EP2976441B1 - Iron-based shape memory alloy - Google Patents

Iron-based shape memory alloy Download PDF

Info

Publication number
EP2976441B1
EP2976441B1 EP13741745.7A EP13741745A EP2976441B1 EP 2976441 B1 EP2976441 B1 EP 2976441B1 EP 13741745 A EP13741745 A EP 13741745A EP 2976441 B1 EP2976441 B1 EP 2976441B1
Authority
EP
European Patent Office
Prior art keywords
group
alloy
shape memory
weight
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13741745.7A
Other languages
German (de)
French (fr)
Other versions
EP2976441A1 (en
Inventor
Rainer FECHTE-HEINEN
Christian Höckling
Lothar Patberg
Jens-Ulrik Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to EP13741745.7A priority Critical patent/EP2976441B1/en
Publication of EP2976441A1 publication Critical patent/EP2976441A1/en
Application granted granted Critical
Publication of EP2976441B1 publication Critical patent/EP2976441B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn

Definitions

  • the invention relates to an iron-based shape memory alloy.
  • Shape memory alloys are known from different material systems. Iron-based shape memory alloys, ie consisting of substantial elements of the element iron, are also known from the prior art.
  • the European patent application discloses EP 2 194 154 A1 a shape memory alloy which has a two-way effect and consists of a low-cost, iron-based alloy. The said European patent application proposes to consider a certain combination of the elements of the group Mn, Si, Cr and Ni in addition to Fe in the alloy.
  • an iron-based shape memory alloy with Ni contents which is intended to form precipitates during the manufacturing process by adding titanium in the alloy.
  • this has the disadvantage that the Ni-Ti precipitates, the properties of the nickel with respect to the shape memory effect due to its binding to titanium can not be used.
  • Another iron-based shape memory alloy based on a Fe-Mn-Si alloy system to which elements Nb and C have been additionally added is disclosed in the publication EP 1 348 772 A1 known.
  • the alloying components niobium and carbon alloyed in these alloy systems promote the formation of precipitates, which serve as nucleation sites for gamma-epsilon phase transformations, which then form the basis for the shape memory effect.
  • the European patent application EP 1574 587 A1 describes an alloy system that uses NbC precipitates to provide the shape memory effect. Similar to the two alloying elements niobium and carbon, it is possible to form two groups of elements which have similar functions. The one group contains vanadium, niobium, titanium, tungsten and zirconium, the other group consists from carbon, nitrogen and boron.
  • the targeted use of different types of precipitation are described in the following documents, for example, vanadium-carbon precipitates in the CN 1280444 C , Ti-Nb-VN carbides / nitrides and Ni3Ti as precipitation types are mentioned in the Japanese documents JP 2004/115864 and the Japanese patent JP 3970645 B2 disclosed.
  • the European patent application EP 2 141 251 A1 discloses vanadium nitrogen and vanadium carbon precipitates used for shape memory alloying effect.
  • the Chinese patent application CN 101215678 B relates to a so-called Ti-Nb-CN system.
  • An Nb-Ti-VC system for forming precipitates is known from CN 100523263 C known.
  • KAJIWARA S ET AL. disclosed in "Remarkable improvement of shape memory effect in Fe-Mn-Si based shape memory alloys by producing NbC precipitates" (SCRIPTA MATERIALIA, ELSEVIER, AMSTERDAM, NL, Vol. 44, No.
  • the present invention has for its object to provide an iron-based shape memory alloy which provides a disposable shape memory effect, which requires reduced manufacturing costs, an increased activation temperature compared to copper and nickel-based alloys and their corrosion and Forming properties are improved compared to nickel-free and chromium-containing concepts.
  • the shape memory alloy In addition to the mandatory components of the shape memory alloy, the alloy components Mn, Si, Cr, Ni and one of the elements of group 1 (N, C, B) and one of the elements of group 2 (Ti, Nb, W, V, Zr), the shape memory alloy In addition, optionally contain the elements P, S, Mo, Cu, Al, Mg, O, Ca or Co, which can develop beneficial effects up to the specified values.
  • the effects on the shape memory effect affecting precipitations show a significant, positive influence on the shape memory effect, provided that the sum of the constituents of the group 2 elements in atomic% of Alloy in proportion to the sum of the alloy components of Group 1 in atomic% in the range of 0.5 to 2.0.
  • a targeted stoichiometric ratio of the elements of group 1 to the elements of group 2 is established. It has been found that it is precisely at this ratio of the alloy constituents of group 2 to group 1 that precipitation formation is particularly favorable and supports the shape memory effect.
  • the ratio given is less than 0.5, the precipitating elements in the form of N, C and / or B can not be set and the shape memory effect is reduced since the group 1 elements are present in dissolved form in the microstructure. in the In addition, a negative effect on the reversibility of the phase transformation, that is, the return transformation of martensite into austenite, is observed. If the ratio of the sums of the alloying components formed in this way is greater than 2.0, unwanted solidifications due to the elements of the group 2 occur, which become lodged as free atoms in the microstructure and thus hinder the shape memory effect.
