EP1445339B1 - Alloy and article with high heat resistance and high heat stability - Google Patents

Alloy and article with high heat resistance and high heat stability Download PDF

Info

Publication number
EP1445339B1
EP1445339B1 EP04450025.4A EP04450025A EP1445339B1 EP 1445339 B1 EP1445339 B1 EP 1445339B1 EP 04450025 A EP04450025 A EP 04450025A EP 1445339 B1 EP1445339 B1 EP 1445339B1
Authority
EP
European Patent Office
Prior art keywords
alloy
molybdenum
hot
vanadium
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04450025.4A
Other languages
German (de)
French (fr)
Other versions
EP1445339A1 (en
Inventor
Devrim Dipl.-Ing. Dr Caliskanoglu
Kay M.Eng. Fisher
Reinhold Univ. Prof. Dipl.-Ing. Dr. Ebner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH
Publication of EP1445339A1 publication Critical patent/EP1445339A1/en
Application granted granted Critical
Publication of EP1445339B1 publication Critical patent/EP1445339B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation

Definitions

  • the invention relates to an alloy for the production of articles with high heat resistance and toughness.
  • the invention relates to a hot work tool steel article having high hardness, high heat resistance and high thermal stability.
  • hot work tool steels can be referred to as thermally recoverable iron-based alloys whose elevated mechanical properties after heat treatment, in particular their high strength and hardness, are maintained up to temperatures of 500 ° C. and above.
  • Conventional hot working steels are carbon-containing iron-based alloys containing 0.3 to 0.4% by weight of carbon (C), the hardness of which is increased as required by quench hardening due to martensite formation in the microstructure and tempering.
  • tungsten (W) to 9 wt .-% and cobalt (Co) to 3.0 wt .-% the use temperature can be slightly increased.
  • the hot hardness of such steels is given by a precipitation mechanism, referred to by those skilled in the art as secondary hardening where the finest chromium-molybdenum-tungsten-vanadium carbides are formed in the martensite lattice , which is, for example, the documents JP 07228945A and US-A-3453151 reveal.
  • an alloyed material is first subjected to a solution annealing treatment followed by increased cooling, with which an alloying additive or phase is completely or partially solubilized and maintained in supersaturated solution. Subsequent heating to a temperature below the solution annealing temperature causes the supersaturation fraction of the element (s) or phase (s) to precipitate, causing a change in material properties, typically a material hardness increase.
  • Precipitation-hardenable iron base materials generally have alloy contents in% by weight of: Carbon (C) to 0.05 Manganese (Mn) to 2.0 Chrome (Cr) to 16.0 Molybdenum (Mo) to 6.0 Nickel (Ni) to 26.0 Vanadin (V) to 0.4 Cobalt (Co) to 10.0 Titanium (Ti) to 3.0 Aluminum (Al) to 0.3
  • the aim of the invention is to provide an alloy which makes it possible to improve the overall property profile of an object made therefrom.
  • a hot work tool article with simultaneously high hardness and high toughness, high heat resistance and high thermal stability can be provided.
  • the object of the invention mentioned above is with an alloy consisting of in wt .-%: Carbon (C) 0.15 to 0.44 Silicon (Si) 0.04 to 0.3 Manganese (Mn) 0.06 to 0.4 Chrome (Cr) 1.2 to 5.0 Molybdenum (Mo) 0.8 to 6.5 Nickel (Ni) 3.4 to 9.8 Vanadin (V) 0.2 to 0.8 Cobalt (Co) 0.1 to 9.8 Aluminum (Al) 1.4 to 3.0 Copper (Cu) under 1.3 Niobium (Nb) under 0.35 Iron (Fe) rest as well as production-related impurities.
  • a hardenability of large parts is improved possible because alloying a corresponding thermal conversion behavior of the material is set.
  • the tempering resistance and thus the thermal stability of the tempered material at high hardness are substantially improved.
  • a carbon content of at least 0.15 wt .-% is provided so that a sufficient amount of carbide for a desired secondary increase in hardness can be eliminated.
  • Higher carbon concentrations than 0.44 wt .-% can interfere with the proposed carbide-forming elements, the toughening reduce primary carbides, so that the content of carbon should be between 0.15 and 0.44 wt .-%.
  • the content of silicon must be an advantageous composition of a deoxidation product because of at least 0.04 wt .-%, on the other hand, however, should not be higher than 0.3 wt .-%, because higher silicon values adversely affect the material toughness.
  • Manganese is provided according to the invention in the steel with a concentration of between 0.06 and 0.4% by weight. Lower levels can cause thermoforming and higher levels of brittleness to harden the material.
  • Chromium contents below 1.2% by weight have a disadvantageous effect on the hardenability of the material; those of more than 5.0% by weight impair the thermal stability of the same, because this suppresses the activity of the molybdenum.
  • the strong carbide Vanadin is provided according to the invention with a minimum content of 0.2 wt .-% to ensure sufficient, stable secondary hardening of the steel sure.
  • niobium is similar to that of vanadium, it is characterized by the formation of very stable carbides, so that the content of niobium should advantageously be below 0.35 wt .-%.
  • the alloy according to the invention thus has a content of chromium of from 1.2 to 5.0, molybdenum, at a carbon concentration of 0.15 to 0.44% by weight 0.8 to 6.5 and on vanadium from 0.2 to 0.8.
  • the nickel concentration of the steel and its aluminum content are to be seen in terms of the precipitation kinetics of the phase of Al Fe 2 Ni for hardness increase in a proposed heat treatment technology. At nickel contents below 3.4 wt .-% and at an aluminum concentration of less than 1.4 wt .-% precipitation hardening is pushed back, so the additive increase in hardness as a material during tempering low.
  • Nickel shift the ⁇ / ⁇ conversion to lower temperatures, which can lead to problems in the soft-annealing treatment of the steel, a high processing hardness and the disruption of the precipitation kinetics.
  • Copper can form undesirable intermetallic phases and should be contained in the steel at a low concentration of less than 1.3% by weight.
  • an alloy which contains one or more of the impurity elements with the following MAXIMUM concentrations in% by weight: Phosphorus (P) 0.02, preferably 0.005 Sulfur (S) 0,008, preferably 0,003 Copper (Cu) 0.15 preferably 0.06 Titanium (Ti) 0.01, preferably 0.005 Niobium (Nb) 0.001, preferably 0.0005 Nitrogen (N) 0,025, preferably 0,015 Oxygen (O) 0.009, preferably 0,002 Calcium (Ca) 0,003, preferably 0.001 Magnesium (Mg) 0,003, preferably 0.001 Tin (Sn) 0.01, preferably 0.005 Tantalum (Ta) 0.001, preferably 0.0005
  • the object of the invention is achieved according to an improved property profile of a hot work tool article when a hot-working and machining primary material prepared by a melt metallurgy or powder metallurgy process having a previously given chemical composition is molded, which molded article becomes secondary after a thermosetting heat treatment precipitated carbides, as well as intermetallic precipitates.
  • the total hardness of the material is advantageously achieved by a superposition of the secondary hardness increase by carbide precipitations and precipitation hardening.
  • high material hardness values can be achieved, although the tempering technology is directed to obtaining high material toughness and using lower hardening temperatures compared to prior art hot work tool steel.
  • This lower austenitizing temperature may also have significant advantages in terms of low distortion in a tempering treatment of complicated shaped parts.
  • the values for high hardness values are Toughness is particularly high and the thermal stability is shifted by up to 50 ° C and more to higher temperatures.
  • a hot work tool according to the invention which secondarily precipitated chromium-molybdenum-vanadium mixed carbides and substantially has intermetallic phases of the type Al Fe 2 Ni in the structure, has a particularly preferred property profile and can be produced economically in conventional hardening equipment at relatively low curing temperatures.
  • the hardness profile of the materials was determined as a function of the temperature. It is essential that the alloy A according to the invention required an austenitizing temperature of 990 ° C. in order to achieve this hardness, but that of 1050 ° C. was required for the conventional hot-rolled steel B, however.
  • the temperature as shown in Tab. 3A and Tab. 3B, increased in the range between 500 ° C and 600 ° C, the hardness of the inventively assembled sample A to values around 60 HRC, whereas in the conventional hot-rolled steel B a maximum Hardness value of 56 HRC at 500 ° C was determined.
  • Fig. 1 the respective hardness curve depending on the temperature of the material A according to the invention and the hot working steel alloy B according to the prior art comparatively shown.
  • a hardness determination on the test specimen at the test temperature was carried out according to the rebound hardness method (Shore hardness), for which return values hitherto only a conversion into Vickers hardness values is present.
  • the alloy A according to the invention In comparison with a conventional hot-work steel B and a maraging steel C, the alloy A according to the invention with the same initial hardness at 650 ° C. for a time of up to 1000 minutes had the highest material hardness. After this time, maraging steel C had a higher hardness with high thermal stability, whereas hot work steel A according to the invention lost about 10% of its hardness up to about 2000 minutes.
  • the thermal stability of the conventional hot-work steel B was low; the hardness difference in comparison with the alloy A according to the invention increased steadily up to 1000 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)

