EP1358359B1 - Steel and method for producing an intermediate product - Google Patents

Steel and method for producing an intermediate product Download PDF

Info

Publication number
EP1358359B1
EP1358359B1 EP02719725A EP02719725A EP1358359B1 EP 1358359 B1 EP1358359 B1 EP 1358359B1 EP 02719725 A EP02719725 A EP 02719725A EP 02719725 A EP02719725 A EP 02719725A EP 1358359 B1 EP1358359 B1 EP 1358359B1
Authority
EP
European Patent Office
Prior art keywords
max
steel
steels
hot forming
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02719725A
Other languages
German (de)
French (fr)
Other versions
EP1358359A2 (en
Inventor
Claudia Ernst
Bernd Milo Gehricke
Frank Bredenbreuker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Edelstahlwerke GmbH
Original Assignee
EDELSTAHL WITTEN KREFELD GmbH
Edelstahl Witten-Krefeld GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDELSTAHL WITTEN KREFELD GmbH, Edelstahl Witten-Krefeld GmbH filed Critical EDELSTAHL WITTEN KREFELD GmbH
Publication of EP1358359A2 publication Critical patent/EP1358359A2/en
Application granted granted Critical
Publication of EP1358359B1 publication Critical patent/EP1358359B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Definitions

  • Machining processes are an essential one Part of industrial production technology and a major cost bearer in the manufacture of tools for plastics processing.
  • the economic Usability of steels of the type mentioned at the beginning therefore depends essentially on their machinability and their Corrosion resistance, which in turn is crucial is influenced by the chromium content of the steels.
  • machinability is used in this context understood the property of a material to have certain conditions machined.
  • a martensitic stainless steel with good Machinability is known from EP 0 721 513 B1.
  • the known steel contains 10 to 14% by mass of chromium. to He also shows improvement in machinability at least 0.15% sulfur and 1.0 to 3.5% copper. The addition of copper also has a positive effect Influence on the hardness of the alloy.
  • the known steels are processed in Dependence on the respective carbon and Carbide. So the steels are the ones in question kind on the one hand remunerated by the tool manufacturer Condition used with a hardness of 285 to 325 HB. at This hardness is a machining of the Material still possible. On the other hand, the steels in the soft annealed condition processed, the hardness of the Then steels is a maximum of 250 HB. So less hard Steels are easier to process. It must however, heat treatment after processing be performed to the usually required Achieve hardness of 46 to 60 HRC. Subsequently finishing is required.
  • Machining can be done by the The high final hardness required by the known Do not carry out steel economically anymore. This The problem is caused by the processing in the soft annealed condition with downstream Solved heat treatment. A disadvantage of the final However, heat treatment exists in addition to that for this additional operation costs incurred in that it thereby to crack formation and distortion of the component as a result the warming can come.
  • JP-A-01 215 489 discloses a steel consisting of 0.05-0.17% C, 0.01-1.5% Si, 0.01-2% Mr, ⁇ 0.025% P, ⁇ 0.015% S, 8-12% Cr, ⁇ 0.8% Ni, 0.5-3% Mo, 0.5-3% W, 0.1-0.2% Nb, ⁇ 0.04% Al, 0.03-0.05% N, ⁇ 0.010 and 0.0005-0.01 Ca, rest iron.
  • the object of the invention is a especially for the manufacture of tools for the plastics processing industry suitable steel find that with high hardness and corrosion resistance one that meets the practical requirements Toughness, machinability and weldability.
  • a method for the production of Intermediate products from such a steel will be specified.
  • Intermediate product in this Context also long products, flat products or others Objects understood, which then another Processing to be fed.
  • the nioballoyed tool steel according to the invention has an optimized combination of machinability, hardness, Corrosion resistance, weldability and toughness on. It reaches hardness layers that are between 300 and 450 HB lie. Despite the relatively high sulfur content, it shows good toughness for steels of the generic type on the requirements that arise in practice enough.
  • the invention Steels sulfur-alloyed, the proportion of which is less than 0.15 mass%.
  • the steel preferably has at least 0.04 mass .-%, whereby a good Machinability can be guaranteed safely. Yet better machinability can be taken into account other conditions imposed on the composition can be achieved when steel according to the invention contains at least 0.07% by mass of sulfur.
  • steel according to the invention has good toughness. This is achieved in that the steel together with the Sulfur at least one of the elements calcium, manganese or contains cerium in quantities the total of which is more than 0.0002 however at most 0.015 mass%. These elements enable the formation of sulfides in the matrix of the Steel and thus improve its toughness. This can be achieved unerringly, for example, if the steel according to the invention 0.001 - 0.009 mass% Contains calcium.
  • Hard phases are formed which lead to the hardness of 300 contribute up to 450 HB. At the same time, the hard phases in particularly fine and evenly distributed what a has a positive influence on the toughness properties.
  • the toughness of the known tool steels mentioned at the beginning is determined by the carbon and carbide content as well as by the Amount of sulfur, distribution and morphology the sulfides negatively affected.
  • Steel according to the invention contains a maximum of 0.12% carbon. That way its carbide content is also limited.
  • one steel according to the invention in that the contents in it grain-limiting elements is reduced to a minimum, toughness compared to other sulfur alloyed steels elevated.
  • the hot forming of the primary material to the intermediate product is the Structural structure and the material isotropy influenced.
  • a improved structure of the structure and a higher isotropy of the Material can be achieved in that the Hot forming using a degree of deformation ⁇ of is carried out at least 1.5.
  • the Hot forming as forging or, to manufacture larger ones Dimensions to be carried out as hot rolling.
  • the Hot forming is preferred at temperatures of 850 ° C - 1100 ° C. In this temperature range the material used according to the invention has a low one Yield stress and high toughness, so that a optimal formability is given.
  • the hot forming leaves thus quickly, inexpensively and with high output carry out.
  • the workpiece produced according to the invention is after Hot forming from the forming heat, preferably in air stored.
  • the material becomes slow and completely from austenitic to martensitic Condition transferred.
  • Such slow cooling will on the one hand, the desired hardness of the material of up to 450 HB set.
  • heat and Conversion voltages largely avoided, so that none Delays or stress cracks in the finished intermediate product occur.
  • Table 1 compares the alloys of steels A, B, C according to the invention with the compositions of four comparative steels D, E, F, G lying outside the invention.
  • Table 2 also shows the Brinell hardness values belonging to steels A to G as well as the hardness (H f ), sweat (S f ) and embrittlement factors (KG f ).
  • the impact bending test according to steel-iron test sheet 1314 carried out. This trial is used as a measure of that Toughness of a material used to smash unscarred samples necessary impact bending work determined.
  • the samples used with the dimension 7 x 10 x 55 mm were from the direction of deformation of the checked steels A - G taken with a hardness from 300 to 400 HB.
  • the test was carried out at room temperature. Like the one in Diag. 2 summarized values for the impact bending work (mean values from 3 tested individual samples) show, with increasing embrittlement factor KG f a significant decrease in the measured impact bending work can be determined.
  • the steels A, B and C according to the invention have the desired high level of toughness with values well above 200 J, while for the steels D, E, F and G listed for comparison only values between 50 and 150 J could be measured with increasing embrittlement factor, their toughness was therefore significantly lower.
  • Comparable has been found in connection with the value to be observed for the weldability factor S f of steels according to the invention.
  • the comparative steels, the welding factor S f of which are above the limit value provided according to the invention, have a significantly poorer welding behavior than the steels according to the invention. This is particularly evident in the occurrence of welding cracks, which can be avoided in the case of the steels not according to the invention, which require extensive preheating and post-treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a steel, in particular for tools exposed to corrosion, of the following composition (in mass-%): C: min. 0.02 and max. 0.12%; Si: max. 1.5%; Mn: more than 1.0-2.50%; P: max. 0.035%; S: min. 0.04% and less than 0.15%; Cr: more than 8.0% and less than 12%; Mo: more than 0.0% and max. 0.20%; V: more than 0.0% and max. 0.25%; Nb: more than 0.1% and max. 0.5%; N: at least 0.02% and max. 0.12%; Ni: max. 0.5%; B: max. 0.005%; Cu: max. 0.3%; Al: max. 0.035%; Sn: max. 0.035%; As: max. 0.02%; at least one of the elements Ca, Mg or Ce, wherein the sum of the contents of these elements is at least 0.0002% and max. 0.015%; with the remainder being iron and unavoidable impurities.