  • the manganese content of 25 wt .-% to 32 wt .-% serves to stabilize the austenite in the structure and has particular influence on the switching temperature of the shape memory material. Below an Mn content of 25.0 wt .-% ferrite is increasingly formed, which adversely affects the shape memory effect. Increasing the Mn content above 32 wt .-%, the desired switching temperature is reduced too much, so that the switching temperature and the possible operating temperatures of a corresponding component to approach too much.
  • Silicon serves to ensure the reversibility of the phase transformation of martensite into austenite. Below 3.0% by weight, Si causes a reduction in the shape memory effect. Above 8% by weight, embrittlement of the material can be observed. In addition, at Si contents above 8% by weight, the increased formation of the unfavorable ferritic constituents takes place.
  • the shape memory alloy contains at least 3.0 wt% Cr.
  • An increase in the Cr content to above 10.0 wt .-% in turn promotes ferrite formation, which, as already stated, has a negative effect on the shape memory effect.
  • Ni serves to stabilize the austenitic structure and also improves the formability of the material.
  • a Ni content below 0.1% by weight has no significant influence on the properties of the material.
  • Ni contents of more than 4.0% by weight lead to slight improvements only in connection with an increased Cr content
  • Cost savings of Ni content is limited to a maximum of 4.0 wt .-%.
  • the upper limit for all elements of group 1, ie N, C and B is at most 0.1% by weight.
  • the elements of group 2 (Ti, Nb, W, V, Zr) are present at a minimum level of 0.1% by weight, which applies to at least one element of this group.
  • each individual element of group 2 does not exceed the maximum content of 1.5% by weight, more preferably the maximum content of each individual element is 1.2% by weight or 1.0% by weight, respectively This results in a reduction of unwanted solidifications.
  • the Cr content in weight percent is 3.0% ⁇ Cr ⁇ 8.0%, so that a good compromise between ferrite formation and corrosion resistance of the shape memory alloy is achieved.
  • the ferrite formation counteracts the shape memory effect, since ferrite does not undergo the desired phase transformation.
  • the difference of Cr content and Ni content is 0% ⁇ Cr-Ni ⁇ 6.0%.
  • the maximum difference in the contents of Cr and Ni is limited to 6%. It has been found that an increase in the difference of the chromium and nickel content to more than 6 wt .-% leads to no appreciable improvements in the mechanical properties, but rather to the embrittlement of the material.
  • a drop in the difference to below 0%, ie the nickel content is greater than the chromium content can have a negative effect on the switching temperature, in which the latter is lowered and approaches the starting temperature of the material.
  • the ratio of the sum of the alloy constituents of group 1 and group 2 in atomic% applies in each case: 0.8 ⁇ ⁇ group 2 ⁇ group 1 ⁇ 1.5 . so that on the one hand the shape memory effect can be completely guaranteed and on the other hand solidifications due to free atoms of group 2 in the microstructure can be significantly reduced.
  • sulfur, phosphorus and oxygen should be limited to contents of not more than 0.1% by weight, preferably not more than 0.05% by weight and more preferably not more than 0.03% by weight. to reduce their negative impact, for example on corrosion resistance.
  • Molybdenum, copper and cobalt can be alloyed individually or in different combinations to improve the strength properties. A corresponding influence is limited in each case to contents of not more than 0.5% by weight.
  • Aluminum and magnesium can contribute individually or in combination to improve the corrosion resistance and also cause a reduction in the density of the molten steel. Their content is limited to a maximum of 5 wt .-%, preferably to a maximum of 2.0 wt .-%, more preferably to a maximum of 1.0 wt .-%.
  • calcium may be added to set sulfur present to avoid undesirable sulfur-manganese to MnS bonding.
  • the content of Ca is limited to a maximum of 0.015 wt .-%, preferably to a maximum of 0.01 wt .-%.
  • Table 1 now shows various embodiments of the invention and comparative examples.
  • embodiments Nos. 1 to 20 of the invention could be detected at sufficiently high switching temperature sufficient shape memory effect on samples.
  • the comparative examples had problems with solidification, so that the shape memory effect was reduced (Comparative Example 1).
  • the other two Comparative Examples 2 and 3 showed a significantly weaker shape memory effect than the embodiments of the invention.
  • the iron-based shape memory alloy according to the invention can be produced as a flat product, for example in the form of a strip and / or sheet as a long product, for example in the form of a wire, as a slab, billet or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Die Erfindung betrifft eine eisenbasierte Formgedächtnislegierung.The invention relates to an iron-based shape memory alloy.

