EP3899064B1 - Super austenitic material - Google Patents

Super austenitic material Download PDF

Info

Publication number
EP3899064B1
EP3899064B1 EP19829564.4A EP19829564A EP3899064B1 EP 3899064 B1 EP3899064 B1 EP 3899064B1 EP 19829564 A EP19829564 A EP 19829564A EP 3899064 B1 EP3899064 B1 EP 3899064B1
Authority
EP
European Patent Office
Prior art keywords
material according
threshold value
nitrogen
detection level
below detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19829564.4A
Other languages
German (de)
French (fr)
Other versions
EP3899064C0 (en
EP3899064A1 (en
Inventor
Andreas KEPLINGER
Rainer FLUCH
Clemens Vichytil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH and Co KG
Voestalpine Boehler Bleche GmbH and Co KG
Original Assignee
Voestalpine Boehler Edelstahl GmbH and Co KG
Voestalpine Boehler Bleche GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Boehler Edelstahl GmbH and Co KG, Voestalpine Boehler Bleche GmbH and Co KG filed Critical Voestalpine Boehler Edelstahl GmbH and Co KG
Publication of EP3899064A1 publication Critical patent/EP3899064A1/en
Application granted granted Critical
Publication of EP3899064C0 publication Critical patent/EP3899064C0/en
Publication of EP3899064B1 publication Critical patent/EP3899064B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the steel according to the invention should be free of precipitation, since precipitation has a negative impact on toughness and corrosion resistance.
  • the carbon content in particular is limited to 0.50%.
  • the copper content is deliberately added.
  • a special feature of the invention is that due to the high nitrogen content, the work hardening rate is higher than with other super austenites in order to be able to achieve tensile strengths (R m of 2000 MPa). This makes it possible as the last production step by cold rolling or other cold forming processes with high forming rates achieve strain hardening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)

Description

Die Erfindung betrifft einen superaustenitischen Werkstoff und ein Verfahren zu seiner Herstellung.The invention relates to a super-austenitic material and a method for its production.

Derartige Werkstoffe werden z. B. im chemischen Anlagenbau, unter maritimen Bedingungen oder in der Ölfeld- oder Gasfeldtechnik eingesetzt.Such materials are z. B. in chemical plant construction, under maritime conditions or in oil field or gas field technology.

Eine Anforderung an derartige Materialien ist, dass diese einem korrosiven Angriff, insbesondere einem Angriff in Medien mit hohen Chloridkonzentrationen oder schwefelsauren Bedingungen widerstehen.A requirement for such materials is that they resist corrosive attack, especially attack in media with high chloride concentrations or sulfuric acid conditions.

Derartige Materialien sind z.B. aus der CN 107876562 A , der CN 104195446 A oder DE 43 42 188 bekannt. JP 2005 179733 offenbart einen superaustenitischen Werkstoff. bekannt.Such materials are, for example, from the CN 107876562A , the CN 104195446A or DE 43 42 188 known. JP2005 179733 discloses a super austenitic material. known.

Aus der EP 1 069 202 A1 ist ein paramagnetischer, korrosionsbeständiger, austenitischer Stahl mit hoher Dehngrenze, Festigkeit und Zähigkeit bekannt, der insbesondere in Medien mit hoher Chloridkonzentration korrosionsbeständig sein soll, wobei dieser Stahl 0,6 Gew.-% bis 1,4 Gew.-% Stickstoff enthalten soll, wobei 17 bis 24 Gew.-% Chrom, sowie Mangan und Stickstoff enthalten sind.From the EP 1 069 202 A1 a paramagnetic, corrosion-resistant, austenitic steel with a high yield point, strength and toughness is known, which is said to be corrosion-resistant in particular in media with a high chloride concentration, this steel being said to contain 0.6% by weight to 1.4% by weight of nitrogen, containing 17 to 24% by weight of chromium, as well as manganese and nitrogen.

Aus der WO 02/02837 A1 ist ein korrosionsbeständiger Werkstoff für die Anwendung in Medien mit hoher Chloridkonzentration in der Ölfeldtechnik bekannt. Hierbei handelt es sich um ein Chromnickelmolybdänsuperaustenit, der mit vergleichsweise niedrigen Stickstoffgehalten, jedoch sehr hohen Chrom- und sehr hohen Nickelgehalten ausgebildet ist.From the WO 02/02837 A1 is a corrosion-resistant material for use in media with a high chloride concentration in oil field technology. This is a chromium-nickel-molybdenum superaustenite that has a comparatively low nitrogen content but very high chromium and very high nickel contents.

Diese Chromnickelmolybdänstähle besitzen gegenüber den davor genannten Chrommanganstickstoffstählen üblicherweise noch ein verbessertes Korrosionsverhalten. Insgesamt sind Chrommanganstickstoffstähle eine eher kostengünstige Legierungszusammensetzung, die gleichwohl eine hervorragende Kombination aus Festigkeit, Zähigkeit und Korrosionsbeständigkeit bietet. Die genannten Chromnickelmolybdänstähle erreichen wesentlich höhere Korrosionsbeständigkeiten als Chrommanganstickstoffstähle, sind jedoch aufgrund des sehr hohen Nickelgehaltes mit wesentlich höheren Kosten verbunden.These chromium-nickel-molybdenum steels usually have improved corrosion behavior compared to the previously mentioned chromium-manganese-nitrogen steels. Overall, chromium manganese nitrogen steels are a more economical alloy composition that nonetheless offer an excellent combination of strength, toughness and corrosion resistance offers. The chromium-nickel-molybdenum steels mentioned achieve significantly higher corrosion resistance than chromium-manganese-nitrogen steels, but are associated with significantly higher costs due to the very high nickel content.

Kennwerte für die Korrosionsbeständigkeit sind unter anderem der sogenannte PREN16-Wert, wobei es auch üblich ist, die sogenannte pitting equivalent number mittels MARC zu definieren, wobei ein Superaustenit mit einer PREN16 zu o>42 gekennzeichnet ist, wobei PREN = % Cr + 3,3 x % Mo + 16 x % N ist.Key values for corrosion resistance include the so-called PREN 16 value, although it is also common to define the so-called pitting equivalent number using MARC, with a super austenite being marked with a PREN 16 of o>42, where PREN = % Cr + 3.3 x % Mo + 16 x % N.

Die bekannte MARC-Formel zur Beschreibung des Lochfraßwiderstands für derartige Stähle lautet wie folgt: MARC = % Cr + 3,3 x % Mo + 20 x % N + 20 x % C - 0,25 x % Ni - 0,5 x % Mn.The well-known MARC formula for describing the pitting resistance for such steels is as follows: MARC = % Cr + 3.3 x % Mo + 20 x % N + 20 x % C - 0.25 x % Ni - 0.5 x % Mn.

Vergleichbare Stahlgüten sind auch für die Verwendung als Schiffbaustähle für Unterseeboote bekannt, wobei es sich hierbei um Chromnickelmanganstickstoffstähle handelt, die zudem mit Niob legiert sind, um den Kohlenstoff zu stabilisieren, was jedoch die Kerbschlagzähigkeit verschlechtert. Diese Stähle besitzen grundsätzlich weniger Mangan und besitzen hierdurch eine relativ gute Korrosionsbeständigkeit, erreichen jedoch nicht die Festigkeit reinen hochstickstofflegierten CrMnN Stählen.Comparable steel grades are also known for use as shipbuilding steels for submarines, these being chromium-nickel manganese nitrogen steels which are also alloyed with niobium to stabilize the carbon, but this degrades the impact strength. These steels generally contain less manganese and therefore have relatively good corrosion resistance, but do not achieve the strength of pure high-nitrogen alloyed CrMnN steels.