Description

Die Erfindung betrifft eine Legierung zur Herstellung von Gegenständen mit hoher Warmfestigkeit und Zähigkeit.The invention relates to an alloy for the production of articles with high heat resistance and toughness.

Im Speziellen bezieht sich die Erfindung auf einen Warmarbeitsstahl-Gegenstand mit hoher Härte, hoher Warmfestigkeit und hoher thermischer Stabilität.In particular, the invention relates to a hot work tool steel article having high hardness, high heat resistance and high thermal stability.

Allgemein können Warmarbeitsstähle als thermisch vergütbare Eisenbasislegierungen bezeichnet werden, deren erhöhte mechanische Eigenschaften nach der Wärmebehandlung, insbesondere deren hohe Festigkeit und Härte bis zu Temperaturen von 500°C und darüber erhalten bleiben.In general, hot work tool steels can be referred to as thermally recoverable iron-based alloys whose elevated mechanical properties after heat treatment, in particular their high strength and hardness, are maintained up to temperatures of 500 ° C. and above.

Den steigenden Anforderungen der technischen Entwicklung entsprechend besteht die allgemeine Forderung an Warmarbeitswerkstoffe deren Güte weiter zu verbessern und insbesondere deren Warmfestigkeit bei hoher thermischer Stabiltiät zu steigern, sowie die Zähigkeit zu erhöhen.In accordance with the increasing demands of technical development, there is a general requirement for hot working materials to further improve their quality and, in particular, to increase their heat resistance at high thermal stability and to increase their toughness.

Übliche Warmarbeitstähle sind kohlenstoffhältige Eisenbasislegierungen mit 0,3 bis 0,4 Gen.-% Kohlenstoff (C), deren Härte mit einer Abschreckhärtung durch Martensitbildung im Gefüge und einem Anlassen anforderungsgemäß erhöht wird. Ein Zusatz von Legierungselementen in der Regel in Gew.-%: Silizium (Si) bis 1,5 Chrom (Cr) 2,5 bis 5,5 Molybdän (Mo) bis 3,0 Vanadin (V) bis 1,0 zum Eisenbasiswerkstoff und eine Anwendung von besonders gestalteten Wärmebehandlungsverfahren gestattet es, aus diesem einen Gegenstand herzustellen, der hohe Werte für gewünschte mechanische Eigenschaften bei einer Verwendungstemperatur bis zu ca. 500°C besitzt. Durch Zulegieren von Wolfram (W) bis 9 Gew.-% und Kobalt (Co) bis 3,0 Gew.-% kann die Einsatztemperatur etwas erhöht werden.Conventional hot working steels are carbon-containing iron-based alloys containing 0.3 to 0.4% by weight of carbon (C), the hardness of which is increased as required by quench hardening due to martensite formation in the microstructure and tempering. An addition of alloying elements usually in wt .-%: Silicon (Si) to 1.5 Chrome (Cr) 2.5 to 5.5 Molybdenum (Mo) to 3.0 Vanadin (V) to 1.0 to the iron base material and an application of specially designed heat treatment processes makes it possible to produce from this an article which has high values for desired mechanical properties at a temperature of use up to about 500 ° C. By alloying tungsten (W) to 9 wt .-% and cobalt (Co) to 3.0 wt .-%, the use temperature can be slightly increased.

Im Wesentlichen ergibt sich die Warmhärte derartiger Stähle durch einen Ausscheidungsmechanismus, der vom Fachmann als Sekundärhärteanstieg bezeichnet wird, wobei feinste Chrom-Molybdän-Wolfram-Vanadin-Karbide im Martensitgitter gebildet werden, was beispiethaft die Dokumente JP 07228945A und US-A-3453151 offenbaren. In essence, the hot hardness of such steels is given by a precipitation mechanism, referred to by those skilled in the art as secondary hardening where the finest chromium-molybdenum-tungsten-vanadium carbides are formed in the martensite lattice , which is, for example, the documents JP 07228945A and US-A-3453151 reveal.

Eine weitere im Wesen zur Abschreckhärtung unterschiedliche Steigerung der Festigkeit eines Werkstoffes kann durch eine Ausscheidungshärtung erreicht werden. Die Voraussetzung für eine Ausscheidungshärtung ist eine mit der Temperatur abnehmende Löslichkeit eines Legierungszusatzes bzw. von Legierungselementen im Grundmetall.Another increase in the strength of a material, which differs in its nature for quench hardening, can be achieved by precipitation hardening. The prerequisite for a precipitation hardening is a decreasing with the temperature solubility of an alloy addition or of alloying elements in the base metal.

Bei einer Ausscheidungshärtung wird ein legierter Werkstoff vorerst einer Lösungsglühbehandlung mit einer anschließenden, verstärkten Abkühlung unterworfen, mit welcher ein Legierungszusatz oder eine Phase vollständig oder teilweise in Lösung gebracht und in übersättigter Lösung gehalten wird. Ein anschließendes Erwärmen auf eine Temperatur unterhalb der Lösungsglühtemperatur bewirkt ein Ausscheiden des Übersättigungsanteiles der (des) Elemente(s) oder der Phase(n), was eine Änderung der Werkstoffeigenschaften, in der Regel einen Materialhärteanstieg, bewirkt.In precipitation hardening, an alloyed material is first subjected to a solution annealing treatment followed by increased cooling, with which an alloying additive or phase is completely or partially solubilized and maintained in supersaturated solution. Subsequent heating to a temperature below the solution annealing temperature causes the supersaturation fraction of the element (s) or phase (s) to precipitate, causing a change in material properties, typically a material hardness increase.