Formgedächtnislegierungen sind aus unterschiedlichen Materialsystemen bekannt. Auch eisenbasierte, d.h. zu wesentlichen Teilen aus dem Element Eisen bestehende Formgedächtnislegierungen sind aus dem Stand der Technik bekannt. Beispielsweise offenbart die europäische Patentanmeldung EP 2 194 154 A1 eine Formgedächtnislegierung, welche einen Zwei-Wege-Effekt aufweist und aus einer kostengünstigen, eisenbasierten Legierung besteht. Die genannte europäische Patentanmeldung schlägt vor hierzu eine bestimmte Kombination der Elemente der Gruppe Mn, Si, Cr und Ni neben Fe in der Legierung zu berücksichtigen.Shape memory alloys are known from different material systems. Iron-based shape memory alloys, ie consisting of substantial elements of the element iron, are also known from the prior art. For example, the European patent application discloses EP 2 194 154 A1 a shape memory alloy which has a two-way effect and consists of a low-cost, iron-based alloy. The said European patent application proposes to consider a certain combination of the elements of the group Mn, Si, Cr and Ni in addition to Fe in the alloy.

Aus der japanischen Offenlegungsschrift JP-A 2003/268502 ist darüber hinaus eine Formgedächtnislegierung auf Eisenbasis mit Ni-Gehalten bekannt, welche durch Zugabe von Titan in der Legierung Ausscheidungen während des Herstellungsprozesses bilden soll. Allerdings ergibt sich hierbei der Nachteil, dass durch die Ni-Ti-Ausscheidungen die Eigenschaften des Nickels in Bezug auf den Formgedächtniseffekt aufgrund dessen Bindung an Titan nicht genutzt werden kann. Eine weitere eisenbasierte Formgedächtnislegierung auf Basis eines Fe-Mn-Si-Legierungssystems, welchem zusätzlich die Elemente Nb und C hinzugefügt wurden, ist aus der Offenlegungsschrift EP 1 348 772 A1 bekannt. Die in diesen Legierungssystemen zulegierten Legierungsbestandteile Niob und Kohlenstoff unterstützen die Ausbildung von Ausscheidungen, welche als Keimstellen für Gamma-Epsilon-Phasentransformationen dienen, welche dann Grundlage für den Formgedächtniseffekt ist. Auch die europäische Patentanmeldung EP 1574 587 A1 beschreibt ein Legierungssystem, welches NbC-Ausscheidungen zur Bereitstellung des Formgedächtniseffekts verwendet. In ähnlicher Weise wie die beiden Legierungsbestandteile Niob und Kohlenstoff lassen sich zwei Gruppen von Elementen bilden, welche ähnliche Funktionen aufweisen. Die eine Gruppe enthält dabei Vanadium, Niob, Titan, Wolfram und Zirkon, die andere Gruppe besteht aus Kohlenstoff, Stickstoff und Bor. Die gezielte Nutzung von unterschiedlichen Ausscheidungstypen sind in den folgenden Dokumenten beschrieben, beispielsweise Vanadiumkohlenstoff-Ausscheidungen in der CN 1280444 C . Ti-Nb-V-N-Karbide/Nitride und Ni3Ti als Ausscheidungstypen werden in den japanischen Dokumenten JP 2004/115864 sowie dem japanischen Patent JP 3970645 B2 offenbart. Die europäische Patentanmeldung EP 2 141 251 A1 offenbart Vanadiumstickstoff und Vanadiumkohlenstoff-Ausscheidungen, welche für den Formgedächtnislegierungseffekt verwendet werden. Die chinesische Patentanmeldung CN 101215678 B betrifft ein sogenanntes Ti-Nb-C-N-System. Ein Nb-Ti-V-C-System zur Bildung von Ausscheidungen ist aus der CN 100523263 C bekannt. KAJIWARA S ET AL. offenbart in "Remarkable improvement of shape memory effect in Fe-Mn-Si based shape memory alloys by producing NbC precipitates" (SCRIPTA MATERIALIA, ELSEVIER, AMSTERDAM, NL, Bd. 44, Nr. 12, 2001 ) eine Formgedächtnislegierung des Typs Fe-28Mn-6Si-5Cr, welcher 0.47 Gew-% Nb und 0.06 Gew-% C zulegiert werden, um so den Formgedächtniseffekt zu verbessern und um auf das zeitaufwändige "Training" verzichten zu können. Schließlich offenbart die russische Patentschrift RU 2270267 C1 ein V-Nb-W-C-Aussscheidungssystem zur Darstellung des Formgedächtniseffekts. Die aus dem Stand der Technik bekannten Formgedächtnislegierungssysteme auf Eisenbasis sind allerdings im Hinblick auf eine Verringerung der Herstellkosten, einer Erhöhung der Aktivierungs- bzw. Schalttemperatur sowie ihrer Korrosions- und Umformeigenschaften verbesserungswürdig.From the Japanese patent application JP-A 2003/268502 In addition, an iron-based shape memory alloy with Ni contents is known which is intended to form precipitates during the manufacturing process by adding titanium in the alloy. However, this has the disadvantage that the Ni-Ti precipitates, the properties of the nickel with respect to the shape memory effect due to its binding to titanium can not be used. Another iron-based shape memory alloy based on a Fe-Mn-Si alloy system to which elements Nb and C have been additionally added is disclosed in the publication EP 1 348 772 A1 known. The alloying components niobium and carbon alloyed in these alloy systems promote the formation of precipitates, which serve as nucleation sites for gamma-epsilon phase transformations, which then form the basis for the shape memory effect. Also the European patent application EP 1574 587 A1 describes an alloy system that uses NbC precipitates to provide the shape memory effect. Similar to the two alloying elements niobium and carbon, it is possible to form two groups of elements which have similar functions. The one group contains vanadium, niobium, titanium, tungsten and zirconium, the other group consists from carbon, nitrogen and boron. The targeted use of different types of precipitation are described in the following documents, for example, vanadium-carbon precipitates in the CN 1280444 C , Ti-Nb-VN carbides / nitrides and Ni3Ti as precipitation types are mentioned in the Japanese documents JP 2004/115864 and the Japanese patent JP 3970645 B2 disclosed. The European patent application EP 2 141 251 A1 discloses vanadium nitrogen and vanadium carbon precipitates used for shape memory alloying effect. The Chinese patent application CN 101215678 B relates to a so-called Ti-Nb-CN system. An Nb-Ti-VC system for forming precipitates is known from CN 100523263 C known. KAJIWARA S ET AL. disclosed in "Remarkable improvement of shape memory effect in Fe-Mn-Si based shape memory alloys by producing NbC precipitates" (SCRIPTA MATERIALIA, ELSEVIER, AMSTERDAM, NL, Vol. 44, No. 12, 2001 ) a shape memory alloy of the type Fe-28Mn-6Si-5Cr, to which 0.47 wt% Nb and 0.06 wt% C are alloyed, so as to improve the shape memory effect and to be able to do without the time-consuming "training". Finally, the Russian patent publication RU 2270267 C1 a V-Nb-WC excretion system for the representation of the shape memory effect. However, the iron-based shape memory alloy systems known from the prior art are in need of improvement in view of reducing the manufacturing costs, increasing the activation or switching temperature and their corrosion and forming properties.

Hiervon ausgehend hat die vorliegende Erfindung sich zur Aufgabe gestellt, eine Formgedächtnislegierung auf Eisenbasis zur Verfügung zu stellen, welche einen Einweg-Formgedächtniseffekt bereitstellt, die verringerte Kosten zur Herstellung benötigt, eine erhöhte Aktivierungstemperatur im Vergleich zu Kupfer- und Nickelbasislegierungen aufweist und deren Korrosions- und Umformeigenschaften im Vergleich zu nickelfreien und chromhaltigen Konzepten verbessert sind.On this basis, the present invention has for its object to provide an iron-based shape memory alloy which provides a disposable shape memory effect, which requires reduced manufacturing costs, an increased activation temperature compared to copper and nickel-based alloys and their corrosion and Forming properties are improved compared to nickel-free and chromium-containing concepts.

Die oben genannte Aufgabe wird gemäß einer ersten Lehre der vorliegenden Erfindung gelöst durch eine Formgedächtnislegierung bestehend aus einer Legierung mit folgenden Legierungsbestandteilen in Gewichtsprozent: 25,0% ≤ Mn ≤ 32,0%, 3,0% ≤ Si ≤ 8,0%, 3,0% ≤ Cr ≤ 10,0%, 0,1% ≤ Ni ≤ 4,0%, P ≤ 0,1%, S ≤ 0,1%, Mo ≤ 0,5%, Cu ≤ 0,5%, Al ≤ 5,0%, Mg ≤ 5,0%, O ≤ 0,1%, Ca ≤ 0,1%, Co ≤ 0,5%, wobei mindestens ein Element einer Gruppe 1 von Elementen vorhanden ist, wobei die Gruppe 1 aus den Elementen N, C, B mit folgenden Gehalten

