JPH01215489A - Welding material for high cr ferrite steel - Google Patents

Welding material for high cr ferrite steel

Info

Publication number
JPH01215489A
JPH01215489A JP3837288A JP3837288A JPH01215489A JP H01215489 A JPH01215489 A JP H01215489A JP 3837288 A JP3837288 A JP 3837288A JP 3837288 A JP3837288 A JP 3837288A JP H01215489 A JPH01215489 A JP H01215489A
Authority
JP
Japan
Prior art keywords
less
toughness
welding
weld metal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3837288A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ogawa
和博 小川
Minoru Miura
実 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3837288A priority Critical patent/JPH01215489A/en
Publication of JPH01215489A publication Critical patent/JPH01215489A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve the stiffness and high temp. creep property of a welding metal by regulating the chemical component including Ni, Mo, W, V, Nb, N, O, etc., in a material and related parameter value in specified range respectively. CONSTITUTION:In weight %, 0.05-0.17% C, 0.01-1.5% Si, 0.01-2% Mn, <=0.025% P, <=0.015% S, 8-12% Cr, <=0.8% Ni, 0.5-3% Mo, 0.5-3% W, 0.1-0.5% V, 0.01-0.2% Nb, <=0.04% Al, 0.03-0.05% N, <=0.01% O and 0.0005-0.01% Ca are contained and the parameter Creq and Qc shown by equations I, II are regulated <=13% and <=0.2%. The stiffness and high temp. creep property of the welding metal to be formed are improved because the regulation of the chemical component and parameter is performed both.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はメタル温度600℃以上の高温環境下での使用
が可能な高温用高Crフェライト鋼に使用する溶接材料
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a welding material for use in high-chromium ferrite steel for high temperature use, which can be used in a high-temperature environment with a metal temperature of 600° C. or higher.

〔従来の技術〕[Conventional technology]

ボイラの過熱器管、再熱器管や化学工業、原子カニ業用
熱交換器等に用いられる高温用材料には、600℃以上
の耐熱性が要求されることが多い。
High-temperature materials used for boiler superheater tubes, reheater tubes, heat exchangers for the chemical industry, atomic crab industry, etc. are often required to have heat resistance of 600° C. or higher.

従来より高温用材料としてよく知られているものは、オ
ーステナイト系ステンレス鋼、2+ACr−1Moli
等の低合金鋼、9Cr−IMo鋼に代表される高Crフ
ェライト鋼の3種類である。このうち、高Crフェライ
ト鋼は高温腐食や応力腐食割れを生じ難い上、安価であ
り、しかもCr含有b[が高く、耐熱化性が優れている
ことから、600℃以上での使用が困難な低合金鋼に代
わって広く使用され始めている。
Conventionally well-known high-temperature materials include austenitic stainless steel and 2+ACr-1Moli.
There are three types of ferrite steels: low alloy steel such as 9Cr-IMo steel, and high Cr ferritic steel represented by 9Cr-IMo steel. Among these, high Cr ferritic steel is less prone to high-temperature corrosion and stress corrosion cracking, is inexpensive, and has a high Cr content and excellent heat resistance, making it difficult to use at temperatures above 600°C. It is beginning to be widely used to replace low-alloy steel.

高Crフェライト鋼のような高温用材料では耐熱性のな
かの特に高温長時間クリープ強度と組織安定性とが重要
である。高温用高Crフェライト鋼においては、m織を
焼もどしマルテンサイトとして高温長時間のクリープ強
度を安定化させるために、使用温度よりも150℃以上
高く、Ac+点よりも30〜50℃低い焼もどしを受け
るのが通例となっている。この焼もどしにおいて、60
0℃以上の使用温度を想定した場合、使用温度の面から
は、焼もどし温度は750℃以上、好ましくは800℃
以上が必要とされる。しかし、12Cr鋼の場合、AC
,点は800℃付近であり、800℃以上の焼もどしは
採用できない。
In high-temperature materials such as high-Cr ferritic steel, high-temperature long-term creep strength and structural stability are especially important in heat resistance. In high-temperature high Cr ferritic steel, the m-weave is tempered to form martensite, and in order to stabilize creep strength over long periods of time at high temperatures, tempering is performed at least 150°C higher than the service temperature and 30 to 50°C lower than the Ac+ point. It is customary to receive. In this tempering, 60
Assuming a working temperature of 0°C or higher, the tempering temperature should be 750°C or higher, preferably 800°C.
The above is required. However, in the case of 12Cr steel, AC
, point is around 800°C, and tempering above 800°C cannot be adopted.

このようなことから、Ac、点を上昇させるための合金
設計が必要となり、例えば特開昭62−89842号で
は8〜13Cr系フエライト鋼についてS t、 Mn
、 Mo、 W、 V、 Nb、 N i。
For this reason, it is necessary to design an alloy to increase the Ac, point. For example, in JP-A No. 62-89842, for 8-13Cr ferrite steel, St, Mn
, Mo, W, V, Nb, Ni.

