn + Zn + B = MAX 0,015    Zinn (Sn)    Zink (Zn)    Bor (B) - Gase    Stickstoff (N)    Wasserstoff (H) N + H = MAX 0,01 vorzugsweise = MAX 0,008
und der Werkstoff einen Verformungsgrad von größer 4,1-fach besitzt, wobei die Komponenten bzw. Bauteile nach einer thermischen Vergütung weitgehend isotrope, mechanische Eigenschaften und hohe Festigkeit und Zähigkeit bei einer Arbeitstemperatur bis 350°C aufweisen.
Iron-based alloy for use as a material for high-pressure components with elevated working temperature, in particular tempered steel for components such as tube heat exchangers in high-pressure polyethylene plants, containing the main alloying elements in% by weight of: Carbon (C) 0.22 to 0.29 Chrome (Cr) 1.1 to 1.5 Molybdenum (Mo) 0.3 to 0.6 Nickel (Ni) 3.3 to 3.7 possibly Vanadin (V) 0.05 to 0.15 Remainder iron (Fe),
furthermore sulfide and oxide-forming as well as accompanying and impurity elements, wherein their individual concentrations and total amounts for similarly acting element groups have values in% by weight: - embedded in mixed crystals: Manganese (Mn) = MIN 0.15 MAX 0.5 Cobalt (Co) Copper (Cu) Co + Cu + W = MAX 0.31 Tungsten (W) - Pollution elements: Sulfur (S) = MAX 0.003 Phosphorus (P) = MAX 0.005 Sulfur (S) + phosphorus (P) S + P = MAX 0.006 - oxygen (O) = MAX 0.0038 - Oxide-forming elements Silicon (Si) = MIN 0.10 MAX 0.25 Aluminum (Al) = MIN 0.008 MAX 0.02 Calcium (Ca) = MIN 0.0001 MAX 0.0008 Magnesium (Mg) = MIN 0.0001 MAX 0.0006 Magnesium (Mg) + Calcium (Ca) Ca + Mg = MIN 0.00012 MAX 0.0008 - Mono carbide-forming elements Titanium (Ti) Niobium (Nb) Tantalum (Ta) Ti + Nb + Ta + Zr + Hf = MAX 0.01 Zircon (Zr) Hafnium (Hf) - boundaries - occupancy elements Arsenic (As) Bismuth (bi) Antimony (Sb) As + Bi + Sb + Sn + Zn + B = MAX 0.015 Tin (Sn) Zinc (Zn) Boron (B) - gases Nitrogen (N) Hydrogen (H) N + H = MAX 0.01 preferably = MAX 0.008
and the material has a degree of deformation of greater than 4.1 times, wherein the components or components after thermal annealing have largely isotropic, mechanical properties and high strength and toughness at a working temperature up to 350 ° C.
Eisenbasislegierung nach Anspruch 1 mit einer oder mehreren der Einzelkonzentrationen und Summengehalten der Elemente in Gew.-% von: Mn = MIN 0,15 MAX 0,4 Co + Cu + W = MAX 0,24 S = MAX 0,0008 S + P = MAX 0,005 O = MAX 0,0011 Si = MIN 0,1 MAX 0,20 Al = MIN 0,005 MAX 0,018 Ca + Mg = MIN 0,0001 MAX 0,0006 Ti+ Nb + Ta + Zr + Hf = MIN 0,001 MAX 0,008 As+Bi+Sb+Sn+Zn+B = MAX 0,010 N + H = MAX 0,008
An iron-base alloy according to claim 1 having one or more of the individual concentrations and sum amounts of the elements in% by weight of: Mn = MIN 0.15 MAX 0.4 Co + Cu + W = MAX 0.24 S = MAX 0.0008 S + P = MAX 0.005 O = MAX 0.0011 Si = MIN 0.1 MAX 0.20 al = MIN 0.005 MAX 0.018 Ca + Mg = MIN 0.0001 MAX 0.0006 Ti + Nb + Ta + Zr + Hf = MIN 0.001 MAX 0.008 As + Bi + Sb + Sn + Zn + B = MAX 0.010 N + H = MAX 0.008
Eisenbasislegierung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Legierung mittels pfannenmetallurgischer Verfahren und/oder unter Verwendung des ESU-Prozesses uod/oder des Vakuum-Lichtbogenofen-Prozesses hergestellt ist.An iron-base alloy according to any one of claims 1 or 2, characterized in that the alloy is produced by means of ladle metallurgy processes and / or using the ESU process and / or the vacuum arc furnace process. Bauteil, insbesondere Rohr-Wärmetauscher für Polyethylen-Hochdruckanlagen, gebildet aus einer Eisenbasislegierung gemäß einem der vorgeordneten Ansprüche, welcher Bauteil auf eine Zugfestigkeit Rm des Werkstoffes von größer 1100 N/mm2 vergütet ist, dieser eine 0,2 % Steckgrenze von größer 1000 N/mm2 aufweist und eine 0,2 % Streckgrenze bei 320°C von größer 880 N/mm2 besitzt Rm (RT) > 1100 N/mm2 Rp 0,2 (RT) > 1000 N/mm2 Rp 0,2 (320°C) > 880 N/mm2
Component, in particular tube heat exchanger for high-pressure polyethylene plants, formed from an iron-based alloy according to one of the preceding claims, which component is annealed to a tensile strength Rm of the material greater than 1100 N / mm 2 , this a 0.2% mating limit of greater than 1000 N. / mm 2 and has a 0.2% yield strength at 320 ° C greater than 880 N / mm 2 Rm (RT) > 1100 N / mm 2 Rp 0.2 (RT) > 1000 N / mm 2 Rp 0.2 (320 ° C) > 880 N / mm 2
