EP1445339A1 - Alloy and article with high heat resistance and high heat stability - Google Patents

Alloy and article with high heat resistance and high heat stability Download PDF

Info

Publication number
EP1445339A1
EP1445339A1 EP04450025A EP04450025A EP1445339A1 EP 1445339 A1 EP1445339 A1 EP 1445339A1 EP 04450025 A EP04450025 A EP 04450025A EP 04450025 A EP04450025 A EP 04450025A EP 1445339 A1 EP1445339 A1 EP 1445339A1
Authority
EP
European Patent Office
Prior art keywords
alloy
hardness
hot
molybdenum
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04450025A
Other languages
German (de)
French (fr)
Other versions
EP1445339B1 (en
Inventor
Devrim Dipl.-Ing. Dr Caliskanoglu
Kay M.Eng. Fisher
Reinhold Univ. Prof. Dipl.-Ing. Dr. Ebner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH
Publication of EP1445339A1 publication Critical patent/EP1445339A1/en
Application granted granted Critical
Publication of EP1445339B1 publication Critical patent/EP1445339B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation

Definitions

  • the invention relates to an alloy for the production of articles with high Heat resistance and toughness.
  • the invention relates to a hot work tool steel article with high hardness, high heat resistance and high thermal stability.
  • hot-work tool steels can be used as heat-treatable Iron-base alloys are called, whose increased mechanical Properties after the heat treatment, in particular their high strength and hardness up to temperatures of 500 ° C and above.
  • the hot hardness of such steels is given by a Elimination mechanism that is considered by the specialist as a secondary hardening increase wherein finest chromium-molybdenum-tungsten-vanadium carbides in Martensite grid are formed.
  • an alloyed material becomes one for the time being Solution heat treatment followed by increased cooling subjected to an alloying addition or phase completely or partially dissolved and kept in supersaturated solution.
  • One then heating to a temperature below the Solution annealing temperature causes a departure of the supersaturation of the (s) of the element (s) or the phase (s), which is a modification of Material properties, usually a material hardness increase causes.
  • Precipitation-hardenable iron base materials generally have alloy contents in% by weight of: Carbon (C) to 0.05 Manganese (Mn) to 2.0 Chrome (Cr) to 16.0 Molybdenum (Mo) to 6.0 Nickel (Ni) to 26.0 Vanadin (V) to 0.4 Kobait (Co) to 10.0 Titanium (Ti) to 3.0 Aluminum (Al) to 0.3
  • the aim of the invention is to provide an alloy which enables the Property profile to improve a total of a manufactured article.
  • the object of the invention is a hot-work tool steel article at the same time high hardness and high toughness, high heat resistance and high to create thermal stability.
  • the object of the invention mentioned at the outset is with an alloy containing in% by weight: Carbon (C) 0.15 to 0.44 Silicon (Si) 0.04 to 0.3 Manganese (Mn) 0.06 to 0.4 Chrome (Cr) 1.2 to 5.0 Molybdenum (Mo) 0.8 to 6.5 Nickel (Ni) 3.4 to 9.8 Vanadin (V) 0.2 to 0.8 Cobalt (Co) 0.1 to 9.8 Aluminum (Al) 1.4 to 3.0 Copper (Cu) below 1.3 Niobium (Nb) below 0.35 Iron (Fe) rest as well as accompanying elements and production-related contamination.
  • an iron-based alloy according to the invention is a carbon content of provided at least 0.15 wt .-%, so that one for a desired Secondary hardening increase sufficient amount of carbide is excreted.
  • higher Carbon concentrations as 0.44 wt .-% can with the provided carbide-forming elements form interfering primary toughening carbides, so that the content of carbon should be between 0.15 and 0.44 wt .-%.
  • the content of silicon must be an advantageous composition of a Desoxidation due to at least 0.04 wt .-%, on the other hand but not higher than 0.3 wt .-%, because higher silicon values the Material toughness adversely affect.
  • Manganese is in a concentration between 0.06 and 0.4 wt .-% provided in the steel according to the invention. Lower levels can cause brittleness in a thermoforming and higher contents disadvantages for the hardenability of the Cause material.
  • Chromium contents below 1.2 wt .-% have an adverse effect on the Cured by the material, those of more than 5.0 wt .-% worsen the thermal stability of the same, because thereby the activity of molybdenum is pushed back.
  • the strong carbide former vanadium is according to the invention with a minimum content of 0.2 wt .-% provided sufficient, stable secondary curing of the Ensure steel. Higher contents than 0.8% by weight of vanadium especially at carbon contents in the upper region of the intended Concentration margin, leading to the excretion of primary carbides, causing the toughness properties of the material are abruptly deteriorated.
  • niobium Although the effect of niobium is similar to that of vanadium, it is remarkable through a formation of very stable carbides, so that the content of niobium should advantageously be less than 0.35 wt .-%.
  • the nickel concentration of the steel and its aluminum content are to be seen in terms of the precipitation kinetics of the phase of Al Fe 2 Ni for hardness increase in a proposed heat treatment technology. At nickel contents below 3.4 wt .-% and at an aluminum concentration of less than 1.4 wt .-% precipitation hardening is pushed back, so the additive increase in hardness as a material during tempering low.
  • Copper can form unwanted, intermetallic phases and should be less Concentration of less than 1.3 wt .-% be contained in the steel.
  • an alloy comprising one or more of the concomitant and impurity elements with the following MAXIMUM concentrations in% by weight: Phosphorus (P) 0.02, preferably 0.005 Sulfur (S) 0,008, preferably 0,003 Copper (Cu) 0.15 preferably 0.06 Titanium (Ti) 0.01, preferably 0.005 Niobium (Nb) 0.001, preferably 0.0005 Nitrogen (N) 0,025, preferably 0,015 Oxygen (O) 0.009, preferably 0,002 Calcium (Ca) 0,003, preferably 0.001 Magnesium (Mg) 0,003, preferably 0.001 Tin (Sn) 0.01, preferably 0.005 Tantalum (Ta) 0.001, preferably 0.0005
  • the secondary hardening superimposed by carbides may be advantageous when the value nickel content refracted by aluminum content in each case in wt .-% between 1.8 and 4.2, preferably between 2.1 and 3.9. This will be a Overhang of a precipitate forming element avoided.
  • the stated object of the invention is according to an improved Property profiles solved with a hot work tool object, if one after produced by a fusion metallurgy or powder metallurgy process Starting material, in particular by hot forming and machining in the form which molded article after a curing Heat treatment secondary precipitated carbides, as well as intermetallic Has precipitates.
  • the total hardness of the material is advantageous by an overlay the secondary hardness increase by carbide precipitations and the Elimination hardening achieved.
  • high material hardness values can be achieved
  • the tempering technology is based on maintaining high material toughness is directed and compared with a hot work tool according to the state of Technique use lower hardening temperatures.
  • This lower one Austenitizing temperature can also provide significant advantages in terms of a low distortion in a tempering treatment of complicated shaped parts to have.
  • the toughness is particularly high at high hardness values and thermal stability up to 50 ° C and more to higher temperatures postponed.
  • a hot-work tool according to the invention which has secondarily precipitated chromium-molybdenum-vanadium mixed carbides and essentially intermetallic phases of the Al Fe 2 Ni type in the microstructure, has a particularly preferred property profile and can be economically produced in conventional hardening plants at comparatively low hardening temperatures ,
  • a pronounced thermal stability of the object can be achieved if the alloy has a ratio of chromium + molybdenum + vanadium broken by carbon, in each case in wt .-% of greater than 13, but less than 19 has.
  • the hardness profile of the materials was determined as a function of the temperature. It is essential that the alloy A according to the invention required an austenitizing temperature of 990 ° C. in order to achieve this hardness, but that of 1050 ° C. was required for the conventional hot-rolled steel B, however.
  • the temperature as shown in Tab. 3A and Tab. 3B, increased in the range between 500 ° C and 600 ° C, the hardness of the inventively assembled sample A to values around 60 HRC, whereas in conventional hot-work steel B, a maximum hardness value of 56 HRC at 500 ° C.
  • a hardness determination on the test specimen at the test temperature was carried out after the Rebound hardness method (Shore hardness) is performed, for which return values So far only a conversion into Vickers hardness values is available.