A:0.NIL等の調整によりA C+点を高め、高温
の焼もどしを可能にして優れた高温長時間クリープ強度
が確保できるようにした高Crフェライト鋼が提案され
ている。
A:0. A high Cr ferritic steel has been proposed, which has a higher A C+ point through adjustment of NIL, etc., which enables high-temperature tempering and ensures excellent high-temperature long-term creep strength.

一方、高Crフェライト鋼のような高温材料をボイラ、
熱交換器の部品として利用する場合、溶接施工を必要と
することが多い、高Crフェライト鋼に溶接施工を行う
場合、溶接材料としてはオーステナイト系ステンレス鋼
、Ni基合金、共金すなわち高Crフェライト鋼の使用
が考えられる。
On the other hand, when high temperature materials such as high Cr ferritic steel are used in boilers,
When used as heat exchanger parts, welding is often required. When welding high Cr ferritic steel, welding materials include austenitic stainless steel, Ni-based alloys, and high Cr ferrite. The use of steel is considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、オーステナイト系材料の場合、母材と溶接部
との間の熱膨張差が大きく、熱応力発生による割れが誘
起され、しかも使用中に母材から溶接部に炭素が移行し
、脱炭層形成による割れも誘発される。N+基茶系材料
場合は、熱膨張差による割れと、材料コストの面で問題
がある。また、共金糸材料の場合は靭性が確保できない
という致命的欠陥がある。
However, in the case of austenitic materials, there is a large difference in thermal expansion between the base metal and the weld zone, which causes cracking due to the generation of thermal stress.Additionally, during use, carbon migrates from the base metal to the weld zone, forming a decarburized layer. cracking is also induced. In the case of N+ base material, there are problems in terms of cracking due to the difference in thermal expansion and material cost. Furthermore, in the case of co-metallic thread materials, there is a fatal flaw in that toughness cannot be ensured.

以上のことを総合的に判断して、現状では種々の問題を
内包したままオーステナイト系もしくはNi3系の溶接
材料が用いられている。
Judging from the above, at present, austenitic or Ni3-based welding materials are being used, although they still have various problems.

本発明は斯かる現状に鑑み、溶接金属の靭性低下が防止
できる共金系の高Crフェライト鋼用溶接材料を提供す
ることを目的とする。
In view of the current situation, it is an object of the present invention to provide a welding material for alloy-based high Cr ferritic steel that can prevent a decrease in the toughness of the weld metal.

〔課題を解決するための手段〕[Means to solve the problem]

高温用高Crフェライト鋼に対して溶接を行う場合、溶
接材料としては、基本的には母材に成分、組織が近い共
金糸の材料が望ましいといえる。共金糸の溶接材料が使
用できれば、熱膨張差による割れや脱炭層形成による割
れが防止でき、材料コストもNi基茶系材料比較すれば
大幅に低下する。
When welding high-chromium ferritic steel for high temperature use, the welding material is basically a metal thread material that is similar in composition and structure to the base metal. If a matching welding material can be used, cracks due to differences in thermal expansion and cracks due to the formation of decarburized layers can be prevented, and the material cost can be significantly reduced compared to Ni-based materials.

しかし、共金糸の材料を使用した場合には、前述したと
おり溶接金属の靭性確保が困難になる。
However, when using a matching thread material, it becomes difficult to ensure the toughness of the weld metal as described above.

本発明者らは、共金糸材料を使用したときの靭性低下が
防止できれば、理想的な溶接材料が得られると考え、そ
の原因について研究を行った。その結果、次の知見を得
た。
The present inventors believed that an ideal welding material could be obtained if the reduction in toughness when using a matching thread material could be prevented, and conducted research into the cause of this. As a result, we obtained the following knowledge.

○ 高温用高Crフェライト鋼に対して母材と同一成分
の溶接材料を使用した場合、溶接金属は母材と同一成分
でフェライトとマルテンサイトの二相組織となる。しか
し、フェライト量は母材と同じにはならない、すなわち
、フェライト量が母材より多くなり、これが溶接金属の
靭性を低下させる。
○ If a welding material with the same composition as the base metal is used for high-temperature high Cr ferritic steel, the weld metal will have a two-phase structure of ferrite and martensite with the same composition as the base metal. However, the amount of ferrite is not the same as the base metal, that is, the amount of ferrite is greater than the base metal, which reduces the toughness of the weld metal.

○ 溶接金属は溶接後、いわゆる溶接後熱処理のみを受
けるのに対し、母材は溶接までの間に熱間加工、焼なら
し・焼もどしを受ける。この両者の熱履歴の相違も靭性
低下の大きな要因になる。
○ After welding, the weld metal undergoes only so-called post-weld heat treatment, whereas the base metal undergoes hot working, normalizing, and tempering before welding. The difference in thermal history between the two is also a major factor in reducing toughness.