Bekannte Superaustenite weisen für gewöhnlich Molybdängehalte > 4% auf, um die hohe Korrosionsbeständigkeit zu erreichen. Jedoch erhöht Molybdän die Neigung zu Seigerungen und somit eine erhöhte Anfälligkeit für Ausscheidungen (bevorzugt Sigma- oder Chi-Phasen), was zur Folge hat, dass diese Legierungen eine Homogenisierungsglühung benötigen bzw. bei Werten über 6% Molybdän ein Umschmelzen zur Reduzierung der Seigerungen notwendig ist.Known superaustenites usually have a molybdenum content > 4% in order to achieve high corrosion resistance. However, molybdenum increases the tendency to segregation and thus an increased susceptibility to precipitation (preferably sigma or chi phases), which means that these alloys require homogenization annealing or, for values above 6% molybdenum, remelting to reduce segregation is.

Aufgabe der Erfindung ist es, einen superaustenitischen, hochfesten und zähen Werkstoff zu schaffen, der in vergleichsweise einfacher und kostengünstiger Weise erzeugt werden kann und in besonderer Weise für eine schwefelsaure korrosive Umgebung geeignet ist.The object of the invention is to create a super-austenitic, high-strength and tough material that can be produced in a comparatively simple and cost-effective manner and is particularly suitable for a sulfuric acid corrosive environment.

Die Aufgabe wird mit einem Werkstoff mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.The object is achieved with a material having the features of claim 1. Advantageous developments are identified in the dependent claims.

Es ist darüber hinaus eine Aufgabe der Erfindung, ein Verfahren zum Herstellen des Werkstoffs zu schaffen.It is also an object of the invention to provide a method for manufacturing the material.

Die Aufgabe wird mit den Merkmalen des Anspruch 16 gelöst. Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.The object is achieved with the features of claim 16. Advantageous developments are characterized in the subclaims dependent thereon.

Wenn nachfolgend %-Angaben gemacht werden, sind diese in jedem Fall Gew.-% (Gewichtsprozent).If percentages are given below, these are in any case % by weight (percent by weight).

Erfindungsgemäß soll der Werkstoff, im Schiffbau und der Chemieanlagenbau bzw. die Kombination von beidem hier insbesondere Rauchgasentschwefelungsanlagen von seegehenden Schiffen verwendet werden. Auch alle anderen Bereiche in denen ein insbesondere schwefelsaurer oder Sauergas-Angriff zu erwarten sind. Dabei besitzt der Werkstoff ein vollkommen austenitisches Gefüge auch nach einer optionalen Kaltumformung. Nach der Kaltverfestigung soll die Dehngrenze bei Rp0,2>1000 MPa liegen.According to the invention, the material is to be used in shipbuilding and chemical plant construction or the combination of both here, in particular flue gas desulfurization systems of seagoing ships. Also all other areas in which a sulfuric acid or acid gas attack in particular is to be expected. The material has a completely austenitic structure even after optional cold forming. After strain hardening, the yield point should be R p0.2 >1000 MPa.

Die erfindungsgemäße Legierung besitzt insbesondere die nachfolgende Zusammensetzung (alle Angaben in Gew-%): Elemente bevorzugt weiter bevorzugt Kohlenstoff (C) 0,01 - 0,30 0,01 - 0,10 Silizium (Si) < 0,5 < 0,5 Mangan (Mn) 0,5 - 4,0 1,0 - 4,0 Phosphor (P) < 0,05 < 0,05 Schwefel (S) < 0,005 < 0,005 Eisen (Fe) Rest Rest Chrom (Cr) 24,0 - 30,0 26,0 - 29,0 Molybdän (Mo) 3,0 - 5,0 3,5 - 4,5 Nickel (Ni) 14,0 - 19,0 15,0 - 18,0 Vanadium (V) < 0,3 Unter Nachweisgrenze Wolfram (W) < 0,1 Unter Nachweisgrenze Kupfer (Cu) 0,75-3,5 1,0-2,0 Kobalt (Co) < 0,5 Unter Nachweisgrenze Titan (Ti) < 0,05 Unter Nachweisgrenze Aluminium (Al) < 0,1 < 0,1 Niob (Nb) < 0,025 Unter Nachweisgrenze Bor (B) < 0,005 < 0,005 Stickstoff (N) 0,40 - 0,70 0,45 - 0,60 In particular, the alloy according to the invention has the following composition (all data in % by weight): elements preferred more preferred carbon (C) 0.01 - 0.30 0.01 - 0.10 Silicon (Si) < 0.5 < 0.5 Manganese (Mn) 0.5 - 4.0 1.0 - 4.0 Phosphorus (P) < 0.05 < 0.05 Sulfur (S) < 0.005 < 0.005 iron (Fe) rest rest Chromium (Cr) 24.0 - 30.0 26.0 - 29.0 Molybdenum (Mo) 3.0 - 5.0 3.5 - 4.5 Nickel (Ni) 14.0 - 19.0 15.0 - 18.0 vanadium (V) < 0.3 Below detection limit Tungsten (W) < 0.1 Below detection limit copper (Cu) 0.75-3.5 1.0-2.0 cobalt (Co) < 0.5 Below detection limit Titanium (Ti) < 0.05 Below detection limit Aluminum (Al) < 0.1 < 0.1 niobium (Nb) < 0.025 Below detection limit boron (B) < 0.005 < 0.005 nitrogen (N) 0.40 - 0.70 0.45 - 0.60

Mit einer solchen Legierung werden die positiven Eigenschaften der unterschiedlichen bekannten Stahlgüten in synergistischer und überraschender Weise zusammengeführt.With such an alloy, the positive properties of the different known steel grades are brought together in a synergistic and surprising way.

Grundsätzlich soll der erfindungsgemäße Stahl ausscheidungsfrei vorliegen, da Ausscheidungen negativ sind für die Zähigkeit und die Korrosionsbeständigkeit. Bei der erfindungsgemäßen Legierung ist insbesondere der Kohlenstoffgehalt auf 0,50 % begrenzt. Gleichzeitig ist der Kupfergehalt bewusst zulegiert.In principle, the steel according to the invention should be free of precipitation, since precipitation has a negative impact on toughness and corrosion resistance. In the case of the alloy according to the invention, the carbon content in particular is limited to 0.50%. At the same time, the copper content is deliberately added.

Bei der erfindungsgemäßen Legierung ist völlig überraschend, dass sich sehr hohe Stickstoffwerte einstellen lassen, welches für die Festigkeit ausgesprochen gut ist, wobei diese Stickstoffwerte überraschenderweise über denen liegen, die in der Fachliteratur als möglich angegeben werden. Laut empirischen Methoden wären die hohen Stickstoffgehalte der erfindungsgemäßen Legierung überhaupt nicht ohne DESU zulegierbar siehe Fig. 4.In the case of the alloy according to the invention, it is completely surprising that very high nitrogen values can be set, which is extremely good for the strength, these nitrogen values surprisingly being above those that are indicated as possible in the technical literature. According to empirical methods, the high nitrogen contents of the alloy according to the invention could not be alloyed at all without DESU see 4 .

Im Folgenden werden die jeweiligen Elemente und gegebenenfalls im Zusammenwirken mit den übrigen Legierungsbestandteilen näher beschrieben. Alle Angaben bzgl. der Legierungszusammensetzung werden in Gewichtsprozent (Gew.-%) angeführt. Obere und untere Grenzen der einzelnen Legierungselemente können innerhalb der Grenzen der Ansprüche frei miteinander kombiniert werden.The respective elements and, if applicable, their interaction with the other alloy components are described in more detail below. All information regarding the alloy composition is given in percent by weight (% by weight). Upper and lower limits of the individual alloying elements can be freely combined with one another within the limits of the claims.