  • N ≤ 0,1%,
  • C ≤ 0,1%,
  • B ≤ 0,1%
besteht und für die Summe der Legierungsbestandteile der Gruppe 1 gilt: Gruppe 1 N , C ,10 B 0,005 %
Figure imgb0001
und mindestens ein Element einer Gruppe 2 von Elementen vorhanden ist, die Gruppe 2 aus den Elementen Ti, Nb, W, V, Zr mit folgenden Gehalten
  • Ti ≤ 1,5%,
  • Nb ≤ 1,5%,
  • W ≤ 1,5%,
  • V ≤ 1,5%,
  • Zr ≤ 1,5% besteht und für die Summe der Legierungsbestandteile der Gruppe 2 gilt: Gruppe 2 Ti , Nb , V , W , Zr 0,1 %
    Figure imgb0002
    und für das Verhältnis der Summe der Legierungsbestandteile der Gruppe 1 und der Gruppe 2 jeweils in Atom-% gilt: 0,5 Gruppe 2 Gruppe 1 2,0 ,
    Figure imgb0003
    mit Rest Eisen und unvermeidbaren Verunreinigungen.
The above object is achieved according to a first teaching of the present invention by a shape memory alloy consisting of an alloy with the following alloy components in weight percent: 25.0% ≤ Mn ≤ 32.0%, 3.0% ≤ Si ≤ 8.0%, 3.0% ≤ Cr ≤ 10.0%, 0.1% ≤ Ni ≤ 4.0%, P ≤ 0.1%, S ≤ 0.1%, Mo ≤ 0.5%, Cu ≤ 0.5%, al ≤ 5.0%, mg ≤ 5.0%, O ≤ 0.1%, Ca ≤ 0.1%, Co ≤ 0.5%, wherein at least one element of a group 1 of elements is present, wherein the group 1 of the elements N, C, B having the following contents
  • N ≤ 0.1%,
  • C ≤ 0.1%,
  • B ≤ 0.1%
and for the sum of the alloying components of group 1: Σ group 1 N . C 10 B 0.005 %
Figure imgb0001
and at least one element of a group 2 of elements is present, the group 2 of the elements Ti, Nb, W, V, Zr with the following contents
  • Ti ≤ 1.5%,
  • Nb ≤ 1.5%,
  • W ≤ 1.5%,
  • V ≤ 1.5%,
  • Zr ≤ 1.5% and the sum of the alloying components of group 2 is: Σ group 2 Ti . Nb . V . W . Zr 0.1 %
    Figure imgb0002
    and for the ratio of the sum of the alloy constituents of Group 1 and Group 2, both in atomic%, the following applies: 0.5 Σ group 2 Σ group 1 2.0 .
    Figure imgb0003
    with residual iron and unavoidable impurities.

Neben den Pflichtbestandteilen der Formgedächtnislegierung, der Legierungsbestandteile Mn, Si, Cr, Ni sowie eines der Elemente der Gruppe 1 (N, C, B) und eines der Elemente der Gruppe 2 (Ti, Nb, W, V, Zr) kann die Formgedächtnislegierung zusätzlich die Elemente P, S, Mo, Cu, Al, Mg, O, Ca oder Co optional enthalten, welche bis zu den angegebenen Werten vorteilhafte Wirkungen entfalten können. Die den Formgedächtniseffekt beeinflussenden Ausscheidungen, deren Bildung durch das Verhältnis der beiden Elementgruppen, Gruppe 1 und Gruppe 2, zueinander beeinflusst wird, zeigen einen deutlichen, positiven Einfluss auf den Formgedächtniseffekt, sofern die Summe der Bestandteile der Elemente der Gruppe 2 in Atom-% der Legierung im Verhältnis zu der Summe der Legierungsbestandteile der Gruppe 1 in Atom-% im Bereich von 0,5 bis 2,0 liegt. Hierdurch wird ein gezieltes stöchiometrisches Verhältnis der Elemente der Gruppe 1 zu den Elementen der Gruppe 2 eingestellt Es wurde festgestellt, dass gerade bei diesem Verhältnis der Legierungsbestandteile der Gruppe 2 zu der Gruppe 1 die Ausscheidungsbildung besonders günstig ist und den Formgedächtniseffekt unterstützt. Ist das angegebene Verhältnis beispielsweise kleiner als 0,5, können die Ausscheidungselemente in Form von N, C und/oder B nicht abgebunden werden und der Formgedächtniseffekt wird reduziert, da die Elemente der Gruppe 1 in gelöster Form im Gefüge vorliegen. Im Ergebnis wird zudem ein negativer Effekt auf die Reversibilität der Phasentransformation, d.h. der Rückumwandlung von Martensit in Austenit, beobachtet. Wird das so gebildete Verhältnis der Summen der Legierungsbestandteile größer als 2,0 stellen sich unerwünschte Verfestigungen aufgrund der Elemente der Gruppe 2 ein, die sich als freie Atome im Gefüge einlagern und damit wiederum den Formgedächtniseffekt behindern.In addition to the mandatory components of the shape memory alloy, the alloy components Mn, Si, Cr, Ni and one of the elements of group 1 (N, C, B) and one of the elements of group 2 (Ti, Nb, W, V, Zr), the shape memory alloy In addition, optionally contain the elements P, S, Mo, Cu, Al, Mg, O, Ca or Co, which can develop beneficial effects up to the specified values. The effects on the shape memory effect affecting precipitations, the formation of which is influenced by the relationship of the two element groups, group 1 and group 2, show a significant, positive influence on the shape memory effect, provided that the sum of the constituents of the group 2 elements in atomic% of Alloy in proportion to the sum of the alloy components of Group 1 in atomic% in the range of 0.5 to 2.0. As a result, a targeted stoichiometric ratio of the elements of group 1 to the elements of group 2 is established. It has been found that it is precisely at this ratio of the alloy constituents of group 2 to group 1 that precipitation formation is particularly favorable and supports the shape memory effect. For example, if the ratio given is less than 0.5, the precipitating elements in the form of N, C and / or B can not be set and the shape memory effect is reduced since the group 1 elements are present in dissolved form in the microstructure. in the In addition, a negative effect on the reversibility of the phase transformation, that is, the return transformation of martensite into austenite, is observed. If the ratio of the sums of the alloying components formed in this way is greater than 2.0, unwanted solidifications due to the elements of the group 2 occur, which become lodged as free atoms in the microstructure and thus hinder the shape memory effect.