Description

Für die Herstellung von Werkzeugen, die im praktischen Einsatz korrosiven Medien ausgesetzt sind und an die gleichzeitig hohe Anforderungen an ihre Härte gestellt werden, werden martensitische, korrosionsbeständige Werkzeugstähle verwendet.For the production of tools that are practical Use corrosive media and are exposed to the at the same time, high demands are placed on their hardness become martensitic, corrosion-resistant Tool steels used.

Spanende Fertigungsverfahren sind ein wesentlicher Bestandteil der industriellen Produktionstechnologie und ein Hauptkostenträger bei der Herstellung von Werkzeugen für die Kunststoffverarbeitung. Die wirtschaftliche Verwendbarkeit von Stählen der eingangs genannten Art hängt daher wesentlich von ihrer Zerspanbarkeit und ihrer Korrosionsbeständigkeit ab, welche wiederum entscheidend durch den Chromgehalt der Stähle beeinflußt wird. Unter dem Begriff "Zerspanbarkeit" wird in diesem Zusammenhang die Eigenschaft eines Werkstoffes verstanden, sich unter bestimmten Bedingungen spanend bearbeiten zu lassen.Machining processes are an essential one Part of industrial production technology and a major cost bearer in the manufacture of tools for plastics processing. The economic Usability of steels of the type mentioned at the beginning therefore depends essentially on their machinability and their Corrosion resistance, which in turn is crucial is influenced by the chromium content of the steels. Under The term "machinability" is used in this context understood the property of a material to have certain conditions machined.

Besondere Anforderungen an die Korrosionsbeständigkeit von Werkzeugen, die aus Stählen der voranstehend erwähnten Art hergestellt sind, ergeben sich im Bereich der kunststoffverarbeitenden Industrie. So führen Kontakte mit den dort eingesetzten Kühl- und Reinigungsmitteln, der Umgebungsatmosphäre sowie mit den verarbeiteten Kunststoffen selbst in vielen Fällen zu einer korrosiven Beanspruchung des jeweiligen Werkzeugs. Special requirements for corrosion resistance of tools made from steels of the above mentioned type are produced in the area the plastics processing industry. So lead Contacts with the cooling and Detergents, the surrounding atmosphere and with the processed plastics themselves in many cases a corrosive stress on the respective tool.

Ein rostfreier martensitischer Stahl mit guter Bearbeitbarkeit ist aus der EP 0 721 513 B1 bekannt. Der bekannte Stahl enthält 10 bis 14 Mass.-% Chrom. Zur Verbesserung seiner Zerspanbarkeit weist er zudem mindestens 0,15 % Schwefel und 1,0 bis 3,5 % Kupfer auf. Die Zugabe von Kupfer hat zusätzlich einen positiven Einfluß auf die Härte der Legierung.A martensitic stainless steel with good Machinability is known from EP 0 721 513 B1. The known steel contains 10 to 14% by mass of chromium. to He also shows improvement in machinability at least 0.15% sulfur and 1.0 to 3.5% copper. The addition of copper also has a positive effect Influence on the hardness of the alloy.

Neben dem in der erwähnten Europäischen Patentschrift beschriebenen Stahl ist eine Vielzahl chromlegierter, korrosionsbeständiger Stähle bekannt, deren Chromgehalt zwischen 11,0 und 17,0 Mass.-% liegt. Es sind dies beispielsweise die mit den Werkstoffnummern 1.2080, 1.2082, 1.2083, 1.2085, 1.2201, 1.2314, 1.2316, 1.2319, 1.2361, 1.2376, 1.2378, 1.2379, 1.2380, 1.2436, 1.2601 in der StahlEisen-Liste bezeichneten Stähle. Regelmäßig sind diese Stähle mit Kohlenstoff, Silizium und Mangan legiert. Wahlweise enthalten sie außerdem Carbidbildner wie Molybdän, Vanadium oder Wolfram.In addition to that mentioned in the European patent specification described steel is a variety of chrome alloyed, corrosion-resistant steels known, their chromium content is between 11.0 and 17.0 mass%. They are for example those with material numbers 1.2080, 1.2082, 1.2083, 1.2085, 1.2201, 1.2314, 1.2316, 1.2319, 1.2361, 1.2376, 1.2378, 1.2379, 1.2380, 1.2436, 1.2601 in of the steels designated in the StahlEisen list. Are regular these steels with carbon, silicon and manganese alloyed. They also optionally contain carbide formers such as molybdenum, vanadium or tungsten.

Die Verarbeitung der bekannten Stähle erfolgt in Abhängigkeit vom jeweiligen Kohlenstoff- und Carbidgehalt. So werden die Stähle der in Rede stehenden Art zum einen vom Werkzeughersteller im vergüteten Zustand mit einer Härte von 285 bis 325 HB verwendet. Bei dieser Härte ist eine zerspanende Bearbeitung des Werkstoffs noch möglich. Zum anderen werden die Stähle im weichgeglühten Zustand verarbeitet, wobei die Härte der Stähle dann maximal 250 HB beträgt. Derart weniger harte Stähle lassen sich zwar besser verarbeiten. Es muß allerdings nach der Bearbeitung noch eine Wärmebehandlung durchgeführt werden, um die üblicherweise erforderliche Einbauhärte von 46 bis 60 HRC zu erreichen. Anschließend ist eine Fertigbearbeitung erforderlich.The known steels are processed in Dependence on the respective carbon and Carbide. So the steels are the ones in question Kind on the one hand remunerated by the tool manufacturer Condition used with a hardness of 285 to 325 HB. at This hardness is a machining of the Material still possible. On the other hand, the steels in the soft annealed condition processed, the hardness of the Then steels is a maximum of 250 HB. So less hard Steels are easier to process. It must however, heat treatment after processing be performed to the usually required Achieve hardness of 46 to 60 HRC. Subsequently finishing is required.

Eine spanende Bearbeitung läßt sich bei den von den Anwendern geforderten hohen Endhärten bei den bekannten Stählen nicht mehr wirtschaftlich durchführen. Dieses Problem wird zwar durch die Verarbeitung im weichgeglühten Zustand mit nachgeschalteter Wärmebehandlung gelöst. Ein Nachteil der abschließenden Wärmebehandlung besteht jedoch neben den für diesen zusätzlichen Arbeitsgang anfallenden Kosten darin, daß es dabei zur Rißbildung und zum Verzug des Bauteils infolge der Erwärmung kommen kann.Machining can be done by the The high final hardness required by the known Do not carry out steel economically anymore. This The problem is caused by the processing in the soft annealed condition with downstream Solved heat treatment. A disadvantage of the final However, heat treatment exists in addition to that for this additional operation costs incurred in that it thereby to crack formation and distortion of the component as a result the warming can come.