Abstract

An alloy contains (in weight%) carbon (0.15-0.44), silicon (0.04-0.3), manganese (0.06-0.4), chromium (1.2-5), molybdenum (0.8-6.5), nickel (3.4-9.8), vanadium (0.2-0.8), cobalt (0.1-9.8), aluminum (1.4-3), copper (less than 1.3), niobium (less than 0.35) and remainder consist of iron and impurities. An independent claim is included for hot-forging steel component.

Description

Die Erfindung betrifft eine Legierung zur Herstellung von Gegenständen mit hoher Warmfestigkeit und Zähigkeit.The invention relates to an alloy for the production of articles with high Heat resistance and toughness.

Im Speziellen bezieht sich die Erfindung auf einen Warmarbeitsstahl-Gegenstand mit hoher Härte, hoher Warmfestigkeit und hoher thermischer Stabilität.In particular, the invention relates to a hot work tool steel article with high hardness, high heat resistance and high thermal stability.

Allgemein können Warmarbeitsstähle als thermisch vergütbare Eisenbasislegierungen bezeichnet werden, deren erhöhte mechanische Eigenschaften nach der Wärmebehandlung, insbesondere deren hohe Festigkeit und Härte bis zu Temperaturen von 500°C und darüber erhalten bleiben.In general, hot-work tool steels can be used as heat-treatable Iron-base alloys are called, whose increased mechanical Properties after the heat treatment, in particular their high strength and hardness up to temperatures of 500 ° C and above.

Den steigenden Anforderungen der technischen Entwicklung entsprechend besteht die allgemeine Forderung an Warmarbeitswerkstoffe deren Güte weiter zu verbessern und insbesondere deren Warmfestigkeit bei hoher thermischer Stabiltiät zu steigern, sowie die Zähigkeit zu erhöhen.Complying with the increasing demands of technical development the general demand for hot working materials whose quality continues to increase improve and in particular their heat resistance at high thermal Stabiltiät to increase, as well as to increase the toughness.

Übliche Warmarbeitstähle sind kohlenstoffhältige Eisenbasislegierungen mit 0,3 bis 0,4 Gew.-% Kohlenstoff (C), deren Härte mit einer Abschreckhärtung durch Martensitbildung im Gefüge und einem Anlassen anforderungsgemäß erhöht wird. Ein Zusatz von Legierungselementen in der Regel in Gew.-%: Silizium (Si) bis 1,5 Chrom (Cr) 2,5 bis 5,5 Molybdän (Mo) bis 3,0 Vanadin (V) bis 1,0 zum Eisenbasiswerkstoff und eine Anwendung von besonders gestalteten Wärmebehandlungsverfahren gestattet es, aus diesem einen Gegenstand herzustellen, der hohe Werte für gewünschte mechanische Eigenschaften bei einer Verwendungstemperatur bis zu ca. 500°C besitzt. Durch Zulegieren von Wolfram (W) bis 9 Gew.-% und Kobalt (Co) bis 3,0 Gew.-% kann die Einsatztemperatur etwas erhöht werden. Conventional hot working steels are carbonaceous iron-base alloys containing 0.3 to 0.4% by weight of carbon (C), the hardness of which is increased as required by quench hardening by martensite formation in the structure and tempering. An addition of alloying elements usually in wt .-%: Silicon (Si) to 1.5 Chrome (Cr) 2.5 to 5.5 Molybdenum (Mo) to 3.0 Vanadin (V) to 1.0 to the iron base material and an application of specially designed heat treatment processes makes it possible to produce from this an article which has high values for desired mechanical properties at a temperature of use up to about 500 ° C. By alloying tungsten (W) to 9 wt .-% and cobalt (Co) to 3.0 wt .-%, the use temperature can be slightly increased.

Im Wesentlichen ergibt sich die Warmhärte derartiger Stähle durch einen Ausscheidungsmechanismus, der vom Fachmann als Sekundärhärteanstieg bezeichnet wird, wobei feinste Chrom-Molybdän-Wolfram-Vanadin-Karbide im Martensitgitter gebildet werden.Essentially, the hot hardness of such steels is given by a Elimination mechanism that is considered by the specialist as a secondary hardening increase wherein finest chromium-molybdenum-tungsten-vanadium carbides in Martensite grid are formed.

Eine weitere im Wesen zur Abschreckhärtung unterschiedliche Steigerung der Festigkeit eines Werkstoffes kann durch eine Ausscheidungshärtung erreicht werden. Die Voraussetzung für eine Ausscheidungshärtung ist eine mit der Temperatur abnehmende Löslichkeit eines Legierungszusatzes bzw. von Legierungselementen im Grundmetall.Another in the nature of quench hardening different increase of Strength of a material can be achieved by precipitation hardening become. The prerequisite for precipitation hardening is one with the Temperature decreasing solubility of an alloy additive or of Alloy elements in the base metal.

Bei einer Ausscheidungshärtung wird ein legierter Werkstoff vorerst einer Lösungsglühbehandlung mit einer anschließenden, verstärkten Abkühlung unterworfen, mit welcher ein Legierungszusatz oder eine Phase vollständig oder teilweise in Lösung gebracht und in übersättigter Lösung gehalten wird. Ein anschließendes Erwärmen auf eine Temperatur unterhalb der Lösungsglühtemperatur bewirkt ein Ausscheiden des Übersättigungsanteiles der (des) Elemente(s) oder der Phase(n), was eine Änderung der Werkstoffeigenschaften, in der Regel einen Materialhärteanstieg, bewirkt.In the case of precipitation hardening, an alloyed material becomes one for the time being Solution heat treatment followed by increased cooling subjected to an alloying addition or phase completely or partially dissolved and kept in supersaturated solution. One then heating to a temperature below the Solution annealing temperature causes a departure of the supersaturation of the (s) of the element (s) or the phase (s), which is a modification of Material properties, usually a material hardness increase causes.