以上の知見をふまえて、共金糸材料における靭性低下防
止対策を種々検討した結果、次の三種類の対策の併用が
有効なことを知見した。
Based on the above knowledge, we investigated various measures to prevent a decrease in toughness in co-metal thread materials, and as a result, we found that a combination of the following three measures is effective.

○ 溶接材料のCr、、を管理することにより溶接金属
のフェライト量の適正化を図る。
○ Optimize the amount of ferrite in the weld metal by controlling the Cr of the welding material.

0 溶接後熱処理のみで溶接金属の靭性を十分に回復さ
せるため、下式で規定するQc値を導入し、溶接材料に
対してこのQc4t!による成分規制を行う。
0 In order to sufficiently recover the toughness of the weld metal only by post-weld heat treatment, we introduced the Qc value defined by the following formula, and calculated this Qc4t! for the welding material. Ingredients are regulated by

Qc=C+Mn/20+Si/30  (%〕○ 溶接
材料中の0含有量を規制することによりマトリックスそ
のものを高靭化する。
Qc=C+Mn/20+Si/30 (%) ○ By regulating the zero content in the welding material, the matrix itself becomes tougher.

本発明は斯かる知見に基づきなされたもので、重量%で
C:0.05〜0.17%、Si:0.01〜:0.5
%、Mn+0.01〜2%、P:0.025%以下、S
:0.015%以下、Cr:8〜12%、Ni:0.8
%以下、Mo:0.5〜3%、W : 0.5〜3%、
V : 0.1〜0゜5%、Nb :o、o 1〜0.
2%、Al:0.04%以下、N:0.63〜o、os
9/6.0:0.01%以下、Ca :0.0005〜
0.01%を含み、さらに CrIIQ:13%以下 ただしCr、、=Cr+63i+4M。
The present invention was made based on this knowledge, and in terms of weight percent, C: 0.05 to 0.17% and Si: 0.01 to 0.5.
%, Mn+0.01-2%, P: 0.025% or less, S
: 0.015% or less, Cr: 8-12%, Ni: 0.8
% or less, Mo: 0.5-3%, W: 0.5-3%,
V: 0.1-0°5%, Nb: o, o 1-0.
2%, Al: 0.04% or less, N: 0.63~o, os
9/6.0: 0.01% or less, Ca: 0.0005~
Contains 0.01%, and further CrIIQ: 13% or less, provided that Cr = Cr+63i+4M.

+:0.5W+11V+5Nb + 12Al−40C−3ON −4Ni−2Mn (%〕 Qc:0.2%以下 ただしQ c = C+ M n / 20 + S 
i / 30〔%〕 を満足し、残部Feおよび不可避的不純物からなる高C
rフェライト鋼用溶接材料を要旨とする。
+: 0.5W + 11V + 5Nb + 12Al-40C-3ON -4Ni-2Mn (%) Qc: 0.2% or less However, Q c = C + M n / 20 + S
i / 30 [%], and the balance consists of Fe and unavoidable impurities.
This article focuses on welding materials for r-ferritic steel.

〔作  用〕[For production]

以下、本発明の溶接材料における各要件限定理由を説明
する。
The reasons for limiting each requirement in the welding material of the present invention will be explained below.

C: Cr 、M O% W 、V % N bと結合
して炭化物を形成し、溶接金属の高温長時間クリープ強
度を高める。Cが0.05%未満ではこの効果が十分で
なく、逆に0.17%を超えると、溶接金属が硬化し、
靭性を低下させる。したがって、Cは0605〜0.1
7%とする。
C: Combines with Cr, M O% W, V% Nb to form carbides, increasing the high temperature long-term creep strength of weld metal. If C is less than 0.05%, this effect will not be sufficient, and if it exceeds 0.17%, the weld metal will harden.
Decrease toughness. Therefore, C is 0605~0.1
7%.

31、Mn:脱酸剤として有効であるが、0.01%未
満では経済的にコストアップとなり、逆に1゜5%、2
0%をそれぞれ超えると靭性が低下する。
31, Mn: Effective as a deoxidizing agent, but if it is less than 0.01%, the cost will increase economically;
If each exceeds 0%, toughness decreases.

したがってSLは0.01〜:0.5%、Mnは0.0
1〜2.0%とする。
Therefore, SL is 0.01~:0.5%, Mn is 0.0
1 to 2.0%.