Ein weiterer Nachteil der bekannten, in der StahlEisen-Liste verzeichneten Stähle ist ihre aufgrund des Kohlenstoffgehalts und der Legierungszusammensetzung verschlechterte Schweißbarkeit. Eine gute Verschweißbarkeit ist jedoch gerade im Bereich der Kunststoffverarbeitung unabdingbar. Häufig ist es in Folge von nachträglichen Änderungen der Gestaltung und wegen erforderlich werdender Reparaturen notwendig, Schweißarbeiten an den Werkzeugen vorzunehmen.Another disadvantage of the well-known, in the steel-iron list steels is their due to the Carbon content and the alloy composition deteriorated weldability. A good But weldability is just in the area of Plastic processing indispensable. It is often in Result of subsequent changes in the design and necessary due to repairs becoming necessary, Carry out welding work on the tools.

Zusätzlich erschwert wird die Bestimmung eines den Anforderungen in der Praxis, insbesondere den sich bei der Kunststoffverarbeitung stellenden Problemen gerechtwerdenden Stahls dadurch, daß ein solcher Stahl nicht nur korrosionsbeständig, gut zerspanbar und gut schweißbar, sondern auch in ausreichendem Maße zäh sein muß, um die im praktischen Betrieb auftretenden Kräfte aufnehmen zu können. Andernfalls besteht die Gefahr, daß die auftretenden hohen Biege-, Torsions-, Druck- und Zugkräfte ebenfalls Risse verursachen.The determination of one is made even more difficult Requirements in practice, especially when it comes to problems in plastics processing righteous steel in that such a steel not only corrosion-resistant, easy to machine and good weldable, but also be sufficiently tough must to the forces occurring in practical operation to be able to record. Otherwise there is a risk that the occurring high bending, torsion, pressure and Tensile forces also cause cracks.

Es hat sich gezeigt, daß die bekannten Stähle allen diesen Anforderungen gleichzeitig nicht gerecht werden. So weisen aufgrund eines höheren Schwefelgehaltes gut zerspanbare Stähle eine zu geringe Zähigkeit auf, während bei infolge einer Erhöhung des Kohlenstoffgehaltes härteren Stählen die Korrosionsbeständigkeit vermindert ist. JP-A-01 215 489 offenbart einen Stahl bestehend aus 0.05-0.17 % C, 0.01-1.5 % Si, 0.01-2% Mr, ≤ 0.025 % P, ≤ 0.015% S, 8-12 % Cr, ≤ 0.8% Ni, 0.5-3% Mo, 0.5-3% W, 0.1-0.2% Nb, ≤ 0.04% Al, 0.03-0.05% N, ≤ 0.010 and 0.0005-0.01 Ca, Rest Eisen.It has been shown that the known steels all at the same time do not meet these requirements. So show good due to a higher sulfur content machinable steels have too little toughness while at due to an increase in the carbon content harder steels reduce the corrosion resistance is. JP-A-01 215 489 discloses a steel consisting of 0.05-0.17% C, 0.01-1.5% Si, 0.01-2% Mr, ≤ 0.025% P, ≤ 0.015% S, 8-12% Cr, ≤ 0.8% Ni, 0.5-3% Mo, 0.5-3% W, 0.1-0.2% Nb, ≤ 0.04% Al, 0.03-0.05% N, ≤ 0.010 and 0.0005-0.01 Ca, rest iron.

Die Aufgabe der Erfindung besteht darin, einen insbesondere für die Herstellung von Werkzeugen für die kunststoffverarbeitende Industrie geeigneten Stahl zu finden, der bei hoher Härte und Korrosionsbeständigkeit eine den praktischen Anforderungen gerechtwerdende Zähigkeit, Zerspanbarkeit und Schweißbarkeit aufweist. Darüber hinaus soll ein Verfahren zur Herstellung von Zwischenprodukten aus einem solchen Stahl angeben werden. Unter dem Begriff "Zwischenprodukt" werden in diesem Zusammenhang auch Langprodukte, Flachprodukte oder andere Gegenstände verstanden, die anschließend einer weiteren Verarbeitung zugeführt werden.The object of the invention is a especially for the manufacture of tools for the plastics processing industry suitable steel find that with high hardness and corrosion resistance one that meets the practical requirements Toughness, machinability and weldability. In addition, a method for the production of Intermediate products from such a steel will be specified. Under the term "intermediate product" in this Context also long products, flat products or others Objects understood, which then another Processing to be fed.

In Bezug auf den Werkstoff wird diese Aufgabe durch einen Stahl für insbesondere korrosionsbeanspruchte Werkzeuge gelöst, der folgende Zusammensetzung aufweist (in Mass.-%) :

C:
mindestens 0,02 und höchstens 0,12 %,
Si:
höchstens 1,5 %,
Mn:
mehr als 1,0 - 2,50 %,
P:
höchstens 0,035 %,
S:
mindestens 0,04 % und weniger als 0,15 %,
Cr:
mehr als 8,0 % und weniger als 12 %,
Mo:
mehr als 0,0 % und höchstens 0,20 %,
V:
mehr als 0,0 % und höchstens 0,25 %,
Nb:
mehr als 0,1 % und höchstens 0,5 %,
N:
mindestens 0,02 und höchstens 0,12 %,
Ni:
höchstens 0,5 %
B:
höchstens 0,005 %,
Cu:
höchstens 0,3 %,
Al:
höchstens 0,035 %,
Sn:
höchstens 0,035 %,
As:
höchstens 0,02 %,
mindestens eines der Elemente Ca, Mg oder Ce, wobei die Summe der Gehalte an diesen Elementen mehr als 0,0002 % und höchstens 0,015 % beträgt,
Rest Eisen und unvermeidbare Verunreinigungen.With regard to the material, this task is solved by a steel for tools which are particularly exposed to corrosion and which has the following composition (in mass%):
C:
at least 0.02 and at most 0.12%,
Si:
at most 1.5%,
Mn:
more than 1.0 - 2.50%,
P:
at most 0.035%,
S:
at least 0.04% and less than 0.15%,
Cr:
more than 8.0% and less than 12%,
Mo:
more than 0.0% and at most 0.20%,
V:
more than 0.0% and at most 0.25%,
Nb:
more than 0.1% and at most 0.5%,
N:
at least 0.02 and at most 0.12%,
Ni:
at most 0.5%
B:
at most 0.005%,
Cu:
at most 0.3%,
al:
at most 0.035%,
Sn:
at most 0.035%,
As:
at most 0.02%,
at least one of the elements Ca, Mg or Ce, the sum of the contents of these elements being more than 0.0002% and at most 0.015%,
Balance iron and unavoidable impurities.

Der erfindungsgemäße nioblegierte Werkzeugstahl weist eine optimierte Kombination von Zerspanbarkeit, Härte, Korrosionsbeständigkeit, Schweißbarkeit und Zähigkeit auf. Er erreicht Härtelagen, die zwischen 300 und 450 HB liegen. Trotz des relativ hohen Schwefelgehalts weist er eine für Stähle der gattungsgemäßen Art gute Zähigkeit auf, die den in der Praxis sich stellenden Anforderungen genügt.The nioballoyed tool steel according to the invention has an optimized combination of machinability, hardness, Corrosion resistance, weldability and toughness on. It reaches hardness layers that are between 300 and 450 HB lie. Despite the relatively high sulfur content, it shows good toughness for steels of the generic type on the requirements that arise in practice enough.