Kohlenstoff kann in einer erfindungsgemäßen Stahllegierung in Gehalten bis zu 0,50% enthalten sein. Kohlenstoff ist ein Austenitbildner und wirkt sich in Bezug auf hohe mechanische Kennwerte günstig aus. Im Hinblick auf eine Vermeidung von karbidischen Ausscheidungen sollte der Kohlenstoffgehalt zwischen 0,01 und 0,25 % bevorzugt zwischen 0,01 und 0,10 % eingestellt werden.A steel alloy according to the invention can contain carbon in contents of up to 0.50%. Carbon is an austenite former and has a favorable effect in terms of high mechanical parameters. With a view to avoiding carbidic precipitations, the carbon content should be set to between 0.01 and 0.25%, preferably between 0.01 and 0.10%.

Silizium ist in Gehalten < 0,5 % vorgesehen und dient in der Hauptsache der Desoxidation des Stahls. Die angegebene Obergrenze vermeidet sicher eine Ausbildung intermetallischer Phasen. Da Silizium überdies ein Ferritbildner ist, ist auch diesbezüglich die Obergrenze mit einem Sicherheitsbereich gewählt. Insbesondere kann Silizium in Gehalten von 0,1 - 0,4 % vorgesehen sein.Contents of <0.5% silicon are intended and are mainly used for deoxidizing the steel. The specified upper limit reliably avoids the formation of intermetallic phases. Since silicon is also a ferrite former, the upper limit is also selected with a safety range in this regard. In particular, silicon can be provided in contents of 0.1-0.4%.

Mangan ist in Gehalten von 0,1 - 5,0 % enthalten. Dies ist gegenüber Werkstoffen nach dem Stand der Technik ein ausgesprochen niedriger Wert. Bislang wurde angenommen, dass Mangangehalte von mehr als 19 %, möglichst mehr als 20 % für eine hohe Stickstofflöslichkeit notwendig sind. Überraschenderweise hat sich bei der vorliegenden Legierung ergeben, dass auch mit den erfindungsgemäß sehr niedrigen Mangangehalten eine Stickstofflöslichkeit erzielt wird, die über dem, was nach der herrschenden Fachmeinung möglich ist, liegt. Zudem wurde bislang angenommen, dass eine gute Korrosionsbeständigkeit mit sehr hohen Mangangehalten einhergeht, jedoch hat sich erfindungsgemäß ergeben, dass durch nicht aufgeklärte synergistische Effekte bei der vorliegenden Legierung dies offenbar nicht notwendig ist. Die untere Grenze für Mangan kann bei 0,5 oder 1,0 oder 2,0 oder 2,5 % gewählt werden. Die obere Grenze für Mangan kann bei 3,0 oder 3,5 oder 4,0 oder 4,5 % gewählt werden.Manganese is contained in levels of 0.1 - 5.0%. This is an extremely low value compared to materials according to the prior art. Up to now it has been assumed that manganese contents of more than 19%, if possible more than 20%, are necessary for high nitrogen solubility. Surprisingly, it has been found with the present alloy that even with the very low manganese contents according to the invention, a nitrogen solubility is achieved which is above what is possible according to prevailing expert opinion. In addition, it was previously assumed that good corrosion resistance goes hand in hand with very high manganese contents, but it has been found according to the invention that this is apparently not necessary due to unexplained synergistic effects in the present alloy. The lower limit for manganese can be chosen at 0.5 or 1.0 or 2.0 or 2.5%. The upper limit for manganese can be chosen at 3.0 or 3.5 or 4.0 or 4.5%.

Chrom erweist sich in Gehalten von 17 % oder mehr als für eine höhere Korrosionsbeständigkeit notwendig. Nach der Erfindung sind mindestens 23% und höchstens 33% Chrom enthalten. Bislang wurde angenommen, dass höhere Gehalte als 23 % sich nachteilig auf die magnetische Permeabilität auswirken, weil Chrom zu den ferritstabilisierenden Elementen zählt. Dem gegenüber konnte bei der erfindungsgemäßen Legierung festgestellt werden, dass selbst sehr hohe Chromgehalte oberhalb von 23% die magnetische Permeabilität in der vorliegenden Legierung nicht negativ beeinflussen, jedoch bekanntermaßen die Beständigkeit gegen Lochfraß und Spannungsrisskorrosion optimal beeinflusst werden. Die untere Grenze für Chrom kann bei 25 oder 26 % gewählt werden. Die obere Grenze für Chrom kann bei 28 oder 29 oder 30 oder 31 oder 32 % gewählt werden.Chromium levels of 17% or more are found to be necessary for higher corrosion resistance. According to the invention, at least 23% and at most 33% chromium are included. Up to now it was assumed that higher contents than 23% have an adverse effect on the magnetic permeability because chromium is one of the ferrite-stabilizing elements. In contrast, it was found in the alloy according to the invention that even very high chromium contents above 23% do not adversely affect the magnetic permeability in the present alloy, but the resistance to pitting and stress corrosion cracking is known to be optimally influenced. The lower limit for chromium can be selected at 25 or 26%. The upper limit for chromium can be chosen at 28 or 29 or 30 or 31 or 32%.

Molybdän ist ein Element, welches wesentlich zur Korrosionsbeständigkeit im Allgemeinen und zur Lochfraßkorrosionsbeständigkeit im Besonderen beiträgt, wobei die Wirkung von Molybdän durch Nickel verstärkt wird. Erfindungsgemäß werden 2,0 bis 5,0 % Molybdän zugesetzt. Es hat sich auch gezeigt, dass Mo Gehalte von > 5% und besonders > 6 % zu starken Seigerverhalten führen, was die Ausscheidungsneigung von Sigmaphase erhöht, was wiederum die Korrosionsbeständigkeit herabsetzen würde. Die untere Grenze für Molybdän kann bei 2,2 oder 2,3 oder 2,4 oder 2,5 oder 3,0 oder 3,2 oder 3,3 oder 3,4 oder 3,5 % gewählt werden. Die obere Grenze für Molybdän kann bei 4,4 oder 4,5 oder 4,6 oder 4,7 oder 4,8 oder 4,9 % gewählt werden.Molybdenum is an element which contributes significantly to corrosion resistance in general and pitting corrosion resistance in particular, the effect of molybdenum being enhanced by nickel. According to the invention, 2.0 to 5.0% molybdenum is added. It has also been shown that Mo contents of > 5% and especially > 6% lead to strong segregation behavior, which increases the tendency of sigma phase to precipitate, which in turn would reduce the corrosion resistance. The lower limit for molybdenum can be chosen at 2.2 or 2.3 or 2.4 or 2.5 or 3.0 or 3.2 or 3.3 or 3.4 or 3.5%. The upper limit for molybdenum can be chosen at 4.4 or 4.5 or 4.6 or 4.7 or 4.8 or 4.9%.

Wolfram ist erfindungsgemäß in Gehalten unter 0,5% anwesend und trägt zur Steigerung der Korrosionsbeständigkeit bei. Die obere Grenze für Wolfram kann bei 0,4 oder 0,3 oder 0,2 oder 0,1 % oder unter der Nachweisgrenze (d.h. ohne jegliche bewusste Zulegierung) gewählt werden.According to the invention, tungsten is present in amounts below 0.5% and contributes to the increase in corrosion resistance. The upper limit for tungsten can be chosen at 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (i.e. without any intentional addition).

Nickel ist erfindungsgemäß in Gehalten von 12 bis 20% anwesend, wodurch in chloridhaltigen Medien eine hohe Spannungsrisskorrosionsbeständigkeit erreicht wird. Die untere Grenze für Nickel kann bei 13 oder 14 oder 15 % gewählt werden. Die obere Grenze für Nickel kann bei 17 oder 18 oder 19 % gewählt werden.According to the invention, nickel is present in contents of 12 to 20%, as a result of which a high resistance to stress corrosion cracking is achieved in media containing chloride. The lower limit for nickel can be chosen at 13 or 14 or 15%. The upper limit for nickel can be chosen at 17 or 18 or 19%.

