EP3899063A1 - Superaustenitic material - Google Patents

Superaustenitic material

Info

Publication number
EP3899063A1
EP3899063A1 EP19829563.6A EP19829563A EP3899063A1 EP 3899063 A1 EP3899063 A1 EP 3899063A1 EP 19829563 A EP19829563 A EP 19829563A EP 3899063 A1 EP3899063 A1 EP 3899063A1
Authority
EP
European Patent Office
Prior art keywords
material according
detection limit
nitrogen
weight
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19829563.6A
Other languages
German (de)
French (fr)
Other versions
EP3899063B1 (en
EP3899063C0 (en
Inventor
Rainer FLUCH
Andreas KEPLINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH and Co KG
Original Assignee
Voestalpine Boehler Edelstahl GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Boehler Edelstahl GmbH and Co KG filed Critical Voestalpine Boehler Edelstahl GmbH and Co KG
Publication of EP3899063A1 publication Critical patent/EP3899063A1/en
Application granted granted Critical
Publication of EP3899063B1 publication Critical patent/EP3899063B1/en
Publication of EP3899063C0 publication Critical patent/EP3899063C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to a super-austenitic material and a method for its manufacture.
  • Such materials are used for. B. used in chemical plant construction or in oil field or gas field technology.
  • a requirement for such materials is that they withstand a corrosive attack, in particular an attack in media with high chloride concentrations.
  • Such materials are e.g. known from CN 107876562 A, CN 104195446 A or DE 43 42 188.
  • EP 1 069 202 A1 discloses a paramagnetic, corrosion-resistant, austenitic steel with a high yield strength, strength and toughness, which is said to be corrosion-resistant, particularly in media with a high chloride concentration, this steel being 0.6% by weight to 1.4% by weight .-% nitrogen should contain, with 17 to 24 wt .-% chromium, manganese and nitrogen are included.
  • WO 02/02837 Al discloses a corrosion-resistant material for use in media with a high chloride concentration in oil field technology. This is a chromium nickel molybdenum super austenite, which is formed with comparatively low nitrogen contents, but with very high chromium and very high nickel contents.
  • chrome manganese nitrogen steels are a rather inexpensive alloy composition, which is nevertheless an excellent combination of strength, toughness and corrosion resistance. offers.
  • the chromium nickel molybdenum steels mentioned achieve significantly higher corrosion resistance than chromium manganese nitrogen steels, but are associated with considerably higher costs due to the very high nickel content.
  • MARC % Cr + 3.3 x% Mo + 20 x% N + 20 x% C - 0.25 x% Ni - 0.5 x% Mn.
  • Comparable steel grades are also known for use as shipbuilding steels for submarines, which are chromium-nickel manganese nitrogen steels which are also alloyed with niobium to stabilize the carbon, but this worsens the impact strength. These steels are generally low in manganese and as a result have a relatively good corrosion resistance, but do not achieve the strength of extremely high quality bars.
  • the object of the invention is to provide a super-austenitic, high-strength and tough material that can be produced in a comparatively simple and inexpensive manner.
  • the material is to be used, in particular in the measuring instrument industry and in particular in the watch industry in particular as a housing for highly sensitive measuring instruments as well as for screw supporting axis drives, pumps, flexible pipes, wire guides, chemical mixing apparatus construction and seawater treatment plants,
  • the yield strength should be R po , 2 > 1000 MPa.
  • the alloy according to the invention has in particular the following composition:
  • Phosphorus (P) ⁇ 0.05 ⁇ 0.05 ⁇ 0.05
  • V Vanadium (V) ⁇ 0.5 ⁇ 0.3 below the detection limit tungsten (W) ⁇ 0.5 ⁇ 0.1 below the detection limit copper (Cu) ⁇ 0.5 ⁇ 0.15 below the detection limit cobalt (Co) ⁇ 5.0 ⁇ 0.5 below detection limit titanium (Ti) ⁇ 0.1 ⁇ 0.05 below detection limit aluminum (AI) ⁇ 0.2 ⁇ 0.1 ⁇ 0.1
  • Niobium (Nb) ⁇ 0.1 ⁇ 0.025 below detection limit
  • the steel according to the invention should be free of precipitation, since precipitation is negative for toughness and corrosion resistance.
  • the yield strength is R p o, 2 > 450 MPa and can easily reach values> 500 MPa, whereby the impact energy at 20 ° C is greater than 350 J and also reaches values up to 440 J become.
  • the yield strength is safely at R po , 2 > 1000 MPa and in practice values of up to 1100 MPa are achieved, whereby strain hardening work at 20 ° C is safely greater than 80J, with values of 200 J being reached in practice become.
  • the impact energy was determined according to DIN EN ISO 148-1.
  • values for the product of tensile strength Rm with impact strength KV of more than 100000 MPa J, preferably> 200000 MPa J, particularly preferably> 300000 MPa J, can be achieved.
  • Carbon can be contained in a steel alloy according to the invention in contents of up to 0.25%. Carbon is an austenite former and has a positive effect on high mechanical properties. With a view to avoiding carbide precipitates, the carbon content should be set between 0.01 and 0.20% by weight, in particular between 0.01 and 0.10% by weight.
  • Silicon is provided in a content of up to 0.5% by weight and mainly serves to deoxidize the steel.
  • the specified upper limit certainly avoids the formation of intermetal phases. Since silicon is also a ferrite former, the upper limit with a safety zone has also been selected in this regard. In particular, silicon can be provided in a content of 0.1-0.3% by weight.
  • Manganese is contained in amounts of 3 - 8% by weight. This is an extremely low value compared to prior art materials. So far it has been assumed that manganese contents of more than 19% by weight, if possible more than 20% by weight, are necessary for high nitrogen solubility. Surprisingly, it has been found in the present alloy that even with the low manganese contents according to the invention, a nitrogen solubility is achieved which is above what is possible according to the prevailing technical opinion. In addition, it has hitherto been assumed that good corrosion resistance is associated with very high manganese contents, but according to the invention it has been found that this is apparently not necessary due to the unexplained synergistic effects in the present alloy.
  • the lower limit for manganese can be selected at 3.0 or 3.5 or 4.0 or 4.5 or 5.0%.
  • the upper limit for manganese can be selected at 6.0 or 6.5 or 7.0 or 7.5 or 8.0%.
  • Chromium has a content of 17% by weight or more than is necessary for a higher corrosion resistance. According to the invention, at least 23% and at most 30% chromium are contained. It has previously been assumed that contents higher than 24% by weight have a disadvantageous effect on the magnetic permeability because chromium is one of the ferrite-stabilizing elements. In contrast, it was found in the alloy according to the invention that even very high chromium contents above 23% did not adversely affect the magnetic permeability in the present alloy, but, as is known, the resistance to pitting and stress corrosion cracking was optimally influenced.
  • the lower limit for chrome can be selected at 23 or 24 or 25 or 26%.
  • the upper limit for chromium can be selected at 28 or 29 or 30%.
  • Molybdenum is an element that contributes significantly to corrosion resistance in general and pitting corrosion resistance in particular, whereby the effect of molybdenum is enhanced by nickel.
  • 2.0 to 4% by weight of molybdenum are added.
  • the lower limit for molybdenum can be selected at 2.0 or 2.1 or 2.2 or 2.3 or 2.4 or 2.5%.
  • the upper limit for molybdenum can be chosen at 3.5 or 3.6 or 3.7 or 3.8 or 3.9 or 4.0%.
  • Higher levels of molybdenum make ESU treatment imperative to prevent segregation. Umschmelzverfah ren are very complex and expensive. Therefore, according to the invention, DESU or ESU routes should be avoided.
  • tungsten is present in contents below 0.5% and contributes to increasing the corrosion resistance.
  • the upper limit for tungsten can be selected at 0.5 or 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (i.e. without any deliberate allowance).
  • nickel is present in contents of 10 to 16%, as a result of which a high stress corrosion cracking resistance is achieved in media containing chloride.
  • the lower limit for nickel can be selected at 10 or 11 or 12 or 13%.
  • the upper limit for nickel can be selected at 15 or 15.5 or 16%.
  • the alloying of copper is described as advantageous for the resistance in sulfuric acid, it is shown according to the invention that copper increases the tendency to excrete chromium nitrides at values> 0.5%, which has a negative effect on the corrosion properties.
  • the upper limit for copper was set at ⁇ 0.5%, preferably below 0.15%, most preferably below the detection limit. Contents of up to 5% by weight of cobalt can be provided in particular for the substitution of nickel.
  • the upper limit for cobalt can be chosen at 5 or 3 or 1 or 0.5 or 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (i.e. without any deliberate addition).
  • Nitrogen is contained in amounts of 0.50 to 0.90% by weight in order to ensure high strength. Nitrogen also contributes to corrosion resistance and is a strong austenite former, which is why higher contents than 0.50% by weight, in particular higher than 0.52% by weight, are favorable. In order to avoid nitrogenous excretions, especially chromium nitride, the upper limit of nitrogen is limited to 0.90% by weight, it being found that, in spite of the very low manganese content, in contrast to known alloys, these high nitrogen contents can be achieved in the alloy. Because of the good nitrogen solubility on the one hand and the disadvantages that are obtained with higher nitrogen contents, in particular above 0.90%, any pressure embroidery within a DESU route is even forbidden.
  • the nitrogen to carbon ratio is greater than 15.
  • the lower limit for nitrogen can be selected at 0.50 or 0.52 or 0.54 or 0.60 or 0.65%.
  • the upper limit for nitrogen can be selected at 0.80 or 0.85 or 0.90%.
  • Boron, aluminum and sulfur can also be included as further alloy components, but only optionally.
  • the alloy components vanadium and titanium are not necessarily contained in the present steel alloy. Although these elements contribute positively to the solubility of nitrogen, the high level of nitrogen solubility according to the invention can also be provided in their absence.
  • Niobium should not be contained in the alloy according to the invention, since it can form precipitates which reduce the toughness. Historically, niobium was only used to bind carbon, which is not necessary with the alloy according to the invention. The levels of niobium are still tolerable up to 0.1%, but should not exceed the levels of inevitable impurities.
  • Figure 1 a table with the alloying elements
  • Figure 2 highly schematic of the manufacturing route and its alternatives
  • Figure 3 a table with three different alloys within the inventive concept and the resulting actual values of the nitrogen content against the arithmetic nitrogen solubility of such an alloy according to the current teaching;
  • Figure 4 the mechanical properties of the examples given in Figure 3;
  • Figure 5 Alloys according to the invention and their area of application.
  • the components are melted under atmospheric conditions and then further treated by secondary metallurgy. Blocks are then cast, which are then hot formed immediately afterwards.
  • ESR Electro slag remelting
  • DESU pressure electroslag remelting
  • the MARC formula has been optimized to the effect that it has been found that the usual nickel removal for the system according to the invention does not apply and that the limit value of 40 is necessary.
  • FIG. 2 shows an example of the possible process routes for the production of the alloy composition according to the invention.
  • a possible route will now be described as an example.
  • VID vacuum induction melting unit
  • melted material is melted and treated by secondary metallurgy at the same time.
  • the melt is then poured into ingot molds and solidifies there into blocks. These are then in hot-formed several steps. For example, pre-forged on the long-forging machine (Rotary Forging machine) and brought to final dimensions in the multi-line rolling mill (Multiline Rolling Mill).
  • a heat treatment step can also be carried out.
  • the cold forming step can be carried out by means of wire drawing.
  • a superaustenitic material according to the invention can not only be produced via the described (and in particular shown in FIG. 2) production routes, the advantageous properties of the alloy according to the invention can also be achieved by a powder metallurgical production route.
  • FIG. 3 shows three different variants within the alloy compositions according to the invention, with the nitrogen values measured in each case which have resulted in the procedure according to the invention in connection with the alloys according to the invention.
  • This very high nitrogen content is in contradiction to the nitrogen solubility according to Stein, Satir, Kowandar and Medovar given in the right columns from “On restricting aspects in the production of non-magnetic Cr-Mn-N-alloy steels, Sailer, 2005.” Different temperatures are given for Medovar, but it can be seen that the high nitrogen values far exceed the theoretically expected.
  • the three alloys from FIG. 3 are produced by a process according to the invention and subjected to strain hardening.
  • R p o, 2 was around 1000 MPa for all three materials and the tensile strength Rm was between 1100 MPa and 1250 MPa.
  • the notched bar impact work was an excellent 270 J to even over 300 J (alloy C - 329.5 J).
  • a special feature of the invention is that, due to the high nitrogen content, the work hardening rate is higher than with other super austenites in order to be able to achieve tensile strengths (R m of 2500 MPa). This makes it possible to use processes as the last manufacturing step by drawing processes or other cold forming processes to achieve high work hardening with high forming rates.
  • Typical areas of application of the materials according to the invention are shipbuilding and here in particular submarine construction, chemical apparatus construction, seawater treatment plants, the paper industry, screws and bolts, flexible pipes, so-called wirelines, completion tools, springs, valves, umbilicals, axis drives, pumps .
  • the strength can be increased even further by means of cold forming as already described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The invention relates to a superaustenitic material consisting of an alloy with the following components (all indications in wt.%): the elements carbon (C) 0.01-0.2, silicon (Si) < 0.51, manganese (Mn) 3.0 -8.0, phosphorus (P) < 0.0, sulphur (S) < 0.00, iron (Fe) residuum, chrome (Cr) 23.0 –30.0, molybdenum (Mo) 2.0 –4.0, nickel (Ni) 10.0 –16.0, vanadium (V) < 0, tungsten (W) < 0, copper (Cu) < 0.52, cobalt (Co) < 5.0, titanium (Ti) < 0, aluminium (Al) < 0.2, niobium (Nb) < 0, boron (B) < 0.01, and nitrogen (N) 0.50-0.90.