Zur Verbesserung der Zerspanbarkeit sind erfindungsgemäße Stähle schwefellegiert, dessen Anteil jeweils weniger als 0,15 Mass.-% beträgt. Vorzugsweise weist der Stahl dabei mindestens 0,04 Mass.-% auf, wodurch eine gute Zerspanbarkeit sicher gewährleistet werden kann. Noch bessere Zerspanbarkeiten können bei Berücksichtigung der sonstigen an die Zusammensetzung gestellten Bedingungen dann erreicht werden, wenn erfindungsgemäßer Stahl mindestens 0,07 Mass.-% Schwefel enthält.To improve machinability, the invention Steels sulfur-alloyed, the proportion of which is less than 0.15 mass%. The steel preferably has at least 0.04 mass .-%, whereby a good Machinability can be guaranteed safely. Yet better machinability can be taken into account other conditions imposed on the composition can be achieved when steel according to the invention contains at least 0.07% by mass of sulfur.

Trotz eines derart bemessenen Schwefelanteils weist erfindungsgemäßer Stahl eine gute Zähigkeit auf. Dies wird dadurch erreicht, daß der Stahl zusammen mit dem Schwefel wenigstens eines der Elemente Calcium, Mangan oder Cer in Mengen enthält, deren Summe mehr als 0,0002 jedoch höchstens 0,015 Mass.-% beträgt. Diese Elemente ermöglichen die Einformung von Sulfiden in die Matrix des Stahls und führen so zur Verbesserung seiner Zähigkeit. Erreichen läßt sich dies beispielsweise zielsicher dann, wenn der erfindungsgemäße Stahl 0,001 - 0,009 Mass.-% Calcium enthält.Despite such a proportion of sulfur has steel according to the invention has good toughness. This is achieved in that the steel together with the Sulfur at least one of the elements calcium, manganese or contains cerium in quantities the total of which is more than 0.0002 however at most 0.015 mass%. These elements enable the formation of sulfides in the matrix of the Steel and thus improve its toughness. This can be achieved unerringly, for example, if the steel according to the invention 0.001 - 0.009 mass% Contains calcium.

Durch die Verwendung niedriger Kohlenstoffgehalte von maximal 0,12 Mass.-% sowie niedriger Stickstoffgehalte von höchstens 0,12 Mass.-% und eines Niobgehalt von 0,11 bis 0,5 Mass.-% werden bei erfindungsgemäßem Stahl Hartphasen gebildet, welche zur erreichten Härte von 300 bis 450 HB beitragen. Gleichzeitig werden die betreffenden Hartphasen in besonders feiner und gleichmäßiger Verteilung ausgeschieden, was einen positiven Einfluß auf die Zähigkeitseigenschaften hat.By using low carbon levels of 0.12 mass% maximum and low nitrogen contents of at most 0.12% by mass and a niobium content of 0.11 up to 0.5% by mass in the steel according to the invention Hard phases are formed which lead to the hardness of 300 contribute up to 450 HB. At the same time, the hard phases in particularly fine and evenly distributed what a has a positive influence on the toughness properties.

Besonders deutlich machen sich diese vorteilhaften Eigenschaften des Legierens mit Niob bemerkbar, wenn der Niobgehalt so eingestellt wird, daß der Härtefaktor Hf bei erfindungsgemäßem Stahl folgende Bedingung erfüllt: 0,047 < Hf ≤ 0,095, wobei sich der Härtefaktor Hf nach der Formel Hf = 0,11 - %Nb / 7,14 berechnet und mit %Nb der jeweilige Nb-Gehalt des Stahls bezeichnet ist. Bei einer solchen Bemessung des Niobgehaltes wird der vorhandene Kohlenstoff und Stickstoff durch das Element Niob weitgehend zu Hartphasen abgebunden, so daß das bei erfindungsgemäßem Stahl mit einem Gehalt von weniger als 12 % in der Matrix enthaltene Chrom voll zur Bildung von korrosionshemmenden Passivschichten zur Verfügung steht. Auf diese Weise weist erfindungsgemäßer Stahl trotz der relativ geringen Chromgehalte bei gleichzeitig hoher Härte eine hervorragende Korrosionsbeständigkeit auf.These advantageous properties of alloying with niobium are particularly noticeable if the niobium content is set so that the hardness factor H f for steel according to the invention fulfills the following condition: 0.047 <H f ≤ 0.095, where the hardness factor H f according to the formula H f = 0.11% Nb / 7.14 calculated and the respective Nb content of the steel is designated with% Nb. In such a measurement of the niobium content, the carbon and nitrogen present are largely bound to hard phases by the niobium element, so that the chromium contained in the steel according to the invention with a content of less than 12% is fully available for the formation of corrosion-inhibiting passive layers. In this way, steel according to the invention has excellent corrosion resistance despite the relatively low chromium contents and high hardness.

Bei erfindungsgemäßem Stahl sind zudem die Gehalte an solchen Elementen, die zur Rißbildung in der Schweißnaht führen könnten, auf ein Minimum abgesenkt. Eine optimale Schweißbarkeit von erfindungsgemäßem Stahl läßt sich dabei dadurch gewährleisten, daß der sich nach der Formel Sf = %C + 5×%B + 2×%Cu + (%P+%S) /2 + (%Mo+%Cr) /4 + %Mn/10 berechnende Schweißfaktor Sf bei erfindungsgemäßem Stahl folgende Bedingung erfüllt: Sf < 3,99, wobei mit %C, %B, %Cu, %P, %S, %Mo, %Cr, %Mn die jeweiligen C-, B- ,Cu- , P-, S-, Mo-, Cr-, Mn-Gehalte des Stahls bezeichnet sind. In the case of steel according to the invention, the contents of such elements which could lead to crack formation in the weld seam are also reduced to a minimum. Optimal weldability of steel according to the invention can be ensured by the fact that according to the formula S f =% C + 5 ×% B + 2 ×% Cu + (% P +% S) / 2 + (% Mo +% Cr) / 4 +% Mn / 10 calculating welding factor S f for steel according to the invention fulfills the following condition: S f <3.99, where with% C,% B,% Cu,% P,% S,% Mo,% Cr,% Mn the respective C-, B-, Cu-, P-, S-, Mo-, Cr-, Mn- Contents of the steel are labeled.

Die Zähigkeit der eingangs genannten bekannten Werkzeugstähle wird durch den Kohlenstoff- und Carbidgehalt sowie durch die Höhe des Schwefelgehaltes, die Verteilung und die Morphologie der Sulfide negativ beeinflußt. Erfindungsgemäßer Stahl enthält nur maximal 0,12 % Kohlenstoff. Auf diese Weise ist auch sein Carbidgehalt beschränkt. Zusätzlich ist bei einem erfindungsgemäßen Stahl dadurch, daß in ihm die Gehalte an korngrenzwirksamen Elementen auf ein Minimum reduziert ist, die Zähigkeit gegenüber anderen schwefellegierten Stählen erhöht.The toughness of the known tool steels mentioned at the beginning is determined by the carbon and carbide content as well as by the Amount of sulfur, distribution and morphology the sulfides negatively affected. Steel according to the invention contains a maximum of 0.12% carbon. That way its carbide content is also limited. In addition, with one steel according to the invention in that the contents in it grain-limiting elements is reduced to a minimum, toughness compared to other sulfur alloyed steels elevated.