Ausscheidungshärtbare Eisenbasiswerkstoffe besitzen in der Regel Legierungsgehalte in Gew.-% von: Kohlenstoff (C) bis 0,05 Mangan (Mn) bis 2,0 Chrom (Cr) bis 16,0 Molybdän (Mo) bis 6,0 Nickel (Ni) bis 26,0 Vanadin (V) bis 0,4 Kobait (Co) bis 10,0 Titan (Ti) bis 3,0 Aluminium (Al) bis 0,3 Precipitation-hardenable iron base materials generally have alloy contents in% by weight of: Carbon (C) to 0.05 Manganese (Mn) to 2.0 Chrome (Cr) to 16.0 Molybdenum (Mo) to 6.0 Nickel (Ni) to 26.0 Vanadin (V) to 0.4 Kobait (Co) to 10.0 Titanium (Ti) to 3.0 Aluminum (Al) to 0.3

Sowohl die Eisenbasislegierungen mit einer Martensitbildung bei einer Abschreckhärtung, als auch jene, die durch Ausscheidung von Elementen und Phasen eine Änderung ihrer mechanischen Eigenschaften erfahren, haben den Nachteil gemeinsam, dass im jeweiligen Bereich der Legierungszusammensetzung und/oder durch eine Wärmebehandlungstechnologie jeweils nur Einzeleigenschaften, wie zum Beispiel die Härte und Festigkeit oder die Temperaturbeständigkeit, verbessert werden, damit aber ein Abfall von weiteren Eigenschaftswerten, wie zum Beispiel die Materialzähigkeit, die thermische Stabilität und dergleichen, verbunden ist.Both the iron-base alloys with a martensite formation in one Quench hardening, as well as those caused by excretion of elements and Phases have experienced a change in their mechanical properties Disadvantage in common that in the respective area of the alloy composition and / or by a heat treatment technology only each Individual properties, such as the hardness and strength or the Temperature resistance, improved, but with a drop of more Property values, such as material toughness, thermal stability and the like.

Ziel der Erfindung ist es, eine Legierung anzugeben, die es ermöglicht, das Eigenschaftsprofil insgesamt eines daraus gefertigten Gegenstandes zu verbessern. Gemäß der Aufgabe der Erfindung ist ein Warmarbeitstahl-Gegenstand mit gleichzeitig hoher Härte und hoher Zähigkeit, hoher Warmfestigkeit und hoher thermischer Stabilität zu schaffen.The aim of the invention is to provide an alloy which enables the Property profile to improve a total of a manufactured article. According to the object of the invention is a hot-work tool steel article at the same time high hardness and high toughness, high heat resistance and high to create thermal stability.

Das Ziel der eingangs genannten Erfindung wird mit einer Legierung, enthaltend in Gew.-%: Kohlenstoff (C) 0,15 bis 0,44 Silizium (Si) 0,04 bis 0,3 Mangan (Mn) 0,06 bis 0,4 Chrom (Cr) 1,2 bis 5,0 Molybdän (Mo) 0,8 bis 6,5 Nickel (Ni) 3,4 bis 9,8 Vanadin (V) 0,2 bis 0,8 Kobalt (Co) 0,1 bis 9,8 Aluminium (Al) 1,4 bis 3,0 Kupfer (Cu) unter 1,3 Niob (Nb) unter 0,35 Eisen (Fe) Rest sowie Begleitelemente und herstellungsbedingte Verunreinigungen, erreicht.The object of the invention mentioned at the outset is with an alloy containing in% by weight: Carbon (C) 0.15 to 0.44 Silicon (Si) 0.04 to 0.3 Manganese (Mn) 0.06 to 0.4 Chrome (Cr) 1.2 to 5.0 Molybdenum (Mo) 0.8 to 6.5 Nickel (Ni) 3.4 to 9.8 Vanadin (V) 0.2 to 0.8 Cobalt (Co) 0.1 to 9.8 Aluminum (Al) 1.4 to 3.0 Copper (Cu) below 1.3 Niobium (Nb) below 0.35 Iron (Fe) rest as well as accompanying elements and production-related contamination.

Die sich mit der Erfindung ergebenden Vorteile sind im Wesenlichen darin zu sehen, dass durch legierungstechnische Maßnahmen ein Werkstoff geschaffen wurde, bei welchem der Abschreck- oder Martensithärtung eine Ausscheidungshärtung überlagerbar ist. Dabei sind die Aktivitäten der Legierungselemente dem Kohlenstoff gegenüber und jene hinsichtlich der Verbindungs- bzw. Phasenbildung derart günstig gewählt, dass auch bei vergleichsweise niedrigen Austenitisierungstemperaturen eine Härtung durch feinste, sekundäre Karbideausscheidungen, insbesondere Chrom-Molybdän-Vanadin-Karbide, und eine Härtung durch eine Ausscheidung von intermetallischen Phasen, insbesondere von Al Fe2Ni bei der Vergütung gleichzeitig erfolgen und eine hohe Warmhärte bei hoher Zähigkeit des Werkstoffes erreicht wird.The advantages resulting from the invention are essentially to be seen in the fact that a material was created by alloying measures, in which the quenching or Martensithärtung a precipitation hardening is superimposed. The activities of the alloying elements compared to the carbon and those in connection or phase formation are chosen so low that even at comparatively low Austenitisierungstemperaturen curing by ultrafine, secondary Karbideausscheidungen, especially chromium-molybdenum-vanadium carbides, and curing by a Elimination of intermetallic phases, in particular of Al Fe 2 Ni occur simultaneously in the remuneration and a high hot hardness with high toughness of the material is achieved.

Gemäß der Erfindung ist auch eine Durchhärtbarkeit von großen Teilen verbessert möglich, weil legierungstechnisch ein entsprechendes thermisches Umwandlungsverhalten des Werkstoffes eingestellt ist. Desgleichen sind die Anlassbeständigkeit und somit die thermische Stabilität des vergüteten Materials bei hoher Härte wesentlich verbessert.According to the invention, also a hardenability of large parts is improved possible because of alloying a corresponding thermal Conversion behavior of the material is set. Likewise are the Tempering resistance and thus the thermal stability of the tempered material high hardness significantly improved.