Der Mangangehalt von 25 Gew.-% bis 32 Gew.-% dient zur Stabilisierung des Austenits im Gefüge und hat insbesondere Einfluss auf die Schalttemperatur des Formgedächtnismaterials. Unterhalb eines Mn-Gehalts von 25,0 Gew.-% wird vermehrt Ferrit gebildet, der sich nachteilig auf den Formgedächtniseffekt auswirkt. Erhöht man den Mn-Gehalt oberhalb von 32 Gew.-% verringert sich die gewünschte Schalttemperatur zu sehr, so dass sich die Schalttemperatur und die möglichen Einsatztemperaturen eines entsprechenden Bauteils zu stark annähern.The manganese content of 25 wt .-% to 32 wt .-% serves to stabilize the austenite in the structure and has particular influence on the switching temperature of the shape memory material. Below an Mn content of 25.0 wt .-% ferrite is increasingly formed, which adversely affects the shape memory effect. Increasing the Mn content above 32 wt .-%, the desired switching temperature is reduced too much, so that the switching temperature and the possible operating temperatures of a corresponding component to approach too much.

Silizium dient der Sicherstellung der Reversibilität der Phasenumwandlung von Martensit in Austenit. Unterhalb von 3,0 Gew.-% bewirkt Si eine Reduzierung des Formgedächtniseffekts. Oberhalb von 8 Gew.-% kann eine Versprödung des Materials beobachtet werden. Zudem findet bei Si-Gehalten oberhalb von 8 Gew.-% die vermehrte Ausbildung der ungünstigen ferritischen Gefügebestandteile statt.Silicon serves to ensure the reversibility of the phase transformation of martensite into austenite. Below 3.0% by weight, Si causes a reduction in the shape memory effect. Above 8% by weight, embrittlement of the material can be observed. In addition, at Si contents above 8% by weight, the increased formation of the unfavorable ferritic constituents takes place.

Um eine ausreichende Korrosionsbeständigkeit sicherzustellen, enthält die Formgedächtnislegierung mindestens 3,0 Gew.-% Cr. Eine Steigerung des Cr-Gehaltes auf oberhalb von 10,0 Gew.-% begünstigt wiederum die Ferritbildung, welche sich, wie bereits ausgeführt, negativ auf den Formgedächtniseffekt auswirkt.To ensure sufficient corrosion resistance, the shape memory alloy contains at least 3.0 wt% Cr. An increase in the Cr content to above 10.0 wt .-% in turn promotes ferrite formation, which, as already stated, has a negative effect on the shape memory effect.

Nickel dient nun schließlich zur Stabilisierung des austenitischen Gefüges und verbessert zudem die Umformbarkeit des Materials. Ein Ni-Gehalt von unterhalb von 0,1 Gew.-% hat allerdings keinen signifikanten Einfluss auf die Eigenschaften des Materials. Ni-Gehalte von mehr als 4,0 Gew.-% führen jedoch lediglich in Zusammenhang mit einem erhöhten Cr-Anteil zu geringfügigen Verbesserungen, so dass zur Kosteneinsparung der Ni-Gehalt auf maximal 4,0 Gew.-% beschränkt wird. Um zu gewährleisten, dass die gewünschten Ausscheidungen erfolgen ohne sich negativ auf weitere Eigenschaften der Formgedächtnislegierung auszuwirken, ist als Obergrenze für alle Elemente der Gruppe 1, also N, C und B je maximal 0,1 Gew.-% vorgesehen. Die Elemente der Gruppe 2 (Ti, Nb, W, V, Zr) sind mit einem Mindestgehalt von 0,1 Gew.-% vorhanden, wobei dies mindestens für ein Element dieser Gruppe gilt. Mit einem Gewichtsanteil von mindestens 0,1 Gew.-% für Ti, Nb, W, V und/oder Zr wird der Formgedächtniseffekt positiv beeinflusst. Insbesondere die Reversibilität der Phasentransformation kann durch einen entsprechenden Gehalt eines der Gruppe 2 Elemente sichergestellt werden. Bevorzugt überschreitet jedes einzelne Element der Gruppe 2 den maximalen Gehalt von 1,5 Gew.-% nicht, besonders bevorzugt liegt der maximale Gehalt jedes einzelnen Elementes bei 1,2 Gew.-% bzw. bei 1,0 Gew.-%, da hieraus eine Reduktion der unerwünschten Verfestigungen erfolgt.Finally, nickel serves to stabilize the austenitic structure and also improves the formability of the material. However, a Ni content below 0.1% by weight has no significant influence on the properties of the material. However, Ni contents of more than 4.0% by weight lead to slight improvements only in connection with an increased Cr content Cost savings of Ni content is limited to a maximum of 4.0 wt .-%. In order to ensure that the desired precipitations take place without having a negative effect on further properties of the shape memory alloy, the upper limit for all elements of group 1, ie N, C and B, is at most 0.1% by weight. The elements of group 2 (Ti, Nb, W, V, Zr) are present at a minimum level of 0.1% by weight, which applies to at least one element of this group. With a proportion by weight of at least 0.1% by weight of Ti, Nb, W, V and / or Zr, the shape memory effect is positively influenced. In particular, the reversibility of the phase transformation can be ensured by a corresponding content of one of the group 2 elements. Preferably, each individual element of group 2 does not exceed the maximum content of 1.5% by weight, more preferably the maximum content of each individual element is 1.2% by weight or 1.0% by weight, respectively This results in a reduction of unwanted solidifications.

Gemäß einer ersten Ausgestaltung der erfindungsgemäßen Formgedächtnislegierung beträgt der Cr-Gehalt in Gewichtsprozent 3,0 % ≤ Cr ≤ 8,0 %, so dass ein guter Kompromiss zwischen Ferritbildung und Korrosionsbeständigkeit der Formgedächtnislegierung erreicht wird. Die Ferritbildung wirkt gegen den Formgedächtniseffekt, da Ferrit nicht die erwünschte Phasentransformation eingeht.According to a first embodiment of the shape memory alloy according to the invention, the Cr content in weight percent is 3.0% ≤ Cr ≤ 8.0%, so that a good compromise between ferrite formation and corrosion resistance of the shape memory alloy is achieved. The ferrite formation counteracts the shape memory effect, since ferrite does not undergo the desired phase transformation.