Description

Superaustenitischer Werkstoff Super austenitic material
Die Erfindung betrifft einen superaustenitischen Werkstoff und ein Verfahren zu seiner Her stellung. The invention relates to a super-austenitic material and a method for its manufacture.
Derartige Werkstoffe werden z. B. im chemischen Anlagenbau oder in der Ölfeld- oder Gas feldtechnik eingesetzt. Such materials are used for. B. used in chemical plant construction or in oil field or gas field technology.
Eine Anforderung an derartige Materialien ist, dass diese einem korrosiven Angriff, insbeson dere einem Angriff in Medien mit hohen Chloridkonzentrationen widerstehen. A requirement for such materials is that they withstand a corrosive attack, in particular an attack in media with high chloride concentrations.
Derartige Materialien sind z.B. aus der CN 107876562 A, der CN 104195446 A oder DE 43 42 188 bekannt. Such materials are e.g. known from CN 107876562 A, CN 104195446 A or DE 43 42 188.
Aus der EP 1 069 202 Al ist ein paramagnetischer, korrosionsbeständiger, austenitischer Stahl mit hoher Dehngrenze, Festigkeit und Zähigkeit bekannt, der insbesondere in Medien mit hoher Chloridkonzentration korrosionsbeständig sein soll, wobei dieser Stahl 0,6 Gew.-% bis 1,4 Gew.-% Stickstoff enthalten soll, wobei 17 bis 24 Gew.-% Chrom, sowie Mangan und Stickstoff enthalten sind. EP 1 069 202 A1 discloses a paramagnetic, corrosion-resistant, austenitic steel with a high yield strength, strength and toughness, which is said to be corrosion-resistant, particularly in media with a high chloride concentration, this steel being 0.6% by weight to 1.4% by weight .-% nitrogen should contain, with 17 to 24 wt .-% chromium, manganese and nitrogen are included.
Aus der WO 02/02837 Al ist ein korrosionsbeständiger Werkstoff für die Anwendung in Me dien mit hoher Chloridkonzentration in der Ölfeldtechnik bekannt. Hierbei handelt es sich um ein Chromnickelmolybdänsuperaustenit, der mit vergleichsweise niedrigen Stickstoffgehalten, jedoch sehr hohen Chrom- und sehr hohen Nickelgehalten ausgebildet ist. WO 02/02837 Al discloses a corrosion-resistant material for use in media with a high chloride concentration in oil field technology. This is a chromium nickel molybdenum super austenite, which is formed with comparatively low nitrogen contents, but with very high chromium and very high nickel contents.
Diese Chromnickelmolybdänstähle besitzen gegenüber den davor genannten Chrommangan- stickstoffstählen üblicherweise noch ein verbessertes Korrosionsverhalten. Insgesamt sind Chrommanganstickstoffstähle eine eher kostengünstige Legierungszusammensetzung, die gleichwohl eine hervorragende Kombination aus Festigkeit, Zähigkeit und Korrosionsbestän- digkeit bietet. Die genannten Chromnickelmolybdänstähle erreichen wesentlich höhere Korrosionsbeständigkeiten als Chrommanganstickstoffstähle, sind jedoch aufgrund des sehr hohen Nickelgehaltes mit wesentlich höheren Kosten verbunden. These chromium nickel molybdenum steels usually have an improved corrosion behavior compared to the chromium manganese nitrogen steels mentioned above. Overall, chrome manganese nitrogen steels are a rather inexpensive alloy composition, which is nevertheless an excellent combination of strength, toughness and corrosion resistance. offers. The chromium nickel molybdenum steels mentioned achieve significantly higher corrosion resistance than chromium manganese nitrogen steels, but are associated with considerably higher costs due to the very high nickel content.
Kennwerte für die Korrosionsbeständigkeit sind unter anderem der sogenannte PRENi6-Wert, wobei es auch üblich ist, die sogenannte pitting equivalent number mittels MARC zu definieren, wobei ein Superaustenit mit einer PREN16 zu a>42 gekennzeichnet ist, wobei PREN = % Cr + 3,3 x % Mo + 16 x % N ist. Characteristic values for the corrosion resistance include the so-called PRENi 6 value, whereby it is also common to define the so-called pitting equivalent number using MARC, whereby a super austenite is marked with a PREN16 to a> 42, where PREN =% Cr + 3 , 3 x% Mo + 16 x% N.
Die bekannte MARC-Formel zur Beschreibung des Lochfraßwiderstands für derartige Stähle lautet wie folgt: MARC = % Cr + 3,3 x % Mo + 20 x % N + 20 x % C - 0,25 x % Ni - 0,5 x % Mn. The well-known MARC formula for describing the pitting resistance for such steels is as follows: MARC =% Cr + 3.3 x% Mo + 20 x% N + 20 x% C - 0.25 x% Ni - 0.5 x% Mn.
Vergleichbare Stahlgüten sind auch für die Verwendung als Schiffbaustähle für Unterseeboote bekannt, wobei es sich hierbei um Chromnickelmanganstickstoffstähle handelt, die zudem mit Niob legiert sind, um den Kohlenstoff zu stabilisieren, was jedoch die Kerbschlagzähigkeit verschlechtert. Diese Stähle besitzen grundsätzlich wenig Mangan und besitzen hierdurch eine relativ gute Korrosionsbeständigkeit, erreichen jedoch nicht die Festigkeit von Schwerstangengüten. Comparable steel grades are also known for use as shipbuilding steels for submarines, which are chromium-nickel manganese nitrogen steels which are also alloyed with niobium to stabilize the carbon, but this worsens the impact strength. These steels are generally low in manganese and as a result have a relatively good corrosion resistance, but do not achieve the strength of extremely high quality bars.
Bekannte Superaustenite weisen für gewöhnlich Molybdängehalte > 4% auf, um die hohe Korrosionsbeständigkeit zu erreichen. Jedoch erhöht Molybdän die Neigung zu Seigerungen und somit eine erhöhte Anfälligkeit für Ausscheidungen (bevorzugt Sigma- oder Chi-Phasen), was zur Folge hat, dass diese Legierungen eine Flomogenisierungsglühung benötigen bzw. bei Werten über 6% Molybdän ein Umschmelzen zur Reduzierung der Seigerungen notwendig ist. Known superaustenites usually have molybdenum contents> 4% in order to achieve the high corrosion resistance. However, molybdenum increases the tendency to segregation and thus an increased susceptibility to excretion (preferably sigma or chi phases), which means that these alloys require flomogenization annealing or, if the values are above 6% molybdenum, remelting is necessary to reduce the segregation is.
Aufgabe der Erfindung ist es, einen superaustenitischen, hochfesten und zähen Werkstoff zu schaffen, der in vergleichsweise einfacher und kostengünstiger Weise erzeugt werden kann. The object of the invention is to provide a super-austenitic, high-strength and tough material that can be produced in a comparatively simple and inexpensive manner.
Die Aufgabe wird mit einem Werkstoff mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet. The object is achieved with a material having the features of claim 1. Advantageous further developments are characterized in the subclaims.
Es ist darüber hinaus eine Aufgabe der Erfindung, ein Verfahren zum Herstellen des Werkstoffs zu schaffen. Die Aufgabe wird mit den Merkmalen des Anspruch 18 gelöst. Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet. It is also an object of the invention to provide a method for producing the material. The object is achieved with the features of claim 18. Advantageous further developments are characterized in the dependent claims dependent thereon.
Werden nachfolgend Prozentangaben gemacht, sind dies immer Gew.-% (Gewichtsprozent). If percentages are given below, these are always% by weight (percent by weight).
Erfindungsgemäß soll der Werkstoff, insbesondere in der Messgeräteindustrie und insbeson dere auch in der Uhrenindustrie insbesondere als Gehäuse für hochempfindliche Messgeräte sowie für Schraubentragachsenantriebe, Pumpen, flexible Rohre, Drahtführungen, dem che mischen Apparatebau und Meerwasseraufbereitungsanlagen verwendet werden, According to the invention, the material is to be used, in particular in the measuring instrument industry and in particular in the watch industry in particular as a housing for highly sensitive measuring instruments as well as for screw supporting axis drives, pumps, flexible pipes, wire guides, chemical mixing apparatus construction and seawater treatment plants,
wobei er ein vollkommen austenitisches Gefüge auch nach einer optionalen Kaltumformung besitzen soll nach der Kaltverfestigung soll die Dehngrenze bei Rpo,2>1000 MPa liegen. whereby it should have a completely austenitic structure even after an optional cold working after the work hardening, the yield strength should be R po , 2 > 1000 MPa.
Die erfindungsgemäße Legierung besitzt insbesondere die nachfolgende Zusammensetzung: The alloy according to the invention has in particular the following composition:
Elemente bevorzugt weiter bevorzugt Elements preferred more preferred
Kohlenstoff (C) 0,01 - 0,25 0,01 0,20 0,01 0,1 Carbon (C) 0.01-0.25 0.01 0.20 0.01 0.1
Silizium (Si) < 0,5 < 0,5 < 0,5 Silicon (Si) <0.5 <0.5 <0.5
Mangan (Mn) 3,0 - 8,0 4,0 - 7,0 5,0 - 6,0 Manganese (Mn) 3.0 - 8.0 4.0 - 7.0 5.0 - 6.0
Phosphor (P) < 0,05 < 0,05 < 0,05 Phosphorus (P) <0.05 <0.05 <0.05
Schwefel (S) < 0,005 < 0,005 < 0,005 Sulfur (S) <0.005 <0.005 <0.005
Eisen (Fe) Rest Rest Rest Iron rest rest rest
Chrom (Cr) 23,0 - 30,0 24,0 - 28,0 26,0 - 28,0 Chromium (Cr) 23.0 - 30.0 24.0 - 28.0 26.0 - 28.0
Molybdän (Mo) 2,0 - 4,0 2,5 - 3,5 2,5 - 3,5 Molybdenum (Mo) 2.0 - 4.0 2.5 - 3.5 2.5 - 3.5
Nickel (Ni) 10,0 - 16,0 12,0 - 15,5 13,0 - 15,0 Nickel (Ni) 10.0 - 16.0 12.0 - 15.5 13.0 - 15.0
Vanadium (V) < 0,5 < 0,3 Unter Nachweisgrenze Wolfram (W) < 0,5 < 0,1 Unter Nachweisgrenze Kupfer (Cu) < 0,5 < 0,15 Unter Nachweisgrenze Kobalt (Co) < 5,0 < 0,5 Unter Nachweisgrenze Titan (Ti) < 0,1 < 0,05 Unter Nachweisgrenze Aluminium (AI) < 0,2 < 0,1 < 0,1 Vanadium (V) <0.5 <0.3 below the detection limit tungsten (W) <0.5 <0.1 below the detection limit copper (Cu) <0.5 <0.15 below the detection limit cobalt (Co) <5.0 <0.5 below detection limit titanium (Ti) <0.1 <0.05 below detection limit aluminum (AI) <0.2 <0.1 <0.1
