JP2712702B2 - Steel for pressure vessels - Google Patents

Steel for pressure vessels

Info

Publication number
JP2712702B2
JP2712702B2 JP2631790A JP2631790A JP2712702B2 JP 2712702 B2 JP2712702 B2 JP 2712702B2 JP 2631790 A JP2631790 A JP 2631790A JP 2631790 A JP2631790 A JP 2631790A JP 2712702 B2 JP2712702 B2 JP 2712702B2
Authority
JP
Japan
Prior art keywords
steel
pressure
pressure vessels
strength
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2631790A
Other languages
Japanese (ja)
Other versions
JPH03232946A (en
Inventor
和男 外山
登 誉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2631790A priority Critical patent/JP2712702B2/en
Publication of JPH03232946A publication Critical patent/JPH03232946A/en
Application granted granted Critical
Publication of JP2712702B2 publication Critical patent/JP2712702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、種々の環境中で優れた強度,靭性,耐食
性等を発揮する圧力容器用鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a steel for a pressure vessel which exhibits excellent strength, toughness, corrosion resistance and the like in various environments.

〈従来の技術〉 近年、産業分野の多岐に亘る目覚ましい技術革新を背
景として、様々な環境下で非常に多くの種類の圧力容器
が使用されるようになってきた。そして、圧力容器の需
要増に伴ってその設計・製作には一段と厳しい注意が払
われるようになり、現在では日本工業規格(JIS)や米
国機械学会規格(ASME)等においても圧力容器に係る多
くの規格が設けられるに至っている。
<Conventional Technology> In recent years, a great number of types of pressure vessels have been used in various environments against the background of remarkable technological innovations in various fields of the industrial field. With the increasing demand for pressure vessels, stricter attention has been paid to the design and manufacture of the pressure vessels. At present, many standards related to pressure vessels are used in Japanese Industrial Standards (JIS) and American Society of Mechanical Engineers (ASME). Standards have been established.

しかしながら、上記各規格は何れも室温又は中・高温
の大気中での使用を想定したものであって、容器の内容
物が腐食性物質である場合にはそれを考慮してステンレ
ス鋼等の耐食性材料が適用されることは言うまでもない
ものの、基本的には圧力容器に適用される材料の規定も
前記想定条件に沿ったものに止まっていた。
However, all of the above standards are intended for use in the atmosphere at room temperature or medium / high temperature, and when the contents of the container are corrosive substances, the corrosion resistance of stainless steel etc. should be taken into account. Needless to say, the material is applied, but basically, the specification of the material applied to the pressure vessel is also in accordance with the above-mentioned assumed condition.

もっとも、圧力容器の使用圧力増大や軽量化と言った
最近の要求に伴って容器材料にも高強度化の波が打ち寄
せており、現在では例えばJISのG3204に「圧力容器用調
質型合金鋼鍛鋼品」として規定された高強度鋼やASMEの
「Boiler & Pressure Vessel Code Section II」にSA
−723として規定された高強度鋼が圧力容器用材料の代
表的なものとなっている。なお、該圧力容器用高強度鋼
の特徴は基本的には何れも化学成分組成のみにあり、中
炭素マルテンサイト組織の強度を利用し、焼入性確保の
ため圧力容器の胴部肉厚に応じて合金元素を添加したも
のである。ただ、このとき十分な靭性を得るためJISで
は焼戻し温度が610℃以上に、またASMEでは焼戻し温度
が540℃以上と規定され、更に熱処理時の保持時間はJIS
及びASME共に厚さ1mmに対して1.2分以上と定められてい
る。
However, with the recent demands for increasing the operating pressure and reducing the weight of pressure vessels, waves of increasing strength have been rushing to vessel materials, and at present, for example, JIS G3204, "Temperature alloy steel for pressure vessels" SA for “Boiler & Pressure Vessel Code Section II” of high-strength steel and ASME specified as “forged products”
High-strength steel specified as -723 is a typical pressure vessel material. The characteristics of the high-strength steel for pressure vessels are basically only in the composition of the chemical components, and utilize the strength of the medium carbon martensite structure to increase the thickness of the body of the pressure vessel to ensure hardenability. Alloy elements are added accordingly. However, at this time, in order to obtain sufficient toughness, JIS specifies that the tempering temperature be 610 ° C or higher, and ASME specifies that the tempering temperature be 540 ° C or higher.
And ASME are specified to be 1.2 minutes or more for a thickness of 1 mm.