Gemäß einer weiteren Ausgestaltung der Formgedächtnislegierung gilt für die Differenz des Cr-Gehalts und des Ni-Gehalts: 0 % ≤ Cr-Ni ≤ 6,0 %. Die maximale Differenz der Gehalte von Cr und Ni ist insofern auf 6 % beschränkt. Es hat sich gezeigt, dass ein Ansteigen der Differenz des Chrom- und Nickelgehaltes auf über 6 Gew.-% zu keinen nennenswerten Verbesserungen der mechanischen Eigenschaften, sondern vielmehr zur Versprödung des Materials führt. Ein Absinken der Differenz auf unterhalb von 0 %, d.h. dass der Nickel-Gehalt größer ist als der Chrom-Gehalt, kann sich dagegen negativ auf die Schalttemperatur auswirken, in dem diese abgesenkt wird und sich der Einsatztemperatur des Werkstoffes annähert.According to another aspect of the shape memory alloy, the difference of Cr content and Ni content is 0% ≦ Cr-Ni ≦ 6.0%. The maximum difference in the contents of Cr and Ni is limited to 6%. It has been found that an increase in the difference of the chromium and nickel content to more than 6 wt .-% leads to no appreciable improvements in the mechanical properties, but rather to the embrittlement of the material. On the other hand, a drop in the difference to below 0%, ie the nickel content is greater than the chromium content, can have a negative effect on the switching temperature, in which the latter is lowered and approaches the starting temperature of the material.

Gemäß einer weiteren Ausgestaltung der Formgedächtnislegierung gilt für das Verhältnis der Summe der Legierungsbestandteile der Gruppe 1 und Gruppe 2 jeweils in Atom-%: 0,8 Gruppe 2 Gruppe 1 1,5 ,

Figure imgb0004
so dass einerseits der Formgedächtniseffekt vollständig gewährleistet werden kann und andererseits Verfestigungen aufgrund von freien Atomen der Gruppe 2 im Gefüge deutlich reduziert werden können.According to a further embodiment of the shape memory alloy, the ratio of the sum of the alloy constituents of group 1 and group 2 in atomic% applies in each case: 0.8 Σ group 2 Σ group 1 1.5 .
Figure imgb0004
so that on the one hand the shape memory effect can be completely guaranteed and on the other hand solidifications due to free atoms of group 2 in the microstructure can be significantly reduced.

Eine weitere Ausgestaltung der Formgedächtnislegierung weist N, C und B in folgender Menge in Gewichtsprozent:

  • 0,005% ≤ N ≤ 0,1%, und/oder
  • 0,005% ≤ C ≤ 0,1% und/oder
  • 0,0001% ≤ B ≤ 0,1%
auf. Enthält die Formgedächtnislegierung die Elemente N und/oder C in Gehalten von mindestens 0,005 Gew.-% und/oder B in einem Gehalt von mindestens 0,0001 Gew.-%, kann durch die Mindestgehalte die Bildung der Ausscheidungen verbessert werden. Durch die Obergrenze von 0,1 Gew.-%, vorzugsweise von 0,05 Gew.-%, besonders bevorzugt 0,01 Gew.-% von B, wird gewährleistet, dass die Oxidationsbeständigkeit der Formgedächtnislegierung nicht zu stark herabsinkt. Gleichzeitig wird der Gehalt von N und/oder C auf maximal 0,1 Gew.-%, vorzugsweise maximal 0,07 Gew.-% beschränkt, so dass die Ausscheidungen nicht zu groß werden und diese sich negativ auf mechanischen Eigenschaften der Legierung auswirken können.A further embodiment of the shape memory alloy comprises N, C and B in the following amount in percent by weight:
  • 0.005% ≤ N ≤ 0.1%, and / or
  • 0.005% ≤ C ≤ 0.1% and / or
  • 0.0001% ≤ B ≤ 0.1%
on. If the shape memory alloy contains the elements N and / or C in amounts of at least 0.005% by weight and / or B in a content of at least 0.0001% by weight, the minimum contents can improve the formation of the precipitates. The upper limit of 0.1% by weight, preferably 0.05% by weight, particularly preferably 0.01% by weight of B, ensures that the oxidation resistance of the shape memory alloy does not drop too much. At the same time, the content of N and / or C is limited to a maximum of 0.1% by weight, preferably a maximum of 0.07% by weight, so that the precipitates do not become too large and can adversely affect the mechanical properties of the alloy ,

Bei einer weiteren Ausgestaltung der Legierung werden die Legierungsgehalte der Legierungsbestandteile der Elemente der Gruppe 2 beschränkt. Gemäß dieser Ausführungsform betragen die Legierungsbestandteile der Elemente der Gruppe 2

  • Ti ≤ 1,2 Gew.-%,
  • Nb ≤ 1,2 Gew.-%,
  • W ≤ 1,2 Gew.-%,
  • V ≤ 1,2 Gew.-%,
  • Zr ≤ 1,2 Gew.-%,
wobei bevorzugt die Obergrenze auf 1,0 Gew.-% für jedes einzelne Element der Gruppe 2 herabgesenkt wird. Die Entstehung von Verfestigungen wird hierdurch weiter verringert, so dass die Formgedächtnislegierung ein gutes Umformverhalten aufweist.In a further embodiment of the alloy, the alloy contents of the alloying elements of the group 2 elements are limited. According to this embodiment, the alloying constituents of the elements of group 2
  • Ti ≦ 1.2 wt.%,
  • Nb ≤ 1.2 wt%,
  • W ≦ 1.2% by weight,
  • V ≤ 1.2% by weight,
  • Zr ≦ 1.2 wt.%,
preferably, the upper limit is lowered to 1.0% by weight for each individual Group 2 element. The formation of solidifications is thereby further reduced, so that the shape memory alloy has a good forming behavior.