Niob (Nb) < 0,1 < 0,025 Unter NachweisgrenzeNiobium (Nb) <0.1 <0.025 below detection limit
Bor (B) < 0,01 < 0,005 < 0,005 Boron (B) <0.01 <0.005 <0.005
Stickstoff (N) 0,50 - 0,90 0,52 - 0,85 0,54 - 0,80 Mit einer solchen Legierung werden die positiven Eigenschaften der unterschiedlichen be kannten Stahlgüten in synergistischer und überraschender Weise zusammengeführt. Nitrogen (N) 0.50-0.90 0.52-0.85 0.54-0.80 With such an alloy, the positive properties of the various known steel grades are brought together in a synergistic and surprising manner.
Grundsätzlich soll der erfindungsgemäße Stahl ausscheidungsfrei vorliegen, da Ausscheidun gen negativ sind für die Zähigkeit und die Korrosionsbeständigkeit. In principle, the steel according to the invention should be free of precipitation, since precipitation is negative for toughness and corrosion resistance.
Nach dem Warmumformschritt dem der Gussblock unterworfen wurde, liegt die Dehngrenze bei Rpo,2>450 MPa und kann ohne weiteres Werte >500 MPa erreichen, wobei die Kerb schlagarbeit bei 20°C größer 350 J liegt und auch Werte bis 440 J erreicht werden. After the hot forming step to which the ingot has been subjected, the yield strength is R p o, 2 > 450 MPa and can easily reach values> 500 MPa, whereby the impact energy at 20 ° C is greater than 350 J and also reaches values up to 440 J become.
Nach der Kaltverfestigung liegt die Dehngrenze sicher bei Rpo,2>1000 MPa und wobei in der Praxis Werte bis 1100 MPa erreicht werden, wobei kaltverfestigt die Kerbschlagarbeit bei 20°C sicher größer 80J liegt, wobei in der Praxis Werte von 200 J erreicht werden. After strain hardening, the yield strength is safely at R po , 2 > 1000 MPa and in practice values of up to 1100 MPa are achieved, whereby strain hardening work at 20 ° C is safely greater than 80J, with values of 200 J being reached in practice become.
Die Kerbschlagarbeit wurde nach DIN EN ISO 148-1 bestimmt. The impact energy was determined according to DIN EN ISO 148-1.
Diese ausgezeichnete Kombination von Festigkeit und Zähigkeit war bislang nicht erreichbar und auch nicht erwartbar und wird durch die spezielle Legierungslage nach der Erfindung bewirkt, die diesen synergistischen Effekt erzeugt. This excellent combination of strength and toughness has not previously been achievable and also not to be expected and is caused by the special alloy layer according to the invention, which produces this synergistic effect.
Erfindungsgemäß können Werte für das Produkt aus Zugfestigkeit Rm mit Kerbschlagzähig keit KV von mehr als 100000 MPa J bevorzugt > 200000 MPa J besonders bevorzugt > 300000 MPa J erreicht werden. According to the invention, values for the product of tensile strength Rm with impact strength KV of more than 100000 MPa J, preferably> 200000 MPa J, particularly preferably> 300000 MPa J, can be achieved.
Bei der erfindungsgemäßen Legierung ist völlig überraschend, dass sich sehr hohe Stick stoffwerte einstellen lassen, welches für die Festigkeit ausgesprochen gut ist, wobei diese Stickstoffwerte überraschenderweise über denen liegen, die in der Fachliteratur als möglich angegeben werden. Laut empirischen Methoden wären die hohen Stickstoffgehalte der erfin dungsgemäßen Legierung überhaupt nicht möglich. In the case of the alloy according to the invention it is completely surprising that very high nitrogen values can be set, which is extremely good for the strength, these nitrogen values surprisingly being above those that are given as possible in the specialist literature. According to empirical methods, the high nitrogen contents of the alloy according to the invention would not be possible at all.
Im Folgenden werden die jeweiligen Elemente und gegebenenfalls im Zusammenwirken mit den übrigen Legierungsbestandteilen näher beschrieben. Alle Angaben bzgl. der Legierungs zusammensetzung werden in Gewichtsprozent (Gew.-%) angeführt. Obere und untere Gren zen der einzelnen Legierungselemente können innerhalb der Grenzen der Ansprüche frei miteinander kombiniert werden. Kohlenstoff kann in einer erfindungsgemäßen Stahllegierung in Gehalten bis zu 0,25% ent halten sein. Kohlenstoff ist ein Austenitbildner und wirkt sich in Bezug auf hohe mechanische Kennwerte günstig aus. Im Hinblick auf eine Vermeidung von karbidischen Ausscheidungen sollte der Kohlenstoffgehalt zwischen 0,01 und 0,20 Gew.-% insbesondere zwischen 0,01 und 0,10 Gew.-% eingestellt werden. The respective elements and, if appropriate, in cooperation with the other alloy components are described in more detail below. All information regarding the alloy composition are given in percent by weight (% by weight). Upper and lower limits of the individual alloy elements can be freely combined with one another within the limits of the claims. Carbon can be contained in a steel alloy according to the invention in contents of up to 0.25%. Carbon is an austenite former and has a positive effect on high mechanical properties. With a view to avoiding carbide precipitates, the carbon content should be set between 0.01 and 0.20% by weight, in particular between 0.01 and 0.10% by weight.
Silizium ist in Gehalten bis 0,5 Gew.-% vorgesehen und dient in der Hauptsache der Desoxi dation des Stahls. Die angegebene Obergrenze vermeidet sicher eine Ausbildung intermetal lischer Phasen. Da Silizium überdies ein Ferritbildner ist, ist auch diesbezüglich die Obergren ze mit einem Sicherheitsbereich gewählt. Insbesondere kann Silizium in Gehalten von 0,1 - 0,3 Gew.-% vorgesehen sein. Silicon is provided in a content of up to 0.5% by weight and mainly serves to deoxidize the steel. The specified upper limit certainly avoids the formation of intermetal phases. Since silicon is also a ferrite former, the upper limit with a safety zone has also been selected in this regard. In particular, silicon can be provided in a content of 0.1-0.3% by weight.
Mangan ist in Gehalten von 3 - 8 Gew.-% enthalten. Dies ist gegenüber Werkstoffen nach dem Stand der Technik ein ausgesprochen niedriger Wert. Bislang wurde angenommen, dass Mangangehalte von mehr als 19 Gew.-%, möglichst mehr als 20 Gew.-% für eine hohe Stickstofflöslichkeit notwendig sind. Überraschenderweise hat sich bei der vorliegenden Le gierung ergeben, dass auch mit den erfindungsgemäß niedrigen Mangangehalten eine Stick stofflöslichkeit erzielt wir, die über dem, was nach der herrschenden Fachmeinung möglich ist, liegt. Zudem wurde bislang angenommen, dass eine gute Korrosionsbeständigkeit mit sehr hohen Mangangehalten einhergeht, jedoch hat sich erfindungsgemäß ergeben, dass durch nicht aufgeklärte synergistische Effekte bei der vorliegenden Legierung dies offenbar nicht notwendig ist. Die untere Grenze für Mangan kann bei 3,0 oder 3,5 oder 4,0 oder 4,5 oder 5,0 % gewählt werden. Die obere Grenze für Mangan kann bei 6,0 oder 6,5 oder 7,0 oder 7,5 oder 8,0 % gewählt werden. Manganese is contained in amounts of 3 - 8% by weight. This is an extremely low value compared to prior art materials. So far it has been assumed that manganese contents of more than 19% by weight, if possible more than 20% by weight, are necessary for high nitrogen solubility. Surprisingly, it has been found in the present alloy that even with the low manganese contents according to the invention, a nitrogen solubility is achieved which is above what is possible according to the prevailing technical opinion. In addition, it has hitherto been assumed that good corrosion resistance is associated with very high manganese contents, but according to the invention it has been found that this is apparently not necessary due to the unexplained synergistic effects in the present alloy. The lower limit for manganese can be selected at 3.0 or 3.5 or 4.0 or 4.5 or 5.0%. The upper limit for manganese can be selected at 6.0 or 6.5 or 7.0 or 7.5 or 8.0%.
Chrom erweist sich in Gehalten von 17 Gew.-% oder mehr als für eine höhere Korrosionsbe ständigkeit notwendig. Nach der Erfindung sind mindestens 23% und höchstens 30% Chrom enthalten. Bislang wurde angenommen, dass höhere Gehalte als 24 Gew.-% sich nachteilig auf die magnetische Permeabilität auswirken, weil Chrom zu den ferritstabilisierenden Ele menten zählt. Dem gegenüber konnte bei der erfindungsgemäßen Legierung festgestellt werden, dass selbst sehr hohe Chromgehalte oberhalb von 23% die magnetische Permeabili tät in der vorliegenden Legierung nicht negativ beeinflussen, jedoch bekanntermaßen die Beständigkeit gegen Lochfraß und Spannungsrisskorrosion optimal beeinflusst werden. Die untere Grenze für Chrom kann bei 23 oder 24 oder 25 oder 26 % gewählt werden. Die obere Grenze für Chrom kann bei 28 oder 29 oder 30 % gewählt werden. Molybdän ist ein Element, welches wesentlich zur Korrosionsbeständigkeit im Allgemeinen und zur Lochfraßkorrosionsbeständigkeit im Besonderen beiträgt, wobei die Wirkung von Molybdän durch Nickel verstärkt wird. Erfindungsgemäß werden 2,0 bis 4 Gew.-% Molybdän zugesetzt. Die untere Grenze für Molybdän kann bei 2,0 oder 2,1 oder 2,2 oder 2,3 oder 2,4 oder 2,5 % gewählt werden. Die obere Grenze für Molybdän kann bei 3,5 oder 3,6 oder 3,7 oder 3,8 oder 3,9 oder 4,0 % gewählt werden. Höhere Gehalte an Molybdän machen eine ESU-Behandlung zwingend notwendig, um Seigerungen auszuschließen. Umschmelzverfah ren sind sehr aufwendig und teuer. Deshalb sollen erfindungsgemäß DESU- oder ESU-Routen vermieden werden. Chromium has a content of 17% by weight or more than is necessary for a higher corrosion resistance. According to the invention, at least 23% and at most 30% chromium are contained. It has previously been assumed that contents higher than 24% by weight have a disadvantageous effect on the magnetic permeability because chromium is one of the ferrite-stabilizing elements. In contrast, it was found in the alloy according to the invention that even very high chromium contents above 23% did not adversely affect the magnetic permeability in the present alloy, but, as is known, the resistance to pitting and stress corrosion cracking was optimally influenced. The lower limit for chrome can be selected at 23 or 24 or 25 or 26%. The upper limit for chromium can be selected at 28 or 29 or 30%. Molybdenum is an element that contributes significantly to corrosion resistance in general and pitting corrosion resistance in particular, whereby the effect of molybdenum is enhanced by nickel. According to the invention, 2.0 to 4% by weight of molybdenum are added. The lower limit for molybdenum can be selected at 2.0 or 2.1 or 2.2 or 2.3 or 2.4 or 2.5%. The upper limit for molybdenum can be chosen at 3.5 or 3.6 or 3.7 or 3.8 or 3.9 or 4.0%. Higher levels of molybdenum make ESU treatment imperative to prevent segregation. Umschmelzverfah ren are very complex and expensive. Therefore, according to the invention, DESU or ESU routes should be avoided.