In einer Eisenbasislegierung nach der Erfindung ist ein Kohlenstoffgehalt von mindestens 0,15 Gew.-% vorgesehen, damit eine für einen gewünschten Sekundärhärteanstieg ausreichende Karbidmenge ausscheidbar ist. Höhere Kohlenstoffkonzentrationen als 0,44 Gew.-% können mit den vorgesehenen karbidbildenden Elementen störende, die Zähigkeit mindernde Primärkarbide bilden, so dass der Gehalt an Kohlenstoff zwischen 0,15 und 0,44 Gew.-% betragen soll.In an iron-based alloy according to the invention is a carbon content of provided at least 0.15 wt .-%, so that one for a desired Secondary hardening increase sufficient amount of carbide is excreted. higher Carbon concentrations as 0.44 wt .-% can with the provided carbide-forming elements form interfering primary toughening carbides, so that the content of carbon should be between 0.15 and 0.44 wt .-%.

Der Gehalt an Silizium muss einer vorteilhaften Zusammensetzung eines Desoxidationsproduktes wegen mindestens 0,04 Gew.-% betragen, soll andererseits jedoch nicht höher als 0,3 Gew.-% sein, weil höhere Siliziumwerte die Materialzähigkeit nachteilig beeinflussen.The content of silicon must be an advantageous composition of a Desoxidation due to at least 0.04 wt .-%, on the other hand but not higher than 0.3 wt .-%, because higher silicon values the Material toughness adversely affect.

Mangan ist mit einer Konzentration zwischen 0,06 und 0,4 Gew.-% erfindungsgemäß im Stahl vorgesehen. Niedrigere Gehalte können eine Brüchigkeit bei einer Warmformgebung und höhere Gehalte Nachteile für die Härtbarkeit des Materials bewirken. Manganese is in a concentration between 0.06 and 0.4 wt .-% provided in the steel according to the invention. Lower levels can cause brittleness in a thermoforming and higher contents disadvantages for the hardenability of the Cause material.

Die Gehalte an Chrom, Molybdän und Vanadin sind wichtig für eine gewünschte Sekundärhärtebildung des Werkstoffes bei der Vergütung und sollen gemeinsam betrachtet werden. Chromgehalte unter 1,2 Gew.-% wirken sich nachteilig auf die Durchhärtbarkeit des Materials aus, solche von über 5,0 Gew.-% verschlechtern die thermische Stabilität desselben, weil dadurch die Aktivität des Molybdäns zurückgedrängt wird.The contents of chromium, molybdenum and vanadium are important for a desired Secondary hardness formation of the material in the remuneration and should together to be viewed as. Chromium contents below 1.2 wt .-% have an adverse effect on the Cured by the material, those of more than 5.0 wt .-% worsen the thermal stability of the same, because thereby the activity of molybdenum is pushed back.

Bei Molybdän-Konzentrationen unter 0,8 Gew.-% wird im Zuge der Wärmebehandlung zuwenig von diesem Element in Lösung gebracht, was zu niedrigen Sekundärhärtewerten führt. Über 6,5 Gew.-% Molybdän im Stahl kann einen zu hohen Karbidanteil bewirken, was Zähigkeitseinbußen des Materials und wirtschaftliche Nachteile erbringen kann.At molybdenum concentrations below 0.8 wt .-% is in the course of Heat treatment brought too little of this element into solution, causing too low secondary hardness values. About 6.5 wt .-% molybdenum in the steel can cause a too high carbide content, which reduces the toughness of the material and can bring economic disadvantages.

Der starke Karbidbildner Vanadin ist erfindungsgemäß mit einem Mindestgehalt von 0,2 Gew.-% vorgesehen, um eine ausreichende, stabile Sekundärhärtung des Stahles sicher zustellen. Höhere Gehalte als 0,8 Gew.-% Vanadin können insbesondere bei Kohlenstoffgehalten im oberen Bereich der vorgesehenen Konzentrationsspanne, zur Ausscheidung von primären Karbiden führen, wodurch die Zähigkeitseigenschaften des Werkstoffes sprunghaft verschlechtert werden.The strong carbide former vanadium is according to the invention with a minimum content of 0.2 wt .-% provided sufficient, stable secondary curing of the Ensure steel. Higher contents than 0.8% by weight of vanadium especially at carbon contents in the upper region of the intended Concentration margin, leading to the excretion of primary carbides, causing the toughness properties of the material are abruptly deteriorated.

Die Wirkung von Niob ist zwar ähnlich derjenigen von Vanadin, zeichnet sich jedoch durch eine Bildung von sehr stabilen Karbiden aus, sodass der Gehalt an Niob vorteilhaft unter 0,35 Gew.-% betragen soll.Although the effect of niobium is similar to that of vanadium, it is remarkable through a formation of very stable carbides, so that the content of niobium should advantageously be less than 0.35 wt .-%.

Zur Sicherstellung eines gewünschten Sekundärhärteanstieges bei einem Anlassen des Martensitgefüges der erfindungsgemäßen Legierung weist diese somit bei einer Kohlenstoffkonzentration von 0,15 bis 0,44 Gew.-% Gehalte in Gew.-% an Chrom von 1,2 bis 5,0, Molybdän von 0,8 bis 6,5 und an Vanadin von 0,2 bis 0,8 auf.To ensure a desired secondary hardness increase during tempering of the martensite of the alloy according to the invention thus has this in a Carbon concentration of 0.15 to 0.44 wt .-% contents in wt .-% of chromium from 1.2 to 5.0, molybdenum from 0.8 to 6.5 and to vanadium from 0.2 to 0.8.

Die Nickelkonzentration des Stahles und dessen Aluminiumgehalt sind im Hinblick auf die Ausscheidungskinetik der Phase von Typ Al Fe2Ni zur Härtesteigerung bei einer vorgesehenen Wärmebehandlungstechnologie zu sehen. Bei Nickelgehalten unter 3,4 Gew.-% und bei einer Aluminium-Konzentration von weniger als 1,4 Gew.-% ist eine Ausscheidungshärtung zurückgedrängt, also der additive Härteanstieg als Werkstoffes beim Anlassen gering.The nickel concentration of the steel and its aluminum content are to be seen in terms of the precipitation kinetics of the phase of Al Fe 2 Ni for hardness increase in a proposed heat treatment technology. At nickel contents below 3.4 wt .-% and at an aluminum concentration of less than 1.4 wt .-% precipitation hardening is pushed back, so the additive increase in hardness as a material during tempering low.

Höhere Gehalte als 9,8 Gew.-% Nickel verschieben die δ/α Umwandlung zu tieferen Temperaturen, was zu Problemen bei der Weichglühbehandlung des Stahles, einer hohen Bearbeitungshärte und der Störung der Ausscheidungskinetik führen kann.Higher contents than 9.8 wt% nickel shift the δ / α conversion lower temperatures, causing problems in the soft annealing of the Steel, a high processing hardness and the disturbance of the discharge kinetics can lead.