Es ist allgemein bekannt, dass das Zulegieren von Cu > 0,5% zu einer Erhöhung der Schwefelsäurebeständigkeit von austenitischen rostfreien Stahlgüten führt. Gleichzeitig wird in der Literatur auch erwähnt, dass Cu vor allem bei hochstickstofflegierten Stählen die Neigung zur Ausscheidung von unerwünschten CrzN-Ausscheidungen, welche Korrosionseigenschaften massiv verschlechtern, erhöht Erfindungsgemäß konnte ein Cr2N freies Gefüge erzielt werden, trotz Cu Gehalten > 0,5, bevorzugt >1,0 und hohen N Gehalten von > 0,40%. Dieser Effekt saturiert jedoch ab einer bestimmten Menge. Erfindungsgemäß wurde der obere Grenzwert für Kupfer auf 5,0% bevorzugt < 3 % oder < 2,5 % insbesondere < 2 % gewählt. Die untere Grenze für Kupfer kann bei 0,6 oder 0,7 oder 0,8 oder 0,9 oder 1 oder 1,1 % gewählt werden. Ein Anwendungsbereich ist speziell die Rauchgaswäsche, speziell z.B. bei seegehenden Schiffen. Mit diesen Gehalten kann einerseits eine gute Beständigkeit gegen schwefelsauren und auch Sauergas-Angriff erzielt werden, andererseits kann durch die Gesamtlegierung die Ausscheidung von Chromnitriden wie zuvor erwähnt weitestgehend unterbunden werden.It is well known that alloying Cu > 0.5% leads to an increase in the sulfuric acid resistance of austenitic stainless steel grades. At the same time, it is also mentioned in the literature that Cu increases the tendency to precipitate undesired CrzN precipitations, which massively impair corrosion properties, especially in high-nitrogen-alloyed steels. According to the invention, a Cr 2 N-free structure could be achieved, despite Cu contents > 0.5, preferably >1.0 and high N contents of >0.40%. However, this effect saturates above a certain amount. According to the invention, the upper limit value for copper was chosen to be 5.0%, preferably <3% or <2.5%, in particular <2%. The lower limit for copper can be chosen at 0.6 or 0.7 or 0.8 or 0.9 or 1 or 1.1%. One area of application is specifically flue gas scrubbing, especially for seagoing ships, for example. With these contents, on the one hand good resistance to sulfuric acid and acid gas attack can be achieved, on the other hand the precipitation of chromium nitrides can be largely prevented by the overall alloy, as mentioned above.

Kobalt kann in Gehalten < 5,0% insbesondere zur Substitution von Nickel vorgesehen sein.Cobalt can be provided in contents of <5.0%, in particular to replace nickel.

Die obere Grenze für Kobalt kann bei 3 oder 1 oder 0,5 oder 0,4 oder 0,3 oder 0,2 oder 0,1 % oder unter der Nachweisgrenze (d.h. ohne jegliche bewusste Zulegierung) gewählt werden.The upper limit for cobalt can be chosen at 3 or 1 or 0.5 or 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (i.e. without any intentional addition).

Stickstoff ist in Gehalten von 0,40 bis 0,90 % enthalten, um eine hohe Festigkeit sicherzustellen. Weiters trägt Stickstoff zur Korrosionsbeständigkeit bei und ist ein starker Austenitbildner, weshalb höhere Gehalte als 0,40 % günstig sind. Um stickstoffhaltige Ausscheidungen, insbesondere Chromnitrid, zu vermeiden, ist die Obergrenze des Stickstoffs auf 0,90 % begrenzt, wobei sich erwiesen hat, dass trotz des sehr geringen Mangangehaltes im Gegensatz zu bekannten Legierungen, diese hohen Stickstoffgehalte in der Legierung erzielbar sind. Aufgrund der guten Stickstofflöslichkeit einerseits und der Nachteile, die mit höheren Gehalten an Stickstoff, insbesondere über 0,90 % erhalten werden, verbietet sich jede Druckaufstickung im Rahmen einer DESU-Route sogar. Durch den erfindungsgemäß niedrigen und durch Chrom und Stickstoff kompensierten Molybdängehalt, ist dies auch nicht notwendig. Insbesondere vorteilhaft ist es, wenn das Verhältnis Stickstoff zu Kohlenstoff größer 15 ist. Die untere Grenze für Stickstoff kann bei 0,45 % gewählt werden. Die obere Grenze für Stickstoff kann bei 0,80 oder 0,70 oder 0,65 oder 0,60 % gewählt werden.Nitrogen is included at levels of 0.40 to 0.90% to ensure high strength. Furthermore, nitrogen contributes to corrosion resistance and is a strong austenite former, which is why higher contents than 0.40% are favorable. In order to avoid nitrogenous precipitates, in particular chromium nitride, the upper limit of nitrogen is limited to 0.90%, which has been shown to be the opposite despite the very low manganese content to known alloys, these high nitrogen contents can be achieved in the alloy. Due to the good nitrogen solubility on the one hand and the disadvantages that are obtained with higher nitrogen contents, in particular above 0.90%, any pressure increase is even out of the question as part of a DESU route. Due to the low molybdenum content according to the invention and compensated by chromium and nitrogen, this is also not necessary. It is particularly advantageous if the ratio of nitrogen to carbon is greater than 15. The lower limit for nitrogen can be chosen at 0.45%. The upper limit for nitrogen can be chosen at 0.80 or 0.70 or 0.65 or 0.60%.

Laut dem allgemeinen Stand der Technik ( V.G. Gavriljuk, H.Berns; "High Nitrogen Steels, S. 264, 1999 ) erreichen unter Atmosphärendruck erschmolzene CrNiMn(Mo) austenitische Stähle, wie der vorliegende, Stickstoffgehalte von 0,2 bis 0,5 %. Nur ChromManganMolybdänAustenite erreichen dabei Stickstoffgehalte von 0,5 bis 1 %.According to the general state of the art ( VG Gavrilyuk, H.Berns; "High Nitrogen Steels, p. 264, 1999 ) CrNiMn(Mo) austenitic steels melted under atmospheric pressure, such as the present one, achieve nitrogen contents of 0.2 to 0.5%. Only chromium-manganese-molybdenum austenite achieves a nitrogen content of 0.5 to 1%.

Erfindungsgemäß ist von Vorteil, dass gegen jede Erwartung hohe Stickstoffgehalte erreicht werden ohne dass ein Druckaufsticken notwendig wäre, was üblicherweise notwendig wäre, um diese Gehalte zu erzielen.According to the invention, it is advantageous that, contrary to all expectations, high nitrogen contents are achieved without the need for pressurization, which would usually be necessary in order to achieve these contents.

Hierdurch ist das erfindungsgemäße Verfahren auch kostengünstig, da das aufwendige Druckaufsticken nicht notwendig ist, wodurch wiederum auch das damit verbundene Umschmelzen entfallen kann.As a result, the method according to the invention is also cost-effective, since the expensive embroidering with pressure is not necessary, which in turn means that the associated remelting can also be omitted.

Zudem können als weitere Legierungsbestandteile Bor, Aluminium und Schwefel enthalten sein, jedoch lediglich optional. Die Legierungsbestandteile Vanadium und Titan sind in der vorliegenden Stahllegierung nicht notwendigerweise enthalten. Obwohl diese Elemente positiv zur Löslichkeit von Stickstoff beitragen, kann auch bei deren Abwesenheit die erfindungsgemäß hohe Stickstofflöslichkeit geboten werden.In addition, boron, aluminum and sulfur can be included as further alloy components, but only optionally. The alloy components vanadium and titanium are not necessarily contained in the present steel alloy. Although these elements contribute positively to the solubility of nitrogen, the high nitrogen solubility of the present invention can be provided even in their absence.