Wolfram ist erfindungsgemäß in Gehalten unter 0,5% anwesend und trägt zur Steigerung der Korrosionsbeständigkeit bei. Die obere Grenze für Wolfram kann bei 0,5 oder 0,4 oder 0,3 oder 0,2 oder 0,1 % oder unter der Nachweisgrenze (d.h. ohne jegliche bewusste Zule gierung) gewählt werden. According to the invention, tungsten is present in contents below 0.5% and contributes to increasing the corrosion resistance. The upper limit for tungsten can be selected at 0.5 or 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (i.e. without any deliberate allowance).
Nickel ist erfindungsgemäß in Gehalten von 10 bis 16% anwesend, wodurch in chloridhalti gen Medien eine hohe Spannungsrisskorrosionsbeständigkeit erreicht wird. Die untere Gren ze für Nickel kann bei 10 oder 11 oder 12 oder 13 % gewählt werden. Die obere Grenze für Nickel kann bei 15 oder 15,5 oder 16 % gewählt werden. According to the invention, nickel is present in contents of 10 to 16%, as a result of which a high stress corrosion cracking resistance is achieved in media containing chloride. The lower limit for nickel can be selected at 10 or 11 or 12 or 13%. The upper limit for nickel can be selected at 15 or 15.5 or 16%.
Obwohl laut Literatur das Zulegieren von Kupfer als vorteilhaft für die Beständigkeit in Schwefelsäure beschrieben wird, zeigt sich erfindungsgemäß, dass Kupfer bei Werten > 0,5 % die Neigung zur Ausscheidung von Chromnitriden erhöht, was sich negativ auf die Korro sionseigenschaften auswirkt. Erfindungsgemäß wurde der obere Grenzwert für Kupfer auf < 0,5 % bevorzugt unter 0,15 %, am bevorzugtesten unter der Nachweisgrenze festgelegt. Kobalt kann in Gehalten bis 5 Gew.-% insbesondere zur Substitution von Nickel vorgesehen sein. Die obere Grenze für Kobalt kann bei 5 oder 3 oder 1 oder 0,5 oder 0,4 oder 0,3 oder 0,2 oder 0,1 % oder unter der Nachweisgrenze (d.h. ohne jegliche bewusste Zulegierung) gewählt werden. Although, according to the literature, the alloying of copper is described as advantageous for the resistance in sulfuric acid, it is shown according to the invention that copper increases the tendency to excrete chromium nitrides at values> 0.5%, which has a negative effect on the corrosion properties. According to the invention, the upper limit for copper was set at <0.5%, preferably below 0.15%, most preferably below the detection limit. Contents of up to 5% by weight of cobalt can be provided in particular for the substitution of nickel. The upper limit for cobalt can be chosen at 5 or 3 or 1 or 0.5 or 0.4 or 0.3 or 0.2 or 0.1% or below the detection limit (i.e. without any deliberate addition).
Stickstoff ist in Gehalten von 0,50 bis 0,90 Gew.-% enthalten, um eine hohe Festigkeit si cherzustellen. Weiter trägt Stickstoff zur Korrosionsbeständigkeit bei und ist ein starker Aus tenitbildner, weshalb höhere Gehalte als 0,50 Gew.-%, insbesondere höher als 0,52 Gew.-% günstig sind. Um stickstoffhaltige Ausscheidungen, insbesondere Chromnitrid, zu vermeiden, ist die Obergrenze des Stickstoffs auf 0,90 Gew.-% begrenzt, wobei sich erwiesen hat, dass trotz des sehr geringen Mangangehaltes im Gegensatz zu bekannten Legierungen, diese ho hen Stickstoffgehalte in der Legierung erzielbar sind. Aufgrund der guten Stickstofflöslichkeit einerseits und der Nachteile, die mit höheren Gehalten an Stickstoff, insbesondere über 0,90% erhalten werden, verbietet sich jede Druckaufstickung im Rahmen einer DESU-Route sogar. Durch den erfindungsgemäß niedrigen und durch Chrom und Stickstoff kompensierten Molybdängehalt, ist dies auch nicht notwendig. Insbesondere vorteilhaft ist es, wenn das Verhältnis Stickstoff zu Kohlenstoff größer 15 ist. Die untere Grenze für Stickstoff kann bei 0,50 oder 0,52 oder 0,54 oder 0,60 oder 0,65 % gewählt werden. Die obere Grenze für Stickstoff kann bei 0,80 oder 0,85 oder 0,90 % gewählt werden. Nitrogen is contained in amounts of 0.50 to 0.90% by weight in order to ensure high strength. Nitrogen also contributes to corrosion resistance and is a strong austenite former, which is why higher contents than 0.50% by weight, in particular higher than 0.52% by weight, are favorable. In order to avoid nitrogenous excretions, especially chromium nitride, the upper limit of nitrogen is limited to 0.90% by weight, it being found that, in spite of the very low manganese content, in contrast to known alloys, these high nitrogen contents can be achieved in the alloy. Because of the good nitrogen solubility on the one hand and the disadvantages that are obtained with higher nitrogen contents, in particular above 0.90%, any pressure embroidery within a DESU route is even forbidden. Because of the low molybdenum content according to the invention and compensated by chromium and nitrogen, this is also not necessary. It is particularly advantageous if the nitrogen to carbon ratio is greater than 15. The lower limit for nitrogen can be selected at 0.50 or 0.52 or 0.54 or 0.60 or 0.65%. The upper limit for nitrogen can be selected at 0.80 or 0.85 or 0.90%.
Laut dem allgemeinen Stand der Technik (V.G. Gavriljuk, H. Berns;„High Nitrogen Steels, S. 264, 1999) erreichen unter Atmosphärendruck erschmolzene CrNiMn(Mo) austenitische Stäh le, wie der vorliegende, Stickstoffgehalte von 0,2 bis 0,5 %. Nur Chrommanganmolybdäna- ustenite erreichen dabei Stickstoffgehalte von 0,5 bis 1 %. According to the general state of the art (VG Gavriljuk, H. Berns; "High Nitrogen Steels, p. 264, 1999) CrNiMn (Mo) melted under atmospheric pressure, like the present one, reach nitrogen contents of 0.2 to 0.5 %. Only chromium manganese molybdenum austenites achieve nitrogen contents of 0.5 to 1%.
Erfindungsgemäß ist von Vorteil, dass gleichwohl sehr hohe Stickstoffgehalte erreicht werden und kein Druckaufsticken notwendig ist. It is advantageous according to the invention that nevertheless very high nitrogen contents are achieved and that no pressure embroidery is necessary.
Zudem können als weitere Legierungsbestandteile Bor, Aluminium und Schwefel enthalten sein, jedoch lediglich optional. Die Legierungsbestandteile Vanadium und Titan sind in der vorliegenden Stahllegierung nicht notwendigerweise enthalten. Obwohl diese Elemente posi tiv zur Löslichkeit von Stickstoff beitragen, kann auch bei deren Abwesenheit die erfindungs gemäß hohe Stickstofflöslichkeit geboten werden. Boron, aluminum and sulfur can also be included as further alloy components, but only optionally. The alloy components vanadium and titanium are not necessarily contained in the present steel alloy. Although these elements contribute positively to the solubility of nitrogen, the high level of nitrogen solubility according to the invention can also be provided in their absence.
Niob soll in der erfindungsgemäßen Legierung nicht enthalten sein, da es Ausscheidungen bilden kann welche die Zähigkeit herabsetzt. Historisch wurde Niob nur zur Abbindung von Kohlenstoff verwendet, was bei der erfindungsgemäßen Legierung nicht notwendig ist. Die Gehalte von Niob sind bis 0,1% noch tolerierbar, sollten aber den Gehalt unvermeidlicher Verunreinigungen nicht übersteigen. Niobium should not be contained in the alloy according to the invention, since it can form precipitates which reduce the toughness. Historically, niobium was only used to bind carbon, which is not necessary with the alloy according to the invention. The levels of niobium are still tolerable up to 0.1%, but should not exceed the levels of inevitable impurities.
Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert. Es zeigen dabei: The invention is explained by way of example with reference to a drawing. It shows:
Figur 1: eine Tabelle mit den Legierungselementen; Figur 2: stark schematisiert den Herstellungsweg und seine Alternativen; Figure 1: a table with the alloying elements; Figure 2: highly schematic of the manufacturing route and its alternatives;
Figur 3: eine Tabelle mit drei unterschiedlichen Legierungen innerhalb des erfindungs gemäßen Konzepts und den daraus resultierenden Ist-Werten des Stickstoff gehaltes gegen die rechnerische Stickstofflöslichkeit einer derartigen Legie rung laut geltender Lehrmeinung; Figure 3: a table with three different alloys within the inventive concept and the resulting actual values of the nitrogen content against the arithmetic nitrogen solubility of such an alloy according to the current teaching;
Figur 4: die mechanischen Eigenschaften der in Figur 3 genannten Beispiele; Figure 4: the mechanical properties of the examples given in Figure 3;
Figur 5: erfindungsgemäße Legierungen und ihr Einsatzbereich. Figure 5: Alloys according to the invention and their area of application.
Die Bestandteile werden unter atmosphärischen Bedingungen erschmolzen und anschließend sekundärmetallurgisch weiter behandelt. Anschließend werden Blöcke gegossen, die direkt anschließend warmumgeformt werden. The components are melted under atmospheric conditions and then further treated by secondary metallurgy. Blocks are then cast, which are then hot formed immediately afterwards.