一方、最近、潜水夫の酸素ボンベや潜水調査船のガス
貯蔵容器等の如き海水中で使用される圧力容器の需要が
目立って増える傾向にあり、大気中とは異なった環境に
適用する圧力容器用材料に対する検討も盛んに行われて
いる。勿論、これまでも海水中にて比較的低圧の下で使
用される圧力容器の需要は多かったが、このような容器
材料には C:0.25〜0.30%(以降、成分割合を示す%は重量%と
する), Si:0.10〜0.35%,Mn:0.65%以下, P:0.05%以下,S:0.05%以下, Cr:2.5〜3.5%,Mo:0.30〜0.70%, Fe及び不可避不純物:残部 なる化学成分組成で、 降伏強さ:70kgf/mm2(686MPa)以上, 引張強さ:85kgf/mm2(833MPa)以上, 伸び:15%以上,絞り:25%以上, 0℃シャルピー衝撃値:60J/cm2以上 と言った機械的性質を有する鋼材が一般に適用されてき
た。
On the other hand, recently, the demand for pressure vessels used in seawater, such as oxygen tanks for divers and gas storage vessels for diving survey vessels, has been increasing remarkably, and pressure vessels applied to environments different from those in the atmosphere have been increasing. Studies on materials for use are also being actively conducted. Needless to say, there has been a great demand for pressure vessels used under relatively low pressure in seawater, but C: 0.25 to 0.30% (hereinafter,% indicating component ratio is weight %), Si: 0.10 to 0.35%, Mn: 0.65% or less, P: 0.05% or less, S: 0.05% or less, Cr: 2.5 to 3.5%, Mo: 0.30 to 0.70%, Fe and inevitable impurities: balance Yield strength: 70kgf / mm 2 (686MPa) or more, Tensile strength: 85kgf / mm 2 (833MPa) or more, Elongation: 15% or more, Drawing: 25% or more, 0 ° C Charpy impact value: Steel materials having a mechanical property of 60 J / cm 2 or more have been generally applied.

しかし、適用圧力増大や一層の軽量化を目指してこの
ような圧力容器用鋼の強度向上を図ろうとすると靭性が
不足し、靭性を満足させようとすると今度は強度不足を
来たすとの不都合を免れ得ず、上記従来の圧力容器用高
強度鋼では最近の要求性能を満足できないとの結論を出
さざるを得なかった。
However, when attempting to increase the strength of such steel for pressure vessels with the aim of increasing the applied pressure and further reducing the weight, the toughness is insufficient, and trying to satisfy the toughness avoids the inconvenience of insufficient strength. It was concluded that the conventional high-strength steel for pressure vessels could not satisfy the recent required performance.

そこで、海水中での用途に更に強度の高い圧力容器用
鋼(例えば前記ASMEのSA−723材)の適用も検討された
が、既述の如くこれらの材料は海水中での使用が考慮さ
れていないために高強度域{σ>125kgf/mm2(1225MP
a)}では遅れ破壊を生じる危険性があり、やはり海水
中での用途に適しないことが確認されたのみであった。
Therefore, the use of higher strength steel for pressure vessels (for example, SA-723 material of ASME) for use in seawater was also studied, but as described above, these materials were considered for use in seawater.強度 σ B > 125kgf / mm 2 (1225MP
a) In ②, there was a risk of delayed fracture, and it was only confirmed that it was not suitable for use in seawater.

このように、海水中で使用する実用的な圧力容器用材
料を考えた場合、従来の圧力容器用鋼は使用圧力を高め
るために強度を上げると靭性劣化や遅れ破壊と言った不
利を招くので不適当であり、結局、最近の要望に十分応
え得る“海水中で用いられる高圧力容器”の材料として
適切な実用的圧力容器材料は無いと言わざるを得なかっ
た。
Thus, when considering a practical material for pressure vessels used in seawater, increasing the strength of conventional pressure vessel steel to increase the working pressure will cause disadvantages such as deterioration of toughness and delayed fracture. It was inadequate and, after all, there was no practical pressure vessel material suitable as a material for "high-pressure vessels used in seawater" which could sufficiently meet recent demands.

そこで、本発明の目的は、最近の高圧化・軽量化要求
に対処できる十分な強度と靭性を有することは勿論、海
水に対する優れた耐食性及び耐遅れ破壊性をも示し、海
水中での使用に十分満足できる実用的な圧力容器用鋼を
提供することに置かれた。
Therefore, an object of the present invention is not only to have sufficient strength and toughness to cope with recent demands for high pressure and light weight, but also to show excellent corrosion resistance and delayed fracture resistance to seawater, and to be used in seawater. It was put into providing a satisfactory and practical pressure vessel steel.