Niob soll in der erfindungsgemäßen Legierung nicht enthalten sein, da es die Zähigkeit herabsetzt und historisch nur zur Abbindung von Kohlenstoff verwendet wurde, was bei der erfindungsgemäßen Legierung nicht notwendig ist. Die Gehalte von Niob sind bis 0,1% noch tolerierbar, sollten aber den Gehalt unvermeidlicher Verunreinigungen nicht übersteigen.Niobium should not be contained in the alloy according to the invention since it reduces the toughness and was historically only used to bind carbon, which is not necessary in the alloy according to the invention. The niobium content is still tolerable up to 0.1%, but should not exceed the content of unavoidable impurities.

Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert. Es zeigen dabei:

Figur 1:
eine Tabelle mit den Legierungselementen;
Figur 2:
stark schematisiert den Herstellungsweg und seine Alternativen;
Figur 3:
eine Tabelle mit drei unterschiedlichen Legierungen und den daraus resultierenden Ist-Werten des Stickstoffgehaltes gegen die rechnerische Stickstofflöslichkeit einer derartigen Legierung laut geltender Lehrmeinung;
Figur 4:
die Festigkeiten der in Figur 3 genannten Beispiele vor einer allfälligen Kaltverfestigung;
The invention is explained by way of example with reference to a drawing. They show:
Figure 1:
a table of alloying elements;
Figure 2:
strongly schematized the production route and its alternatives;
Figure 3:
a table with three different alloys and the resulting actual values of the nitrogen content against the calculated nitrogen solubility of such an alloy according to the prevailing doctrine;
Figure 4:
the strengths of the in figure 3 mentioned examples before any strain hardening;

Die Bestandteile werden unter atmosphärischen Bedingungen erschmolzen und anschließend sekundärmetallurgisch weiter behandelt. Anschließend werden Blöcke gegossen, die direkt anschließend warmumgeformt werden.The components are melted under atmospheric conditions and then further treated with secondary metallurgy. Blocks are then cast, which are immediately hot-formed.

Direkt anschließend im Sinne der Erfindung bedeutet, dass kein zusätzlicher Umschmelzprozess wie zb. Elektroschlacke-Umschmelzung (ESU) oder Druck-Elektroschlackeumschmelzung (DESU) erfolgt.Directly then within the meaning of the invention means that no additional remelting process such as. Electroslag remelting (ESR) or pressure electroslag remelting (DESU) takes place.

Erfindungsgemäß ist es vorteilhaft, wenn der folgende Zusammenhang gilt: MARC opt : 40 < % Cr + 3,3 × % Mo + 20 × % C + 20 × % N 0,5 × % Mn

Figure imgb0001
According to the invention, it is advantageous if the following relationship applies: MARC opt : 40 < % Cr + 3.3 × % Mon + 20 × % C + 20 × % N 0.5 × % Mn
Figure imgb0001

Die MARC-Formel ist dahingehende optimiert, dass herausgefunden wurde, dass der sonst übliche Abzug von Nickel für das erfindungsgemäße System nicht zutrifft sowie der Grenzwert von 40 notwendig ist.The MARC formula has been optimized in that it was found that the usual deduction of nickel does not apply to the system according to the invention and that the limit value of 40 is necessary.

Anschließend erfolgen bei Bedarf Kaltumformschritte, bei denen eine Kaltverfestigung stattfindet, und anschließend die mechanische Bearbeitung, die insbesondere ein Drehen, Fräsen oder Schälen sein kann.Subsequently, if necessary, cold forming steps take place, in which strain hardening takes place, and then mechanical processing, which can in particular be turning, milling or peeling.

In Figur 2 sind beispielhaft die möglichen Verfahrensrouten für die Fertigung der erfindungsgemäßen Legierungszusammensetzung dargestellt. Exemplarisch wird nun eine mögliche Route beschrieben. Im Vakuuminduktionsschmelzaggregat (VID) wird Schmelzgut gleichzeitig erschmolzen und sekundärmetallurgisch behandelt. Im Anschluss wird die Schmelze in Kokillen (Ingot) gegossen und erstarrt dort zu Blöcken. Diese werden danach in mehreren Schritten warmumgeformt, Z.B. auf der Langschmiedemaschine (Rotary Forging Machine) vorgeschmiedet und im Mehrlinienwalzwerk (Multiline Rolling Mill) auf End-maß gebracht oder auf Duo Walzgerüsten zu Blech ausgewalzt. Je nach Anforderungen kann noch ein Wärmebehandlungsschritt erfolgen.In figure 2 the possible process routes for the production of the alloy composition according to the invention are shown as examples. A possible one is now used as an example Route described. In the vacuum induction melting unit (VID), melted material is simultaneously melted and treated for secondary metallurgy. The melt is then poured into molds (ingot) and solidifies there into blocks. These are then hot-formed in several steps, eg pre-forged on the long forging machine (Rotary Forging Machine) and brought to final dimensions in the multi-line rolling mill or rolled out to sheet metal on duo rolling mills. Depending on the requirements, a heat treatment step can also be carried out.

Um die Festigkeit weiter zu erhöhen, kann noch ein Kaltumformungsschritt durchgeführt werden.In order to further increase the strength, a cold forming step can be carried out.

Ein erfindungsgemäßer superaustenitischer Werkstoff kann nicht nur über die beschriebenen (und insbesondere in Figur 2 dargestellten) Herstellungsrouten erzeugt werden, die vorteilhaften Eigenschaften der erfindungsgemäßen Legierung lassen sich auch durch einen pulvermetallurgischen Erzeugungsweg erzielen lassen.A super-austenitic material according to the invention can not only have the described (and in particular in figure 2 illustrated) production routes are produced, the advantageous properties of the alloy according to the invention can also be achieved by a powder-metallurgical production route.

In Figur 3 sind drei unterschiedliche Varianten innerhalb der erfindungsgemäßen Legierungszusammensetzungen gezeigt, mit den jeweils gemessenen Stickstoffwerten, die sich bei der erfindungsgemäßen Verfahrensweise in Verbindung mit den erfindungsgemäßen Legierungen ergeben haben. Diese sehr hohen Stickstoffanteile stehen im Widerspruch zu den in den rechten Spalten angegebenen Stickstofflöslichkeit nach Stein, Satir, Kowandar und Medovar aus "On restricting aspects in the production of non-magnetic Cr-Mn-N-alloy steels, Saller, 2005." Bei Medovar sind unterschiedliche Temperaturen angegeben. Es ist jedoch erkennbar, dass die hohen Stickstoffwerte die theoretisch zu erwartenden weit übersteigen.In figure 3 three different variants within the alloy compositions according to the invention are shown, with the nitrogen values measured in each case, which have resulted from the procedure according to the invention in connection with the alloys according to the invention. These very high nitrogen contents are in contradiction to the nitrogen solubility specified in the right columns according to Stein, Satir, Kowandar and Medovar from "On restricting aspects in the production of non-magnetic Cr-Mn-N-alloy steels, Saller, 2005." Different temperatures are given for Medovar. However, it can be seen that the high nitrogen values far exceed those that can be expected theoretically.

Dies ist umso erstaunlicher, als dass bei der erfindungsgemäßen Legierung ein Weg gegangen wurde, der eine hohe Stickstofflöslichkeit eben nicht zu erwarten lässt, insbesondere, weil der die Stickstofflöslichkeit stark positiv beeinflussende Mangangehalt gegenüber bekannten entsprechenden Legierungen stark herabgesetzt ist.This is all the more astonishing since the alloy according to the invention took a route that does not allow for the expectation of high nitrogen solubility, in particular because the manganese content, which has a strongly positive influence on nitrogen solubility, is greatly reduced compared to known corresponding alloys.