Direkt anschließend im Sinne der Erfindung bedeutet, dass kein zusätzlicher Umschmelzpro- zess wie zb. Elektroschlacke-Umschmelzung (ESU) oder Druck-Elektroschlackeumschmelzung (DESU) erfolgt. Directly afterwards in the sense of the invention means that no additional remelting process such as eg. Electro slag remelting (ESR) or pressure electroslag remelting (DESU) takes place.
Erfindungsgemäß ist es vorteilhaft, wenn der folgende Zusammenhang gilt: According to the invention, it is advantageous if the following relationship applies:
MARCopt: 40 < wt%Cr + 3,3 x wt%Mo + 20 x wt%C + 20 x wt%N - 0,5 x wt%Mn MARCopt: 40 <wt% Cr + 3.3 x wt% Mo + 20 x wt% C + 20 x wt% N - 0.5 x wt% Mn
Die MARC-Formel ist dahingehende optimiert, dass herausgefunden wurde, dass der sonst übliche Abzug von Nickel für das erfindungsgemäße System nicht zutrifft sowie der Grenz wert von 40 notwendig ist. The MARC formula has been optimized to the effect that it has been found that the usual nickel removal for the system according to the invention does not apply and that the limit value of 40 is necessary.
Anschließend erfolgen bei Bedarf Kaltumformschritte, bei denen eine Kaltverfestigung statt findet, und anschließend die mechanische Bearbeitung, die insbesondere ein Drehen, Fräsen oder Schälen sein kann. This is followed, if necessary, by cold-forming steps, in which work hardening takes place, and then the mechanical processing, which in particular can be turning, milling or peeling.
In Figur 2 sind beispielhaft die möglichen Verfahrensrouten für die Fertigung der erfin dungsgemäßen Legierungszusammensetzung dargestellt. Exemplarisch wird nun eine mög liche Route beschrieben. Im Vakuuminduktionsschmelzaggregat (VID) wird Schmelzgut gleichzeitig erschmolzen und sekundärmetallurgisch behandelt. Im Anschluss wird die Schmelze in Kokillen (Ingot) gegossen und erstarrt dort zu Blöcken. Diese werden danach in mehreren Schriten warmumgeformt. Z.B. auf der Langschmiedemaschine (Rotary For-ging Machine) vorgeschmiedet und im Mehrlinienwalzwerk (Multiline Rolling Mill) auf End-maß gebracht. Je nach Anforderungen kann noch ein Wärmebehandlungsschrit erfolgen. FIG. 2 shows an example of the possible process routes for the production of the alloy composition according to the invention. A possible route will now be described as an example. In the vacuum induction melting unit (VID), melted material is melted and treated by secondary metallurgy at the same time. The melt is then poured into ingot molds and solidifies there into blocks. These are then in hot-formed several steps. For example, pre-forged on the long-forging machine (Rotary Forging machine) and brought to final dimensions in the multi-line rolling mill (Multiline Rolling Mill). Depending on the requirements, a heat treatment step can also be carried out.
Um die Festigkeit weiter zu erhöhen kann der Kaltumformungsschritt mittels Drahtziehen durchgeführt werden. In order to further increase the strength, the cold forming step can be carried out by means of wire drawing.
Ein erfindungsgemäßer superaustenitischer Werkstoff kann nicht nur über die beschriebenen (und insbesondere in Figur 2 dargestellten) Flerstellungsrouten erzeugt werden, die vorteil haften Eigenschaften der erfindungsgemäßen Legierung lassen sich auch durch einen pul vermetallurgischen Erzeugungsweg erzielen lassen. A superaustenitic material according to the invention can not only be produced via the described (and in particular shown in FIG. 2) production routes, the advantageous properties of the alloy according to the invention can also be achieved by a powder metallurgical production route.
In Figur 3 sind drei unterschiedliche Varianten innerhalb der erfindungsgemäßen Legierungs zusammensetzungen gezeigt, mit den jeweils gemessenen Stickstoffwerten, die sich bei der erfindungsgemäßen Verfahrensweise in Verbindung mit den erfindungsgemäßen Legierungen ergeben haben. Diese sehr hohen Stickstoffanteile stehen im Widerspruch zu den in den rechten Spalten angegebenen Stickstofflöslichkeit nach Stein, Satir, Kowandar und Medovar aus„On restricting aspects in the production of non-magnetic Cr-Mn-N-alloy steels, Sailer, 2005." Bei Medovar sind unterschiedliche Temperaturen angegeben. Es ist jedoch erkennbar, dass die hohen Stickstoffwerte die theoretisch zu erwartenden weit übersteigen. FIG. 3 shows three different variants within the alloy compositions according to the invention, with the nitrogen values measured in each case which have resulted in the procedure according to the invention in connection with the alloys according to the invention. This very high nitrogen content is in contradiction to the nitrogen solubility according to Stein, Satir, Kowandar and Medovar given in the right columns from "On restricting aspects in the production of non-magnetic Cr-Mn-N-alloy steels, Sailer, 2005." Different temperatures are given for Medovar, but it can be seen that the high nitrogen values far exceed the theoretically expected.
In Figur 4 werden die drei Legierungen aus Figur 3 nach einem erfindungsgemäßen Verfah ren hergestellt und einer Kaltverfestigung unterzogen. In FIG. 4, the three alloys from FIG. 3 are produced by a process according to the invention and subjected to strain hardening.
Nach dieser Kaltverfestigung lag Rpo,2 bei alle drei Werkstoffen bei etwa 1000 MPa und die Zugfestigkeit Rm jeweils zwischen 1100 MPa und 1250 MPa. Zusätzlich lag die Kerbschlagar beit bei hervorragenden 270 J bis sogar über 300 J (Legierung C - 329,5 J). After this strain hardening, R p o, 2 was around 1000 MPa for all three materials and the tensile strength Rm was between 1100 MPa and 1250 MPa. In addition, the notched bar impact work was an excellent 270 J to even over 300 J (alloy C - 329.5 J).
Damit konnten ausgezeichnete Kombination an Festigkeit und Zähigkeit erreicht werden, wobei das Produkt aus Rm*KV bei allen drei Beispielen mehr als 300000 MPa J betrug. This allowed an excellent combination of strength and toughness to be achieved, the product of Rm * KV being more than 300,000 MPa J in all three examples.
Dies ist umso erstaunlicher, als dass bei der erfindungsgemäßen Legierung ein Weg gegan gen wurde, der eine hohe Stickstofflöslichkeit eben nicht zu erwarten lässt, insbesondere weil der die Stickstofflöslichkeit stark positiv beeinflussende Mangangehalt gegenüber be kannten entsprechenden Legierungen stark herabgesetzt ist. Somit ist bei der Erfindung von Vorteil, dass ein austenitischer, hochfester Werkstoff mit er höhter Korrosionsbeständigkeit und niedrigem Nickelgehalt geschaffen wird, der gleichzeitig hohe Festigkeit und paramagnetisches Verhalten zeigt. Auch nach Kaltumformung liegt ein vollkommen austenitisches Gefüge vor, so dass es gelungen ist, die positiven Eigenschaften eines kostengünstigen CrMnNi-Stahls mit den technischen herausragenden Eigenschaften eines CrNiMo-Stahls zu kombinieren. This is all the more astonishing that a path has been taken in the alloy according to the invention that a high nitrogen solubility cannot be expected, in particular because the manganese content, which has a strongly positive effect on nitrogen solubility, is greatly reduced compared to known alloys. It is therefore advantageous in the invention that an austenitic, high-strength material with increased corrosion resistance and low nickel content is created, which at the same time shows high strength and paramagnetic behavior. Even after cold forming, there is a completely austenitic structure, so that it was possible to combine the positive properties of an inexpensive CrMnNi steel with the outstanding technical properties of a CrNiMo steel.
Eine Besonderheit der Erfindung ist, dass aufgrund des hohen Stickstoffgehalts die Kaltver festig ungsrate höher ist, als bei anderen Superausteniten um dadurch Zugfestigkeiten (Rm von 2500 MPa erreichen zu können. Dadurch ist es möglich als letzten Herstellungsschritt durch Ziehvorgänge oder andere Kaltumform verfahren bevorzugt Verfahren mit hohen Um formraten eine hohe Kaltverfestigung zu erreichen. A special feature of the invention is that, due to the high nitrogen content, the work hardening rate is higher than with other super austenites in order to be able to achieve tensile strengths (R m of 2500 MPa). This makes it possible to use processes as the last manufacturing step by drawing processes or other cold forming processes to achieve high work hardening with high forming rates.
Typische Anwendungsbereiche der erfindungsgemäßen Werkstoffe sind der Schiffbau und hier insbesondere der U-Bootbau, der chemische Apparatebau, Meerwasseraufbereitungsan lagen, die Papierindustrie, Schrauben und Bolzen, flexible Pipes, sogenannte Wirelines, Com- pletion Tools, Federn, Ventile, Umbilicals, Achsenantriebe, Pumpen. Dabei kann es je nach Einsatzgebiet zu geringfügigen Legierungsanpassungen kommen welche in Figur 5 darge stellt sind. Typical areas of application of the materials according to the invention are shipbuilding and here in particular submarine construction, chemical apparatus construction, seawater treatment plants, the paper industry, screws and bolts, flexible pipes, so-called wirelines, completion tools, springs, valves, umbilicals, axis drives, pumps . Depending on the area of application, there may be slight alloy adjustments, which are shown in FIG. 5.
Speziell bei Anwendung wie Schrauben, Bolzen, flexible Pipes, Wirelines, Umbilicals etc., bei denen sehr hohe Festigkeiten gefordert werden, kann mittels Kaltverformen die Festigkeit wie bereits beschrieben noch weiter gesteigert werden. Especially for applications such as screws, bolts, flexible pipes, wirelines, umbilicals etc., where very high strengths are required, the strength can be increased even further by means of cold forming as already described.