〈課題を解決するための手段〉 本発明者等は、上記目的を達成すべくなされた数多く
の実験結果を踏まえ、まず“海水中で用いられる圧力容
器”に対する最近の要望に応えるには、 a)強度:現行の圧力容器を15%以上軽量化するのに必
要な強度, b)靭性:現行圧力の1.4倍の圧力下でも脆性破壊しな
い靭性, c)耐遅れ破壊性:海水中で遅れ破壊を生じることがな
い, d)耐食性:海水中での耐食性が現行材を下回らない, との特性を備えた圧力容器用鋼材の開発が欠かせないと
の結論に達した。そして、このような認識に立って研究
を続けた本発明者等は、海水中での使用に主眼を置いた
場合には、これまで定量的に把握されていなかった脆性
破壊を確実に防ぐための“破壊靭性値”の考え方を圧力
容器用鋼材に導入することが特に重要である点を明らか
にし、更に研究を重ねた結果、以下に示すような新しい
知見を得ることができた。
<Means for Solving the Problems> Based on the results of a number of experiments performed to achieve the above object, the present inventors first responded to recent demands for “pressure vessels used in seawater” by: a. ) Strength: strength required to reduce the weight of the existing pressure vessel by 15% or more, b) Toughness: toughness that does not cause brittle fracture even at 1.4 times the current pressure, c) Delayed fracture resistance: delayed fracture in seawater D) Corrosion resistance: It was concluded that the development of pressure vessel steel with the characteristics that corrosion resistance in seawater would not be lower than existing materials was indispensable. The inventors of the present invention who have continued research based on such recognition have found that, when focusing on use in seawater, to reliably prevent brittle fracture that has not been quantitatively grasped so far. It was clarified that it was particularly important to introduce the concept of "fracture toughness" into steel materials for pressure vessels, and as a result of further research, the following new findings could be obtained.

即ち、鋼の化学成分組成に工夫を凝らすと、その鍛練
比や熱処理条件(焼入れ・焼戻し条件)によって 降伏強さ:95kgf/mm2(930MPa)以上, 引張強さ:125kgf/mm2(1225MPa)以下, 伸び:15%以上, 絞り:40%以上, 0℃シャルピ衝撃値:60J/cm2以上, 0℃平面歪破壊靭性値: 結晶粒度:7以上 なる特性の確保が可能であり、しかも海水中での耐食性
も先に述べた従来鋼を上回るものが得られることを見出
したのである。
That is, if the chemical composition of steel is devised, the yield strength: 95 kgf / mm 2 (930 MPa) or more, and the tensile strength: 125 kgf / mm 2 (1225 MPa), depending on the forging ratio and heat treatment conditions (quenching and tempering conditions). Below, elongation: 15% or more, drawing: 40% or more, 0 ° C Charpy impact value: 60 J / cm 2 or more, 0 ° C plane strain fracture toughness value: It has been found that a property of crystal grain size: 7 or more can be ensured, and that the corrosion resistance in seawater exceeds that of the above-mentioned conventional steel.

本発明は、上記知見に基づいてなされたものであり、 「圧力容器用鋼を C:0.25〜0.40%,Si:0.10〜0.40%, Mn:0.30〜1.20%,P:0.010%以下, S:0.010%以下,Ni:2.0〜3.0%, Cr:0.80〜1.50%,Mo:0.30〜0.80%, V:0.015〜0.20%,sol.Al:0.015〜0.060%, N:0.006〜0.015% を含むと共に(但し、Ni+Cr≦4.0%)、残部が実質的
にFeから成る成分組成に構成することによって、 降伏強さ:95kgf/mm2以上, 引張強さ:125kgf/mm2以下, 伸び:15%以上,絞り:40%以上, 0℃シャルピ衝撃値:60J/cm2以上, 0℃平面歪破壊靭性値:355kgf/mm3/2以上, 結晶粒度:7以上 の機械的及び冶金的性質を示し、かつ優れた耐食性及び
耐遅れ破壊性を備え得るようにした点」 に特徴を有するものである。
The present invention has been made on the basis of the above findings. "The steel for pressure vessels is C: 0.25 to 0.40%, Si: 0.10 to 0.40%, Mn: 0.30 to 1.20%, P: 0.010% or less, S: Including 0.010% or less, Ni: 2.0 to 3.0%, Cr: 0.80 to 1.50%, Mo: 0.30 to 0.80%, V: 0.015 to 0.20%, sol.Al: 0.015 to 0.060%, N: 0.006 to 0.015% (However, Ni + Cr ≤ 4.0%), with the balance being substantially composed of Fe, yield strength: 95 kgf / mm 2 or more, tensile strength: 125 kgf / mm 2 or less, elongation: 15% or more , Drawing: 40% or more, 0 ° C Charpy impact value: 60 J / cm 2 or more, 0 ° C plane strain fracture toughness value: 355 kgf / mm 3/2 or more, Grain size: 7 or more And excellent corrosion resistance and delayed fracture resistance. "

次に、本発明において鋼の各成分含有割合を前記の如
くに限定した理由をその作用と共に説明する。
Next, the reason why the content ratio of each component of the steel in the present invention is limited as described above will be described together with its operation.