Gehalte über 3,0 Gew.-% Aluminum fördern in nachteiliger Weise einen hohen DELTA-(δ)-Ferrit-Bereich im Umwandlungsverhalten, eine Nitridbildung und senken die Materialzähigkeit der Legierung.Contents above 3.0 wt .-% aluminum disadvantageously promote a high DELTA (δ) ferrite range in the conversion behavior, a nitride formation and lower the material toughness of the alloy.

Erfindungsgemäß liegt daher der Nickelgehalt und der Aluminumgehalt des Stahles in Gew.-% in den Bereichen 3,4 bis 9,8 Nickel und 1,4 bis 3,0 Aluminium.According to the invention, therefore, the nickel content and the aluminum content of the steel in wt .-% in the ranges 3.4 to 9.8 nickel and 1.4 to 3.0 aluminum.

Kupfer kann unerwünschte, intermetallische Phasen bilden und soll von geringer Konzentration von unter 1,3 Gew.-% im Stahl enthalten sein.Copper can form unwanted, intermetallic phases and should be less Concentration of less than 1.3 wt .-% be contained in the steel.

Zur weiteren Verbesserung des Eigenschaftsprofiles der erfindungsgemäßen Legierung kann vorgesehen sein, dass diese ein oder mehrere der Elemente mit folgenden Konzentrationen in Gew.-% aufweist: Kohlenstoff (C) 0,25 bis 0,4, vorzugsweise 0,31 bis 0,36 Silizium (Si) 0,1 bis 0,25, vorzugsweise 0,15 bis 0,19 Mangan (Mn) 0,15 bis 0,3, vorzugsweise 0,2 bis 0,29 Chrom (Cr) 1,9 bis 2,9, vorzugsweise 2,2 bis 2,8 Molybdän (Mo) 1,2 bis 4,5, vorzugsweise 2,1 bis 2,9 Nickel (Ni) 5,0 bis 7,6, vorzugsweise 5,6 bis 7,1 Vanadin (V) 0,24 bis 0,6, vorzugsweise 0,25 bis 0,4 Kobalt (Co) 1,4 bis 7,9, vorzugsweise 1,6 bis 2,9 Aluminium (Al) 1,6 bis 2,9, vorzugsweise 2,1 bis 2,8 In order to further improve the property profile of the alloy according to the invention, it may be provided that it has one or more of the elements with the following concentrations in% by weight: Carbon (C) 0.25 to 0.4, preferably 0.31 to 0.36 Silicon (Si) 0.1 to 0.25, preferably 0.15 to 0.19 Manganese (Mn) 0.15 to 0.3, preferably 0.2 to 0.29 Chrome (Cr) 1.9 to 2.9, preferably 2.2 to 2.8 Molybdenum (Mo) 1.2 to 4.5, preferably 2.1 to 2.9 Nickel (Ni) 5.0 to 7.6, preferably 5.6 to 7.1 Vanadin (V) 0.24 to 0.6, preferably 0.25 to 0.4 Cobalt (Co) 1.4 to 7.9, preferably 1.6 to 2.9 Aluminum (Al) 1.6 to 2.9, preferably 2.1 to 2.8

Durch diese engeren Gehaltsbereiche von Elementen in der chemischen Zusammensetzung des Stahles kann eine weitere Eigenschaftsverbesserung der daraus hergestellten Gegenstände erreicht werden.Due to these narrower content ranges of elements in the chemical Composition of the steel may be another property improvement of be achieved from it.

Von besonderer Wichtigkeit für insgesamt hohe mechanische Stahlwerte, insbesondere aber auch für hohe Zähigkeitseigenschaften des Werkstoffes ist ein limitierter Anteil von Beimengungen.Of particular importance for overall high mechanical steel values, but especially for high toughness properties of the material is a limited amount of admixtures.

In einer vorteilhaften Ausgestaltung der Erfindung ist eine Legierung vorgesehen, enthaltend eine oder mehrere der Begleit- und Verunreinigungselemente mit folgenden MAXIMAL-Konzentrationen in Gew.-%: Phosphor (P) 0,02, vorzugsweise 0,005 Schwefel (S) 0,008, vorzugsweise 0,003 Kupfer (Cu) 0,15, vorzugsweise 0,06 Titan (Ti) 0,01, vorzugsweise 0,005 Niob (Nb) 0,001, vorzugsweise 0,0005 Stickstoff (N) 0,025, vorzugsweise 0,015 Sauerstoff (O) 0,009, vorzugsweise 0,002 Calzium (Ca) 0,003, vorzugsweise 0,001 Magnesium (Mg) 0,003, vorzugsweise 0,001 Zinn (Sn) 0,01, vorzugsweise 0,005 Tantal (Ta) 0,001, vorzugsweise 0,0005 In an advantageous embodiment of the invention, an alloy is provided, comprising one or more of the concomitant and impurity elements with the following MAXIMUM concentrations in% by weight: Phosphorus (P) 0.02, preferably 0.005 Sulfur (S) 0,008, preferably 0,003 Copper (Cu) 0.15 preferably 0.06 Titanium (Ti) 0.01, preferably 0.005 Niobium (Nb) 0.001, preferably 0.0005 Nitrogen (N) 0,025, preferably 0,015 Oxygen (O) 0.009, preferably 0,002 Calcium (Ca) 0,003, preferably 0.001 Magnesium (Mg) 0,003, preferably 0.001 Tin (Sn) 0.01, preferably 0.005 Tantalum (Ta) 0.001, preferably 0.0005

Um eine besonders ausgeprägte, der Sekundärhärtung durch Karbide überlagerte, Ausscheidungshärtbarkeit der Legierung zu erreichen, kann von Vorteil sein, wenn der Wert Nickelgehalt gebrochen durch Aluminiumgehalt jeweils in Gew.-% zwischen 1,8 und 4,2, vorzugsweise zwischen 2,1 und 3,9 beträgt. Dadurch wird ein Überhang eines die Ausscheidung bildenen Elementes vermieden.To a particularly pronounced, the secondary hardening superimposed by carbides, To achieve precipitation hardenability of the alloy may be advantageous when the value nickel content refracted by aluminum content in each case in wt .-% between 1.8 and 4.2, preferably between 2.1 and 3.9. This will be a Overhang of a precipitate forming element avoided.

Die gestellte Aufgabe der Erfindung wird gemäß eines verbesserten Eigenschaftsprofiles bei einem Warmarbeitsstahl-Gegenstand gelöst, wenn ein nach einem schmelzmetallurgischen oder pulvermetallurgischen Verfahren hergestelltes Vormaterial, insbesondere durch Warmumformung und Bearbeitung in Form gebracht wurde, welcher geformte Gegenstand nach einer aushärtenden Wärmbehandlung sekundär ausgeschiedene Karbide, sowie intermetallische Ausscheidungen aufweist.The stated object of the invention is according to an improved Property profiles solved with a hot work tool object, if one after produced by a fusion metallurgy or powder metallurgy process Starting material, in particular by hot forming and machining in the form which molded article after a curing Heat treatment secondary precipitated carbides, as well as intermetallic Has precipitates.