P、S:いずれの元素も溶接性、高温長時間クリープ強
度に対して有害な不純物である。この観点からPは0.
025%以下、Sは0.015%以下に、制限し、いず
れも少ないほうが望ましい。
P, S: Both elements are impurities that are harmful to weldability and high-temperature long-term creep strength. From this point of view, P is 0.
S is limited to 0.025% or less, and S is limited to 0.015% or less, and it is preferable that both of them be smaller.

Cr:高温用高Crフェライト鋼の基本成分の一つであ
り、溶接金属の耐酸化性確保の点から8%以上を必要と
する。しかし、13%を超えると、溶接金属中のフェラ
イト量が増加し、靭性を低下させる。したがってCrは
8〜13%とする。
Cr: One of the basic components of high-Cr ferritic steel for high temperatures, and requires 8% or more in order to ensure the oxidation resistance of the weld metal. However, when it exceeds 13%, the amount of ferrite in the weld metal increases and the toughness decreases. Therefore, Cr is set at 8 to 13%.

Niニオ−ステナイト形成元素としてマルテンサイトを
安定化するが、0.8%を超えると高温長時間クリープ
強度を損なう、したがってNiよ0.8%以下とする。
Ni stabilizes martensite as a niostenite-forming element, but if it exceeds 0.8%, it impairs high-temperature long-term creep strength, so Ni should be kept at 0.8% or less.

Mo、W:いずれも高温長時間クリープ強度を高め、0
.5%未満ではその効果が少ない、しかし、3%を超え
ると、金属間化合物が析出し、溶接金属の靭性を低下さ
せる。したがってMo、Wはいずれも0.5〜3%とす
る。
Mo, W: Both increase high temperature long-term creep strength and
.. If it is less than 5%, the effect is small, but if it exceeds 3%, intermetallic compounds will precipitate, reducing the toughness of the weld metal. Therefore, Mo and W are both set at 0.5 to 3%.

VjC,Nと結合し、微細な炭窒化物を析出させて、高
温長時間クリープ強度向上に寄与する。0゜1%未満で
はこの効果が小さく、O,Sを超えると炭窒化物が粗大
化し、かえって高温長時間クリープ強度を低下させる。
It combines with VjC and N, precipitates fine carbonitrides, and contributes to improving high-temperature long-term creep strength. If it is less than 0.1%, this effect will be small, and if it exceeds O or S, carbonitrides will become coarser, which will actually reduce the high temperature long-term creep strength.

NbjVと同様、炭窒化物の微細析出により高温長時間
クリープ強度を向上させる。更にNbCを析出させ、組
織の微細化を図ることにより靭性を改善する。0.01
%未満ではこの効果が小さく、0.2%を超えるとNb
Cの多量析出により固溶CNを減少させ、溶接金属の強
度を低下させる。したがってNbば0.01〜0゜2%
とする。
Like NbjV, the fine precipitation of carbonitrides improves the high-temperature long-term creep strength. Furthermore, the toughness is improved by precipitating NbC and refining the structure. 0.01
If it is less than 0.2%, this effect is small, and if it exceeds 0.2%, Nb
The large amount of C precipitated reduces solid solution CN and lowers the strength of the weld metal. Therefore, Nb is 0.01~0゜2%
shall be.

Ajl:脱酸剤として添加されるが、0.04%を超え
ると溶接金属の高温長時間クリープ強度を損なう、した
がってAlは0.04%以下とする。
Ajl: Al is added as a deoxidizing agent, but if it exceeds 0.04%, it will impair the high temperature long-term creep strength of the weld metal, so Al should be 0.04% or less.

N:V、Nbと結合して炭窒化物を析出させ、高温長時
間クリープ強度向上に寄与する。0.003%未満ては
この効果が小さく 、O,OS%を超えると800℃以
下の溶接後熱処理では溶接金属に十分な靭性を与えるの
が困難となる。したがってNは0.003〜0.05%
とする。
N: Combines with V and Nb to precipitate carbonitrides, contributing to improvement in high-temperature long-term creep strength. If it is less than 0.003%, this effect is small, and if it exceeds O,OS%, it becomes difficult to provide sufficient toughness to the weld metal by post-weld heat treatment at 800°C or less. Therefore, N is 0.003-0.05%
shall be.

0:溶接金属の鉄原子の結合を弱めてマトリックスをも
ろくさせる関係から溶接金属の靭性を著しく低下させる
ので、0.01%以下に制限し、少ないほど望ましい。
0: Since it weakens the bonds of iron atoms in the weld metal and makes the matrix brittle, it significantly reduces the toughness of the weld metal, so it is limited to 0.01% or less, and the lower the better.