〈作用〉 C Cはマルテンサイト組織における主要強度支配元素で
あり、圧力容器用鋼としての所要強度を確保するには0.
25%以上の添加が必要である。一方、C含有量が0.40%
を超えると靭性を損なうようになることから、C含有量
は0.25〜0.40%と定めた。
<Action> CC is the main strength controlling element in the martensitic structure, and to ensure the required strength as steel for pressure vessels, it is necessary to use 0.1%.
It is necessary to add 25% or more. On the other hand, C content is 0.40%
If the content exceeds 1, the toughness will be impaired, so the C content is determined to be 0.25 to 0.40%.

Si Siは鋼の脱酸と焼入性確保の観点から0.10%以上の添
加が必要であるが、同時にSiは粒界及び母相の靭性を低
下させるので含有量の上限を0.40%と定めた。
Si Si must be added in an amount of 0.10% or more from the viewpoint of deoxidation and hardenability of steel, but at the same time, Si lowers the toughness of the grain boundaries and the matrix, so the upper limit of the content was set to 0.40%. .

Mn Mnには鋼の脱酸,脱硫及び焼入性を向上させる作用が
あるが、その含有量が0.30%未満では前記作用による所
望の効果が得られず、一方、1.20%を超えて含有させる
と非金属介在物が残留する恐れが生じることから、Mn含
有量は0.30〜1.20%と定めた。
Mn Mn has the effect of improving the deoxidation, desulfurization and hardenability of steel, but if its content is less than 0.30%, the desired effects of the above-mentioned effects cannot be obtained, while the content exceeds 1.20%. Therefore, the Mn content is determined to be 0.30 to 1.20% because there is a possibility that nonmetallic inclusions remain.

P,及びS P及びSは何れも鋼の清浄度を下げる有害な不純物元
素であり、特に遅れ破壊の抵抗性を改善するためにもそ
の含有量を極力低く抑えることが望ましい。しかし、P
及びS含有量を余りに低く抑えることは経済的ではない
ので、この観点から何れの含有量も上限を0.010%と定
めた。
P, SP and S are all harmful impurity elements that lower the cleanliness of the steel, and it is desirable to minimize their contents as much as possible to improve the resistance to delayed fracture. But P
Since it is not economical to keep the S and S contents too low, the upper limit of each content is set to 0.010% from this viewpoint.

Ni Niは鋼の靭性を損なうことなく焼入性を改善する作用
を有しているが、その含有量が2.0%未満では所望の焼
入れ性を確保することができず、一方、経済性と添加効
果の点より上限を定め、Ni含有量は2.0〜3.0%と限定し
た。
Ni Ni has the effect of improving hardenability without impairing the toughness of steel, but if its content is less than 2.0%, the desired hardenability cannot be ensured. The upper limit was determined from the viewpoint of the effect, and the Ni content was limited to 2.0 to 3.0%.

Cr Crは、Niと同様の作用に加えて耐食性の改善作用をも
有しているが、その含有量が0.80%未満では前記作用に
よる効果が十分でなく、一方、経済性と添加効果の点よ
り上限を定め、Cr含有量については0.80〜1.50%と限定
した。
Cr Cr has an effect of improving corrosion resistance in addition to the same effect as Ni, but if its content is less than 0.80%, the effect of the above-mentioned effect is not sufficient. The upper limit was further set, and the Cr content was limited to 0.80 to 1.50%.

なお、この場合にNi含有量とCr含有量の総和が4.0%
を超えると破壊靭性値が低下し始めることから、「Ni+
Cr≦4.0%」と限定した。
In this case, the sum of the Ni content and the Cr content is 4.0%
If it exceeds 500, the fracture toughness value starts to decrease.
Cr ≦ 4.0% ”.

Mo Moには鋼の焼入性及び靭性を改善する作用があり、特
にPの有害性を抑えて耐遅れ破壊性を向上するのに有効
な元素である。しかし、その含有量が0.30%未満では前
記作用による所望の効果が期待できず、一方、経済性と
添加効果の観点より上限を定め、Mo含有量は0.30〜0.80
%と限定した。
Mo Mo has the effect of improving the hardenability and toughness of steel, and is an element that is particularly effective in suppressing the harmfulness of P and improving delayed fracture resistance. However, if the content is less than 0.30%, the desired effect due to the above-mentioned effects cannot be expected. On the other hand, the upper limit is determined from the viewpoint of economy and addition effect, and the Mo content is 0.30 to 0.80%.
%.

V Vは鋼の降伏点を上昇させる作用を有するが、その含
有量が0.015%未満では前記作用による所望の効果が得
られず、一方、0.20%を超えて含有させると靭性低下を
招くことから、V含有量については0.015〜0.20%と定
めた。
V V has the effect of raising the yield point of steel, but if its content is less than 0.015%, the desired effect of the above-mentioned effect cannot be obtained. On the other hand, if its content exceeds 0.20%, the toughness is reduced. , V content is determined to be 0.015 to 0.20%.

sol.Al Alは鋼の脱酸及び結晶粒微細化に効果を有し、耐遅れ
破壊性を改善する作用があるが、sol.Al含有量が0.015
%未満では前記作用による効果が十分でなく、一方、0.
060%を超えて含有させると非金属介在物が残留する恐
れがあるため、sol.Al含有量は0.015〜0.060%と定め
た。
sol.Al Al has an effect on deoxidation and grain refinement of steel and has an effect of improving delayed fracture resistance, but the sol.Al content is 0.015
%, The effect of the above effect is not sufficient, while the effect of 0.
If the content exceeds 060%, nonmetallic inclusions may remain. Therefore, the sol.Al content is set to 0.015 to 0.060%.