Die Gesamthärte des Werkstoffes wird dabei vorteilhaft durch eine Überlagerung des Sekundärhärteanstieges durch Karbidausscheidungen und der Ausscheidungshärtung erreicht. Dadurch können hohe Materialhärtewerte erzielt werden, obwohl die Vergütetechnologie auf einen Erhalt hoher Werkstoffzähigkeit gerichtet ist und im Vergleich mit einem Warmarbeitsstahl nach dem Stand der Technik niedere Härtetemperaturen Verwendung finden. Diese niedrigere Austenitisierungstemperatur kann auch wesentliche Vorteile hinsichtlich eines geringen Verzuges bei einer Vergütungsbehandlung kompliziert geformter Teile haben.The total hardness of the material is advantageous by an overlay the secondary hardness increase by carbide precipitations and the Elimination hardening achieved. As a result, high material hardness values can be achieved Although the tempering technology is based on maintaining high material toughness is directed and compared with a hot work tool according to the state of Technique use lower hardening temperatures. This lower one Austenitizing temperature can also provide significant advantages in terms of a low distortion in a tempering treatment of complicated shaped parts to have.

Werden jedoch die Härtetemperaturen auf einem hohen Niveau eingestellt, so ergeben sich bei sonst üblichen guten Materialzähigkeiten extrem hohe Härtewerte des Stahlgegenstandes.However, if the hardening temperatures are set at a high level, so result in otherwise good material toughness extremely high hardness values of the steel object.

Wenn im Gefüge des Warmarbeitsstahl-Gegenstandes ein Verhältnis intermetallische Ausscheidungen gebrochen durch sekundär ausgeschiedene Karbide jeweils in Vol.-% von kleiner 3,0, vorzugsweise von 1,0 und kleiner, jedoch über 0,38, gegeben ist, sind bei hohen Härtewerten die Zähigkeit besonders hoch und die thermische Stabilität um bis zu 50°C und mehr zu höheren Temperaturen verschoben.If in the structure of the hot-work tool object a relationship intermetallic precipitates broken by secondary precipitated Carbides in Vol .-% of less than 3.0, preferably 1.0 and smaller, however above 0.38, the toughness is particularly high at high hardness values and thermal stability up to 50 ° C and more to higher temperatures postponed.

Ein Warmarbeitsstahl-Gegenstand nach der Erfindung, welcher sekundär ausgeschiedene Chrom-Molybdän-Vanadin-Mischkarbide und im Wesentlichen intermetallische Phasen des Types Al Fe2Ni im Gefüge aufweist, hat ein besonders bevorzugtes Eigenschaftsprofil und kann in üblichen Härteanlagen bei vergleichsweise niedrigen Härtetemperaturen wirtschaftlich hergestellt sein.A hot-work tool according to the invention, which has secondarily precipitated chromium-molybdenum-vanadium mixed carbides and essentially intermetallic phases of the Al Fe 2 Ni type in the microstructure, has a particularly preferred property profile and can be economically produced in conventional hardening plants at comparatively low hardening temperatures ,

Eine ausgeprägte thermische Stabilität des Gegenstandes kann erreicht werden, wenn die Legierung einen Verhältniswert von Chrom + Molybdän + Vanadin gebrochen durch Kohlenstoff jeweils in Gew.-% von größer 13, jedoch kleiner 19 besitzt. A pronounced thermal stability of the object can be achieved if the alloy has a ratio of chromium + molybdenum + vanadium broken by carbon, in each case in wt .-% of greater than 13, but less than 19 has.

An Hand von einige Untersuchungsergebnissen und Darstellungen soll die Erfindung beispielhaft näher erläutet werden.On the basis of some investigation results and representations the Invention be exemplified in more detail.

Aus einer erfindungsgemäßen Legierung A, aus einem üblichen Warmarbeitsstahl B und aus einem ausscheidungshärtenden Stahl C (Maraging Stahl) wurden Proben hergestellt, thermisch vergütet und deren Materialeigenschaften untersucht. Die Legierungen weisen die in Tab. 1 angegebenen chemischen Zusammensetzungen auf: Element Legierung A Legierung B Legierung C C 0,32 0,38 0,13 Si 0,18 0,40 <0,05 Mn 0,25 0,33 <0,02 Cr 2,45 4,79 0,11 Mo 2,43 2,78 5,26 Ni 6,46 0,18 18,01 V 0,28 0,62 0,02 Co 1,97 <0,05 8,71 Al 2,46 0,016 0,13 Cu 0,06 0,07 0,08 Nb <0,005 <0.005 <0.005 Fe bal. bal. bal. P 0,008 0,015 <0,005 S 0,001 0,001 0,009 Ti <0,005 <0,005 0,79 N 0.0048 0,0068 0,0017 O 0,0022 0,0023 0,0007 Ca Mg Sn <0,005 <0,005 0,009 Ta From an alloy A according to the invention, from a conventional hot-work steel B and from a precipitation-hardening steel C (maraging steel), samples were produced, thermally tempered and their material properties were investigated. The alloys have the chemical compositions given in Tab. 1: element Alloy A Alloy B Alloy C C 0.32 0.38 0.13 Si 0.18 0.40 <0.05 Mn 0.25 0.33 <0.02 Cr 2.45 4.79 0.11 Not a word 2.43 2.78 5.26 Ni 6.46 0.18 18.01 V 0.28 0.62 0.02 Co 1.97 <0.05 8.71 al 2.46 0.016 0.13 Cu 0.06 0.07 0.08 Nb <0.005 <0005 <0005 Fe bal. bal. bal. P 0,008 0,015 <0.005 S 0.001 0.001 0.009 Ti <0.005 <0.005 0.79 N 0.0048 0.0068 0.0017 O 0.0022 0.0023 0.0007 Ca mg sn <0.005 <0.005 0.009 Ta

Am Probematerial erfolgte vorerst eine Messung der thermischen Ausdehnung α [10-6/K] in Abhängigkeit der Temperatur bei einer Ausgangshärte des Werkstoffes von 50 bis 52 HRC. Die aus Tab. 2 entnehmbaren Werte zeigen, dass im Vergleich mit einem konventionellen Warmarbeitsstahl B die erfindungsgemäße Legierung eine geringere Ausdehnung aufweist, was auch auf eine bessere Formstabilität bei einer Wärmebehandlung hinweist. Temperatur [°C] A B C 100 10,8 11,2 9 200 11,2 11,61 9,5 300 11,7 12 9,95 400 12,2 12,5 10,44 500 12,7 12,9 10,9 For the time being, a measurement of the thermal expansion α [10 -6 / K] as a function of the temperature at an initial hardness of the material of 50 to 52 HRC was carried out on the sample material. The values which can be taken from Table 2 show that the alloy according to the invention has a smaller expansion in comparison with a conventional hot-work steel B, which also indicates a better dimensional stability during a heat treatment. Temperature [° C] A B C 100 10.8 11.2 9 200 11.2 11.61 9.5 300 11.7 12 9.95 400 12.2 12.5 10.44 500 12.7 12.9 10.9