Ausscheidungshärtbare Eisenbasiswerkstoffe besitzen in der Regel Legierungsgehalte in Gew.-% von: Kohlenstoff (C) bis 0,05 Mangan (Mn) bis 2,0 Chrom (Cr) bis 16,0 Molybdän (Mo) bis 6,0 Nickel (Ni) bis 26,0 Vanadin (V) bis 0,4 Kobalt (Co) bis 10,0 Titan (Ti) bis 3,0 Aluminium (Al) bis 0,3 Precipitation-hardenable iron base materials generally have alloy contents in% by weight of: Carbon (C) to 0.05 Manganese (Mn) to 2.0 Chrome (Cr) to 16.0 Molybdenum (Mo) to 6.0 Nickel (Ni) to 26.0 Vanadin (V) to 0.4 Cobalt (Co) to 10.0 Titanium (Ti) to 3.0 Aluminum (Al) to 0.3

Sowohl die Eisenbasislegierungen mit einer Martensitbildung bei einer Abschreckhärtung, als auch jene, die durch Ausscheidung von Elementen und Phasen eine Änderung ihrer mechanischen Eigenschaften erfahren, haben den Nachteil gemeinsam, dass im jeweiligen Bereich der Legierungszusammensetzung und/oder durch eine Wärmebehandlungstechnologie jeweils nur Einzeleigenschaften, wie zum Beispiel die Härte und Festigkeit oder die Temperaturbeständigkeit, verbessert werden, damit aber ein Abfall von weiteren Eigenschaftswerten, wie zum Beispiel die Materialzähigkeit, die thermische Stabilität und dergleichen, verbunden ist.Both the iron-base alloys with a martensite formation in a quench hardening, as well as those experiencing a change in their mechanical properties by precipitation of elements and phases, have the common disadvantage that in each area of the alloy composition and / or by a heat treatment technology only individual properties, such as for example, the hardness and strength or the temperature resistance, be improved but a drop of other property values, such as material toughness, thermal stability and the like, is connected.

Ziel der Erfindung ist es, eine Legierung anzugeben, die es ermöglicht, das Eigenschaftsprofil insgesamt eines daraus gefertigten Gegenstandes zu verbessern. Gemäß der Aufgabe der Erfindung ist ein Warmarbeitstahl-Gegenstand mit gleichzeitig hoher Härte und hoher Zähigkeit, hoher Warmfestigkeit und hoher thermischer Stabilität zu schaffen.The aim of the invention is to provide an alloy which makes it possible to improve the overall property profile of an object made therefrom. According to the object of the invention, a hot work tool article with simultaneously high hardness and high toughness, high heat resistance and high thermal stability can be provided.

Das Ziel der eingangs genannten Erfindung wird mit einer Legierung, bestehend aus in Gew.-%: Kohlenstoff (C) 0,15 bis 0,44 Silizium (Si) 0,04 bis 0,3 Mangan (Mn) 0,06 bis 0,4 Chrom (Cr) 1,2 bis 5,0 Molybdän (Mo) 0,8 bis 6,5 Nickel (Ni) 3,4 bis 9,8 Vanadin (V) 0,2 bis 0,8 Kobalt (Co) 0,1 bis 9,8 Aluminium (Al) 1,4 bis 3,0 Kupfer (Cu) unter 1,3 Niob (Nb) unter 0,35 Eisen (Fe) Rest sowie herstellungsbedingte Verunreinigungen, erreicht.The object of the invention mentioned above is with an alloy consisting of in wt .-%: Carbon (C) 0.15 to 0.44 Silicon (Si) 0.04 to 0.3 Manganese (Mn) 0.06 to 0.4 Chrome (Cr) 1.2 to 5.0 Molybdenum (Mo) 0.8 to 6.5 Nickel (Ni) 3.4 to 9.8 Vanadin (V) 0.2 to 0.8 Cobalt (Co) 0.1 to 9.8 Aluminum (Al) 1.4 to 3.0 Copper (Cu) under 1.3 Niobium (Nb) under 0.35 Iron (Fe) rest as well as production-related impurities.

Die sich mit der Erfindung ergebenden Vorteile sind im Wesenlichen darin zu sehen, dass durch legierungstechnische Maßnahmen ein Werkstoff geschaffen wurde, bei welchem der Abschreck- oder Martensithärtung eine Ausscheidungshärtung überlagerbar ist. Dabei sind die Aktivitäten der Legierungselemente dem Kohlenstoff gegenüber und jene hinsichtlich der Verbindungs- bzw. Phasenbildung derart günstig gewählt, dass auch bei vergleichsweise niedrigen Austenitisierungstemperaturen eine Härtung durch feinste, sekundäre Karbideausscheidungen, insbesondere Chrom-Molybdän-Vanadin-Karbide, und eine Härtung durch eine Ausscheidung von intermetallischen Phasen, insbesondere von Al Fe2Ni bei der Vergütung gleichzeitig erfolgen und eine hohe Warmhärte bei hoher Zähigkeit des Werkstoffes erreicht wird.The advantages resulting from the invention are essentially to be seen in the fact that a material was created by alloying measures, in which the quenching or Martensithärtung a precipitation hardening is superimposed. The activities of the alloying elements compared to the carbon and those in connection or phase formation are chosen so low that even at comparatively low Austenitisierungstemperaturen curing by ultrafine, secondary Karbideausscheidungen, especially chromium-molybdenum-vanadium carbides, and curing by a Elimination of intermetallic phases, in particular of Al Fe 2 Ni occur simultaneously in the remuneration and a high hot hardness with high toughness of the material is achieved.

Gemäß der Erfindung ist auch eine Durchhärtbarkeit von großen Teilen verbessert möglich, weil legierungstechnisch ein entsprechendes thermisches Umwandlungsverhalten des Werkstoffes eingestellt ist. Desgleichen sind die Anlassbeständigkeit und somit die thermische Stabilität des vergüteten Materials bei hoher Härte wesentlich verbessert.According to the invention, a hardenability of large parts is improved possible because alloying a corresponding thermal conversion behavior of the material is set. Likewise, the tempering resistance and thus the thermal stability of the tempered material at high hardness are substantially improved.

In einer Eisenbasislegierung nach der Erfindung ist ein Kohlenstoffgehalt von mindestens 0,15 Gew.-% vorgesehen, damit eine für einen gewünschten Sekundärhärteanstieg ausreichende Karbidmenge ausscheidbar ist. Höhere Kohlenstoffkonzentrationen als 0,44 Gew.-% können mit den vorgesehenen karbidbildenden Elementen störende, die Zähigkeit mindernde Primärkarbide bilden, so dass der Gehalt an Kohlenstoff zwischen 0,15 und 0,44 Gew.-% betragen soll.In an iron-based alloy according to the invention, a carbon content of at least 0.15 wt .-% is provided so that a sufficient amount of carbide for a desired secondary increase in hardness can be eliminated. Higher carbon concentrations than 0.44 wt .-% can interfere with the proposed carbide-forming elements, the toughening reduce primary carbides, so that the content of carbon should be between 0.15 and 0.44 wt .-%.

Der Gehalt an Silizium muss einer vorteilhaften Zusammensetzung eines Desoxidationsproduktes wegen mindestens 0,04 Gew.-% betragen, soll andererseits jedoch nicht höher als 0,3 Gew.-% sein, weil höhere Siliziumwerte die Materialzähigkeit nachteilig beeinflussen.The content of silicon must be an advantageous composition of a deoxidation product because of at least 0.04 wt .-%, on the other hand, however, should not be higher than 0.3 wt .-%, because higher silicon values adversely affect the material toughness.

Mangan ist mit einer Konzentration zwischen 0,06 und 0,4 Ges.-% erfindungsgemäß im Stahl vorgesehen. Niedrigere Gehalte können eine Brüchigkeit bei einer Warmformgebung und höhere Gehalte Nachteile für die Härtbarkeit des Materials bewirken.Manganese is provided according to the invention in the steel with a concentration of between 0.06 and 0.4% by weight. Lower levels can cause thermoforming and higher levels of brittleness to harden the material.