N NにはAlと化合物を作って結晶粒を微細化する作用が
あるが、その含有量が0.006%未満であると前記作用に
よる所望の効果が得られず、一方、0.015%を超えて含
有させると粗大なAlNが残留するようになって上記効果
を減じることから、N含有量は0.005〜0.015%と定め
た。
NN has an effect of forming a compound with Al to refine the crystal grains, but if the content is less than 0.006%, the desired effect due to the above-mentioned effect cannot be obtained, while the content exceeds 0.015%. If this is done, coarse AlN will remain and the above effect will be reduced. Therefore, the N content is set to 0.005 to 0.015%.

なお、本発明に係る圧力容器用鋼は 降伏強さ:95kgf/mm2以上, 引張強さ:125kgf/mm2以下, 伸び:15%以上,絞り:40%以上, 0℃シャルピ衝撃値:60J/cm2以上, 0℃平面歪破壊靭性値:355kgf/mm3/2以上, 結晶粒度:7以上 なる機械的及び冶金的性質の確保を狙いとしたものであ
るが、その理由は次の通りである。
The steel for pressure vessels according to the present invention has a yield strength of 95 kgf / mm 2 or more, a tensile strength of 125 kgf / mm 2 or less, an elongation of 15% or more, a drawing of 40% or more, and a 0 ° C Charpy impact value of 60 J. / cm 2 or more, 0 ° C plane strain fracture toughness: 355 kgf / mm 3/2 or more, grain size: 7 or more The purpose is to secure mechanical and metallurgical properties. The reasons are as follows. It is.

降伏強さ〔σ〕 圧力容器は、基本的には胴部での発生応力(σ)が材
料の降伏強さ(σ)より十分低くなるよう設計され
る。また胴部板厚(t)は t=f(P・D・σ)〔但し、P:圧力,D:容器外
径〕 であり、同じ使用圧力及び大きさの容器であれば高い降
伏強さを有する材料を用いることにより板厚を小さく
し、軽量化することができる。そして、材料の降伏強さ
が95kgf/mm2(930MPa)以上であれば、現在の軽量化要
求に十分対処することが可能である。
Yield Strength [σ y ] The pressure vessel is basically designed such that the stress (σ) generated in the body is sufficiently lower than the yield strength (σ y ) of the material. Further, the body plate thickness (t) is t = f (P · D · σ y ), where P: pressure and D: outer diameter of the container. If the container has the same working pressure and size, the yield strength is high. By using a material having high thickness, the plate thickness can be reduced and the weight can be reduced. If the yield strength of the material is 95 kgf / mm 2 (930 MPa) or more, it is possible to sufficiently cope with the current demand for weight reduction.

引張強さ〔σ〕 引張強さが125kgf/mm2(1225MPa)を超える鋼材を海
水中で使用すると使用中に遅れ破壊が発生する恐れがあ
る。そのため、引張強さは125kgf/mm2以下に調整するの
が良い。
Tensile strength [σ B ] If a steel material having a tensile strength exceeding 125 kgf / mm 2 (1225 MPa) is used in seawater, delayed fracture may occur during use. Therefore, the tensile strength is preferably adjusted to 125 kgf / mm 2 or less.

伸び,絞り,及びシャルピ衝撃値 伸び,絞り及びシャプリ衝撃値については現行材の実
績値以上とすれば圧力容器として十分に満足できる性能
が確保できることから、その値である「伸び:15%以
上」,「絞り:40%以上」,「0℃シャルピ衝撃値:60J/
cm2以上」を基準値とした。
Elongation, drawing, and Charpy impact values If the elongation, drawing, and Shapri impact values are higher than the actual values of the current material, satisfactory performance as a pressure vessel can be ensured, and the values are "elongation: 15% or more." , “Aperture: 40% or more”, “0 ° C Charpy impact value: 60 J /
cm 2 or more ”was used as the reference value.