Bauteil, insbesondere Rohr-Wärmetauscher für Polyethylen-Hochdruckanlagen, gebildet aus einer Eisenbasislegierung gemäß einem der vorgeordneten Ansprüche, welcher Bauteil auf eine Zugfestigkeit Rm des Werkstoffes von größer 1170 N/mm2 vergütet ist, dieser eine 0,2 % Streckgrenze von größer 1060 N/mm2 aufweist und eine 0,2 % Streckgrenze bei 320 ° C von größer 920 N/mm2 besitzt Rm ( RT) > 1170 N/mm2 Rp 0,2 (RT) > 1060 N/mm2 Rp 0,2 ( 320°C) > 920 N/mm2
Component, in particular tube heat exchanger for high-pressure polyethylene plants, formed from an iron-based alloy according to one of the preceding claims, which component is annealed to a tensile strength Rm of the material greater than 1170 N / mm 2 , this 0.2% yield strength greater than 1060 N. / mm 2 and has a 0.2% yield strength at 320 ° C greater than 920 N / mm 2 Rm (RT) > 1170 N / mm 2 Rp 0.2 (RT) > 1060 N / mm 2 Rp 0.2 (320 ° C) > 920 N / mm 2
Bauteil nach Anspruch 4, mit den mechanischen Eigenschaftswerten des Werkstoffes gemessen in Richtung Längserstreckung und quer zur Längserstreckung des Bauteils von: Bruchdehnung A 5 > 16 / 14 % Bruchdehnung A 4 > 18/ 16 % Brucheinschnürung Z > 55 / 45 % Kerbschlagzähigkeit AV (RT) > 80 / 60 J Kerbschlagzähigkeit AV (- 40°C) > 50 / 40 J
Component according to Claim 4, with the mechanical property values of the material measured in the direction of the longitudinal extent and transversely to the longitudinal extent of the component of: Elongation at break A 5 > 16/14% Elongation at break A 4 > 18/16% Fracture necking Z > 55/45% Notched Toughness AV (RT) > 80/60 y Notched impact strength AV (- 40 ° C) > 50/40 y
Bauteil nach Anspruch 5 mit den mechanischen Eigenschaftenswerten des Werkstoffes gemessen in Richtung Längserstreckung und quer zur Längsersterstreckung des Bauteiles von Bruchdehnung A 5 > 15/ 14 % Bruchdehnung A 4 > 17/16 % Brucheinschnürung Z > 55/ 45 % Kerbschlagzähigkeit AV (RT) > 80/ 60 J Kerbschlagzähgkeit AV (-40°C) > 50/ 35 J
Component according to claim 5 with the mechanical properties of the material measured in the direction of longitudinal extension and transverse to the longitudinal extension of the component of Elongation at break A 5 > 15/14% Elongation at break A 4 > 17/16% Fracture necking Z > 55/45% Notched Toughness AV (RT) > 80/60 y Notched impact strength AV (-40 ° C) > 50/35 y
Bauteil nach einem der Ansprüche 4 bis 7 mit einem Verhältniswert des Werkstoffes von 0,2 % Streckgrenze gebrochen durch Zugfestigkeit von kleiner 0,94, vorzugsweise von kleiner 0,92 Rp0,2 Rm < 0,94, vorzugsweise < 0,92 Component according to one of claims 4 to 7 with a ratio of the material of 0.2% yield strength broken by tensile strength of less than 0.94, preferably less than 0.92 rp 0.2 rm <0.94, preferably <0.92 Bauteil nach einem der Ansprüche 4 bis 8 mit einer Rissbruchzähigkeit J1C des Werkstoffes von größer 150 kJ/m2 gemessen nach ASTM - E 813 J1C > 170 kJ/m2 Component according to one of claims 4 to 8 with a crack fracture toughness J 1C of the material of greater than 150 kJ / m 2 measured according to ASTM - E 813 J 1C > 170 kJ / m 2 Rohrbauteil mit hohem Innendruck, bei welchem das "Leck vor Bruch" - Kriterium erfüllt ist, das heißt, dass der aktuelle Spannungsintensitätsfaktor kleiner ist als der kritische Spannungsintensitätsfaktor des Rohrwandwerkstoffes.Pipe component with high internal pressure, in which the "leak before break" - Criterion is met, that is, that the current stress intensity factor is smaller is the critical stress intensity factor of the pipe wall material.
EP04450192A 2003-11-07 2004-10-13 Use of a steel for pipe components and pipe components for heat exchanger Revoked EP1529853B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT17832003 2003-11-07
AT0178303A AT414341B (en) 2003-11-07 2003-11-07 STEEL FOR CHEMICALS - PLANTS - COMPONENTS