Ca:脱酸剤として添加され、溶接金属の低0化に寄与
して靭性を向上させる。0.005%未満ではその効果
が少なく、0.01%を超えると溶接金属中に介在物と
して残ってかえって靭性を低下さゼる。したがってCa
はo、 o o s〜0.01%とす上記成分以外にM
g:o、oi%以下、Ce:0゜02%以下、La:0
.02%以下の1種または2種以上を添加してもよい、
これらはCaと同様に溶接金属の低0化に寄与し、その
靭性を向上させる。
Ca: Added as a deoxidizer, contributes to lowering the zero content of weld metal and improving toughness. If it is less than 0.005%, the effect will be small, and if it exceeds 0.01%, it will remain as inclusions in the weld metal, which will actually reduce the toughness. Therefore, Ca
is o, o o s ~ 0.01%, and in addition to the above components, M
g: o, oi% or less, Ce: 0°02% or less, La: 0
.. 02% or less of one or more types may be added.
Like Ca, these contribute to lowering the zero content of the weld metal and improve its toughness.

Creq:高温用高Crフェライト鋼を共金系の材料で
溶接した場合、溶接金属は母材と同様、フェライト・マ
ルテンサイト二相混合組織となる。フェライトとマルテ
ンサイトの二相混合組織を有する溶接金属においては、
下式で表わされるCreqが大きいほどフェライト量が
多くなる。そして、フェライト量の増大は溶接金属の靭
性を低下させる0本発明者らの調査によると、Creq
が13を超えると、溶接金属中のフェライト量が60%
以上となり、実用上十分な靭性(0℃におけシャルピー
衝撃値5瞳f−m/as”以上)が確保できなくなる。
Creq: When high-Cr ferritic steel for high temperature use is welded with a co-metallic material, the weld metal has a ferrite-martensitic two-phase mixed structure similar to the base metal. In weld metals with a two-phase mixed structure of ferrite and martensite,
The larger Creq expressed by the following formula, the larger the amount of ferrite. Furthermore, an increase in the amount of ferrite reduces the toughness of the weld metal.According to the investigation by the present inventors, Creq
exceeds 13, the amount of ferrite in the weld metal is 60%
As a result, practically sufficient toughness (Charpy impact value of 5 pupils f-m/as" or more at 0° C.) cannot be ensured.

よってCr、、は13%以下に規制する。Therefore, Cr is regulated to 13% or less.

Cr、、=Cr+6S l+4Mo+:0.5W+11
V+5Nb+12Al−40C−3ON−4Ni−2M
n  (%〕 QC:本発明者らの研究によると、高温用高Crフェラ
イト鋼を共金糸の材料で溶接したときの溶接金属の靭性
低下は、フェライト量の増大による他、溶接金属の熱履
歴が母材の熱履歴と異なることも大きな原因であること
が判明した。すなわち、母材は熱間形成加工後、高温用
高Crフェライト鋼特有の焼ならし・焼もどし処理を受
けて溶接に供されるのに対し、溶接金属は溶接後にいわ
ゆる溶接後熱処理を受けるのみとなる。この熱廖歴の相
違に基づく溶接金属の靭性不足を溶接材料の成分設計で
補うため、本発明者らは下式で表わされるQcなるパラ
メータを導入した。
Cr,,=Cr+6S l+4Mo+:0.5W+11
V+5Nb+12Al-40C-3ON-4Ni-2M
n (%) QC: According to the research conducted by the present inventors, the decrease in the toughness of the weld metal when high-Cr ferritic steel for high temperature use is welded with co-metal thread material is due to the increase in the amount of ferrite as well as the thermal history of the weld metal. It was found that a major cause was that the thermal history of the base metal differed from that of the base metal.In other words, after hot forming, the base metal underwent normalization and tempering treatments unique to high-chromium ferritic steel for high temperature use before welding. In contrast, the weld metal only undergoes so-called post-weld heat treatment after welding.In order to compensate for the lack of toughness of the weld metal due to this difference in thermal history, the present inventors A parameter Qc expressed by the following formula was introduced.

Qc=C+Mn/20+Si/30 (%〕本発明者ら
の調査によると、このQcが高くなるほど溶接金属中の
マルテンサイト相が硬くなり、溶接後熱処理後の靭性を
低下させる。特にQcが0.2%を超えると、800℃
以下の溶接後熱処理では実用上十分な靭性(0℃におけ
るシャルピー衝撃値5にぎf−m7cm”以上)が確保
されない。
Qc=C+Mn/20+Si/30 (%) According to the research conducted by the present inventors, the higher Qc becomes, the harder the martensitic phase in the weld metal becomes, reducing the toughness after post-weld heat treatment.Particularly when Qc is 0. If it exceeds 2%, 800℃
The following post-weld heat treatment does not ensure practically sufficient toughness (Charpy impact value 5 mm f-m 7 cm or more at 0° C.).