破壊靭性値 圧力容器において脆性破壊が発生しない条件は、如何
なる場合も が成立することである。なお、kは k=f(σ・a)〔但し、a:欠陥の大きさ〕 で表わされ、応力或いは欠陥が大きくなるほど大きくな
る。Kが最大となるのはa(欠陥の大きさ)が板厚を貫
通する時であり、この場合においても、脆性破壊さえし
なければ内容物が漏洩して内圧が低下するので破局的な
破壊に至らない。そして、本発明では海水中で使用する
圧力容器の要望条件をσ=43kgf/mm2(420MPa),t=20m
mと把握したことから となり、そのためこれを材料の必要破壊靭性値の下限と
した。
Fracture toughness The conditions under which brittle fracture does not occur in pressure vessels Is true. Note that k is represented by k = f (σ · a), where a: the size of a defect, and increases as the stress or the defect increases. The maximum of K is when a (the size of the defect) penetrates the plate thickness. Even in this case, if the brittle fracture is not performed, the contents leak and the internal pressure decreases, so that catastrophic fracture occurs. Does not reach. In the present invention, the required condition of the pressure vessel used in seawater is σ = 43 kgf / mm 2 (420 MPa), t = 20 m
from what I thought was m Therefore, this was set as the lower limit of the required fracture toughness value of the material.

結晶粒度 遅れ破壊に対する感受性は同一の引張強さを有する鋼
でも異なり、その要因の一つに結晶粒度がある。そし
て、一般に同一化学成分組成の鋼であれば結晶粒が微細
になるほど遅れ破壊に対する抵抗力は増す。ただ、引張
強さが125kgf/mm2以下の鋼については結晶粒度が7以上
であれば十分な耐遅れ割れ性を示すため、これを基準値
とした。
Grain size The susceptibility to delayed fracture is different for steels having the same tensile strength, and one of the factors is the grain size. In general, steel having the same chemical composition has a greater resistance to delayed fracture as the crystal grains become finer. However, steel having a tensile strength of 125 kgf / mm 2 or less exhibits sufficient delayed cracking resistance if the crystal grain size is 7 or more, and thus was used as a reference value.

ところで、次に示すものは、本発明鋼に上記機械的性
質の目標値を達成するための標準的な鍛練比並びに熱処
理条件である。
By the way, the following are standard forging ratios and heat treatment conditions for achieving the above-mentioned target values of the mechanical properties of the steel of the present invention.

鍛練比:3以上, 焼入れ:820〜920℃の温度域に肉厚1cm当り30分以上
保持してから焼入れする, 焼戻し:560〜630℃にて焼戻す。
Forging ratio: 3 or more, Quenching: Hold in a temperature range of 820 to 920 ° C for at least 30 minutes per 1 cm of thickness before quenching. Tempering: Temper at 560 to 630 ° C.

続いて、本発明の効果を実施例により更に具体的に説明
する。
Next, the effects of the present invention will be described more specifically with reference to examples.

〈実施例〉 実施例 1 まず、第1表に示す化学成分組成の4種類の鋼塊を溶
製し、次いで鍛練比:9.3の熱間鍛造を施して供試材を製
作した。
<Examples> Example 1 First, four types of steel ingots having the chemical composition shown in Table 1 were melted, and then hot forging was performed at a forging ratio of 9.3 to produce test materials.

なお、第1表中、比較鋼Iとは低炭素鋼でNi添加量の
多いもの,比較鋼IIとは高炭素鋼でNi添加量の少ないも
の,比較鋼IIIとは従来鋼である。
In Table 1, Comparative Steel I is a low-carbon steel with a large amount of Ni added, Comparative Steel II is a high-carbon steel with a small amount of Ni added, and Comparative Steel III is a conventional steel.

次に、この供試材を910℃に加熱して2時間保持した
後、油焼入れした。そして、該供試材を5つの試験片に
切断し、各々500〜660℃までの異なる温度で5時間の焼
戻し処理を施した。
Next, the test material was heated to 910 ° C. and held for 2 hours, and then oil-quenched. Then, the test material was cut into five test pieces, each of which was subjected to a tempering treatment at a different temperature from 500 to 660 ° C. for 5 hours.

そして、上記処理終了後の各試験片について降伏強さ
(σ),引張強さ(σ)及び破壊靭性値(KIC)を
調査し、その結果を第1図に示した。ここで、引張試験
はJIS Z2241に、衝撃試験はJIS Z2242に、そして破壊靭
性試験はASTMのE399にそれぞれ従って実施した。
Then, the yield strength (σ y ), tensile strength (σ B ) and fracture toughness (K IC ) of each test piece after the above treatment were examined, and the results are shown in FIG. Here, the tensile test was performed according to JIS Z2241, the impact test was performed according to JIS Z2242, and the fracture toughness test was performed according to ASTM E399.

第1図に示される結果からも明らかなように、本発明
に係る圧力容器用鋼は十分に満足できる機械的性質を有
するのに対して、化学成分組成が本発明の規定から外れ
ている比較鋼では、何れも圧 力容器用としての最近の機械的性質要求値を全てに亘っ
て十分に示さないことが分かる。
As is clear from the results shown in FIG. 1, the steel for pressure vessels according to the present invention has sufficiently satisfactory mechanical properties, while the chemical composition is out of the range specified in the present invention. For steel, pressure It can be seen that the recent mechanical property requirements for force vessels are not fully adequate.