Somit ist bei der Erfindung von Vorteil, dass ein austenitischer, hochfester Werkstoff mit erhöhter Korrosionsbeständigkeit und niedrigem Nickelgehalt geschaffen wird, der gleichzeitig hohe Festigkeit und paramagnetisches Verhalten zeigt. Auch nach Kaltumformung liegt ein vollkommen austenitisches Gefüge vor, so dass es gelungen ist, die positiven Eigenschaften eines kostengünstigen CrMnN-Stahls mit den korrosionstechnischen herausragenden Eigenschaften eines CrNiMo-Stahls zu kombinieren.Thus, the advantage of the invention is that an austenitic, high-strength material with increased corrosion resistance and a low nickel content is created, which at the same time shows high strength and paramagnetic behavior. A completely austenitic structure is also present after cold forming, so that it has been possible to combine the positive properties of a cost-effective CrMnN steel with the excellent corrosion-related properties of a CrNiMo steel.

Eine Besonderheit der Erfindung ist, dass aufgrund des hohen Stickstoffgehalts die Kaltverfestigungsrate höher ist, als bei anderen Superausteniten um dadurch Zugfestigkeiten (Rm von 2000 MPa erreichen zu können. Dadurch ist es möglich als letzten Herstellungsschritt durch Kaltwalzen oder andere Kaltumformverfahren mit hohen Umformraten eine hohe Kaltverfestigung zu erreichen.A special feature of the invention is that due to the high nitrogen content, the work hardening rate is higher than with other super austenites in order to be able to achieve tensile strengths (R m of 2000 MPa). This makes it possible as the last production step by cold rolling or other cold forming processes with high forming rates achieve strain hardening.

Typische Anwendungsbereiche der erfindungsgemäßen Werkstoffe sind der Schiffbau und der Chemieanlagenbau bzw. die Kombination von beidem hier insbesondere Rauchgasentschwefelungsanlagen von seegehenden Schiffen, aber auch alle anderen Bereiche in denen ein insbesondere schwefelsaurer Angriff zu erwarten ist.Typical areas of application for the materials according to the invention are shipbuilding and chemical plant construction or the combination of both here, in particular flue gas desulfurization systems on seagoing ships, but also all other areas in which a particularly sulfuric acid attack is to be expected.

Speziell bei Anwendung bei denen sehr hohe Festigkeiten gefordert werden, kann mittels Kaltverformen die Festigkeit wie bereits beschrieben noch weiter gesteigert werden.Especially in applications where very high strength is required, the strength can be further increased by means of cold forming, as already described.

Claims (22)

  1. Superaustenitic material consisting of an alloy with the following alloy elements, with all details being in % by weight, as well as unavoidable impurities:
    Elements Carbon (C) 0.01 -0.50 Silicon (Si) < 0.5 Manganese (Mn) 0.1 - 5.0 Phosphorus (P) < 0.05 Sulphur (S) < 0.005 Iron (Fe) remainder Chromium (Cr) 24.0 - 33.0 Molybdenum (Mo) 2.0 - 5.0 Nickel (Ni) 12 - 20.0 Vanadium (V) < 0.5 Tungsten (W) < 0.5 Copper (Cu) 0.50 - 5.0 Cobalt (Co) < 5.0 Titanium (Ti) < 0.1 Aluminium (Al) < 0.2 Niobium (Nb) < 0.1 Boron (B) < 0.01 Nitrogen (N) 0.40 - 0.90
  2. Superaustenitic material according to claim 1,
    characterised in that the alloy consists of the following elements as well as unavoidable impurities, with all details being in % by weight:
    Elements Carbon (C) 0.01 - 0.30 Silicon (Si) < 0.5 Manganese (Mn) 0.5 - 4.0 Phosphorus (P) < 0.05 Sulphur (S) < 0.005 Iron (Fe) remainder Chromium (Cr) 24.0 - 30.0 Molybdenum (Mo) 3.0 - 5.0 Nickel (Ni) 14.0 - 19.0 Vanadium (V) < 0.3 Tungsten (W) < 0.1 Copper (Cu) 0.75 - 3.5 Cobalt (Co) < 0.5 Titanium (Ti) < 0.05 Aluminium (Al) < 0.1 Niobium (Nb) < 0.025 Boron (B) < 0.005 Nitrogen (N) 0.40 - 0.70
  3. Superaustenitic material according to claim 1 or 2,
    characterised in that the alloy consists of the following elements as well as unavoidable impurities, with all details being in % by weight:
    Elements Carbon (C) 0.01 - 0.10 Silicon (Si) < 0.5 Manganese (Mn) 1.0 - 4.0 Phosphorus (P) < 0.05 Sulphur (S) < 0.005 Iron (Fe) remainder Chromium (Cr) 26.0 - 29.0 Molybdenum (Mo) 3.5 - 4.5 Nickel (Ni) 15.0 - 18.0 Vanadium (V) below detection level Tungsten (W) below detection level Copper (Cu) 1.0 - 2.0 Cobalt (Co) below detection level Titanium (Ti) below detection level Aluminium (Al) < 0.1 Niobium (Nb) below detection level Boron (B) < 0.005 Nitrogen (N) 0.45 - 0.60
  4. Material according to one of the preceding claims,
    characterised in that
    the material is achieved by secondary metallurgical processing of the molten metal, casting into blocks, hot forming, optional cold forming, and optional further mechanical processing.
  5. Material according to one of the preceding claims,
    characterised in that
    the yield point Rp0.2>500 MPa.
  6. Material according to one of the preceding claims,
    characterised in that
    the notched bar impact work at room temperature in the longitudinal direction Av>300 J.
  7. Material according to one of the preceding claims,
    characterised in that
    after the cold deformation, the material is fully austenitic, thus free from deformation martensite.
  8. Material according to one of the preceding claims,
    characterised in that
    manganese has an upper threshold value of 3.0 % or 3.5 % or 4.0 % or 4.5 % or 5.0 % and
    a lower threshold value of 0.1 % or 0.5 % or 1.0 % or 2.0 % or 2.5 %.
  9. Material according to one of the preceding claims,
    characterised in that
    chromium has an upper threshold value of 28 % or 29 % or 29.8 or 31.5 % and
    a lower threshold value of 24.0 or 25 % or 26 %.
  10. Material according to one of the preceding claims,
    characterised in that
    molybdenum has an upper threshold value of 4.4 or 4.5 or 4.6 or 4.7 or 4.8 or 4.9 or 5.0 % and
    a lower threshold value of 2.05 % or 2.1 % or 2.2 % or 2.3 % or 2.4 % or 2.5 % or 3.0 % or 3.2 % or 3.3 % or 3.4 % or 3.5 %.
  11. Material according to one of the preceding claims,
    characterised in that
    nickel has an upper threshold value of 16.8 % or 17 or 18 or 19 % and
    a lower threshold value of 12 % or 13 % or 14 % or 15 %.
  12. Material according to one of the preceding claims,
    characterised in that
    nitrogen has an upper threshold value of 0.60 % or 0.65 % or 0.70 % or 0.75% or 0.80 % or 0.85 % or 0.88 % and
    a lower threshold value of 0.46 % or 0.50 % or 0.55 %.
  13. Material according to one of the preceding claims,
    characterised in that
    cobalt is at < 1 % or < 0.5 % or < 0.4 % or < 0.3 % or < 0.2 % or < 0.1 % or is below detection level.
  14. Material according to one of the preceding claims,
    characterised in that
    copper has an upper threshold value of 5.0 % or 4.5 % or 4.0 % or 3.5 % or 3.0 % or 2.5 % or 2 % and
    a lower threshold value of 0.60 % or 0.70 % or 0.80 % or 0.90 % or 1.0 % or 1.1 %.
  15. Material according to one of the preceding claims,
    characterised in that
    tungsten is at < 0.5 % or < 0.3 % or < 0.2 % or < 0.1 % or is below detection level.
  16. Method for producing a material according to one of the preceding claims,
    characterised in that
    the alloy consists of the following elements as well as unavoidable impurities, with all details being in % by weight:
    Elements Carbon (C) 0.01 - 0.50 Silicon (Si) < 0.5 Manganese (Mn) 0.1 - 5.0 Phosphorus (P) < 0.05 Sulphur (S) < 0.005 Iron (Fe) remainder Chromium (Cr) 24.0 - 33.0 Molybdenum (Mo) 2.0 - 5.0 Nickel (Ni) 12 - 20.0 Vanadium (V) < 0.5 Tungsten (W) < 0.5 Copper (Cu) 0.50 - 5.0 Cobalt (Co) < 5.0 Titanium (Ti) < 0.1 Aluminium (Al) < 0.2 Niobium (Nb) < 0.1 Boron (B) < 0.01 Nitrogen (N) 0.40 - 0.90
    is smelted and the material then produced by secondary metallurgical processing, then the thus-obtained alloy is cast into blocks and left to solidify, directly thereafter being heated and hot-formed, wherein the products are in particular subjected to a further cold forming and subsequent further mechanical processing.
  17. Method for producing a material according to claim 16,
    characterised in that
    the alloy consists of the following elements as well as unavoidable impurities, with all details being in % by weight:
    Elements Carbon (C) 0.01 - 0.30 Silicon (Si) < 0.5 Manganese (Mn) 0.5 - 4.0 Phosphorus (P) < 0.05 Sulphur (S) < 0.005 Iron (Fe) remainder Chromium (Cr) 24.0 - 30.0 Molybdenum (Mo) 3.0 - 5.0 Nickel (Ni) 14.0 - 19.0 Vanadium (V) < 0.3 Tungsten (W) < 0.1 Copper (Cu) 0.75 - 3.5 Cobalt (Co) < 0.5 Titanium (Ti) < 0.05 Aluminium (Al) < 0.1 Niobium (Nb) < 0.025 Boron (B) < 0.005 Nitrogen (N) 0.40 - 0.70
  18. Method for producing a material according to claim 16 or 17,
    characterised in that
    the alloy consists of the following elements as well as unavoidable impurities, with all details being in % by weight:
    Elements Carbon (C) 0.01 - 0.10 Silicon (Si) < 0.5 Manganese (Mn) 1.0 - 4.0 Phosphorus (P) < 0.05 Sulphur (S) < 0.005 Iron (Fe) remainder Chromium (Cr) 26.0 - 29.0 Molybdenum (Mo) 3.5 - 4.5 Nickel (Ni) 15.0 - 18.0 Vanadium (V) below detection level Tungsten (W) below detection level Copper (Cu) 1.0 - 2.0 Cobalt (Co) below detection level Titanium (Ti) below detection level Aluminium (Al) < 0.1 Niobium (Nb) below detection level Boron (B) < 0.005 Nitrogen (N) 0.45 - 0.60
  19. Method according to one of claims 16 to 18,
    characterised in that
    the hot forming takes place in a plurality of sub-steps.
  20. Method according to one of claims 16 to 19,
    characterised in that
    the product is reheated between the hot forming sub-steps and, if required, solution annealing takes place after the last hot forming sub-step.
  21. Method according to one of claims 16 to 20,
    characterised in that
    after the last hot forming sub-step as well as the optional solution annealing, a cold forming step takes place to achieve a tensile strength Rm > 1000 MPa, in particular Rm > 2000 MPa.
  22. Use of a material according to one of claims 1 to 15, in particular produced with a method according to one of claims 16 to 21, for systems and system components which are exposed to sulphuric acid corrosion, in particular flue gas desulphurisation systems.
EP19829564.4A 2018-12-20 2019-12-19 Super austenitic material Active EP3899064B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018133255.6A DE102018133255A1 (en) 2018-12-20 2018-12-20 Super austenitic material
PCT/EP2019/086385 WO2020127789A1 (en) 2018-12-20 2019-12-19 Superaustenitic material