Die Gehalte an Chrom, Molybdän und Vanadin sind wichtig für eine gewünschte Sekundärhärtebildung des Werkstoffes bei der Vergütung und sollen gemeinsam betrachtet werden. Chromgehalte unter 1,2 Gew.-% wirken sich nachteilig auf die Durchhärtbarkeit des Materials aus, solche von über 5,0 Gew.-% verschlechtern die thermische Stabilität desselben, weil dadurch die Aktivität des Molybdän zurückgedrängt wird.The contents of chromium, molybdenum and vanadium are important for a desired secondary hardness formation of the material in the coating and should be considered together. Chromium contents below 1.2% by weight have a disadvantageous effect on the hardenability of the material; those of more than 5.0% by weight impair the thermal stability of the same, because this suppresses the activity of the molybdenum.

Bei Molybdän-Konzentrationen unter 0,8 Gew.-% wird im Zuge der Wärmebehandlung zuwenig von diesem Element in Lösung gebracht, was zu niedrigen Sekundärhärtewerten führt. Über 6,5 Gew.-% Molybdän im Stahl kann einen zu hohen Karbidanteil bewirken, was Zähigkeitseinbußen des Materials und wirtschaftliche Nachteile erbringen kann.At molybdenum concentrations below 0.8 wt%, too little of this element is solubilized during the heat treatment, resulting in low secondary hardness levels. Over 6.5% by weight of molybdenum in the steel can cause too high a carbide content, which can lead to reduced toughness of the material and economic disadvantages.

Der starke Karbidbildner Vanadin ist erfindungsgemäß mit einem Mindestgehalt von 0,2 Gew.-% vorgesehen, um eine ausreichende, stabile Sekundärhärtung des Stahles sicher zustellen. Höhere Gehalte als 0,8 Gew.-% Vanadin können insbesondere bei Kohlenstoffgehalten im oberen Bereich der vorgesehenen Konzentrationsspanne, zur Ausscheidung von primären Karbiden führen, wodurch die Zähigkeitseigenschaften des Werkstoffes sprunghaft verschlechtert werden.The strong carbide Vanadin is provided according to the invention with a minimum content of 0.2 wt .-% to ensure sufficient, stable secondary hardening of the steel sure. Higher contents than 0.8% by weight of vanadium, especially at carbon contents in the upper range of the intended concentration range, can lead to the precipitation of primary carbides, whereby the toughness properties of the material are abruptly worsened.

Die Wirkung von Niob ist zwar ähnlich derjenigen von Vanadin, zeichnet sich jedoch durch eine Bildung von sehr stabilen Karbiden aus, sodass der Gehalt an Niob vorteilhaft unter 0,35 Gew.-% betragen soll.Although the effect of niobium is similar to that of vanadium, it is characterized by the formation of very stable carbides, so that the content of niobium should advantageously be below 0.35 wt .-%.

Zur Sicherstellung eines gewünschten Sekundärhärteanstieges bei einem Anlassen des Martensitgefüges der erfndungsgemäßen Legierung weist diese somit bei einer Kohlenstoffkonzentration von 0,15 bis 0,44 Gew.-% Gehalte in Gew.-% an Chrom von 1,2 bis 5,0, Molybdän von 0,8 bis 6,5 und an Vanadin von 0,2 bis 0,8 auf.To ensure a desired secondary hardness increase during tempering of the martensite structure of the alloy according to the invention, it thus has a content of chromium of from 1.2 to 5.0, molybdenum, at a carbon concentration of 0.15 to 0.44% by weight 0.8 to 6.5 and on vanadium from 0.2 to 0.8.

Die Nickelkonzentration des Stahles und dessen Aluminiumgehalt sind im Hinblick auf die Ausscheidungskinetik der Phase von Typ Al Fe2Ni zur Härtesteigerung bei einer vorgesehenen Wärmebehandlungstechnologie zu sehen. Bei Nickelgehalten unter 3,4 Gew.-% und bei einer Aluminium-Konzentration von weniger als 1,4 Gew.-% ist eine Ausscheidungshärtung zurückgedrängt, also der additive Härteanstieg als Werkstoffes beim Anlassen gering.The nickel concentration of the steel and its aluminum content are to be seen in terms of the precipitation kinetics of the phase of Al Fe 2 Ni for hardness increase in a proposed heat treatment technology. At nickel contents below 3.4 wt .-% and at an aluminum concentration of less than 1.4 wt .-% precipitation hardening is pushed back, so the additive increase in hardness as a material during tempering low.

Höhere Gehalte als 9,8 Gew.-% Nickel verschieben die γ/α Umwandlung zu tieferen Temperaturen, was zu Problemen bei der Weichglühbehandlung des Stahles, einer hohen Bearbeitungshärte und der Störung der Ausscheidungskinetik führen kann.Higher contents than 9.8 wt.% Nickel shift the γ / α conversion to lower temperatures, which can lead to problems in the soft-annealing treatment of the steel, a high processing hardness and the disruption of the precipitation kinetics.

Gehalte über 3,0 Gew.-% Aluminum fördern in nachteiliger Weise einen hohen DELTA-(δ )-Ferrit-Bereich im Umwandlungsverhalten, eine Nitridbildung und senken die Materialzähigkeit der Legierung.Contents above 3.0% by weight of aluminum disadvantageously promote a high DELTA (δ) ferrite range in the conversion behavior, nitride formation and lower the material toughness of the alloy.

Erfindungsgemäß liegt daher der Nickelgehalt und der Aluminiumgehalt des Stahles in Gew.-% in den Bereichen 3,4 bis 9,8 Nickel und 1,4 bis 3,0 Aluminium.According to the invention, therefore, the nickel content and the aluminum content of the steel in wt .-% in the ranges 3.4 to 9.8 nickel and 1.4 to 3.0 aluminum.

Kupfer kann unerwünschte, intermetallische Phasen bilden und soll von geringer Konzentration von unter 1,3 Gew.-% im Stahl enthalten sein.Copper can form undesirable intermetallic phases and should be contained in the steel at a low concentration of less than 1.3% by weight.

Zur weiteren Verbesserung des Eigenschaftsprofiles der erfindungsgemäßen Legierung kann vorgesehen sein, dass diese ein oder mehrere der Elemente mit folgenden Konzentrationen in Gew.-% aufweist: Kohlenstoff (C) 0,25 bis 0,4, vorzugsweise 0,31 bis 0,36 Silizium (Si) 0,1 bis 0,25, vorzugsweise 0,15 bis 0,19 Mangan (Mn) 0,15 bis 0,3, vorzugsweise 0,2 bis 0,29 Chrom (Cr) 1,9 bis 2,9, vorzugsweise 2,2 bis 2,8 Molybdän (Mo) 1,2 bis 2.9 vorzugsweise 2,1 bis 2,9 Nickel (Ni) 5,0 bis 7,6, vorzugsweise 5,6 bis 7,1 Vanadin (V) 0,24 bis 0,6, vorzugsweise 0,25 bis 0,4 Kobalt (Co) 1,4 bis 7,9, vorzugsweise 1,6 bis 2,9 Aluminium (Al) 1,6 bis 2,9, vorzugsweise 2,1 bis 2,8 To further improve the property profile of the alloy according to the invention, it may be provided that it has one or more of the elements in the following concentrations in% by weight: Carbon (C) 0.25 to 0.4 preferably 0.31 to 0.36 Silicon (Si) 0.1 to 0.25, preferably 0.15 to 0.19 Manganese (Mn) 0.15 to 0.3 preferably 0.2 to 0.29 Chrome (Cr) 1.9 to 2.9 preferably 2.2 to 2.8 Molybdenum (Mo) 1.2 to 2.9 preferably 2.1 to 2.9 Nickel (Ni) 5.0 to 7.6 preferably 5.6 to 7.1 Vanadin (V) 0.24 to 0.6 preferably 0.25 to 0.4 Cobalt (Co) 1.4 to 7.9 preferably 1.6 to 2.9 Aluminum (Al) 1.6 to 2.9 preferably 2.1 to 2.8

Durch diese engeren Gehaltsbereiche von Elementen in der chemischen Zusammensetzung des Stahles kann eine weitere Eigenschaftsverbesserung der daraus hergestellten Gegenstände erreicht werden.By means of these narrower content ranges of elements in the chemical composition of the steel, a further improvement in the properties of the articles produced therefrom can be achieved.