次に、前記本発明鋼と比較鋼IIIとを耐海水腐食試験
(ASTMのG31)に供し、その結果を第2表に示した。
Next, the steel of the present invention and the comparative steel III were subjected to a seawater corrosion test (ASTM G31), and the results are shown in Table 2.

第2表に示される結果から明らかなように、実際上問
題となり、しかも腐食量の大きい乾湿繰り返し腐食は、
本発明鋼では腐食量が0.855gであったのに対して、比較
鋼IIIでは2.163gと大きかったことが確認できる。
As is evident from the results shown in Table 2, repeated dry and wet corrosion, which is actually a problem and has a large amount of corrosion,
It can be confirmed that the corrosion amount of the steel of the present invention was 0.855 g, whereas that of the comparative steel III was 2.163 g.

更に、本発明鋼をk1=300kgf/mm3/2にて4000時間の遅
れ破壊試験に供したが、この条件では遅れ破壊が発生せ
ず、十分良好な耐遅れ破壊性能を有することが分かっ
た。
Further, the steel of the present invention was subjected to a delayed fracture test of 4000 hours at k 1 = 300 kgf / mm 3/2 . Under this condition, delayed fracture did not occur, and it was found that the steel had sufficiently good delayed fracture resistance. Was.

実施例 2 この例では、化学成分組成のバラツキによる影響を調
査するため、“本発明にて規定する範囲内で化学成分組
成の異なる数種の鋼塊”及び“比較鋼の鋼塊”をそれぞ
れ2種類溶製し、供試材を製作した。なお、これら鋼塊
の化学成分組成は第3 表に示される通りであった。
Example 2 In this example, "several steel ingots having different chemical component compositions within the range specified by the present invention" and "steel ingots of comparative steel" were used to investigate the effects of variations in chemical composition. Two types were melted to produce test materials. The chemical composition of these ingots is the third As shown in the table.

次いで、これらの鋼塊を鍛練比:4.8で熱間鍛造し、本
発明鋼については910℃に加熱して2時間保持した後
“油焼入れ”及び“610℃で5時間の焼戻し処理”を、
比較鋼については900℃に2時間加工後“油焼入れ”及
び“620℃で5時間の焼戻し処理”をそれぞれ施した。
Next, these ingots were hot forged at a forging ratio of 4.8, and the steel of the present invention was heated to 910 ° C. and held for 2 hours, followed by “oil quenching” and “tempering at 610 ° C. for 5 hours”
The comparative steel was processed at 900 ° C. for 2 hours and then subjected to “oil quenching” and “tempering at 620 ° C. for 5 hours”, respectively.

そして、上記各処理の後、各鋼材について機械的性質
の調査及び耐食性試験を行ったが、この結果を第4表に
示す。
Then, after each of the above treatments, the mechanical properties were investigated and the corrosion resistance test was performed for each steel material. The results are shown in Table 4.

第4表に示される結果からも明らかなように、本発明
鋼では実施例1の場合と同様に十分満足できる機械的性
質及び耐食性能を有しているのに対して、化学成分組成
が本発明の規定から外れている比較鋼では何れも特性に
劣ることが分かる。
As is clear from the results shown in Table 4, the steel of the present invention has sufficiently satisfactory mechanical properties and corrosion resistance as in the case of Example 1, while the chemical composition is not It can be seen that all of the comparative steels that do not meet the requirements of the invention have inferior properties.

上述の試験結果からも、本発明に従うと海水中におい
ても十分満足に性能を発揮する圧力容器用鋼が実現され
ることを確認できる。
From the test results described above, it can be confirmed that according to the present invention, a steel for a pressure vessel exhibiting sufficiently satisfactory performance even in seawater can be realized.

なお、本発明鋼は海水中で使用される圧力容器そのも
のだけでなく容器の付帯設備(バルブ,配管類等)にも
適用することができ、更に淡水中,大気中の類似機器に
も利用できることは勿論である。
In addition, the steel of the present invention can be applied not only to the pressure vessel itself used in seawater but also to ancillary equipment (valves, piping, etc.) of the vessel, and can be used for similar equipment in fresh water and the atmosphere. Of course.