Es wurde festgestellt, daß die korngrenzwirksamen Elemente in Stählen der in Rede stehenden Art während des Erstarrungsvorganges sowie während der Warmumformung und /oder während einer Wärmebehandlung bei bestimmten Temperaturen an den Korngrenzen seigern. Diese Seigerungen führen zu einer Verminderung der Kohäsion und bilden so bevorzugt die Quelle der Entstehung von Rissen. Indem bei einem erfindungsgemäßen Stahl der Versprödungsfaktor KGf die folgende Bedingung erfüllt, kann der negative Einfluß der korngrenzenwirksamen Elemente und damit einhergehend die Gefahr der Entstehung von Rissen zielgerichtet minimiert werden: KGf < 1,07, wobei sich der Versprödungsfaktor KGf nach der Formel KGf = 2,97×%Cu + 3,2× (%Sn+%As) + 0,55×%Al + 5,42×%P + 0,98%N berechnet und mit %Cu, %Sn, %As, %Al, %P und %N die jeweiligen Cu-, Sn-, As-, Al-, P- und N-Gehalte des Stahls bezeichnet sind. It has been found that the elements with a grain boundary effect in steels of the type in question segregate at the grain boundaries during the solidification process and during hot forming and / or during heat treatment at certain temperatures. These segregations lead to a reduction in cohesion and thus preferentially form the source of cracks. By fulfilling the following condition for a steel according to the invention, the embrittlement factor KG f , the negative influence of the elements which act on the grain boundaries and the associated risk of cracks can be minimized in a targeted manner: KG f <1.07, where the embrittlement factor KG f according to the formula KG f = 2.97 ×% Cu + 3.2 × (% Sn +% As) + 0.55 ×% Al + 5.42 ×% P + 0.98% N calculated and designated% Cu,% Sn,% As,% Al,% P and% N the respective Cu, Sn, As, Al, P and N contents of the steel.

In Bezug auf das Verfahren zum Erzeugen eines Zwischenprodukts für die Herstellung von Bauteilen, insbesondere für die Herstellung eines korrosionsbeanspruchten Werkzeugs, aus erfindungsgemäß zusammengesetztem Stahl wird die oben angegebene Aufgabe gelöst, indem mindestens folgende Herstellungsschritte durchlaufen werden:

  • Erschmelzen eines erfindungsgemäßen Stahls,
  • Vergießen des Stahls zu einem Vormaterial, wie Blöcken, Brammen, Stranggußriegeln, Dünnbrammen oder gegossenem Band,
  • Diffusionsglühen des Vormaterials bei einer 1200 - 1280 °C betragenden Temperatur,
  • Warmumformen des geglühten Vormaterials zu dem Bauelement.
With regard to the method for producing an intermediate product for the production of components, in particular for the production of a tool subject to corrosion, from steel composed according to the invention, the above-mentioned object is achieved by performing at least the following production steps:
  • Melting of a steel according to the invention,
  • Casting the steel into a raw material, such as blocks, slabs, continuous cast bars, thin slabs or cast strip,
  • Diffusion annealing of the primary material at a temperature of 1200 - 1280 ° C,
  • Hot forming the annealed starting material into the component.

Durch das im erfindungsgemäß gewählten Temperaturbereich durchgeführte Diffusionsglühen des Vormaterials wird ein Ausgleich der erstarrungsbedingten Seigerungen herbeigeführt, so daß eine gleichmäßige Verteilung der enthaltenen Legierungselemente erzielt wird. Bei der anschließenden Warmumformung des Vormaterials zu dem Zwischenprodukt wird die Gefügestruktur und die Werkstoffisotropie beeinflußt. Eine verbesserte Struktur des Gefüges und eine höhere Isotropie des Werkstoffs kann dabei dadurch erreicht werden, daß die Warmverformung unter Anwendung eines Umformgrades ϕ von mindestens 1,5 durchgeführt wird.Due to the temperature range chosen according to the invention performed diffusion annealing of the primary material is a Compensation of the segregation-related segregations, so that an even distribution of the contained Alloying elements is achieved. In the subsequent The hot forming of the primary material to the intermediate product is the Structural structure and the material isotropy influenced. A improved structure of the structure and a higher isotropy of the Material can be achieved in that the Hot forming using a degree of deformation ϕ of is carried out at least 1.5.

Im Rahmen des erfindungsgemäßen Verfahrens kann die Warmumformung als Schmieden oder, zur Herstellung größerer Abmessungen, als Warmwalzen durchgeführt werden. Die Warmumformung findet dabei bevorzugt bei Temperaturen von 850 °C - 1100 °C durchgeführt. In diesem Temperaturbereich weist der erfindungsgemäß verwendete Werkstoff eine niedrige Fließspannung und eine hohe Zähigkeit auf, so daß eine optimale Umformbarkeit gegeben ist. Die Warmumformung läßt sich somit schnell, kostengünstig und mit hoher Ausbringung durchführen.In the context of the method according to the invention, the Hot forming as forging or, to manufacture larger ones Dimensions to be carried out as hot rolling. The Hot forming is preferred at temperatures of 850 ° C - 1100 ° C. In this temperature range the material used according to the invention has a low one Yield stress and high toughness, so that a optimal formability is given. The hot forming leaves thus quickly, inexpensively and with high output carry out.

Das erfindungsgemäß erzeugte Werkstück wird nach der Warmumformung aus der Umformhitze vorzugsweise an Luft abgelegt. Bei der Ablage an Luft wird der Werkstoff langsam und vollständig vom austenitischen in den martensitischen Zustand überführt. Durch eine solche langsame Abkühlung wird einerseits die gewünschte Härte des Werkstoffes von bis zu 450 HB eingestellt. Andererseits werden Wärme- und Umwandlungsspannungen weitgehend vermieden, so daß keine Verzüge oder Spannungsrisse am fertigen Zwischenprodukt auftreten.The workpiece produced according to the invention is after Hot forming from the forming heat, preferably in air stored. When stored in air, the material becomes slow and completely from austenitic to martensitic Condition transferred. Such slow cooling will on the one hand, the desired hardness of the material of up to 450 HB set. On the other hand, heat and Conversion voltages largely avoided, so that none Delays or stress cracks in the finished intermediate product occur.

Durch eine gegebenenfalls zusätzlich durchzuführende Wärmebehandlung bei Temperaturen von 850 °C - 1050 °C mit nachfolgendem kontrollierten Abkühlen an einem Abkühlungsmedium, wie Luft, Öl, Wasser oder einem Polymer, auf das vorzugsweise ein Anlassen bei Temperaturen zwischen 400 °C und 650 °C folgt, kann eine Härte des erzeugten Zwischenprodukts hergestellt werden, die sich von der nach der Ablage an Luft aus der Umformhitze vorliegenden Härte unterscheidet. Insbesondere lassen sich über diese Wärmebehandlung auch niedrigere Härtewerte bis zu einer Untergrenze von 300 HB erzielen.By an additional one, if necessary Heat treatment at temperatures from 850 ° C - 1050 ° C with subsequent controlled cooling on one Cooling medium such as air, oil, water or a polymer preferably tempering at temperatures between 400 ° C and 650 ° C follows, a hardness of the produced Intermediate are manufactured, which differ from the after Storage in air from the hardness present in the forming heat different. In particular, you can use this Heat treatment also lower hardness values up to one Achieve a lower limit of 300 HB.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Es zeigen:

Diag. 1
den Schneidenverschleiß im Bohrversuch aufgetragen über den Bohrweg,
Diag. 2
die für verschiedene Stähle ermittelte Schlagbiegearbeit aufgetragen über den Versprödungsfaktor KGf.
The invention is explained in more detail below on the basis of exemplary embodiments. Show it:
Diag. 1
the cutting edge wear in the drilling test plotted over the drilling path,
Diag. 2
the impact bending work determined for various steels plotted against the embrittlement factor KG f .