Von besonderer Wichtigkeit für insgesamt hohe mechanische Stahlwerte, insbesondere aber auch für hohe Zähigkeitseigenschaften des Werkstoffes ist ein limitierter Anteil von Beimengungen.Of particular importance for overall high mechanical steel values, but especially for high toughness properties of the material is a limited amount of admixtures.

In einer vorteilhaften Ausgestaltung der Erfindung ist eine Legierung vorgesehen, enthaltend eine oder mehrere der Verunreinigungselemente mit folgenden MAXIMAL-Konzentrationen in Gew.-%: Phosphor(P) 0,02, vorzugsweise 0,005 Schwefel (S) 0,008, vorzugsweise 0,003 Kupfer (Cu) 0,15, vorzugsweise 0,06 Titan (Ti) 0,01, vorzugsweise 0,005 Niob (Nb) 0,001, vorzugsweise 0,0005 Stickstoff (N) 0,025, vorzugsweise 0,015 Sauerstoff (O) 0,009, vorzugsweise 0,002 Calcium (Ca) 0,003, vorzugsweise 0,001 Magnesium (Mg) 0,003, vorzugsweise 0,001 Zinn (Sn) 0,01, vorzugsweise 0,005 Tantal (Ta) 0,001, vorzugsweise 0,0005 In an advantageous embodiment of the invention, an alloy is provided which contains one or more of the impurity elements with the following MAXIMUM concentrations in% by weight: Phosphorus (P) 0.02, preferably 0.005 Sulfur (S) 0,008, preferably 0,003 Copper (Cu) 0.15 preferably 0.06 Titanium (Ti) 0.01, preferably 0.005 Niobium (Nb) 0.001, preferably 0.0005 Nitrogen (N) 0,025, preferably 0,015 Oxygen (O) 0.009, preferably 0,002 Calcium (Ca) 0,003, preferably 0.001 Magnesium (Mg) 0,003, preferably 0.001 Tin (Sn) 0.01, preferably 0.005 Tantalum (Ta) 0.001, preferably 0.0005

Um eine besonders ausgeprägte, der Sekundärhärtung durch Karbide überlagerte, Ausscheidungshärtbarkeit der Legierung zu erreichen, kann von Vorteil sein, wenn der Wert Nickelgehalt gebrochen durch Aluminiumgehalt jeweils in Gew.-% zwischen 1,8 und 4,2, vorzugsweise zwischen 2,1 und 3,9 beträgt. Dadurch wird ein Überhang eines die Ausscheidung bildenden Elementes vermieden.In order to achieve a particularly pronounced precipitation hardenability of the alloy superimposed on the secondary hardening by means of carbides, it can be advantageous if the value of nickel content refracted by aluminum content in each case in wt .-% between 1.8 and 4.2, preferably between 2.1 and 3.9. As a result, an overhang of an element forming the precipitate is avoided.

Die gestellte Aufgabe der Erfindung wird gemäß eines verbesserten Eigenschaftsprofiles bei einem Warmarbeitsstahl-Gegenstand gelöst, wenn ein nach einem schmelzmetallurgischen oder pulvermetallurgischen Verfahren hergestelltes Vormaterial mit einer vorher angegebenen chemischen Zusammensetzung durch Warmumformung und Bearbeitung in Form gebracht wurde, welcher geformte Gegenstand nach einer aushärtenden Wärmbehandlung sekundär ausgeschiedene Karbide, sowie intermetallische Ausscheidungen aufweist.The object of the invention is achieved according to an improved property profile of a hot work tool article when a hot-working and machining primary material prepared by a melt metallurgy or powder metallurgy process having a previously given chemical composition is molded, which molded article becomes secondary after a thermosetting heat treatment precipitated carbides, as well as intermetallic precipitates.

Die Gesamthärte des Werkstoffes wird dabei vorteilhaft durch eine Überlagerung des Sekundärhärteanstieges durch Karbidausscheidungen und der Ausscheidungshärtung erreicht. Dadurch können hohe Materialhärtewerte erzielt werden, obwohl die Vergütetechnologie auf einen Erhalt hoher Werkstoffzähigkeit gerichtet ist und im Vergleich mit einem Warmarbeitsstahl nach dem Stand der Technik niedere Härtetemperaturen Verwendung finden. Diese niedrigere Austenitisierungstemperatur kann auch wesentliche Vorteile hinsichtlich eines geringen Verzuges bei einer Vergütungsbehandlung kompliziert geformter Teile haben.The total hardness of the material is advantageously achieved by a superposition of the secondary hardness increase by carbide precipitations and precipitation hardening. As a result, high material hardness values can be achieved, although the tempering technology is directed to obtaining high material toughness and using lower hardening temperatures compared to prior art hot work tool steel. This lower austenitizing temperature may also have significant advantages in terms of low distortion in a tempering treatment of complicated shaped parts.

Werden jedoch die Härtetemperaturen auf einem hohen Niveau eingestellt, so ergeben sich bei sonst üblichen guten Materialzähigkeiten extrem hohe Härtewerte des Stahlgegenstandes.If, however, the hardening temperatures are set to a high level, then, with otherwise good material toughness, extremely high hardness values of the steel object result.

Wenn im Gefüge des Warmarbeitsstahl-Gegenstandes ein Verhältnis intermetallische Ausscheidungen gebrochen durch sekundär ausgeschiedene Karbide jeweils in Vol.-% von kleiner 3,0, vorzugsweise von 1,0 und kleiner, jedoch über 0,38, gegeben ist, sind bei hohen Härtewerten die Zähigkeit besonders hoch und die thermische Stabilität um bis zu 50°C und mehr zu höheren Temperaturen verschoben.If a ratio of intermetallic precipitates broken by secondary precipitated carbides is given in each case in the volume of less than 3.0, preferably 1.0 and less, but more than 0.38, in the microstructure of the hot-work tool, the values for high hardness values are Toughness is particularly high and the thermal stability is shifted by up to 50 ° C and more to higher temperatures.

Ein Warmarbeitsstahl-Gegenstand nach der Erfindung, welcher sekundär ausgeschiedene Chrom-Molybdän-Vanadin-Mischkarbide und im Wesentlichen intermetallische Phasen des Types Al Fe2Ni im Gefüge aufweist, hat ein besonderes bevorzugtes Eigenschaftsprofil und kann in üblichen Härteanlagen bei vergleichsweise niedrigen Härtetemperaturen wirtschaftlich hergestellt sein.A hot work tool according to the invention, which secondarily precipitated chromium-molybdenum-vanadium mixed carbides and substantially has intermetallic phases of the type Al Fe 2 Ni in the structure, has a particularly preferred property profile and can be produced economically in conventional hardening equipment at relatively low curing temperatures.