Claims

Internationale Patentanmeldung voestalpine BÖHLER Edelstahl GmbH & Co KG BOE1039PWO Patentansprüche International patent application voestalpine BÖHLER Edelstahl GmbH & Co KG BOE1039PWO claims
1. Superaustenitischer Werkstoff bestehend aus einer Legierung mit den folgenden Le gierungselementen (alle Angaben in Gew.-%) sowie unvermeidbaren Verunreinigun gen: 1. Superaustenitic material consisting of an alloy with the following alloying elements (all figures in% by weight) as well as unavoidable impurities:
Elemente elements
Kohlenstoff (C) 0,01 - 0,25 Carbon (C) 0.01-0.25
Silizium (Si) < 0,5 Silicon (Si) <0.5
Mangan (Mn) 3,0 - 8,0 Manganese (Mn) 3.0 - 8.0
Phosphor (P) < 0,05 Phosphorus (P) <0.05
Schwefel (S) < 0,005 Sulfur (S) <0.005
Eisen (Fe) Rest Iron (Fe) rest
Chrom (Cr) 23,0 - 30,0 Chromium (Cr) 23.0 - 30.0
Molybdän (Mo) 2,0 - 4,0 Molybdenum (Mo) 2.0 - 4.0
Nickel (Ni) 10,0 - 16,0 Nickel (Ni) 10.0-16.0
Vanadium (V) < 0,5 Vanadium (V) <0.5
Wolfram (W) < 0,5 Tungsten (W) <0.5
Kupfer (Cu) < 0,5 Copper (Cu) <0.5
Kobalt (Co) < 5,0 Cobalt (Co) <5.0
Titan (Ti) < 0,1 Titanium (Ti) <0.1
Aluminium (AI) < 0,2 Aluminum (AI) <0.2
Niob (Nb) < 0,1 Niobium (Nb) <0.1
Bor (B) < 0,01 Boron (B) <0.01
Stickstoff (N) 0,50 - 0,90 Nitrogen (N) 0.50-0.90
2. Superaustenitischer Werkstoff nach Anspruch 1, dadurch gekennzeichnet, dass die Legierung aus folgenden Elemente sowie unver meidbaren Verunreinigungen besteht (alle Angaben in Gew.-%): 2. Superaustenitic material according to claim 1, characterized in that the alloy consists of the following elements and unavoidable impurities (all figures in% by weight):
Elemente elements
Kohlenstoff (C) 0,01 0,20 Carbon (C) 0.01 0.20
Silizium (Si) < 0,5 Silicon (Si) <0.5
Mangan (Mn) 4,0 - 7,0 Manganese (Mn) 4.0 - 7.0
Phosphor (P) < 0,05 Phosphorus (P) <0.05
Schwefel (S) < 0,005 Sulfur (S) <0.005
Eisen (Fe) Rest Iron (Fe) rest
Chrom (Cr) 24,0 - 28,0 Chromium (Cr) 24.0 - 28.0
Molybdän (Mo) 2,5 - 3,5 Molybdenum (Mo) 2.5-3.5
Nickel (Ni) 12,0 - 15,5 Nickel (Ni) 12.0-15.5
Vanadium (V) < 0,3 Vanadium (V) <0.3
Wolfram (W) < 0,1 Tungsten (W) <0.1
Kupfer (Cu) < 0,15 Copper (Cu) <0.15
Kobalt (Co) < 0,5 Cobalt (Co) <0.5
Titan (Ti) < 0,05 Titanium (Ti) <0.05
Aluminium (AI) < 0,1 Aluminum (AI) <0.1
Niob (Nb) < 0,025 Niobium (Nb) <0.025
Bor (B) < 0,005 Boron (B) <0.005
Stickstoff (N) 0,52 - 0,80 Nitrogen (N) 0.52-0.80
3. Superaustenitischer Werkstoff nach Anspruch 1 oder 2, 3. Superaustenitic material according to claim 1 or 2,
dadurch gekennzeichnet, dass die Legierung aus folgenden Elementen sowie unver meidbaren Verunreinigungen besteht (alle Angaben in Gew.-%): characterized in that the alloy consists of the following elements and unavoidable impurities (all figures in% by weight):
Elemente elements
Kohlenstoff (C) 0,01 0,1 Carbon (C) 0.01 0.1
Silizium (Si) < 0,5 Silicon (Si) <0.5
Mangan (Mn) 5,0 - 6,0 Manganese (Mn) 5.0 - 6.0
Phosphor (P) < 0,05 Phosphorus (P) <0.05
Schwefel (S) < 0,005 Sulfur (S) <0.005
Eisen (Fe) Rest Iron (Fe) rest
Chrom (Cr) 26,0 - 28,0 Molybdän (Mo) 2,5 - 3,5 Chromium (Cr) 26.0 - 28.0 Molybdenum (Mo) 2.5-3.5
Nickel (Ni) 13,0 - 15,0 Nickel (Ni) 13.0 - 15.0
Vanadium (V) Unter Nachweisgrenze Vanadium (V) Below the detection limit
Wolfram (W) Unter Nachweisgrenze Tungsten (W) Below detection limit
Kupfer (Cu) Unter Nachweisgrenze Copper (Cu) below detection limit
Kobalt (Co) Unter Nachweisgrenze Cobalt (Co) Below the detection limit
Titan (Ti) Unter Nachweisgrenze Titanium (Ti) below detection limit
Aluminium (AI) < 0,1 Aluminum (AI) <0.1
Niob (Nb) Unter Nachweisgrenze Niobium (Nb) Below detection limit
Bor (B) < 0,005 Boron (B) <0.005
Stickstoff (N) 0,54 - 0,80 Nitrogen (N) 0.54-0.80
4. Werkstoff noch einem der vorhergehenden Ansprüche, 4. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass der Werkstoff durch sekundärmetallurgische Behandlung der Schmelze, Abgie ßen in Blöcke, direkt anschließend Warmumformen, gegebenenfalls Kaltumformen und gegebenenfalls mechanische Weiterverarbeitung erzielt wird. that the material is obtained by secondary metallurgical treatment of the melt, pouring into blocks, immediately afterwards hot forming, optionally cold forming and optionally mechanical processing.
5. Werkstoff nach einem der vorhergehenden Ansprüche, 5. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die Dehngrenze Rpo,2>500 MPa bevorzugt > 750 MPa ist. that the proof stress R p o, 2 > 500 MPa is preferably> 750 MPa.
6. Werkstoff nach einem der vorhergehenden Ansprüche, 6. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die Kerbschlagarbeit bei Raumtemperatur in Längsausrichtung Av > 300 J liegt. that the impact energy at room temperature is in the longitudinal direction A v > 300 J.
7. Werkstoff nach einem der vorhergehenden Ansprüche, 7. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass das Material nach der Kaltverformung vollständig austenitisch also frei von Ver formungsmartensit ist. that the material is completely austenitic after cold working, i.e. free of deformation martensite.
8. Werkstoff nach einem der vorhergehenden Ansprüche, 8. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Schwefel als Verunreinigung nicht mehr als 0,005 Gew.-% ausmacht. that sulfur as an impurity is not more than 0.005% by weight.
9. Werkstoff nach einem der vorhergehenden Ansprüche, 9. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Phosphor als Verunreinigung mit nicht mehr als 0,05 Gew.-% vorhanden ist. that phosphorus is present as an impurity with no more than 0.05% by weight.
10. Werkstoff nach einem der vorhergehenden Ansprüche, 10. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Mangan als oberen Grenzwert 6,0 % oder 6,5 % oder 7,0 % oder 7,5 % oder that manganese as the upper limit 6.0% or 6.5% or 7.0% or 7.5% or
7.9 % 7.9%
und and
als unteren Grenzwert 3,1 % oder 3,5 % oder 4,0 % oder 4,5 % oder 5,0 % auf weist. 3.1% or 3.5% or 4.0% or 4.5% or 5.0% as the lower limit.
11. Werkstoff nach einem der vorhergehenden Ansprüche, 11. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Chrom als oberen Grenzwert 28 % oder 29 % oder 29,8 % that chromium as the upper limit 28% or 29% or 29.8%
und and
als unteren Grenzwert 23,2 % oder 24 % oder 25 % oder 26 % aufweist. has a lower limit of 23.2% or 24% or 25% or 26%.
12. Werkstoff nach einem der vorhergehenden Ansprüche, 12. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Molybdän als oberen Grenzwert 3,5 % oder 3,6 % oder 3,7 % oder 3,8 % oder that molybdenum as the upper limit is 3.5% or 3.6% or 3.7% or 3.8% or
3.9 % oder 3,95 % 3.9% or 3.95%
und and
als unteren Grenzwert 2,05 % oder 2,1 % oder 2,2 % oder 2,3 % oder 2,4 % oder 2,5 % aufweist. the lower limit is 2.05% or 2.1% or 2.2% or 2.3% or 2.4% or 2.5%.
13. Werkstoff nach einem der vorhergehenden Ansprüche, 13. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Nickel als oberen Grenzwert 15 % oder 15,5 % oder 15,8 % that nickel as the upper limit 15% or 15.5% or 15.8%
und and
als unteren Grenzwert 10,2 % oder 11 % oder 12 % oder 13 % aufweist. has a lower limit of 10.2% or 11% or 12% or 13%.
14. Werkstoff nach einem der vorhergehenden Ansprüche, 14. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Stickstoff als oberen Grenzwert 0,80 % oder 0,85 % oder 0,88 % und that nitrogen as the upper limit 0.80% or 0.85% or 0.88% and
als unteren Grenzwert 0,51 % oder 0,52 % oder 0,55 % aufweist. the lower limit is 0.51% or 0.52% or 0.55%.
15. Werkstoff nach einem der vorhergehenden Ansprüche, 15. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Kobalt bei < 5 % oder < 1 % oder < 0,5 % oder < 0,4 % oder < 0,3 % oder < 0,2 % oder < 0,1 % oder unter der Nachweisgrenze liegt. that cobalt is <5% or <1% or <0.5% or <0.4% or <0.3% or <0.2% or <0.1% or below the detection limit.
16. Werkstoff nach einem der vorhergehenden Ansprüche, 16. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Kupfer bei < 0,3 % oder < 0,1% oder unter der Nachweisgrenze liegt. that copper is <0.3% or <0.1% or below the detection limit.
17. Werkstoff nach einem der vorhergehenden Ansprüche, 17. Material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass Wolfram bei < 0,5 % oder < 0,3 % oder < 0,2 % oder < 0,1 % oder unter der Nachweisgrenze liegt. that tungsten is <0.5% or <0.3% or <0.2% or <0.1% or below the detection limit.
18. Verfahren insbesondere zum Herstellen eines Werkstoffs nach einem der vorherge henden Ansprüche, 18. A method in particular for producing a material according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die Legierung aus folgenden Elementen sowie unvermeidbaren Verunreinigun gen besteht (alle Angaben in Gew.-%): that the alloy consists of the following elements as well as unavoidable impurities (all figures in% by weight):
Elemente elements
Kohlenstoff (C) 0,01 - 0,25 Carbon (C) 0.01-0.25
Silizium (Si) < 0,5 Silicon (Si) <0.5
Mangan (Mn) 3,0 - 8,0 Manganese (Mn) 3.0 - 8.0
Phosphor (P) < 0,05 Phosphorus (P) <0.05
Schwefel (S) < 0,005 Sulfur (S) <0.005
Eisen (Fe) Rest Iron (Fe) rest
Chrom (Cr) 23,0 - 30,0 Chromium (Cr) 23.0 - 30.0
Molybdän (Mo) 2,0 - 4,0 Molybdenum (Mo) 2.0 - 4.0
Nickel (Ni) 10,0 - 16,0 Nickel (Ni) 10.0-16.0
Vanadium (V) < 0,5 Vanadium (V) <0.5
Wolfram (W) < 0,5 Kupfer (Cu) < 0,5 Tungsten (W) <0.5 Copper (Cu) <0.5
Kobalt (Co) < 5,0 Cobalt (Co) <5.0
Titan (Ti) < 0,1 Titanium (Ti) <0.1
Aluminium (AI) < 0,2 Aluminum (AI) <0.2
Niob (Nb) < 0,1 Niobium (Nb) <0.1
Bor (B) < 0,01 Boron (B) <0.01
Stickstoff (N) 0,50 - 0,90 erschmolzen wird und anschließend sekundärmetallurgisch behandelt wird, anschlie ßend die so erhaltene Legierung in Blöcke abgegossen und erstarren gelassen wird und direkt anschließend aufgeheizt und warmumgeformt wird, wobei die Produkte insbesondere einer weiteren Kaltumformung und anschließenden mechanischen Be arbeitung unterworfen werden. Nitrogen (N) 0.50-0.90 is melted and then treated by secondary metallurgy, then the alloy obtained in this way is poured into blocks and allowed to solidify and is then immediately heated and hot-formed, the products in particular further cold-forming and subsequent mechanical Be subjected to processing.
19. Verfahren zum Herstellen eines Werkstoffs nach Anspruch 18, 19. A method for producing a material according to claim 18,
dadurch gekennzeichnet, characterized,
dass die Legierung aus folgenden Elementen sowie unvermeidbaren Verunreinigun gen besteht (alle Angaben in Gew.-%): that the alloy consists of the following elements as well as unavoidable impurities (all figures in% by weight):
Elemente elements
Kohlenstoff (C) 0,01 0,20 Carbon (C) 0.01 0.20
Silizium (Si) <0,5 Silicon (Si) <0.5
Mangan (Mn) 4,0 - 7,0 Manganese (Mn) 4.0 - 7.0
Phosphor (P) < 0,05 Phosphorus (P) <0.05
Schwefel (S) < 0,005 Sulfur (S) <0.005
Eisen (Fe) Rest Iron (Fe) rest
Chrom (Cr) 24,0 - 28,0 Chromium (Cr) 24.0 - 28.0
Molybdän (Mo) 2,5 - 3,5 Molybdenum (Mo) 2.5-3.5
Nickel (Ni) 12,0 - 15,5 Nickel (Ni) 12.0-15.5
Vanadium (V) < 0,3 Vanadium (V) <0.3
Wolfram (W) < 0,1 Tungsten (W) <0.1
Kupfer (Cu) < 0,1 Copper (Cu) <0.1
Kobalt (Co) < 0,5 Cobalt (Co) <0.5
Titan (Ti) < 0,05 Titanium (Ti) <0.05
Aluminium (AI) < 0,1 Niob (Nb) < 0,025 Aluminum (AI) <0.1 Niobium (Nb) <0.025
Bor (B) < 0,005 Boron (B) <0.005
Stickstoff (N) 0,52 - 0,80 Nitrogen (N) 0.52-0.80
20. Verfahren zum Herstellen eines Werkstoffs nach Anspruch 18 oder 19, 20. A method for producing a material according to claim 18 or 19,
dadurch gekennzeichnet, characterized,
dass die Legierung aus folgenden Elementen sowie unvermeidbaren Verunreinigun gen besteht (alle Angaben in Gew.-%): that the alloy consists of the following elements as well as unavoidable impurities (all figures in% by weight):
Elemente elements
Kohlenstoff (C) 0,01 0,10 Carbon (C) 0.01 0.10
Silizium (Si) < 0,5 Silicon (Si) <0.5
Mangan (Mn) 5,0 - 6,0 Manganese (Mn) 5.0 - 6.0
Phosphor (P) < 0,05 Phosphorus (P) <0.05
Schwefel (S) < 0,005 Sulfur (S) <0.005
Eisen (Fe) Rest Iron (Fe) rest
Chrom (Cr) 26,0 - 28,0 Chromium (Cr) 26.0 - 28.0
Molybdän (Mo) 2,5 - 3,5 Molybdenum (Mo) 2.5-3.5
Nickel (Ni) 13,0 - 15,0 Nickel (Ni) 13.0 - 15.0
Vanadium (V) Unter Nachweisgrenze Vanadium (V) Below the detection limit
Wolfram (W) Unter Nachweisgrenze Tungsten (W) Below detection limit
Kupfer (Cu) < 0,1 Copper (Cu) <0.1
Kobalt (Co) Unter Nachweisgrenze Cobalt (Co) Below the detection limit
Titan (Ti) Unter Nachweisgrenze Titanium (Ti) below detection limit
Aluminium (AI) < 0,1 Aluminum (AI) <0.1
Niob (Nb) Unter Nachweisgrenze Niobium (Nb) Below detection limit
Bor (B) < 0,005 Boron (B) <0.005
Stickstoff (N) 0,54 - 0,80 Nitrogen (N) 0.54-0.80
21. Verfahren nach einem der Ansprüche 18 bis 20, 21. The method according to any one of claims 18 to 20,
dadurch gekennzeichnet, characterized,
dass die Warmverformung in mehreren Teilschritten erfolgt. that the hot forming takes place in several steps.
22. Verfahren nach einem der Ansprüche 18 bis 21, 22. The method according to any one of claims 18 to 21,
dadurch gekennzeichnet, dass zwischen den Warmverformungsteilschritten das Produkt wieder aufgeheizt wird, und nach dem letzten Warmverformungsschritt ein Lösungsglühen bei Bedarf erfolgt. characterized, that the product is reheated between the hot forming sub-steps, and after the last hot forming step, solution annealing is carried out if necessary.
23. Verfahren nach einem der Ansprüche 18 bis 22, 23. The method according to any one of claims 18 to 22,
dadurch gekennzeichnet, characterized,
dass nach dem letzten Warmverformungsschritt sowie dem optionalen Lösungsglühen ein Kaltumformschritt zur Erreichung einer Zugfestigkeit Rm > 2000 MPa insbesonde re Rm > 2500 MPa insbesondere des Produkts aus Rm * KV > 100000 MPa J erfolgt. that after the last hot forming step and the optional solution annealing, a cold forming step is carried out to achieve a tensile strength Rm> 2000 MPa, in particular Rm> 2500 MPa, in particular of the product of Rm * KV> 100000 MPa J.
24. Verwendung eines Werkstoffs nach einem der Ansprüche 1 bis 17, insbesondere her gestellt mit einem Verfahren nach einem der Ansprüche 18 bis 23 für Bauteile und insbesondere Gehäuse von Messinstrumenten und/oder Uhren und/oder Schrauben- tragachsen und/oder Achsenantriebe und/oder Pumpen und/oder flexible Pipes und/oder Wirelines und/oder den chemischen Apparatebau und/oder Meerwasserauf bereitungsanlagen und/oder für den Schiffbau und/oder Schrauben und/oder Bolzen und/oder Completion tools. 24. Use of a material according to one of claims 1 to 17, in particular produced with a method according to one of claims 18 to 23 for components and in particular housings of measuring instruments and / or clocks and / or screw supporting axles and / or axle drives and / or Pumps and / or flexible pipes and / or wirelines and / or chemical apparatus engineering and / or seawater treatment plants and / or for shipbuilding and / or screws and / or bolts and / or completion tools.
EP19829563.6A 2018-12-20 2019-12-19 Super austenitic material Active EP3899063B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018133255.6A DE102018133255A1 (en) 2018-12-20 2018-12-20 Super austenitic material
PCT/EP2019/086384 WO2020127788A1 (en) 2018-12-20 2019-12-19 Superaustenitic material