In Tabelle 1 sind die Legierungen erfindungsgemäßer Stähle A,B,C den Zusammensetzungen von vier außerhalb der Erfindung liegenden Vergleichsstählen D,E,F,G gegenübergestellt. In Tabelle 2 sind zusätzlich die zu den Stählen A bis G gehörenden Brinell-Härtewerte sowie die Härte- (Hf), Schweiß- (Sf), und Versprödungsfaktoren (KGf) angegeben.Table 1 compares the alloys of steels A, B, C according to the invention with the compositions of four comparative steels D, E, F, G lying outside the invention. Table 2 also shows the Brinell hardness values belonging to steels A to G as well as the hardness (H f ), sweat (S f ) and embrittlement factors (KG f ).

Zur Überprüfung der Zerspanbarkeit der Stähle A - G wurden an aus diesen Stählen erzeugten Bauelementen Bohrversuche mit unbeschichteten Wendelbohrern aus dem Schnellarbeitsstahl mit der Werkstoffnummer 1.3343 durchgeführt. Zu diesem Zweck wurden 24 mm tiefe Löcher in die mit einer Härte von 300 bis 400 HB vorliegenden Stähle gebohrt. Die Schnittgeschwindigkeit betrug jeweils 12 m/min und der Vorschub 0,12 mm/U.To check the machinability of steels A - G were made on components made from these steels Drilling tests with uncoated twist drills from the High-speed steel with the material number 1.3343 carried out. For this purpose 24 mm deep holes were made into those with a hardness of 300 to 400 HB Steels drilled. The cutting speed was in each case 12 m / min and the feed 0.12 mm / rev.

Nach einem Gesamtbohrweg von 200, 1200 und 2400 mm wurde der an den Wendelbohrern aufgetretene Verschleiß der Schneidkanten ausgemessen. Es zeigte sich, daß die erfindungsgemäßen Stähle A, B und C trotz ihrer höheren Härte weniger Verschleiß an den Schneidkanten der Bohrer erzeugen (Diag. 1). Ihre Zerspanbarkeit ist somit deutlich gegenüber der der herkömmlichen, außerhalb der Erfindung liegenden Stähle D, E, F und G verbessert. After a total drilling distance of 200, 1200 and 2400 mm the wear on the twist drills Cutting edges measured. It turned out that the Steels A, B and C according to the invention despite their higher Hardness less wear on the cutting edges of the drill generate (Diag. 1). Your machinability is thus clearly compared to that of the conventional, outside the Invention steels D, E, F and G improved.

Zur Bestimmung der Zähigkeit von Werkzeugstählen wurde der Schlagbiegeversuch nach Stahl-Eisen-Prüfblatt 1314 durchgeführt. In diesem Versuch wird als Maß für die Zähigkeit eines Werkstoffes die zum Zerschlagen von ungekerbten Proben notwendige Schlagbiegearbeit ermittelt. Die verwendeten Proben mit der Abmessung 7 x 10 x 55 mm wurden aus der Verformungsrichtung der überprüften Stähle A - G entnommen, die mit einer Härte von 300 bis 400 HB vorlagen.To determine the toughness of tool steels the impact bending test according to steel-iron test sheet 1314 carried out. This trial is used as a measure of that Toughness of a material used to smash unscarred samples necessary impact bending work determined. The samples used with the dimension 7 x 10 x 55 mm were from the direction of deformation of the checked steels A - G taken with a hardness from 300 to 400 HB.

Die Prüfung erfolgte bei Raumtemperatur. Wie die im Diag. 2 zusammengefaßten Werte für die Schlagbiegearbeit (Mittelwerte aus 3 geprüften Einzelproben) zeigen, kann mit zunehmendem Versprödungsfaktor KGf ein deutliches Absinken der gemessenen Schlagbiegearbeit festgestellt werden. Die erfindungsgemäßen Stähle A, B und C weisen mit Werten deutlich oberhalb von 200 J das gewünschte hohe Zähigkeitsniveau auf, während bei den zum Vergleich aufgeführten Stählen D, E, F und G mit zunehmendem Versprödungsfaktor lediglich Werte zwischen 50 und 150 J gemessen werden konnten, ihre Zähigkeit daher deutlich niedriger war.The test was carried out at room temperature. Like the one in Diag. 2 summarized values for the impact bending work (mean values from 3 tested individual samples) show, with increasing embrittlement factor KG f a significant decrease in the measured impact bending work can be determined. The steels A, B and C according to the invention have the desired high level of toughness with values well above 200 J, while for the steels D, E, F and G listed for comparison only values between 50 and 150 J could be measured with increasing embrittlement factor, their toughness was therefore significantly lower.

Um die Korrosionsbeständigkeit der in Tabelle 1 aufgeführten Stähle zu überprüfen, wurden Eintauchversuche in einer 0,5 % wässrigen Natriumchloridlösung durchgeführt. Nach einer Tauchdauer von 1 h wurden die Proben jeweils eine halbe Stunde lang an Luft getrocknet und dann erneut eingetaucht. Nach insgesamt neun Tauch- und Trockenzyklen wurde das Aussehen der ehemals fein geschliffenen Proben beurteilt. To determine the corrosion resistance of Table 1 to check the listed steels Immersion tests in a 0.5% aqueous Sodium chloride solution performed. After a dive From 1 hour, the samples were each half an hour air dried and then immersed again. To that was a total of nine diving and drying cycles Appearance of the formerly finely ground samples assessed.

Nach Beendigung der Versuche war bei den erfindungsgemäßen Stählen A bis C so gut wie kein Rostbefall auf der Oberfläche der Proben feststellbar, was auf eine ausreichende Korrosionsbeständigkeit hindeutet. Die zum Vergleich aufgeführten Stähle D, E und G zeigten dagegen einen starken Angriff durch die Prüflösung, so daß der größte Teil der Oberfläche nach den durchgeführten Prüfzyklen bereits korrodiert war. Lediglich der Vergleichsstahl F war aufgrund seines hohen Chromgehaltes und wegen des Fehlens von Schwefel korrosionsbeständiger. Aufgrund des Fehlens von Schwefel in der Zusammensetzung wies dieser Stahl F jedoch die bei weitem schlechteste Zerspanbarkeit aller untersuchten Stähle auf.After the experiments were over, the Steels A to C according to the invention practically none Rust attack on the surface of the samples, indicating adequate corrosion resistance suggesting. Steels D, E and G showed a strong attack by the Test solution so that most of the surface after the test cycles carried out had already been corroded. Only the comparative steel F was due to its high Chromium content and due to the lack of sulfur corrosion resistant. Because of the lack of sulfur in the composition, however, this steel F had the worst machinability of all examined Steels on.