Publications (3)

Publication Number Publication Date
EP1529853A2 true EP1529853A2 (en) 2005-05-11
EP1529853A3 EP1529853A3 (en) 2007-09-05
EP1529853B1 EP1529853B1 (en) 2012-02-22

Family

ID=32686631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04450192A Revoked EP1529853B1 (en) 2003-11-07 2004-10-13 Use of a steel for pipe components and pipe components for heat exchanger

Country Status (6)

Country Link
US (1) US7662246B2 (en)
EP (1) EP1529853B1 (en)
AT (2) AT414341B (en)
CA (1) CA2486902C (en)
ES (1) ES2382633T3 (en)
NO (1) NO20044796L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121199A1 (en) 2015-07-23 2017-01-25 Basell Polyolefine GmbH High-pressure polymerization process of ethylenically unsaturated monomers in a tubular reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323075A1 (en) * 2012-06-04 2013-12-05 General Electric Company Nickel-chromium-molybdenum-vanadium alloy and turbine component
US9738334B2 (en) * 2013-05-07 2017-08-22 Arcelormittal Track shoe having increased service life useful in a track drive system
RU2629126C1 (en) * 2016-05-10 2017-08-24 Публичное акционерное общество "Синарский трубный завод" (ПАО "СинТЗ") Seamless high-strength pipe of oil sortament in hydrogen sulfide-resistant performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129724A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Production of thick walled ultra high tension steel
US5225156A (en) * 1989-02-01 1993-07-06 Metal Research Corporation Clean steel composition
EP0580062A1 (en) * 1992-07-21 1994-01-26 Thyssen Stahl Aktiengesellschaft Process for manufacturing of thick armour plates
EP1127951A1 (en) * 1999-06-16 2001-08-29 Nippon Steel Corporation Highly cleaned steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179896A (en) * 1988-01-06 1989-07-17 Hitachi Ltd Heat exchanger
JP2712702B2 (en) * 1990-02-06 1998-02-16 住友金属工業株式会社 Steel for pressure vessels
JPH08120400A (en) * 1994-10-25 1996-05-14 Japan Steel Works Ltd:The Steel for superhigh-pressure vessel and its production
JP3096959B2 (en) * 1996-02-10 2000-10-10 住友金属工業株式会社 Low Mn and low Cr ferrite heat resistant steel with excellent high temperature strength

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129724A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Production of thick walled ultra high tension steel
US5225156A (en) * 1989-02-01 1993-07-06 Metal Research Corporation Clean steel composition
EP0580062A1 (en) * 1992-07-21 1994-01-26 Thyssen Stahl Aktiengesellschaft Process for manufacturing of thick armour plates
EP1127951A1 (en) * 1999-06-16 2001-08-29 Nippon Steel Corporation Highly cleaned steel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
L.E.K. HOLAPPA, A.S. HELLE: "Inclusion control in high performance steels" JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, Nr. 53, 1995, Seiten 177-186, XP002427802 *
P.A. BRALSFORD, E. HYDES, G.A. HONEYMAN: "Residual contents in purchased scrap for use in basic electric arc technology" CLEAN STEEL: SUPERCLEAN STEEL, CONFERENCE PROCEEDINGS, 1996, Seiten 53-58, XP002427800 London *
R. VISWANATHAN: "Application of clean steel/superclean steel technology in the electric power industry - overview of EPRI research and products" CLEAN STEEL: SUPERCLEAN STEEL, CONFERENCE PROCEEDINGS, 1996, Seiten 1-31, XP002427801 London *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121199A1 (en) 2015-07-23 2017-01-25 Basell Polyolefine GmbH High-pressure polymerization process of ethylenically unsaturated monomers in a tubular reactor