Eine ausgeprägte thermische Stabilität des Gegenstandes kann erreicht werden, wenn die Legierung einen Verhältniswert von Chrom + Molybdän + Vanadin gebrochen durch Kohlenstoff jeweils in Gew.-% von größer 12, jedoch kleiner 19 besitzt.
An Hand von einige Untersuchungsergebnissen und Darstellungen soll die Erfindung beispielhaft näher erläutet werden.
A pronounced thermal stability of the article can be achieved if the alloy has a ratio of chromium + molybdenum + vanadium broken by carbon, each in wt% greater than 12 but less than 19.
On the basis of some investigation results and representations, the invention will be explained in more detail by way of example.

Aus einer erfindungsgemäßen Legierung A, aus einem üblichen Warmarbeitsstahl B und aus einem ausscheidungshärtenden Stahl C (Maraging Stahl) wurden Proben hergestellt, thermisch vergütet und deren Materialeigenschaften untersucht. Die Legierungen weisen die in Tab. 1 angegebenen chemischen Zusammensetzungen auf: Tab. 1 Element Legierung A Legierung B Legierung C C 0,32 0,36 0.13 Si 0.18 0,40 <0,05 Mn 0,25 0.33 <0,02 Cr 2,45 4,79 0,11 Mo 2.43 2,78 5,26 Ni 6,46 0,18 18,01 V 0,28 0,62 0,02 Co 1,97 <0,05 8,71 Al: 2,46 0,016 0,13 Cu 0,06 0,07 0,06 Nb <0,005 <0,005 <0,005 Fe bal. bal. bal. P 0,008 0,015 <0.005 S 0,001 0,001 0,009 Ti <0,005 <0,005 0,79 N 0,0048 0,0068 0,0017 O 0,0022 0,0023 0,0007 Ca Mg Sn <0,005 <0,005 0,009 Ta From an alloy A according to the invention, from a conventional hot-work steel B and from a precipitation-hardening steel C (maraging steel), samples were produced, thermally tempered and their material properties investigated. The alloys have the chemical compositions given in Tab. 1: Tab. 1 element Alloy A Alloy B Alloy C C 0.32 0.36 12:13 Si 12:18 0.40 <0.05 Mn 0.25 12:33 <0.02 Cr 2.45 4.79 0.11 Not a word 2:43 2.78 5.26 Ni 6.46 0.18 18.01 V 0.28 0.62 0.02 Co 1.97 <0.05 8.71 Al : 2.46 0.016 0.13 Cu 0.06 0.07 0.06 Nb <0.005 <0.005 <0.005 Fe bal. bal. bal. P 0,008 0,015 <0005 S 0.001 0.001 0.009 Ti <0 , 005 <0.005 0.79 N 0.0048 0.0068 0.0017 O 0.0022 0.0023 0.0007 Ca mg sn <0.005 <0.005 0.009 Ta

Am Probematerial erfolgte vorerst eine Messung der thermischen Ausdehnung α [10-6/K] in Abhängigkeit von der Temperatur bei einer Ausgangshärte des Werkstoffes von 50 bis 52 HRC. Die aus Tab. 2 entnehmbaren Werte zeigen, dass im Vergleich mit einem konventionellen Warmarbeitsstahl B die erfindungsgemäße Legierung eine geringere Ausdehnung aufweiset, was auch auf eine bessere Formstabilität bei einer Wärmebehandlung hinweist. Tab. 2 Temperatur [°C] A B C 100 10,8 11,2 9 200 11,2 11,61 9,5 300 11,7 12 9,95 400 12,2 12,5 10,44 500 12,7 12,9 10,9 For the time being, a measurement of the thermal expansion α [10 -6 / K] as a function of the temperature at an initial hardness of the material of 50 to 52 HRC was carried out on the sample material. The values which can be taken from Table 2 show that, in comparison with a conventional hot-work steel B, the alloy according to the invention has a lower expansion, which also indicates a better dimensional stability during a heat treatment. Tab. 2 Temperature [° C] A B C 100 10.8 11.2 9 200 11.2 11.61 9.5 300 11.7 12 9.95 400 12.2 12.5 10.44 500 12.7 12.9 10.9

Nach einer Härtung auf jeweils ca. 55 HRC von Proben aus der erfindungsgemäßen Legierung A und des konventionellen Warmarbeitsstahles B wurde der Härteverlauf der Werkstoffe in Abhängigkeit von der Temperatur ermittelt. Dabei ist von wesentlicher Bedeutung, dass zur Erreichung dieser Härte die erfindungsgemäße Legierung A eine Austenitisierungstemperatur von 990°C benötigte, beim üblichen Warmarbeitsstahl B jedoch eine solche von 1050°C erforderlich war. In Abhängigkeit von der Temperatur, wie aus Tab. 3A und Tab. 3B ersichtlich, stieg im Bereich zwischen 500°C und 600°C die Härte der erfindungsgemäß zusammengesetzten Probe A auf Werte um 60 HRC an, wo hingegen beim konventionellen Warmarbeitsstahl B ein maximaler Härtewert von 56 HRC bei 500°C ermittelt wurde. Tab. 3A A Temperatur Härte In HRC 25 54 100 54 200 50 300 51 400 54 500 60 530 60 560 60 590 59 620 55 650 49 680 43 Tab. 3B B Temperatur Härte in HRC 25 55 300 52 400 53 500 54 530 53 560 52 590 50 620 47 650 43 After hardening to approximately 55 HRC each of samples of the inventive alloy A and the conventional hot-work steel B, the hardness profile of the materials was determined as a function of the temperature. It is essential that the alloy A according to the invention required an austenitizing temperature of 990 ° C. in order to achieve this hardness, but that of 1050 ° C. was required for the conventional hot-rolled steel B, however. Depending on the temperature, as shown in Tab. 3A and Tab. 3B, increased in the range between 500 ° C and 600 ° C, the hardness of the inventively assembled sample A to values around 60 HRC, whereas in the conventional hot-rolled steel B a maximum Hardness value of 56 HRC at 500 ° C was determined. Tab. 3A A temperature Hardness In HRC 25 54 100 54 200 50 300 51 400 54 500 60 530 60 560 60 590 59 620 55 650 49 680 43 B temperature Hardness in HRC 25 55 300 52 400 53 500 54 530 53 560 52 590 50 620 47 650 43

In graphischer Darstellung ist in Fig. 1 der jeweilige Härteverlauf in Abhängigkeit der Temperatur des erfindungsgemäßen Werkstoffes A und der Warmarbeitstahllegierung B nach dem Stand der Technik vergleichend gezeigt. Ausgehend von gleicher Härte, die jedoch mit einer gegebenenfalls vorteilhaften geringeren Austenitisierungstemperatur erreicht wird, erfolgt bei der erfindungsgemäßen Legierung A durch einen überlagerten Ausscheidungsmechanismus, bei welchem Al Fe2Ni - Ausscheidungen in feinster Form im Gefüge gebildet werden, ein wesentlich größerer Anstieg der Warmhärte des Gegenstandes, wobei diese auch bei höheren Temperaturen erhalten bleibt.In graphical representation is in Fig. 1 the respective hardness curve depending on the temperature of the material A according to the invention and the hot working steel alloy B according to the prior art comparatively shown. Starting from the same hardness, which however is achieved with an optionally advantageous lower austenitizing temperature, takes place in the alloy A according to the invention by a superimposed precipitation mechanism, in which Al Fe 2 Ni precipitates are formed in the finest form in the microstructure, a much greater increase in the hot hardness of Subject, whereby this is maintained even at higher temperatures.