Schließlich sollten gemäß einer weiteren Ausführungsform der Formgedächtnislegierung Schwefel, Phosphor und Sauerstoff auf Gehalte von maximal 0,1 Gew.-%, bevorzugt auf maximal 0,05 Gew.-% und besonders bevorzugt auf maximal 0,03 Gew.-% beschränkt werden, um deren negative Einflüsse, beispielsweise auf die Korrosionsbeständigkeit, zu verringern. Molybdän, Kupfer und Kobalt können einzeln oder in unterschiedlicher Kombination zur Verbesserung der Festigkeitseigenschaften zulegiert werden. Ein entsprechender Einfluss ist jeweils auf Gehalte von maximal 0,5 Gew.-% beschränkt. Aluminium und Magnesium können einzeln oder in Kombination zur Verbesserung der Korrosionsbeständigkeit beitragen und bewirken nebenbei auch eine Dichtereduzierung der Stahlschmelze. Ihr Gehalt ist auf maximal 5 Gew.-%, vorzugsweise auf maximal 2,0 Gew.-%, besonders bevorzugt auf maximal 1,0 Gew.-% beschränkt.Finally, according to a further embodiment of the shape memory alloy, sulfur, phosphorus and oxygen should be limited to contents of not more than 0.1% by weight, preferably not more than 0.05% by weight and more preferably not more than 0.03% by weight. to reduce their negative impact, for example on corrosion resistance. Molybdenum, copper and cobalt can be alloyed individually or in different combinations to improve the strength properties. A corresponding influence is limited in each case to contents of not more than 0.5% by weight. Aluminum and magnesium can contribute individually or in combination to improve the corrosion resistance and also cause a reduction in the density of the molten steel. Their content is limited to a maximum of 5 wt .-%, preferably to a maximum of 2.0 wt .-%, more preferably to a maximum of 1.0 wt .-%.

Gemäß einer weiteren Ausgestaltung kann Kalzium zur Abbindung von vorhandenem Schwefel zulegiert werden, um eine unerwünschte Bindung von Schwefel mit Mangan zu MnS zu vermeiden. Um die Korrosionsbeständigkeit nicht zu vermindern und zu große Verunreinigungen durch Ca zu vermeiden, wird der Gehalt von Ca auf maximal 0,015 Gew.-%, vorzugsweise auf maximal 0,01 Gew.-% beschränkt.In another embodiment, calcium may be added to set sulfur present to avoid undesirable sulfur-manganese to MnS bonding. In order not to reduce the corrosion resistance and too large To avoid contamination by Ca, the content of Ca is limited to a maximum of 0.015 wt .-%, preferably to a maximum of 0.01 wt .-%.

Tabelle 1 zeigt nun verschiedene Ausführungsbeispiele der Erfindung und Vergleichsbeispiele. An den Ausführungsbeispielen Nr. 1 bis 20 der Erfindung konnte bei ausreichend hoher Schalttemperatur ein ausreichender Formgedächtniseffekt an Proben nachgewiesen werden. Die Vergleichsbeispiele wiesen einerseits Probleme bezüglich Verfestigungen auf, so dass der Formgedächtniseffekt reduziert war (Vergleichsbeispiel 1). Die beiden anderen Vergleichsbeispiele 2 und 3 zeigten einen deutlich schwächeren Formgedächtniseffekt als die Ausführungsbeispiele der Erfindung. Die erfindungsgemäße eisenbasierte Formgedächtnislegierung lässt sich als Flachprodukt, beispielsweise in Form eines Bandes und/oder Bleches als Langprodukt, beispielsweise in Form eines Drahtes, als Bramme, Knüppel oder dergleichen erzeugen.

Figure imgb0005
Table 1 now shows various embodiments of the invention and comparative examples. In embodiments Nos. 1 to 20 of the invention could be detected at sufficiently high switching temperature sufficient shape memory effect on samples. On the one hand, the comparative examples had problems with solidification, so that the shape memory effect was reduced (Comparative Example 1). The other two Comparative Examples 2 and 3 showed a significantly weaker shape memory effect than the embodiments of the invention. The iron-based shape memory alloy according to the invention can be produced as a flat product, for example in the form of a strip and / or sheet as a long product, for example in the form of a wire, as a slab, billet or the like.
Figure imgb0005

Claims (7)

  1. Shape memory alloy consisting of an alloy having the following alloy constituents in % by weight:
    25.0% ≤ Mn ≤ 32.0%,
    3.0% ≤ Si ≤ 8.0%,
    3.0% ≤ Cr ≤ 10.0%,
    0.1% ≤ Ni ≤ 4.0%,
    P ≤ 0.1%,
    S ≤ 0.1%,
    Mo ≤ 0.5%,
    Cu ≤ 0.5%,
    Al ≤ 5.0%,
    Mg ≤ 5.0%,
    O ≤ 0.1%,
    Ca ≤ 0.1%,
    Co ≤ 0.5%,
    where at least one element of a group 1 of elements is present, where group 1 consists of the elements N, C, B with the following contents:
    N ≤ 0.1%,
    C ≤ 0.1%,
    B ≤ 0.1%, and, for the sum total of the alloy constituents of group 1: Group 1 N , C ,10 B 0.005 %
    Figure imgb0010
    and at least one element of a group 2 of elements is present, group 2 consists of the elements Ti, Nb, W, V, Zr with the following contents:
    Ti ≤ 1.5%,
    Nb ≤ 1.5%,
    W ≤ 1.5%,
    V ≤ 1.5%,
    Zr ≤ 1.5%, and, for the sum total of the alloy constituents of group 2: Group 2 Ti , Nb , W , V , Zr 0.1 %
    Figure imgb0011
    and, for the ratio of the sum total of the alloy constituents of group 1 and group 2, each in atom% 0.5 Group 2 Group 1 2.0 ,
    Figure imgb0012
    the balance being iron and unavoidable impurities.
  2. Alloy according to Claim 1, characterized in that the Cr content in % by weight is 3.0% ≤ Cr ≤ 8.0%.
  3. Alloy according to Claim 1 or 2, characterized in that the difference between the Cr content and the Ni content is:
    0% ≤ Cr-Ni ≤ 6.0%.
  4. Alloy according to any of Claims 1 to 3, characterized in that, for the ratio of the sum total of the alloy constituents of group 1 and group 2, each in atom: 0.8 Group 2 Group 1 1.5.
    Figure imgb0013
  5. Alloy according to any of Claims 1 to 4, characterized in that the alloy additionally contains N, C and/or B in the following minimum amount in per cent by weight:
    0.005% ≤ N ≤ 0.1%, and/or
    0.005% ≤ C ≤ 0.1%, and/or
    0.0001% ≤ B ≤ 0.1%.
  6. Alloy according to any of Claims 1 to 5, characterized in that the alloy constituents of the elements of group 2 are:
    Ti ≤ 1.2%,
    Nb ≤ 1.2%,
    W ≤ 1.2%,
    V ≤ 1.2%,
    Zr ≤ 1.2%.
  7. Alloy according to any of Claims 1 to 6, characterized in that the alloy has a Ca content in % by weight of not more than 0.015%.
EP13741745.7A 2013-03-22 2013-07-24 Iron-based shape memory alloy Not-in-force EP2976441B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13741745.7A EP2976441B1 (en) 2013-03-22 2013-07-24 Iron-based shape memory alloy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP13160731 2013-03-22
EP13175891 2013-07-10
PCT/EP2013/065657 WO2014146733A1 (en) 2013-03-22 2013-07-24 Iron-based shape memory alloy
EP13741745.7A EP2976441B1 (en) 2013-03-22 2013-07-24 Iron-based shape memory alloy