Also Published As

Publication number Publication date
CA2486902A1 (en) 2005-05-07
CA2486902C (en) 2013-07-09
EP1529853B1 (en) 2012-02-22
AT414341B (en) 2010-12-15
NO20044796L (en) 2005-05-09
US20050169790A1 (en) 2005-08-04
EP1529853A3 (en) 2007-09-05
ATA17832003A (en) 2004-07-15
ES2382633T3 (en) 2012-06-12
US7662246B2 (en) 2010-02-16
ATE546560T1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2855724B1 (en) Nickel-chromium alloy with good formability, creep strength and corrosion resistance
EP2855723B1 (en) Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance
DE602004000140T2 (en) Stainless austenitic steel
AT412727B (en) CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
DE60010997T2 (en) Heat-resistant chrome-molybdenum steel
DE2854002C2 (en)
EP2557185A1 (en) Armature en acier profilée et laminée à chaud pour pièces en béton armé dotées d&#39;une résistance au feu améliorée et son procédé de fabrication
AT410447B (en) HOT STEEL SUBJECT
EP1420077B1 (en) Inert material with high hardness for elements used at high temperature
DE2253148B2 (en) Process for the production of a ferritic, corrosion-resistant steel and its use
WO2020058269A1 (en) Steel for surface hardening with high edge hardness and with a fine ductile core structure
EP0455625B1 (en) High strength corrosion-resistant duplex alloy
DE3522115A1 (en) HEAT-RESISTANT 12 CR STEEL AND TURBINE PARTS MADE OF IT
DE112008001181B4 (en) Use of a steel alloy for axle tubes and axle tube
EP3899063B1 (en) Super austenitic material
DE60201984T2 (en) TOOL STEEL OF HIGH TENSILE, METHOD FOR PRODUCING PARTS FROM THIS STEEL AND PARTS MANUFACTURED THEREOF
AT414341B (en) STEEL FOR CHEMICALS - PLANTS - COMPONENTS
EP0897018B1 (en) Duplex stainless steel with high tensile strength and good corrosion properties
WO2022049282A1 (en) Hot-rolled flat steel product and method for producing a hot-rolled flat steel product
EP3720649B1 (en) Weld material
AT412000B (en) Cold-worked steel with greater strength and increased ductility, used for, e.g., pressing tools and forgings, has specified composition
EP3458623B1 (en) Method for producing a steel material, and steel material
EP2809818B1 (en) Duplex steel with improved notch-impact strength and machinability
WO2023208277A1 (en) Use of a nickel-iron-chromium alloy having high resistance in carburising and sulphidising and chlorinating environments and simultaneously good processability and strength
EP1358359B1 (en) Steel and method for producing an intermediate product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20071214

17Q First examination report despatched

Effective date: 20080128

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RTI1 Title (correction)

Free format text: USE OF A STEEL FOR PIPE COMPONENTS AND PIPE COMPONENTS FOR HEAT EXCHANGER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BHDT GMBH

Owner name: BOEHLER EDELSTAHL GMBH & CO KG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 546560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013315

Country of ref document: DE

Effective date: 20120419

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2382633

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

26 Opposition filed

Opponent name: UHDE HIGH PRESSURE TECHNOLOGIES GMBH

Effective date: 20121119

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004013315

Country of ref document: DE

Effective date: 20121119

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

BERE Be: lapsed

Owner name: BOHLER EDELSTAHL GMBH & CO KG

Effective date: 20121031

Owner name: BHDT GMBH

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120522

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 546560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121013

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

R26 Opposition filed (corrected)

Opponent name: UHDE HIGH PRESSURE TECHNOLOGIES GMBH

Effective date: 20121119

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171023

Year of fee payment: 14

Ref country code: FR

Payment date: 20171023

Year of fee payment: 14

Ref country code: FI

Payment date: 20171018

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004013315

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004013315

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20171024

Year of fee payment: 14

Ref country code: NL

Payment date: 20171023

Year of fee payment: 14

Ref country code: IT

Payment date: 20171020

Year of fee payment: 14

Ref country code: GB

Payment date: 20171024

Year of fee payment: 14

Ref country code: ES

Payment date: 20171103

Year of fee payment: 14

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20180215

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20180215

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 546560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215