Publications (3)

Publication Number Publication Date
EP3899064A1 EP3899064A1 (en) 2021-10-27
EP3899064C0 EP3899064C0 (en) 2023-08-30
EP3899064B1 true EP3899064B1 (en) 2023-08-30

Family

ID=69063782

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19829564.4A Active EP3899064B1 (en) 2018-12-20 2019-12-19 Super austenitic material
EP19829563.6A Active EP3899063B1 (en) 2018-12-20 2019-12-19 Super austenitic material

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19829563.6A Active EP3899063B1 (en) 2018-12-20 2019-12-19 Super austenitic material

Country Status (11)

Country Link
US (2) US20220145436A1 (en)
EP (2) EP3899064B1 (en)
JP (2) JP2022522092A (en)
CN (2) CN113544294A (en)
BR (1) BR112021011849A2 (en)
CA (2) CA3124189C (en)
DE (1) DE102018133255A1 (en)
EA (2) EA202191412A1 (en)
ES (2) ES2957403T3 (en)
PL (2) PL3899064T3 (en)
WO (2) WO2020127788A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116121667A (en) * 2021-11-14 2023-05-16 重庆三爱海陵实业有限责任公司 Valve and high-temperature resistant alloy thereof
CN115261718B (en) * 2022-03-28 2023-06-06 江西宝顺昌特种合金制造有限公司 Super austenitic stainless steel S34565 plate and preparation method thereof
CN115992330B (en) * 2023-02-17 2024-04-19 东北大学 High-nitrogen low-molybdenum super austenitic stainless steel and alloy composition optimal design method thereof