一方、Qcを0.05%未満にするには、Cを0.05
%未満にしなければならず、高温長時間クリープ強度を
低下させる0以上のことからQcは0.05〜0.2%
とする。すなわちQcが0.05〜0.2%になるよう
Mnおよび31をC量との関係に基づいて規制するので
ある。
On the other hand, to make Qc less than 0.05%, C is 0.05%.
Qc must be less than 0.05% to 0.2% because it is greater than 0 and reduces the high temperature long-term creep strength.
shall be. That is, Mn and 31 are regulated based on their relationship with the C content so that Qc is 0.05 to 0.2%.

〔実施例〕〔Example〕

次に、本発明の溶接材料の使用結果を比較材料と比べて
説明する。
Next, the results of using the welding material of the present invention will be explained in comparison with comparative materials.

第1表にA1〜A9およびB1−B15で示す化学成分
の鋼を50瞳真空溶解炉にて溶製し、更に鍛造、圧延し
て、外径2鰭、長さ1100(1の本発明溶接材料およ
び比較用溶接材料を製造した。
Steels having the chemical compositions shown in Table 1 as A1 to A9 and B1 to B15 are melted in a 50-pupil vacuum melting furnace, further forged and rolled to have an outer diameter of 2 fins and a length of 1100 mm (1). Materials and comparative welding materials were produced.

一方、母材として、第2表に示す化学成分の鋼を50k
g真空溶解炉にて溶製し、1150〜950℃で鍛造、
圧延して厚さ10fiの板を製造した。
On the other hand, as a base material, 50k steel with the chemical composition shown in Table 2 was used.
g Melted in a vacuum melting furnace and forged at 1150-950℃,
A plate having a thickness of 10 fi was produced by rolling.

製造された母材には1050℃xlhr、ACの焼なら
しと830℃X0.5hr、ACの焼もどしとを施した
。この母材は特開昭62−89842号にて提案された
高温用高Crフェライト鋼で、へ01点を高めて800
℃以上の焼もどしが可能なように成分設計されている。
The manufactured base material was subjected to AC normalization at 1050°C x 1 hr and AC tempering at 830°C x 0.5 hr. This base material is a high Cr ferritic steel for high temperature use proposed in JP-A No. 62-89842, and has an increased F01 point of 800.
The composition is designed to allow tempering at temperatures above ℃.

そして、この母材に第1図に示す開先を設け、前記の各
種溶接材料を用いて第3表に示す条件で第1図に併示す
る5層のTIG溶接を行った。溶接後、溶接部材に対し
て760℃x0.3hr、ACの溶接後熱処理を行い、
その後、溶接部材より第2図に示す溶接金属の中央部に
切欠を設けたシャルピー衝撃試験片および第3図に示す
クリープ試験片を切り出し、各試験を行った。
Then, the groove shown in FIG. 1 was provided in this base material, and five layers of TIG welding, shown in FIG. 1, were performed using the various welding materials described above under the conditions shown in Table 3. After welding, the welded parts were subjected to post-weld heat treatment of AC at 760℃ x 0.3hr,
Thereafter, a Charpy impact test piece with a notch in the center of the weld metal shown in FIG. 2 and a creep test piece shown in FIG. 3 were cut out from the welded parts, and each test was conducted.

”シャルピー衝撃試験は0℃で行い、クリープ試験は温
度650℃、負荷応力9 kg r / fi”の条件
で行い、破断までの時間を調査した。
The Charpy impact test was conducted at 0°C, and the creep test was conducted at a temperature of 650°C and a load stress of 9 kg r/fi, and the time until rupture was investigated.

試験結果を溶接材料に対応させて第1表に示す。The test results are shown in Table 1 in correspondence with the welding materials.

第1表から明らかなように、化学成分、Crll@およ
びQcが本発明範囲内にあるAl−A9の溶接材料を用
いると、5000h’rを超えるクリープ破断時間が得
られる。この結果は母材の破断時間(5000h r以
上)と同等である。また、靭性についても5 kg f
 −m/d (5kg f / a”)l]上(7)シ
ャルピー衝撃値が確保されている。
As is clear from Table 1, when using the Al-A9 welding material whose chemical composition, Crll@ and Qc are within the range of the present invention, a creep rupture time of over 5000 h'r can be obtained. This result is equivalent to the rupture time of the base material (5000 hr or more). Also, regarding toughness, 5 kg f
-m/d (5kg f/a”)l] (7) Charpy impact value is ensured.

これに対し、Blの溶接材料ではCrが多過ぎ、B2で
はCが多過ぎ、B4ではOが過多でCaが不足し、B6
ではMoが多過ぎ、BSではWが多過ぎ、B9ではCa
が多過ぎ、BllではNが多過ぎ、B16ではCr、、
が多過ぎるため、A1〜A9と比べ゛ていずれもシャル
ピー衝撃値が低くなっている。
On the other hand, Bl welding material has too much Cr, B2 has too much C, B4 has too much O and insufficient Ca, and B6
In this case, there is too much Mo, in BS there is too much W, and in B9 there is too much Ca.
too much, too much N in Bll, Cr in B16,...
Because there are too many, the Charpy impact values of all of them are lower than those of A1 to A9.