Basierend auf einer Härteangabe nach Vickers erfolgte die Untersuchung des Erweichungsverhaltens der Werkstoffe in Abhängigkeit von der Zeit bei einer Temperatur von 650°C.Based on a hardening specification according to Vickers, the softening behavior of the materials was investigated as a function of time at a temperature of 650 ° C.

Eine Härteermittlung am Probekörper bei der Prüftemperatur wurde nach der Rückprallhärtemethode (Shore hardness) durchgeführt, für welche Rücksprungwerte bislang lediglich eine Umrechnung in Vickers-Härtewerte vorliegt.A hardness determination on the test specimen at the test temperature was carried out according to the rebound hardness method (Shore hardness), for which return values hitherto only a conversion into Vickers hardness values is present.

Ausgehend von annähernd gleicher Härte bei Raumtemperatur und zwar von 50 - 52 HRC, welche für die Legierungen A, B und C mit einer Zusammensetzung gemäß Tab. 1 durch unterschiedliche in der Untersuchungsbeilage Ergebnis-Blatt 1 angegebene thermische Vergütungsverfahren erreicht wurden, erfolgte eine Härteprüfung über die Zeit bei 650°C.Starting from approximately the same hardness at room temperature, namely from 50 to 52 HRC, which were achieved for the alloys A, B and C with a composition according to Tab. 1 by different thermal treatment methods given in the test result Sheet 1, a hardness test was carried out on the time at 650 ° C.

Im Vergleich mit einem konventionellen Warmarbeitsstahl B und einem Maragingstahl C wies die erfindungsgemäße Legierung A bei gleicher Ausgangshärte bei 650°C, während einer Zeit von bis zu 1000 Minuten die höchste Werkstoffhärte auf. Nach dieser Zeit besaß der Maragingstahl C eine höhere Härte bei hoher thermischer Stabilität, wo hingegen der erfindungsgemäße Warmarbeitstahl A bis zu ca. 2000 Minuten etwa 10 % seiner Härte verlor. Die thermische Stabilität des konventionellen Warmarbeitsstahl B war gering; der Härteunterschied im Vergleich mit der erfindungsgemäßen Legierung A vergrößerte sich bis 1000 Minuten stetig.In comparison with a conventional hot-work steel B and a maraging steel C, the alloy A according to the invention with the same initial hardness at 650 ° C. for a time of up to 1000 minutes had the highest material hardness. After this time, maraging steel C had a higher hardness with high thermal stability, whereas hot work steel A according to the invention lost about 10% of its hardness up to about 2000 minutes. The thermal stability of the conventional hot-work steel B was low; the hardness difference in comparison with the alloy A according to the invention increased steadily up to 1000 minutes.

Claims (12)

  1. Alloy for the production of articles having high heat resistance and toughness consisting of, in wt.-%: carbon (C) 0.15 to 0.44 silicon (Si) 0.04 to 0.3 manganese (Mn) 0.06 to 0.4 chromium (Cr) 1.2 to 5.0 molybdenum (Mo) 0.8 to 6.5 nickel (Ni) 3.4 to 9.8 vanadium (V) 0.2 to 0.8 cobalt (Co) 0.1 to 9.8 aluminium (Al) 1.4 to 3.0 copper(Cu) below 1.3 niobium (Nb) below 0.35 iron (Fe) rest
    and accompanying elements and impurities.
  2. Alloy according to claim 1, containing one or more of the elements with the following concentrations in wt.-%: carbon (C) 0.25 to 0.40 silicon (Si) 0.10 to 0.25 manganese (Mn) 0.15 to 0.30 chromium (Cr) 1.9 to 2.9 molybdenum (Mo) 1.2 to 2.9 nickel (Ni) 5.0 to 7.6 vanadium (V) 0.24 to 0.6 cobalt (Co) 1.4 to 7.9 aluminium (Al) 1.6 to 2.9.
  3. Alloy according to claim 1, containing one or more of the elements with the following concentrations in wt.-%: carbon (C) 0.31 to 0.36 silicon (Si) 0.15 to 0.19 manganese (Mn) 0.20 to 0.29 chromium (Cr) 2.2 to 2.8 molybdenum (Mo) 2.1 to 2.99 nickel (Ni) 5.6 to 7.1 vanadium (V) 0.25 to 0.4 cobalt (Co) 1.6 to 2.9 aluminium (Al) 2.1 to 2.8.
  4. Alloy according to claim 1 to 3, containing one or more of the elements of impurities with the following maximum concentrations in wt.-% : phosphor(P) 0.02 sulfur (S) 0.008 copper(Cu) 0.15 titanium (Ti) 0.01 niobium (Nb) 0.001 nitrogen (N) 0.025 oxygen (O) 0.009 calcium (Ca) 0.003 magnesium (Mg) 0.003 tin (Sn) 0.01 tantalum (Ta) 0.001.
  5. Alloy according to claim 1 to 3, containing one or more of the elements of impurities with the following maximum concentrations in wt.-% : phosphor(P) 0.005 sulfur (S) 0.003 copper(Cu) 0.06 titanium (Ti) 0.005 niobium (Nb) 0.0005 nitrogen (N) 0.015 oxygen (O) 0.002 calcium (Ca) 0.001 magnesium (Mg) 0.001 tin (Sn) 0.005 tantalum (Ta) 0.0005.
  6. Alloy according to one of claims 1 to 5, wherein the value nickel content divided by aluminium content, respectively in wt.-%, is between 1.8 and 4.2: Ni Al = 1.8 to 4.2.
    Figure imgb0004
  7. Alloy according to one of claims 1 to 5, wherein the value nickel content divided by aluminium content, respectively in wt.-%, is preferably between 2.1 and 3.9: Ni Al = 2.1 to 3.9.
    Figure imgb0005
  8. Alloy according to one of claims 1 to 7, which, in its chemical composition, is a ratio value of chromium + molybdenum + vanadium divided by carbon, respectively in wt.-% , of higher than 12, but lower than 19 : 12 < Cr + Mo + V C < 19.
    Figure imgb0006
  9. Hot-working steel article with high hardness, high heat resistance and high thermal stability, wherein a starting material, produced by a melt metallurgical or powder metallurgical process, with a chemical composition characterized in the preceding claims, was brought into shape by hot forming and machining, which formed article comprises, following a hardening heat treatment, secondary precipitated carbides in the structure, and intermetallic precipitates.
  10. Hot-working steel article according to claim 9, which in the structure comprises a ratio of intermetallic precipitates divided by secondary precipitated carbides, respectively in vol.-%, of less than 3.0.
  11. Hot-working steel article according to claim 9, which in the structure comprises a ratio of intermetallic precipitates divided by secondary precipitated carbides, respectively in vol.-%, of 1.0 and less, but above 0.38.
  12. Hot-working steel article according to claim 9 to 11, which comprises chromium-molybdenum-vanadium mixed carbides secondarily precipitated in the structure and intermetallic phases of the AlFe2Ni type in the structure.
EP04450025.4A 2003-02-10 2004-02-10 Alloy and article with high heat resistance and high heat stability Expired - Lifetime EP1445339B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1962003 2003-02-10
AT1962003A AT411905B (en) 2003-02-10 2003-02-10 Iron-based alloy for producing a hot working steel object contains alloying additions of silicon, manganese, chromium, molybdenum, nickel, vanadium, cobalt and aluminum

Publications (2)

Publication Number Publication Date
EP1445339A1 EP1445339A1 (en) 2004-08-11
EP1445339B1 true EP1445339B1 (en) 2016-08-03

Family

ID=29588323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04450025.4A Expired - Lifetime EP1445339B1 (en) 2003-02-10 2004-02-10 Alloy and article with high heat resistance and high heat stability