Nach einer Härtung auf jeweils ca. 55 HRC von Proben aus der erfindungsgemäßer Legierung A und des konventionellen Warmarbeitsstahles B wurde der Härteverlauf der Werkstoffe in Abhängigkeit der Temperatur ermittelt. Dabei ist von wesentlicher Bedeutung, dass zur Erreichung dieser Härte die erfindungsgemäße Legierung A eine Austenitisierungstemperatur von 990°C benötigte, beim üblichen Warmarbeitsstahl B jedoch eine solche von 1050°C erforderlich war. In Abhängigkei der Temperatur, wie aus Tab. 3A und Tab. 3B ersichtlich, stieg im Bereich zwischen 500°C und 600°C die Härte der erfindungsgemäß zusammengesetzten Probe A auf Werte um 60 HRC an, wo hingegen beim konventionellen Warmarbeitsstahl B ein maximaler Härtewert von 56 HRC bei 500°C ermittelt wurde. A
Temperatur
Härte In HRC
25 54 100 54 200 50 300 51 400 54 500 60 530 60 560 60 590 59 620 55 650 49 680 43
B
Temperatur
Härte In HRC
25 55 300 52 400 53 500 54 530 53 560 52 590 50 620 47 650 43
After hardening to about 55 HRC each of samples of the inventive alloy A and the conventional hot-work steel B, the hardness profile of the materials was determined as a function of the temperature. It is essential that the alloy A according to the invention required an austenitizing temperature of 990 ° C. in order to achieve this hardness, but that of 1050 ° C. was required for the conventional hot-rolled steel B, however. Depending on the temperature, as shown in Tab. 3A and Tab. 3B, increased in the range between 500 ° C and 600 ° C, the hardness of the inventively assembled sample A to values around 60 HRC, whereas in conventional hot-work steel B, a maximum hardness value of 56 HRC at 500 ° C. A
temperature
Hardness In HRC
25 54 100 54 200 50 300 51 400 54 500 60 530 60 560 60 590 59 620 55 650 49 680 43
B
temperature
Hardness In HRC
25 55 300 52 400 53 500 54 530 53 560 52 590 50 620 47 650 43

In graphischer Darstellung ist in Fig. 1 der jeweilige Härteverlauf in Abhängigkeit der Temperatur des erfindungsgemäßen Werkstoffes A und der Warmarbeitstahllegierung B nach dem Stand der Technik vergleichend gezeigt. In a graphical representation in Fig. 1, the respective hardness profile in dependence of Temperature of the material A of the invention and the Hot work steel alloy B according to the prior art shown comparatively.

Ausgehend von gleicher Härte, die jedoch mit einer gegebenenfalls vorteilhaften geringeren Austenitisierungstemperatur erreicht wird, erfolgt bei der erfindungsgemäßen Legierung A durch einen überlagerten Ausscheidungsmechanismus, bei welchem Al Fe2Ni - Ausscheidungen in feinster Form im Gefüge gebildet werden, ein wesentlich größerer Anstieg der Warmhärte des Gegenstandes, wobei diese auch bei höheren Temperaturen erhalten bleibt.Starting from the same hardness, which however is achieved with an optionally advantageous lower austenitizing temperature, in the case of the alloy A according to the invention, a considerably greater increase in the hot hardness of the alloy A is produced by a superimposed precipitation mechanism in which Al Fe 2 Ni precipitates are formed in the finest form in the microstructure Subject, whereby this is maintained even at higher temperatures.

Basierend auf einer Härteangabe nach Vickers erfolgte die Untersuchung:des Erweichungsverhaltens der Werkstoffe in Abhängigkeit der Zeit bei einer Temperaur von 650°C.Based on a hardening specification according to Vickers the investigation took place: the Softening behavior of the materials as a function of time at a temperature from 650 ° C.

Eine Härteermittlung am Probekörper bei der Prüftemperatur wurde nach der Rückprallhärtemethode (Shore hardness) durchgeführt, für welche Rücksprungwerte bislang lediglich eine Umrechnung in Vickers-Härtewerte vorliegt.A hardness determination on the test specimen at the test temperature was carried out after the Rebound hardness method (Shore hardness) is performed, for which return values So far only a conversion into Vickers hardness values is available.

Ausgehend von annähernd gleicher Härte bei Raumtemperatur und zwar von 50 - 52 HRC, welche für die Legierungen A, B und C mit einer Zusammensetzung gemäß Tab. 1 durch unterschiedliche in der Untersuchungsbeilage Ergebnis-Blatt 1 angegebene thermische Vergütungsverfahren erreicht wurden, erfolgte eine Härteprüfung über die Zeit bei 650°C.Starting from approximately the same hardness at room temperature and that of 50 - 52 HRC, which for the alloys A, B and C with a composition according to Tab. 1 by different in the examination insert result sheet 1 was achieved, was carried out a Hardness test over time at 650 ° C.

Im Vergleich mit einem konventionellen Warmarbeitsstahl B und einem Maragingstahl C wies die erfindungsgemäße Legierung A bei gleicher Ausgangshärte bei 650°C, während einer Zeit von bis zu 1000 Minuten die höchste Werkstoffhärte auf. Nach dieser Zeit besaß der Maragingstahl C eine höhere Härte bei hoher thermischer Stabilität, wo hingegen der erfindungsgemäße Warmarbeitstahl A bis zu ca. 2000 Minuten etwa 10 % seiner Härte verlor. Die thermische Stabilität des konventionellen Warmarbeitsstahl B war gering; der Härteunterschied im Vergleich mit der erfindungsgemäßen Legierung A vergrößerte sich bis 1000 Minuten stetig. In comparison with a conventional hot-work steel B and a Maraging steel C has the inventive alloy A at the same Initial hardness at 650 ° C, for a time of up to 1000 minutes, the highest Material hardness on. After this time, maraging steel C had a higher hardness at high thermal stability, whereas where the inventive Hot working steel A lost about 10% of its hardness up to about 2000 minutes. The thermal stability of conventional hot-work steel B was low; of the Increased hardness difference in comparison with the alloy A according to the invention steady for up to 1000 minutes.