一方、クリープ強度に関しては、B1ではNが不足し、
B3,5ではCが不足し、B4ではNiが多過ぎ、B5
ではMoが不足し、B7ではWが不足し、B9ではVが
不足し、BIOではVが多過ぎ、BllではNbが不足
し、B12ではNbが多過ぎ、B13ではAlが多過ぎ
るため、母材の破断時間(5000h r以上)に比べ
てかなり低い結果しか得られてし1ない。
On the other hand, regarding creep strength, B1 lacks N,
B3 and 5 lack C, B4 has too much Ni, and B5
There is a shortage of Mo in B7, a shortage of W in B7, a shortage of V in B9, too much V in BIO, a shortage of Nb in B11, too much Nb in B12, and too much Al in B13. However, compared to the rupture time of the material (more than 5000 hr), the results were quite low.

また、B13に見られるようにQc値が0.2%を超え
たり、816に見られるようにCr、qが13%を超え
ると、十分な靭性(5k、 r・−/cd)は得られな
くなる。
Furthermore, if the Qc value exceeds 0.2% as seen in B13, or Cr and q exceeds 13% as seen in 816, sufficient toughness (5k, r-/cd) cannot be obtained. It disappears.

また、第4図はシャルピー衝撃値と0量の関係をAl、
2,5.7およびB4,14.15について表わしたも
のである。同図から明らかなように、溶接金属の靭性は
溶接材料中の0量によって大きな影響を受け、0量が少
ないほど靭性向上が図られる。
In addition, Figure 4 shows the relationship between Charpy impact value and zero amount for Al,
2,5.7 and B4,14.15. As is clear from the figure, the toughness of the weld metal is greatly affected by the amount of zero in the welding material, and the smaller the amount of zero, the more the toughness is improved.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の高Crフェラ
イト鋼用溶接材料は化学成分(特に0It)の規制と、
Cr、、値およびQc値の規制とにより、共金糸の材料
であるにもかかわらず溶接金属に優れた靭性を与え、高
温長時間クリープ強度についても母材と同等もしくはそ
れ以上の性能を与えろ。更に、共金糸の材料であること
から、母材との熱膨張差や脱炭層形成に起因する誘起割
れを防止し、経済性についてもNi基基材材料比べて大
幅に優れるものである。
As is clear from the above explanation, the welding material for high Cr ferritic steel of the present invention requires regulation of chemical components (particularly 0It),
By regulating the Cr value and Qc value, it is possible to give the weld metal excellent toughness even though it is a cometal thread material, and to give it the same or better performance than the base metal in terms of high-temperature long-term creep strength. Furthermore, since it is a cometal thread material, it prevents cracking induced due to the difference in thermal expansion with the base material and the formation of a decarburized layer, and is significantly superior in terms of economy compared to Ni-based base materials.

したがって、本発明の溶接材料は例えばAc。Therefore, the welding material of the present invention is, for example, Ac.

点を高めた高温用高Crフェライト鋼材に適用して、そ
の母材の利点を生かした高性能かつ経済的。
It is applied to high-temperature high-Cr ferritic steel materials with increased points, and is high-performance and economical by taking advantage of the advantages of the base material.

な溶接を可能にし、溶接継手の特性改善、経済性改善に
多大の効果を発揮するものである。
This technology makes it possible to perform flexible welding, and is highly effective in improving the characteristics and economic efficiency of welded joints.

【図面の簡単な説明】 第1図は溶接試験における溶接部の開先形状および積層
法を示す断面図、第2図および第3図はシャルピー衝撃
試験片およびクリープ試験片の側面図、第4図は溶接金
属のシャルピー衝撃値とO量との関係を示す図表である
。 図中、18溶接ビード、2:は溶接部材。 第  1  図 第  2 図 第  4 図 第  3 図
[Brief explanation of the drawings] Figure 1 is a cross-sectional view showing the groove shape and lamination method of the welded part in the welding test, Figures 2 and 3 are side views of the Charpy impact test piece and the creep test piece, and Figure 4 is a side view of the Charpy impact test piece and creep test piece. The figure is a chart showing the relationship between the Charpy impact value of weld metal and the amount of O. In the figure, 18 weld beads, 2: welded member. Figure 1 Figure 2 Figure 4 Figure 3

Claims (1)