Country Status (8)

Country Link
EP (1) EP1445339B1 (en)
AT (1) AT411905B (en)
BR (1) BRPI0400488B1 (en)
CA (1) CA2457183C (en)
DK (1) DK1445339T3 (en)
ES (1) ES2592714T3 (en)
HU (1) HUE030391T2 (en)
PT (1) PT1445339T (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904635B1 (en) * 2006-08-03 2008-10-31 Aubert & Duval Soc Par Actions PROCESS FOR MANUFACTURING STEEL ELBOWS
FR2904634B1 (en) 2006-08-03 2008-12-19 Aubert & Duval Soc Par Actions PROCESS FOR MANUFACTURING STEEL ELBOWS
PL2126150T3 (en) * 2007-01-12 2011-10-31 Rovalma Sa Cold work tool steel with outstanding weldability
EP2083428A1 (en) * 2008-01-22 2009-07-29 Imphy Alloys Fe-Co alloy for highly dynamic electromagnetic actuator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB669396A (en) * 1938-12-06 1952-04-02 Boehler & Co Ag Geb Hot working tools and alloys therefor
US2715576A (en) * 1954-04-21 1955-08-16 Crucible Steel Co America Age hardening alloy steel of high hardenability and toughness
US3453152A (en) * 1963-11-12 1969-07-01 Republic Steel Corp High-strength alloy steel compositions and process of producing high strength steel including hot-cold working
US3453151A (en) 1965-03-09 1969-07-01 Park Chem Co Thermocouple with leak detector
JPH0765141B2 (en) * 1985-09-18 1995-07-12 日立金属株式会社 Tool steel for hot working
JPH07228945A (en) 1994-02-21 1995-08-29 Kobe Steel Ltd High strength spring steel excellent in corrosion resistance
JP4232128B2 (en) * 1998-08-03 2009-03-04 日立金属株式会社 High strength pre-hardened steel with excellent machinability
JP2000119799A (en) * 1998-10-07 2000-04-25 Hitachi Metals Ltd High strength steel excellent in machinability and toughness and having corrosion resistance
KR100374980B1 (en) * 1999-02-12 2003-03-06 히다찌긴조꾸가부시끼가이사 High strength steel for dies with excellent machinability

Also Published As

Publication number Publication date
ES2592714T3 (en) 2016-12-01
DK1445339T3 (en) 2016-09-26
EP1445339A1 (en) 2004-08-11
CA2457183C (en) 2009-07-14
ATA1962003A (en) 2003-12-15
HUE030391T2 (en) 2017-05-29
PT1445339T (en) 2016-09-27
AT411905B (en) 2004-07-26
CA2457183A1 (en) 2004-08-10
BRPI0400488A (en) 2005-07-12
BRPI0400488B1 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
DE69604341T3 (en) Martensitic. STAINLESS STEEL WITH GOOD RESISTANCE TO HOLE FRICTION CORROSION AND HIGH HARDENING
DE69423930T2 (en) Martensitic stainless steel with improved machinability
DE69706224T2 (en) Heat resistant steel and steam turbine rotor
DE60033772T2 (en) Martensitic hardening steel with high fatigue strength and martensitic hardening steel strip
EP1158067A1 (en) Martensitic hardenable heat treatable steel with improved thermal resistance and ductility
EP3591078A1 (en) Use of a steel for an additive production method, method for producing a steel component and steel component
AT410447B (en) HOT STEEL SUBJECT
EP1249511A1 (en) High speed steel with good high temperature strength manufactured by powder metallurgy
DE2800444C2 (en) Use of a Cr-Mo steel
DE2830850A1 (en) CASE-ALLOY STEEL
EP3850114A1 (en) Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component
AT393642B (en) USE OF AN IRON BASED ALLOY FOR THE POWDER METALLURGICAL PRODUCTION OF PARTS WITH HIGH CORROSION RESISTANCE, HIGH WEAR RESISTANCE AND HIGH TENSITY AND PRESSURE STRENGTH, ESPECIALLY FOR THE PROCESS
EP3323902A1 (en) Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP2976441B1 (en) Iron-based shape memory alloy
DE69007201T2 (en) Heat-resistant steel can be used for valves of internal combustion engines.
EP1445339B1 (en) Alloy and article with high heat resistance and high heat stability
AT405297B (en) DUPLEX ALLOY FOR COMPLEXLY STRESSED COMPONENTS
DE4231695C2 (en) Use of steel for tools
DE69107439T2 (en) High-strength stainless steel with good toughness properties, and process for its production.
EP0733719B1 (en) Iron base alloy for use at high temperature
DE202009017752U1 (en) hardened steel
DE102017215222A1 (en) Case hardenable stainless steel alloy
EP3323903A1 (en) Steel material prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP1382704B1 (en) Cold work steel with high wear resistance
DE69330580T2 (en) Iron-chromium alloy with high corrosion resistance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040918

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1069854

Country of ref document: HK

17Q First examination report despatched

Effective date: 20070515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004015268

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0006000000

Ipc: C21D0006020000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/44 20060101ALI20151222BHEP

Ipc: C22C 38/04 20060101ALI20151222BHEP

Ipc: C22C 38/06 20060101ALI20151222BHEP

Ipc: C21D 6/02 20060101AFI20151222BHEP

Ipc: C22C 38/02 20060101ALI20151222BHEP

Ipc: C22C 38/52 20060101ALI20151222BHEP

Ipc: C22C 38/46 20060101ALI20151222BHEP

Ipc: C21D 6/00 20060101ALI20151222BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160224

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 817385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015268

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160922

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 1445339

Country of ref document: PT

Date of ref document: 20160927

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160921

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004015268

Country of ref document: DE

Owner name: BOEHLER EDELSTAHL GMBH & CO. KG, AT

Free format text: FORMER OWNER: BOEHLER EDELSTAHL GMBH, KAPFENBERG, AT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2592714

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161104

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 22585

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015268

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E030391

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1069854

Country of ref document: HK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004015268

Country of ref document: DE

Representative=s name: HGF EUROPE LP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004015268

Country of ref document: DE

Representative=s name: HGF EUROPE LLP, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200227

Year of fee payment: 17

Ref country code: DK

Payment date: 20200227

Year of fee payment: 17

Ref country code: ES

Payment date: 20200302

Year of fee payment: 17

Ref country code: FI

Payment date: 20200227

Year of fee payment: 17

Ref country code: IE

Payment date: 20200227

Year of fee payment: 17

Ref country code: SE

Payment date: 20200227

Year of fee payment: 17

Ref country code: HU

Payment date: 20200129

Year of fee payment: 17

Ref country code: DE

Payment date: 20200227

Year of fee payment: 17

Ref country code: BG

Payment date: 20200224

Year of fee payment: 17

Ref country code: AT

Payment date: 20200121

Year of fee payment: 17

Ref country code: IT

Payment date: 20200220

Year of fee payment: 17

Ref country code: NL

Payment date: 20200226

Year of fee payment: 17

Ref country code: PT

Payment date: 20200124

Year of fee payment: 17

Ref country code: RO

Payment date: 20200121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20200120

Year of fee payment: 17

Ref country code: BE

Payment date: 20200227

Year of fee payment: 17

Ref country code: CH

Payment date: 20200304

Year of fee payment: 17

Ref country code: CZ

Payment date: 20200130

Year of fee payment: 17

Ref country code: SI

Payment date: 20200121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200225

Year of fee payment: 17

Ref country code: TR

Payment date: 20200128

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015268

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 817385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210210

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 22585

Country of ref document: SK

Effective date: 20210210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210810

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20211203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210