Publications (3)

Publication Number Publication Date
EP3899063A1 true EP3899063A1 (en) 2021-10-27
EP3899063B1 EP3899063B1 (en) 2023-08-30
EP3899063C0 EP3899063C0 (en) 2023-08-30

Family

ID=69063782

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19829564.4A Active EP3899064B1 (en) 2018-12-20 2019-12-19 Super austenitic material
EP19829563.6A Active EP3899063B1 (en) 2018-12-20 2019-12-19 Super austenitic material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19829564.4A Active EP3899064B1 (en) 2018-12-20 2019-12-19 Super austenitic material

Country Status (11)

Country Link
US (2) US20220145436A1 (en)
EP (2) EP3899064B1 (en)
JP (2) JP2022522092A (en)
CN (2) CN113544295A (en)
BR (2) BR112021011849A2 (en)
CA (2) CA3122044A1 (en)
DE (1) DE102018133255A1 (en)
EA (2) EA202191412A1 (en)
ES (2) ES2956332T3 (en)
PL (2) PL3899063T3 (en)
WO (2) WO2020127788A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116121667A (en) * 2021-11-14 2023-05-16 重庆三爱海陵实业有限责任公司 Valve and high-temperature resistant alloy thereof
CN115261718B (en) * 2022-03-28 2023-06-06 江西宝顺昌特种合金制造有限公司 Super austenitic stainless steel S34565 plate and preparation method thereof
CN115992330B (en) * 2023-02-17 2024-04-19 东北大学 High-nitrogen low-molybdenum super austenitic stainless steel and alloy composition optimal design method thereof