〈効果の総括〉 以上に説明した如く、本発明によれば、圧力容器製品
の使用圧力を一段と高めたり軽量化することが可能で、
しかも遅れ破壊等の懸念を一掃し得る圧力容器用鋼を提
供することができ、潜水夫向け酸素ボンベや潜水調査船
用空気容器等、海水中で使用される各種圧力容器の性能
向上にも大きく寄与し得るなど、産業上極めて有用な効
果がもたらされる。
<Summary of effects> As described above, according to the present invention, it is possible to further increase or reduce the working pressure of the pressure vessel product,
In addition, it can provide steel for pressure vessels that can eliminate concerns such as delayed fracture, and greatly contributes to improving the performance of various pressure vessels used in seawater, such as oxygen cylinders for divers and air vessels for diving survey vessels. And industrially very useful effects.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例で得られた鋼材の焼戻し温度と機械的
性質との関係を、本発明対象鋼と比較鋼とで対比したグ
ラフである。
FIG. 1 is a graph in which the relationship between the tempering temperature and the mechanical properties of the steel material obtained in the examples is compared between the steel subject to the present invention and the comparative steel.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量割合にて C:0.25〜0.40%,Si:0.10〜0.40%, Mn:0.30〜1.20%,P:0.010%以下, S:0.010%以下,Ni:2.0〜3.0%, Cr:0.80〜1.50%,Mo:0.30〜0.80%, V:0.015〜0.20%,sol.Al:0.015〜0.060%, N:0.006〜0.015% を含むと共に(但し、Ni+Cr≦4.0%)、残部が実質的
にFeから成り、オーステナイト結晶粒度が7以上の圧力
容器用鋼。
[Claim 1] C: 0.25 to 0.40%, Si: 0.10 to 0.40%, Mn: 0.30 to 1.20%, P: 0.010% or less, S: 0.010% or less, Ni: 2.0 to 3.0%, Cr: : 0.80 ~ 1.50%, Mo: 0.30 ~ 0.80%, V: 0.015 ~ 0.20%, sol.Al: 0.015 ~ 0.060%, N: 0.006 ~ 0.015% (Ni + Cr ≦ 4.0%), with the balance being substantial Pressure vessel steel consisting of Fe and having an austenite grain size of 7 or more.
JP2631790A 1990-02-06 1990-02-06 Steel for pressure vessels Expired - Lifetime JP2712702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2631790A JP2712702B2 (en) 1990-02-06 1990-02-06 Steel for pressure vessels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2631790A JP2712702B2 (en) 1990-02-06 1990-02-06 Steel for pressure vessels

Publications (2)

Publication Number Publication Date
JPH03232946A JPH03232946A (en) 1991-10-16
JP2712702B2 true JP2712702B2 (en) 1998-02-16

Family

ID=12190013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2631790A Expired - Lifetime JP2712702B2 (en) 1990-02-06 1990-02-06 Steel for pressure vessels

Country Status (1)

Country Link
JP (1) JP2712702B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT414341B (en) * 2003-11-07 2010-12-15 Boehler Edelstahl Gmbh & Co Kg STEEL FOR CHEMICALS - PLANTS - COMPONENTS
CN103409699B (en) * 2013-09-06 2017-05-10 陕西华威锻压有限公司 Steel forging with ultra-high strength and ultra-high low-temperature impact on box body of fracturing pump valve and manufacturing method of steel forging
CN103470757B (en) * 2013-10-11 2015-12-23 湖南师范大学 The equal strength self-reinforcing pressure vessel that a kind of physical dimension is variable

Also Published As

Publication number Publication date
JPH03232946A (en) 1991-10-16

Similar Documents

Publication Publication Date Title
EP0649915B1 (en) High-strength martensitic stainless steel and method for making the same
EP1956108A1 (en) High-strength steel excellent in delayed fracture resistance characteristics and metal bolts
EP0632138B1 (en) High toughness and high strength untempered steel and processing method thereof
JPS6411105B2 (en)
AU721205B2 (en) Steel excellent in resistance to outer surface SCC when used for pipeline
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
CN107974621B (en) A kind of economical straight-line joint submerged arc welding tube X80 Pipeline Steel Plate and production method
JPH08269632A (en) High strength and high corrosion resistant nitrogen-containing austenitic stainless steel
JP2001073086A (en) Seamless steel tube with high toughness and high corrosion resistance
JP2712702B2 (en) Steel for pressure vessels
JP2528767B2 (en) Ferritic heat resistant steel with excellent high temperature strength and toughness
CN108660383B (en) Nickel-free economical low-temperature steel, steel pipe and steel plate suitable for being at-100 ℃ and manufacturing method thereof
JP3069256B2 (en) Nitriding steel with excellent toughness
JPH05148581A (en) Steel for high strength spring and production thereof
JPH09118919A (en) Manufacture of steel product excellent in seawater corrosion resistance
JP2781000B2 (en) Method for producing high-strength steel sheet excellent in HIC resistance and SSC resistance
JPS59170241A (en) Steel for high-strength and high-toughness spring
JP2001032044A (en) Steel for high strength bolt and production of high strength bolt
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
CN114086083A (en) 1100 MPa-grade sulfur-resistant high-pressure gas cylinder steel, high-pressure gas cylinder and manufacturing method thereof
JPS613833A (en) Manufacture of high strength steel with superior weldability
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
JP3223543B2 (en) High corrosion resistance and high strength steel for bolts
JPH0653895B2 (en) Method for manufacturing pressure vessel used in seawater