Die erläuterten Beispiele belegen, daß erfindungsgemäßer Stahl einerseits die angestrebte Härte von 300 HB bis 450 HB sicher erreicht und andererseits gut zerspanbar ist. Bei außerhalb der Erfindung liegenden Stählen, welche die für den Härtefaktor Hf erfindungsgemäß zu beachtenden Bedingungen nicht erfüllen, wird diese Eigenschaftskombination dagegen nicht erreicht.The examples explained demonstrate that steel according to the invention on the one hand safely achieves the desired hardness of 300 HB to 450 HB and on the other hand is easy to machine. In contrast, this combination of properties is not achieved in the case of steels lying outside the invention, which do not meet the conditions to be observed for the hardness factor H f according to the invention.

Vergleichbares erweist sich im Zusammenhang mit dem für den Schweißbarkeitsfaktor Sf erfindungsgemäßer Stähle einzuhaltenden Wert. So weisen die Vergleichsstähle, deren Schweißfaktor Sf jeweils oberhalb des erfindungsgemäß vorgesehenen Grenzwertes liegen, ein deutlich schlechteres Schweißverhalten auf als erfindungsgemäße Stähle. Dies zeigt sich insbesondere in dem Auftreten von Schweißrissen, zu deren Vermeidung bei den nicht erfindungsgemäßen Stählen eine aufwendige Vorwärmung und Nachbehandlung notwendig ist. Comparable has been found in connection with the value to be observed for the weldability factor S f of steels according to the invention. The comparative steels, the welding factor S f of which are above the limit value provided according to the invention, have a significantly poorer welding behavior than the steels according to the invention. This is particularly evident in the occurrence of welding cracks, which can be avoided in the case of the steels not according to the invention, which require extensive preheating and post-treatment.

Schließlich belegen die Beispiele, daß durch die erfindungsgemäße Beschränkung der Gehalte an korngrenzenwirksamen Elementen, wie Cu, Sn, As, Al, P und N bei den Stählen A, B, C der jeweilige Versprödungsfaktor KGf niedrig gehalten und damit einhergehend eine für Stähle der in Rede stehenden Art gute Zähigkeit erreicht worden ist.

Figure 00150001
Erfindung Stahl Härte
[HB]
Sf KGf Hf
A 395 3,28 0,76 0,0889 B 380 3,04 0,42 0,0646 C 370 3,54 0,69 0,0552 Vergleich Stahl Härte
[HB]
Sf KGf Hf
D 330 5,12 2,95 0,1099 E 300 5,10 1,09 0,1099 F 315 4,99 0,98 0,1099 G 325 6,48 4,06 0,0005
Finally, the examples show that the inventive limitation of the contents of elements with grain boundary effects, such as Cu, Sn, As, Al, P and N, in the case of steels A, B, C keeps the respective embrittlement factor KG f low and, as a result, one for steels good toughness has been achieved.
Figure 00150001
invention steel hardness
[HB]
S f KG f H f
A 395 3.28 0.76 0.0889 B 380 3.04 0.42 0.0646 C 370 3.54 0.69 0.0552 comparison steel hardness
[HB]
S f KG f H f
D 330 5.12 2.95 .1099 e 300 5.10 1.09 .1099 F 315 4.99 0.98 .1099 G 325 6.48 4.06 0.0005

Claims (15)

  1. A steel, in particular for tools exposed to corrosion, of the following composition (in mass-%):
    C:
    min. 0.02 and max. 0.12 %;
    Si:
    max. 1.5 %;
    Mn:
    more than 1.0 - 2.50 %;
    P:
    max. 0.035 %;
    S:
    min. 0.04 % and less than 0.15 %;
    Cr:
    more than 8.0 % and less than 12 %;
    Mo:
    more than 0.0 % and max. 0.20 %;
    V:
    more than 0.0 % and max. 0.25 %;
    Nb:
    more than 0.1 % and max. 0.5 %;
    N:
    at least 0.02 % and max. 0.12 %;
    Ni:
    max. 0.5 %;
    B:
    max. 0.005 %;
    Cu:
    max. 0.3 %;
    Al:
    max. 0.035 %;
    Sn:
    max. 0.035 %;
    As:
    max. 0.02 %;
    at least one of the element Ca, Mg or Ce, wherein the sum of the contents of these elements is more than 0.0002 % and max. 0.015%;
    with the remainder being iron and unavoidable impurities.
  2. The steel according to claim 1, characterised in that it contains 0.001 - 0.009 mass-% of Ca.
  3. The steel according to one of claims 1 or 2, characterised in that its hardness factor Hf meets the following condition: 0.047 < Hf ≤ 0.095, wherein Hf = 0.11 - %Nb / 7.14 with %Nb designating the respective Nb content of the steel.
  4. The steel according to one of the preceding claims, characterised in that its weld factor Sf meets the following condition: Sf < 3.99, wherein Sf = %C + 5x%B + 2x%Cu + (%P+%S)/2 + (%Mo+%Cr)/4 + %Mn/10 and wherein %C, %B, %Cu, %P, %S, %Mo, %Cr, %Mn designate the respective contents of C, B, Cu, P, S, Mo, Cr and Mn of the steel.
  5. The steel according to one of the preceding claims, characterised in that its embrittlement factor KGf meets the following condition: KGf < 1.07;    wherein KGf = 2.97x%Cu + 3.2x(%Sn+%As) + 0.55x%Al + 5.42x%P + 0.98%N    with %Cu, %Sn, %As, %Al, %P and %N designating the respective contents of Cu, Sn, As, Al, P and N of the steel.
  6. The steel according to any one of the preceding claims, characterised in that it comprises at least 0.05 mass-% of sulphur.
  7. The steel according to any one of the preceding claims, characterised in that it comprises at least 0.07 mass-% of sulphur.
  8. A method for producing an intermediate product for the production of components, in particular for the production of tools exposed to corrosion, made from a steel with a composition according to any one of claims 1 to 7, comprising the following steps:
    melting the steel;
    casting the steel to form a raw material such as ingots, slabs, continuous-cast bars, thin slabs or cast strip;
    diffusion annealing of the raw material at a temperature between 1200 and 1280 °C; and
    hot forming the annealed raw material to form the intermediate product.
  9. The method according to claim 8, characterised in that hot forming is carried out by way of forging.
  10. The method according to claim 8, characterised in that hot forming is carried out by way of hot rolling.
  11. The method according to any one of claims 7 to 10, characterised in that following hot forming, the intermediate product is held where it is exposed to air.
  12. The method according to any one of claims 7 to 11, characterised in that hot forming takes place at temperatures between 850 °C and 1150 °C.
  13. The method according to any one of claims 7 to 12, characterised in that following hot forming, the intermediate product is heat treated at temperatures between 850 °C and 1050 °C and after heat treatment is subjected to controlled cooling with the use of a cooling medium such as air, oil, water or a polymer.
  14. The method according to claim 13, characterised in that after cooling, tempering at temperatures between 400 °C and 650 °C is carried out.
  15. The use of a steel with a composition according to any one of claims 1 to 6 for the production of tools for plastics processing.
EP02719725A 2001-01-25 2002-01-25 Steel and method for producing an intermediate product Expired - Lifetime EP1358359B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10103290 2001-01-25
DE10103290A DE10103290A1 (en) 2001-01-25 2001-01-25 Steel and process for producing an intermediate
PCT/EP2002/000746 WO2002059389A2 (en) 2001-01-25 2002-01-25 Steel and method for producing an intermediate product