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB778597A (en) * 1955-02-15 1957-07-10 Ford Motor Co Improvements in or relating to the manufacture of nitrogen-rich wrought austenitic alloys
AT277302B (en) * 1963-05-24 1969-12-29 Boehler & Co Ag Geb Austenitic corrosion-resistant steel
JPS5521547A (en) * 1978-08-01 1980-02-15 Hitachi Metals Ltd Austenite stainless steel having high strength and pitting corrosion resistance
DE3407307A1 (en) * 1984-02-24 1985-08-29 Mannesmann AG, 4000 Düsseldorf USE OF A CORROSION-RESISTANT AUSTENITIC IRON-CHROME-NICKEL-NITROGEN ALLOY FOR MECHANICALLY HIGH-QUALITY COMPONENTS
DE3837456C1 (en) * 1988-05-17 1990-03-29 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De Use of a fully austenitic steel for components which are severely stressed corrosion-chemically and mechanically
DE3837457C1 (en) * 1988-05-17 1989-12-21 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De Steel for components of plants or equipment for the conveying, storage and transport of oil or gas
EP0342574A1 (en) * 1988-05-17 1989-11-23 Thyssen Edelstahlwerke AG Corrosion-resistant austenitic steel
JPH03285050A (en) * 1990-03-30 1991-12-16 Aichi Steel Works Ltd Exhaust valve steel excellent in high temperature characteristic
JP2591256B2 (en) * 1990-05-21 1997-03-19 住友金属工業株式会社 High strength non-magnetic steel
DE4342188C2 (en) 1993-12-10 1998-06-04 Bayer Ag Austenitic alloys and their uses
JPH08239735A (en) * 1995-02-28 1996-09-17 Sumitomo Metal Mining Co Ltd Cast austnitic stainless steel
JP3546421B2 (en) * 1995-03-31 2004-07-28 大同特殊鋼株式会社 High-strength, high corrosion-resistant nitrogen-containing austenitic stainless steel
CA2233338C (en) * 1995-09-27 2001-04-03 Sumitomo Metal Industries, Ltd. Welded high-strength steel structure with excellent corrosion resistance
JP3347582B2 (en) * 1996-04-12 2002-11-20 大同特殊鋼株式会社 Austenitic stainless steel for metal gasket and method for producing the same
AT407882B (en) 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY
DE29921813U1 (en) * 1999-12-12 2000-02-24 Friederich Heinrich High-strength, corrosion-resistant stainless steel profile bar
AT408889B (en) 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T CORROSION-RESISTANT MATERIAL
KR100445246B1 (en) * 2001-12-28 2004-08-21 김영식 High Pitting Resistant and High Ni bearing duplex stainless steel
US20040258554A1 (en) * 2002-01-09 2004-12-23 Roman Radon High-chromium nitrogen containing castable alloy
US6761777B1 (en) * 2002-01-09 2004-07-13 Roman Radon High chromium nitrogen bearing castable alloy
JP4210999B2 (en) * 2003-12-19 2009-01-21 大同特殊鋼株式会社 Ring material for continuously variable transmission, method for manufacturing the same, and ring for continuously variable transmission
JP2005281855A (en) * 2004-03-04 2005-10-13 Daido Steel Co Ltd Heat-resistant austenitic stainless steel and production process thereof
SE528008C2 (en) * 2004-12-28 2006-08-01 Outokumpu Stainless Ab Austenitic stainless steel and steel product
US20090129967A1 (en) * 2007-11-09 2009-05-21 General Electric Company Forged austenitic stainless steel alloy components and method therefor
WO2011040381A1 (en) * 2009-09-29 2011-04-07 古河電気工業株式会社 Substrate for superconducting wiring, superconducting wiring and production method for same
JP5056985B2 (en) * 2009-11-18 2012-10-24 住友金属工業株式会社 Austenitic stainless steel sheet and manufacturing method thereof
CA2824463C (en) * 2011-03-28 2016-12-13 Nippon Steel & Sumitomo Metal Corporation High-strength austenitic stainless steel for high-pressure hydrogen gas
KR20200001625A (en) * 2011-05-26 2020-01-06 유나이티드 파이프라인스 아시아 패시픽 피티이 리미티드 Austenitic stainless steel
US9347121B2 (en) * 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
CN104379773B (en) * 2012-01-20 2017-09-12 索罗不锈有限责任公司 Austenite stainless product made from steel and its manufacture method
US9869003B2 (en) * 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
CN104195446A (en) 2014-08-06 2014-12-10 张家港市飞浪泵阀有限公司 Superaustenitic stainless steel for pump valve products
CN106795606B (en) * 2014-10-29 2018-11-23 新日铁住金株式会社 austenitic stainless steel and its manufacturing method
EP3441495B1 (en) * 2016-04-07 2022-01-12 Nippon Steel Corporation Austenitic stainless steel material
CN106244940A (en) * 2016-08-26 2016-12-21 天津新伟祥工业有限公司 A kind of Cr-Mn-N series austenitic heat-resistance steel and preparation method thereof
CN107876562A (en) 2017-11-23 2018-04-06 海盐中达金属电子材料有限公司 A kind of super austenitic stainless steel steel band and its processing hot-rolling mill
CN108396223B (en) * 2018-03-29 2020-09-29 东北大学 Super austenitic stainless steel and alloy composition optimization design method thereof
CN108642409A (en) * 2018-05-08 2018-10-12 江苏理工学院 A kind of corrosion-resistant super austenitic stainless steel and its manufacturing process

Also Published As

Publication number Publication date
EP3899064B1 (en) 2023-08-30
EP3899064A1 (en) 2021-10-27
ES2957403T3 (en) 2024-01-19
DE102018133255A1 (en) 2020-06-25
EP3899064C0 (en) 2023-08-30
BR112021011844A8 (en) 2023-05-09
CA3124189C (en) 2023-10-31
CN113544294A (en) 2021-10-22
WO2020127789A1 (en) 2020-06-25
CN113544295A (en) 2021-10-22
JP2022514920A (en) 2022-02-16
BR112021011849A2 (en) 2021-09-08
US20230332282A1 (en) 2023-10-19
EP3899063B1 (en) 2023-08-30
PL3899063T3 (en) 2023-12-04
ES2956332T3 (en) 2023-12-19
WO2020127788A1 (en) 2020-06-25
PL3899064T3 (en) 2023-11-20
BR112021011844A2 (en) 2021-08-31
CA3122044A1 (en) 2020-06-25
JP2022522092A (en) 2022-04-14
US20220145436A1 (en) 2022-05-12
EA202191413A1 (en) 2021-09-28
US20240052469A2 (en) 2024-02-15
EA202191412A1 (en) 2021-09-28
EP3899063C0 (en) 2023-08-30
CA3124189A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
DE60304077T2 (en) Heat and corrosion resistant austenitic alloy, heat and pressure resistant components and method of making the same
AT412727B (en) CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
EP3899063B1 (en) Super austenitic material
EP3535431B1 (en) Steel product with an intermediate manganese content for low temperature application and production method thereof
DE69824419T2 (en) HIGH-RESISTANT, DESIGN-HARDENABLE, STAINLESS STEEL WITH GOOD TOUGHNESS
WO2019121879A1 (en) Method for the additive manufacturing of an object from a maraging steel powder
DE3117539C2 (en)
EP2557185A1 (en) Armature en acier profilée et laminée à chaud pour pièces en béton armé dotées d&#39;une résistance au feu améliorée et son procédé de fabrication
WO2017085072A1 (en) High-grade structural steel with bainitic structure, forged part produced therefrom and method for producing a forged part
EP3332046A1 (en) High-tensile manganese steel containing aluminium, method for producing a sheet-steel product from said steel and sheet-steel product produced according to this method
DE2927091A1 (en) NON-MAGNETIC MANGANIC STEEL WITH EXCELLENT WELDABILITY AND WORKABILITY AND USE OF THIS STEEL
EP3850114A1 (en) Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component
DE102016117508B4 (en) Process for producing a flat steel product from a medium manganese steel and such a flat steel product
WO2020127786A1 (en) Drill string component with high corosion resistance, and method for the production of same
AT407882B (en) METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY
DE60201984T2 (en) TOOL STEEL OF HIGH TENSILE, METHOD FOR PRODUCING PARTS FROM THIS STEEL AND PARTS MANUFACTURED THEREOF
DE60126646T2 (en) STEEL ALLOY, HOLDER AND BRACKET PARTS FOR PLASTIC TOOLS AND GUARANTEED COVERS FOR HOLDER AND HOLDER PARTS
DE10215598A1 (en) Stainless steel, process for producing stress-free molded parts and molded parts
EP3458623B1 (en) Method for producing a steel material, and steel material
AT414341B (en) STEEL FOR CHEMICALS - PLANTS - COMPONENTS
AT411905B (en) Iron-based alloy for producing a hot working steel object contains alloying additions of silicon, manganese, chromium, molybdenum, nickel, vanadium, cobalt and aluminum
EP2809818B1 (en) Duplex steel with improved notch-impact strength and machinability
DE112023000190T5 (en) Precipitation hardening soft magnetic ferritic stainless steel with excellent machinability
EP4296393A1 (en) Boron-containing steel, in particular heat-treatable steel
EP3728674A1 (en) Method for producing an article from a maraging steel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019009199

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0006000000

Ipc: C22C0038460000

Ref legal event code: R079

Ipc: C22C0038460000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/00 20060101ALN20230317BHEP

Ipc: C22C 38/58 20060101ALN20230317BHEP

Ipc: C22C 38/48 20060101ALN20230317BHEP

Ipc: C22C 33/02 20060101ALN20230317BHEP

Ipc: C22C 38/50 20060101ALN20230317BHEP

Ipc: C22C 38/52 20060101ALN20230317BHEP

Ipc: C22C 38/54 20060101ALN20230317BHEP

Ipc: C21D 6/00 20060101ALI20230317BHEP

Ipc: C21D 7/02 20060101ALI20230317BHEP

Ipc: C21D 7/10 20060101ALI20230317BHEP

Ipc: C21D 8/02 20060101ALI20230317BHEP

Ipc: C21D 9/46 20060101ALI20230317BHEP

Ipc: C21D 9/08 20060101ALI20230317BHEP

Ipc: C22C 38/22 20060101ALI20230317BHEP

Ipc: C22C 38/38 20060101ALI20230317BHEP

Ipc: C22C 38/40 20060101ALI20230317BHEP

Ipc: C22C 38/42 20060101ALI20230317BHEP

Ipc: C22C 38/44 20060101ALI20230317BHEP

Ipc: C22C 38/46 20060101AFI20230317BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230706

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009199

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230927

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230929

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2957403

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20231227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231211

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 5