Publications (2)

Publication Number Publication Date
EP2976441A1 EP2976441A1 (en) 2016-01-27
EP2976441B1 true EP2976441B1 (en) 2019-02-27

Family

ID=48875045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13741745.7A Not-in-force EP2976441B1 (en) 2013-03-22 2013-07-24 Iron-based shape memory alloy

Country Status (2)

Country Link
EP (1) EP2976441B1 (en)
WO (1) WO2014146733A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018119289A1 (en) 2018-08-08 2020-02-13 Thyssenkrupp Ag Detachable fastening system comprising shape memory material and method for assembling a detachable fastening system
DE102018119296A1 (en) * 2018-08-08 2020-02-13 Thyssenkrupp Ag Inline stretching of shape memory alloys, especially flat steel
DE102018129640A1 (en) 2018-11-23 2020-05-28 Thyssenkrupp Ag Method for prestressing a building with a tensioning device and use of such a tensioning device for fastening to a building
CN110358963B (en) * 2019-07-15 2021-07-09 哈尔滨工程大学 FeMnAlNi shape memory alloy and preparation method thereof
CN111235491B (en) * 2019-12-27 2022-05-10 西北工业大学 High-strength high-plasticity shape memory steel and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970645B2 (en) 2002-03-15 2007-09-05 淡路マテリア株式会社 Method for producing iron-based shape memory alloy
JP2003277827A (en) 2002-03-20 2003-10-02 National Institute For Materials Science WORKING AND HEAT-TREATMENT METHOD FOR NbC-ADDED Fe-Mn-Si SHAPE MEMORY ALLOY
JP2004115864A (en) 2002-09-26 2004-04-15 Hiroshi Kubo Iron-based shape memory alloy
JP3950963B2 (en) 2002-12-18 2007-08-01 独立行政法人物質・材料研究機構 Thermomechanical processing of NbC-added Fe-Mn-Si based shape memory alloy
CN1280444C (en) 2004-04-13 2006-10-18 刘文西 Iron based shape memory alloy containing vanadium carbide and application of shape memory packer
RU2270267C1 (en) 2004-12-30 2006-02-20 Общество с ограниченной ответственностью Производственно-коммерческая фирма "Транс-Евразия" Dispersion-hardening austenitic steel with memory of the form
CN100523263C (en) 2007-08-06 2009-08-05 大连海事大学 Iron-base shape memory alloy locked key and its manufacturing and using method
CN101215678B (en) 2008-01-17 2010-06-09 四川大学 Training-free casting iron-base shape memory alloy containing high temperature ferrite
EP2141251B1 (en) 2008-06-25 2016-12-28 EMPA Dübendorf Shape memory alloys based on iron, manganese and silicon
JP2010156041A (en) 2008-12-04 2010-07-15 Daido Steel Co Ltd Two-way shape-recovery alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2976441A1 (en) 2016-01-27
WO2014146733A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
DE602004000140T2 (en) Stainless austenitic steel
DE60023699T2 (en) HOT-REST STAINLESS STEEL AUSTERITIC STEEL
EP2976441B1 (en) Iron-based shape memory alloy
DE60213828T2 (en) DUPLEX STEEL ALLOY
DE19941411B4 (en) Turbine or boiler component
DE2703756A1 (en) AUSTENITIC STAINLESS STEEL WITH HIGH MO CONTENT
DE112016005830B4 (en) Metal gasket and process for its manufacture
WO2006125412A1 (en) Austenitic lightweight steel and use thereof
DE1558668C3 (en) Use of creep-resistant, stainless austenitic steels for the production of sheet metal
EP3899064B1 (en) Super austenitic material
DE102015111866A1 (en) Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel
DE3109796C2 (en) Use of precipitation hardenable stainless steel as a material for the manufacture of springs
DE3624969A1 (en) SOFT MAGNETIC STAINLESS STEEL FOR COLD FORMING
DE19735361B4 (en) Austenitic stainless steel
DE1553841A1 (en) Knife blades made from corrosion-resistant austenitic stainless steel alloys
DE69015394T2 (en) Stainless ferritic steel and process for producing this steel.
DE69026763T2 (en) Stainless steels
DE2819529C2 (en) Process for the production of heat-resistant castings from an austenitic Cr-Ni-Fe alloy
DE1558676C3 (en)
EP1445339B1 (en) Alloy and article with high heat resistance and high heat stability
DE102009013506A1 (en) Corrosion-resistant austenitic steel for the production of roller bearing components, comprises chromium, manganese, molybdenum, copper, carbon and nitrogen, and iron residues and smelting-related impurities
EP0818552A2 (en) Ferritic-austenitic stainless steel casting alloy
DE2734068A1 (en) HIGH TEMPERATURE OXYDATION RESISTANT ALLOYS
DE3207162C1 (en) Highly heat-resistant cast nickel-iron alloy with great structural stability
EP2809818B1 (en) Duplex steel with improved notch-impact strength and machinability

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1101435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012305

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: JACOBACCI AND PARTNERS S.P.A., CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012305

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200721

Year of fee payment: 8

Ref country code: GB

Payment date: 20200727

Year of fee payment: 8

Ref country code: FR

Payment date: 20200723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200724

Year of fee payment: 8

Ref country code: CH

Payment date: 20200721

Year of fee payment: 8

Ref country code: AT

Payment date: 20200722

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130724

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013012305

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1101435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210724

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724