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB778597A (en) * 1955-02-15 1957-07-10 Ford Motor Co Improvements in or relating to the manufacture of nitrogen-rich wrought austenitic alloys
AT277302B (en) * 1963-05-24 1969-12-29 Boehler & Co Ag Geb Austenitic corrosion-resistant steel
JPS5521547A (en) * 1978-08-01 1980-02-15 Hitachi Metals Ltd Austenite stainless steel having high strength and pitting corrosion resistance
DE3407307A1 (en) * 1984-02-24 1985-08-29 Mannesmann AG, 4000 Düsseldorf USE OF A CORROSION-RESISTANT AUSTENITIC IRON-CHROME-NICKEL-NITROGEN ALLOY FOR MECHANICALLY HIGH-QUALITY COMPONENTS
DE3837456C1 (en) * 1988-05-17 1990-03-29 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De Use of a fully austenitic steel for components which are severely stressed corrosion-chemically and mechanically
NO891969L (en) * 1988-05-17 1989-11-20 Thyssen Edelstahlwerke Ag Corrosion resistant AUSTENITIC STEEL.
DE3837457C1 (en) * 1988-05-17 1989-12-21 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De Steel for components of plants or equipment for the conveying, storage and transport of oil or gas
JPH03285050A (en) * 1990-03-30 1991-12-16 Aichi Steel Works Ltd Exhaust valve steel excellent in high temperature characteristic
JP2591256B2 (en) * 1990-05-21 1997-03-19 住友金属工業株式会社 High strength non-magnetic steel
DE4342188C2 (en) 1993-12-10 1998-06-04 Bayer Ag Austenitic alloys and their uses
JPH08239735A (en) * 1995-02-28 1996-09-17 Sumitomo Metal Mining Co Ltd Cast austnitic stainless steel
JP3546421B2 (en) * 1995-03-31 2004-07-28 大同特殊鋼株式会社 High-strength, high corrosion-resistant nitrogen-containing austenitic stainless steel
DK0864663T3 (en) * 1995-09-27 2003-09-15 Sumitomo Metal Ind High strength welded steel structures and excellent corrosion resistance
JP3347582B2 (en) * 1996-04-12 2002-11-20 大同特殊鋼株式会社 Austenitic stainless steel for metal gasket and method for producing the same
CA2278490C (en) * 1997-01-22 2008-10-14 Siemens Aktiengesellschaft Fuel cell and use of iron-based alloys in the construction of fuel cells
AT407882B (en) 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY
DE29921813U1 (en) * 1999-12-12 2000-02-24 Friederich, Heinrich, Dr.-Ing., 68649 Groß-Rohrheim High-strength, corrosion-resistant stainless steel profile bar
AT408889B (en) 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T CORROSION-RESISTANT MATERIAL
KR100445246B1 (en) * 2001-12-28 2004-08-21 김영식 High Pitting Resistant and High Ni bearing duplex stainless steel
US6761777B1 (en) * 2002-01-09 2004-07-13 Roman Radon High chromium nitrogen bearing castable alloy
US20040258554A1 (en) * 2002-01-09 2004-12-23 Roman Radon High-chromium nitrogen containing castable alloy
JP4210999B2 (en) * 2003-12-19 2009-01-21 大同特殊鋼株式会社 Ring material for continuously variable transmission, method for manufacturing the same, and ring for continuously variable transmission
JP2005281855A (en) * 2004-03-04 2005-10-13 Daido Steel Co Ltd Heat-resistant austenitic stainless steel and production process thereof
SE528008C2 (en) * 2004-12-28 2006-08-01 Outokumpu Stainless Ab Austenitic stainless steel and steel product
US20090129967A1 (en) * 2007-11-09 2009-05-21 General Electric Company Forged austenitic stainless steel alloy components and method therefor
US20120021917A1 (en) * 2009-09-29 2012-01-26 Furukawa Electric Co., Ltd. Substrate for superconducting wiring, superconducting wiring and production method for same
CN102639742B (en) * 2009-11-18 2016-03-30 新日铁住金株式会社 Austenite stainless steel plate and manufacture method thereof
US10266909B2 (en) * 2011-03-28 2019-04-23 Nippon Steel & Sumitomo Metal Corporation High-strength austenitic stainless steel for high-pressure hydrogen gas
MX364300B (en) * 2011-05-26 2019-04-22 Upl L L C D/B/A United Pipelines Of America Llc Austenitic stainless steel.
US9347121B2 (en) * 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
EP2804962B1 (en) * 2012-01-20 2021-06-09 Solu Stainless Oy Method for manufacturing an austenitic stainless steel product
US9869003B2 (en) * 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US20140261918A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
US11111552B2 (en) * 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US20150337419A1 (en) * 2014-05-20 2015-11-26 Crs Holdings Inc. Austenitic Stainless Steel Alloy
CN104195446A (en) 2014-08-06 2014-12-10 张家港市飞浪泵阀有限公司 Superaustenitic stainless steel for pump valve products
AU2015338140B2 (en) * 2014-10-29 2018-05-24 Nippon Steel Corporation Austenitic stainless steel and manufacturing method therefor
AU2017247759B2 (en) * 2016-04-07 2020-04-30 Nippon Steel Corporation Austenitic stainless steel material
CN106244940A (en) * 2016-08-26 2016-12-21 天津新伟祥工业有限公司 A kind of Cr-Mn-N series austenitic heat-resistance steel and preparation method thereof
CN107876562A (en) 2017-11-23 2018-04-06 海盐中达金属电子材料有限公司 A kind of super austenitic stainless steel steel band and its processing hot-rolling mill
CN108396223B (en) * 2018-03-29 2020-09-29 东北大学 Super austenitic stainless steel and alloy composition optimization design method thereof
CN108642409A (en) * 2018-05-08 2018-10-12 江苏理工学院 A kind of corrosion-resistant super austenitic stainless steel and its manufacturing process

Also Published As

Publication number Publication date
US20240052469A2 (en) 2024-02-15
EP3899064C0 (en) 2023-08-30
CA3124189A1 (en) 2020-06-25
BR112021011849A2 (en) 2021-09-08
PL3899064T3 (en) 2023-11-20
ES2956332T3 (en) 2023-12-19
US20230332282A1 (en) 2023-10-19
EA202191413A1 (en) 2021-09-28
DE102018133255A1 (en) 2020-06-25
EA202191412A1 (en) 2021-09-28
EP3899064A1 (en) 2021-10-27
CN113544294A (en) 2021-10-22
EP3899063A1 (en) 2021-10-27
JP2022522092A (en) 2022-04-14
CN113544295A (en) 2021-10-22
JP2022514920A (en) 2022-02-16
US20220145436A1 (en) 2022-05-12
CA3122044A1 (en) 2020-06-25
EP3899063B1 (en) 2023-08-30
EP3899063C0 (en) 2023-08-30
CA3124189C (en) 2023-10-31
PL3899063T3 (en) 2023-12-04
ES2957403T3 (en) 2024-01-19
BR112021011844A2 (en) 2021-08-31
WO2020127788A1 (en) 2020-06-25
WO2020127789A1 (en) 2020-06-25
BR112021011844A8 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
AT394056B (en) METHOD FOR PRODUCING STEEL
DE602004000140T2 (en) Stainless austenitic steel
EP3899064B1 (en) Super austenitic material
EP3504349B1 (en) Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type
WO2019121879A1 (en) Method for the additive manufacturing of an object from a maraging steel powder
DE60124227T2 (en) DUPLEX STAINLESS STEEL
EP3325678B1 (en) Formable lightweight steel with improved mechanical properties and method for producing semi-finished products from said steel
EP1158067A1 (en) Martensitic hardenable heat treatable steel with improved thermal resistance and ductility
EP3512968B1 (en) Method for producing a flat steel product made of a manganese-containing steel, and such a flat steel product
DE1301586B (en) Austenitic precipitation hardenable steel alloy and process for its heat treatment
DE69601340T2 (en) HIGH-STRENGTH, HIGH-STRENGTH HEAT-RESISTANT STEEL AND METHOD FOR THE PRODUCTION THEREOF
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
DE69115356T2 (en) Precipitation hardening tool steel
EP1255873B9 (en) Maraging type spring steel
DE102018133251A1 (en) Drill string component with high corrosion resistance and process for their manufacture
DE69107439T2 (en) High-strength stainless steel with good toughness properties, and process for its production.
EP3469108B1 (en) Method for producing a cold-rolled steel strip having trip-characteristics made of a high-strength mangan-containing steel
EP3225702B1 (en) Steel with reduced density and method for producing a steel flat or long product made from such steel
EP3292223B1 (en) Method for producing thin sheet from a stainless austenitic crmnni steel
EP2809818B1 (en) Duplex steel with improved notch-impact strength and machinability
WO2019121866A1 (en) Method for producing an article from a maraging steel
DE102018108173A1 (en) Austenitic alloy and process for producing a nitrogenous austenitic alloy
DE2118697B2 (en) Process for the production of a high-strength, low-carbon structural steel with good weldability
AT277300B (en) Steel that can be hardened in the martensitic state
EP4296393A1 (en) Boron-containing steel, in particular heat-treatable steel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/00 20060101ALN20230316BHEP

Ipc: C22C 38/54 20060101ALN20230316BHEP

Ipc: C22C 38/52 20060101ALN20230316BHEP

Ipc: C22C 38/58 20060101ALN20230316BHEP

Ipc: C22C 38/50 20060101ALN20230316BHEP

Ipc: C22C 38/48 20060101ALN20230316BHEP

Ipc: C22C 33/02 20060101ALN20230316BHEP

Ipc: C22C 38/46 20060101ALI20230316BHEP

Ipc: C22C 38/44 20060101ALI20230316BHEP

Ipc: C22C 38/40 20060101ALI20230316BHEP

Ipc: C22C 38/38 20060101ALI20230316BHEP

Ipc: C22C 38/42 20060101ALI20230316BHEP

Ipc: C21D 9/46 20060101ALI20230316BHEP

Ipc: C22C 38/22 20060101ALI20230316BHEP

Ipc: C21D 8/02 20060101ALI20230316BHEP

Ipc: C21D 7/02 20060101ALI20230316BHEP

Ipc: C21D 7/10 20060101ALI20230316BHEP

Ipc: C21D 9/08 20060101ALI20230316BHEP

Ipc: C21D 6/00 20060101AFI20230316BHEP

INTG Intention to grant announced

Effective date: 20230406

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009201

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230927

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231005

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2956332

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20231227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231201

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019009201

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

U1N Appointed representative for the unitary patent procedure changed [after the registration of the unitary effect]

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB; DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231219