Publications (2)

Publication Number Publication Date
EP1358359A2 EP1358359A2 (en) 2003-11-05
EP1358359B1 true EP1358359B1 (en) 2004-06-23

Family

ID=7671694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02719725A Expired - Lifetime EP1358359B1 (en) 2001-01-25 2002-01-25 Steel and method for producing an intermediate product

Country Status (12)

Country Link
US (1) US20040050459A1 (en)
EP (1) EP1358359B1 (en)
JP (1) JP3943499B2 (en)
AT (1) ATE269911T1 (en)
AU (1) AU2002250853B2 (en)
CA (1) CA2424074C (en)
DE (2) DE10103290A1 (en)
DK (1) DK1358359T3 (en)
ES (1) ES2223037T3 (en)
PT (1) PT1358359E (en)
TR (1) TR200402213T4 (en)
WO (1) WO2002059389A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872825B1 (en) * 2004-07-12 2007-04-27 Industeel Creusot MARTENSITIC STAINLESS STEEL FOR MOLDS AND CARCASES OF INJECTION MOLDS

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2287521A1 (en) * 1974-10-11 1976-05-07 Ugine Aciers DECOLLETAGE STEEL
DE3018537A1 (en) * 1979-05-17 1980-11-27 Daido Steel Co Ltd CONTROLLED INCLUDING AUTOMATIC STEEL AND METHOD FOR THE PRODUCTION THEREOF
US4294613A (en) * 1979-07-03 1981-10-13 Henrik Giflo Acid resistant, high-strength steel suitable for polishing
JPS59153831A (en) * 1983-02-23 1984-09-01 Sumitomo Metal Ind Ltd Manufacture of heat resistant ferritic stainless steel plate
JPH01215489A (en) * 1988-02-19 1989-08-29 Sumitomo Metal Ind Ltd Welding material for high cr ferrite steel
JP3068216B2 (en) * 1990-12-28 2000-07-24 東北特殊鋼株式会社 High cold forging electromagnetic stainless steel
US5362337A (en) * 1993-09-28 1994-11-08 Crs Holdings, Inc. Free-machining martensitic stainless steel
US6090230A (en) * 1996-06-05 2000-07-18 Sumitomo Metal Industries, Ltd. Method of cooling a steel pipe
JP2000144334A (en) * 1998-11-06 2000-05-26 Daido Steel Co Ltd Steel for aluminum diecasting die excellent in erosion resistance

Also Published As

Publication number Publication date
ATE269911T1 (en) 2004-07-15
CA2424074C (en) 2011-03-15
JP3943499B2 (en) 2007-07-11
PT1358359E (en) 2004-11-30
DE10103290A1 (en) 2002-08-22
US20040050459A1 (en) 2004-03-18
AU2002250853B2 (en) 2006-08-03
EP1358359A2 (en) 2003-11-05
DK1358359T3 (en) 2004-10-18
ES2223037T3 (en) 2005-02-16
JP2004520487A (en) 2004-07-08
WO2002059389A2 (en) 2002-08-01
CA2424074A1 (en) 2003-03-28
TR200402213T4 (en) 2004-10-21
WO2002059389A3 (en) 2002-09-19
DE50200545D1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
DE602004000140T2 (en) Stainless austenitic steel
EP1538232B1 (en) Corrosion resistant austenitic steel
DE69718784T2 (en) STEEL WITH EXCELLENT PROCESSABILITY AND COMPONENT PRODUCED WITH IT
DE69423930T2 (en) Martensitic stainless steel with improved machinability
DE69604341T3 (en) Martensitic. STAINLESS STEEL WITH GOOD RESISTANCE TO HOLE FRICTION CORROSION AND HIGH HARDENING
DE60300867T2 (en) BLOCK STEEL FOR MANUFACTURING INJECTION MOLDING FOR PLASTIC MATERIAL OR FOR PRODUCING WORKPIECES FOR METAL WORKING
DE60017059T2 (en) MARTENSITIC STAINLESS STEEL FOR SEAMLESS STEEL TUBE
DE69406512T2 (en) Steam turbine rotor and process for its manufacture
DE3117539C2 (en)
DE60024761T2 (en) Welding filler material and method for producing a welded joint
DE69312367T2 (en) Martensitic stainless steel for petroleum source
AT409636B (en) STEEL FOR PLASTIC MOLDS AND METHOD FOR HEAT TREATING THE SAME
DE2447137B2 (en) STEEL ALLOY RESISTANT AGAINST PITCH CORROSION
DE2927091A1 (en) NON-MAGNETIC MANGANIC STEEL WITH EXCELLENT WELDABILITY AND WORKABILITY AND USE OF THIS STEEL
DE60024495T2 (en) Steel with excellent forgeability and machinability
DE69612922T2 (en) Iron-chromium alloy with good resistance to grooving and with a smooth surface
DE2253148B2 (en) Process for the production of a ferritic, corrosion-resistant steel and its use
EP0455625B1 (en) High strength corrosion-resistant duplex alloy
DE3407305C2 (en)
DE60201984T2 (en) TOOL STEEL OF HIGH TENSILE, METHOD FOR PRODUCING PARTS FROM THIS STEEL AND PARTS MANUFACTURED THEREOF
DE69432780T2 (en) INERT GAS ARC WELDING WIRE FOR TEMPERATURE-RESISTANT HIGH-CHROME FERRITIC STEEL
EP2255021B1 (en) Steel alloy for a low alloy steel for producing high-tensile seamless steel tubing
EP2396440A1 (en) Steel alloy
EP1358359B1 (en) Steel and method for producing an intermediate product
DE2937908A1 (en) TE-S AUTOMATIC STEEL WITH LOW ANISOTROPY AND METHOD FOR THE PRODUCTION THEREOF

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030321

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50200545

Country of ref document: DE

Date of ref document: 20040729

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040903

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20040403246

Country of ref document: GR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040623

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2223037

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050324

REG Reference to a national code

Ref country code: PT

Ref legal event code: PD4A

Owner name: DEUTSCHE EDELSTAHLWERKE GMBH, DE

Effective date: 20080418

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: DEUTSCHE EDELSTAHLWERKE GMBH

Free format text: EDELSTAHL WITTEN-KREFELD GMBH#AUESTRASSE 4#58452 WITTEN (DE) -TRANSFER TO- DEUTSCHE EDELSTAHLWERKE GMBH#AUESTRASSE 4#58452 WITTEN (DE)

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: DEUTSCHE EDELSTAHLWERKE GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20090115

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20101221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20110119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120126

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120131

Year of fee payment: 11

Ref country code: GB

Payment date: 20120118

Year of fee payment: 11

Ref country code: DK

Payment date: 20120120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120120

Year of fee payment: 11

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20040403246

Country of ref document: GR

Effective date: 20120802

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120123

Year of fee payment: 11

BERE Be: lapsed

Owner name: *DEUTSCHE EDELSTAHLWERKE G.M.B.H.

Effective date: 20130131

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130125

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130125

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20131219

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20140123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140122

Year of fee payment: 13

Ref country code: SE

Payment date: 20140122

Year of fee payment: 13

Ref country code: DE

Payment date: 20140122

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140122

Year of fee payment: 13

Ref country code: IT

Payment date: 20140124

Year of fee payment: 13

Ref country code: TR

Payment date: 20140108

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50200545

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20150727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150125

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 269911

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150727

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150126

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150125