【特許請求の範囲】 1、重量%でC:0.05〜0.17%、Si:0.0
1〜1.5%、Mn:0.01〜2%、P;0.025
%以下、S:0.015%以下、Cr:8〜12%、N
i:0.8%以下、Mo:0.5〜3%、W:0.5〜
3%、V:0.1〜0.5%、Nb:0.01〜0.2
%、Al:0.04%以下、N:0.03〜0.05%
、O:0.01%以下、Ca:0.0005〜0.01
%を含み、さらにCr_e_q:13%以下 ただしCr_e_q=Cr+6Si+4Mo+1.5W
+11V+5Nb +12Al−40C−30N −4Ni−2Mn〔%〕 Qc:0.2%以下 ただしQc=C+Mn/20+Si/30 〔%〕 を満足し、残部Feおよび不可避的不純物からなること
を特徴とする高Crフェライト鋼用溶接材料。
[Claims] 1. C: 0.05 to 0.17% by weight, Si: 0.0
1-1.5%, Mn: 0.01-2%, P; 0.025
% or less, S: 0.015% or less, Cr: 8-12%, N
i: 0.8% or less, Mo: 0.5~3%, W: 0.5~
3%, V: 0.1-0.5%, Nb: 0.01-0.2
%, Al: 0.04% or less, N: 0.03 to 0.05%
, O: 0.01% or less, Ca: 0.0005 to 0.01
%, and further Cr_e_q: 13% or less However, Cr_e_q=Cr+6Si+4Mo+1.5W
+11V+5Nb +12Al-40C-30N -4Ni-2Mn [%] Qc: 0.2% or less However, Qc=C+Mn/20+Si/30 [%] is satisfied, and the balance is Fe and unavoidable impurities. Welding material for ferritic steel.
JP3837288A 1988-02-19 1988-02-19 Welding material for high cr ferrite steel Pending JPH01215489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3837288A JPH01215489A (en) 1988-02-19 1988-02-19 Welding material for high cr ferrite steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3837288A JPH01215489A (en) 1988-02-19 1988-02-19 Welding material for high cr ferrite steel

Publications (1)

Publication Number Publication Date
JPH01215489A true JPH01215489A (en) 1989-08-29

Family

ID=12523452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3837288A Pending JPH01215489A (en) 1988-02-19 1988-02-19 Welding material for high cr ferrite steel

Country Status (1)

Country Link
JP (1) JPH01215489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269590A (en) * 1992-03-25 1993-10-19 Sumitomo Metal Ind Ltd Welding material for heat resistant steel excellent in creep strength
WO2002059389A2 (en) * 2001-01-25 2002-08-01 Edelstahl Witten-Krefeld Gmbh Steel and method for producing an intermediate product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269590A (en) * 1992-03-25 1993-10-19 Sumitomo Metal Ind Ltd Welding material for heat resistant steel excellent in creep strength
WO2002059389A2 (en) * 2001-01-25 2002-08-01 Edelstahl Witten-Krefeld Gmbh Steel and method for producing an intermediate product
WO2002059389A3 (en) * 2001-01-25 2002-09-19 Edelstahl Witten Krefeld Gmbh Steel and method for producing an intermediate product
AU2002250853B2 (en) * 2001-01-25 2006-08-03 Deutsche Edelstahlwerke Gmbh Steel and method for producing an intermediate product

Similar Documents

Publication Publication Date Title
EP1304394B1 (en) Ferritic heat-resistant steel
US4331474A (en) Ferritic stainless steel having toughness and weldability
US5849111A (en) Duplex stainless steel
JPH05345949A (en) Heat resistant low cr ferritic steel excellent in toughness and creep strength
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
GB2133037A (en) Stainless duplex ferritic- austenitic steel, articles made therefrom and method of enhancing intergranular corrosion resistance of a weld of the stainless duplex ferritic austenitic steel
EP0930127B1 (en) Welding materials for high-Cr steels
JP7485929B2 (en) Low alloy heat-resistant steel and manufacturing method thereof
JP2000234140A (en) Steel for boiler excellent in electric resistance weldability and electric resistance welded boiler steel tube using it
US5063023A (en) Corrosion resistant Ni- Cr- Si- Cu alloys
JPH0454737B2 (en)
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
USRE28772E (en) High strength corrosion-resistant stainless steel
JPH01215489A (en) Welding material for high cr ferrite steel
JP2000015447A (en) Welding method of martensitic stainless steel
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JPH02280993A (en) Welding material for high-cr ferrite steel
JP3165902B2 (en) High Cr steel welding method
US3373015A (en) Stainless steel and product
JP3387145B2 (en) High Cr ferritic steel with excellent high temperature ductility and high temperature strength
JPH0636996B2 (en) Submerged arc welding wire for 9Cr-Mo steel
JP3793388B2 (en) Steel for large heat input welding for earthquake resistant buildings
JP2002144082A (en) WELDED JOINT OF SOFT STEEL OR STEEL IN 490 MPa CLASS EXCELLENT IN FATIGUE STRENGTH AND METHOD FOR PRODUCING THE SAME
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength
JPS6187817A (en) Manufacture of heat resistant austenitic stainless steel