Ausgangshärte: 50-52 HRCInitial hardness: 50-52 HRC

Wärmebehandlung: A Härten Anlassen 990 °C // 30 min // Olabschreckung 640°C // 3x1 h // Luftabkühlung B Härten Anlassen 1050°C // 30 min // Ölabschreckung 550°C // 1h // Luftabkühlung + 610°C // 2 h // Luftabkühlung C Härten Anlassen 820°C // 30 min // Olabschreckung 570°C // 3 h // Luftabkühlung Erweichungsverhatten A (=betrachtete Legierung) B (konventioneller Warmabeitsstahl) C ( Maragingstahl) Zeit [min] Härte [HV] Zeit [min] Härte [HV] Zeit [min] Härte [HV] 2,89034 346,95705 2,89034 336,2518 2,89034 294,89709 4,06581 355,72974 4,08581 335,64438 4,08581 298,33194 5,77573 362,37786 5,77573 332,74216 5,77573 300,39692 8,16463 367,00547 8,16463 327,7911 8,16463 301,23444 11,54158 369,71665 11,54158 321,03717 11,54158 300,98688 16,31528 370,61546 16,31528 312,72632 16,31528 299,79666 23,06342 369,806 23,06342 303,10452 23,06342 297,80617 32,60264 367,39232 32,60264 292,41773 32,60264 295,1578 46,08737 363,47851 46,08737 280,91191 46,08737 291,99397 65,1495 358,16863 65,1495 268,83304 65,1495 288,45706 92,09588 351,56676 92,09588 256,42706 92,09588 284,68948 130,18751 343,77697 130,18751 243,93995 130,18751 280,83363 184,03416 334,90334 184,03416 231,61767 184,03416 277,0319 260,15225 325,04994 260,15225 219,70618 260,15225 273,4267 367,75342 314,32084 367,75342 208,45144 367,75342 270,16042 519,85933 302,82012 519,85933 198,09942 519,85933 267,37547 734,87754 290,65184 734,87754 188,89607 734,87754 265,21424 1038,8291 277,92009 1038,8291 181,08737 1038,8291 263,81913 1468,49759 264,72894 2075,8806 251,18246

Figure 00120001
Heat treatment: A Hardening tempering 990 ° C // 30 min // Oil quenching 640 ° C // 3x1 h // Air cooling B Hardening tempering 1050 ° C // 30 min // Oil quenching 550 ° C // 1h // Air cooling + 610 ° C // 2 h // Air cooling C Hardening tempering 820 ° C // 30 min // Oil quench 570 ° C // 3 h // Air cooling Erweichungsverhatten A (= considered alloy) B (conventional hot-side steels) C (maraging steel) Time [min] Hardness [HV] Time [min] Hardness [HV] Time [min] Hardness [HV] 2.89034 346.95705 2.89034 336.2518 2.89034 294.89709 4.06581 355.72974 4.08581 335.64438 4.08581 298.33194 5.77573 362.37786 5.77573 332.74216 5.77573 300.39692 8.16463 367.00547 8.16463 327.7911 8.16463 301.23444 11.54158 369.71665 11.54158 321.03717 11.54158 300.98688 16.31528 370.61546 16.31528 312.72632 16.31528 299.79666 23.06342 369.806 23.06342 303.10452 23.06342 297.80617 32.60264 367.39232 32.60264 292.41773 32.60264 295.1578 46.08737 363.47851 46.08737 280.91191 46.08737 291.99397 65.1495 358.16863 65.1495 268.83304 65.1495 288.45706 92.09588 351.56676 92.09588 256.42706 92.09588 284.68948 130.18751 343.77697 130.18751 243.93995 130.18751 280.83363 184.03416 334.90334 184.03416 231.61767 184.03416 277.0319 260.15225 325.04994 260.15225 219.70618 260.15225 273.4267 367.75342 314.32084 367.75342 208.45144 367.75342 270.16042 519.85933 302.82012 519.85933 198.09942 519.85933 267.37547 734.87754 290.65184 734.87754 188.89607 734.87754 265.21424 1038.8291 277.92009 1038.8291 181.08737 1038.8291 263.81913 1468.49759 264.72894 2075.8806 251.18246
Figure 00120001

Claims (8)

Legierung zur Herstellung von Gegenständen mit hoher Warmfestigkeit und Zähigkeit enthaltend in Gew.-%: Kohlenstoff (C) 0,15 bis 0,44 Silizium (Si) 0,04 bis 0,3 Mangan (Mn) 0,06 bis 0,4 Chrom (Cr) 1,2 bis 5,0 Molybdän (Mo) 0,8 bis 6,5 Nickel (Ni) 3,4 bis 9,8 Vanadin (V) 0,2 bis 0,8 Kobalt (Co) 0,1 bis 9,8 Aluminium (Al) 1,4 bis 3,0 Kupfer (Cu) unter 1,3 Niob (Nb) unter 0,35 Eisen (Fe) Rest
sowie Begleitelemente und herstellungsbedingte Verunreinigungen.
Alloy for the production of articles with high heat resistance and toughness containing in% by weight: Carbon (C) 0.15 to 0.44 Silicon (Si) 0.04 to 0.3 Manganese (Mn) 0.06 to 0.4 Chrome (Cr) 1.2 to 5.0 Molybdenum (Mo) 0.8 to 6.5 Nickel (Ni) 3.4 to 9.8 Vanadin (V) 0.2 to 0.8 Cobalt (Co) 0.1 to 9.8 Aluminum (Al) 1.4 to 3.0 Copper (Cu) below 1.3 Niobium (Nb) below 0.35 Iron (Fe) rest
as well as accompanying elements and production-related contamination.
Legierung nach Anspruch 1, enthaltend ein oder mehrere der Elemente mit folgenden Konzentrationen in Gew.-%: Kohlenstoff(C) 0,25 bis 0,40, vorzugsweise 0,31 bis 0,36 Silizium (Si) 0,10 bis 0,25, vorzugsweise 0,15 bis 0,19 Mangan (Mn) 0,15 bis 0,30, vorzugsweise 0,20 bis 0,29 Chrom (Cr) 1,9 bis 2,9, vorzugsweise 2,2 bis 2,8 Molybdän (Mo) 1,2 bis 4,5, vorzugsweise 2,1 bis 2,9 Nickel (Ni) 5,0 bis 7,6, vorzugsweise 5,6 bis 7,1 Vanadin (V) 0,24 bis 0,6, vorzugsweise 0,25 bis 0,4 Kobalt (Co) 1.4 bis 7,9, vorzugsweise 1,6 bis 2,9 Aluminium (Al) 1,6 bis 2,9, vorzugsweise 2,1 bis 2,8
An alloy according to claim 1 containing one or more of the following concentrations in% by weight: Carbon (C) 0.25 to 0.40, preferably 0.31 to 0.36 Silicon (Si) 0.10 to 0.25, preferably 0.15 to 0.19 Manganese (Mn) 0.15 to 0.30, preferably 0.20 to 0.29 Chrome (Cr) 1.9 to 2.9, preferably 2.2 to 2.8 Molybdenum (Mo) 1.2 to 4.5, preferably 2.1 to 2.9 Nickel (Ni) 5.0 to 7.6, preferably 5.6 to 7.1 Vanadin (V) 0.24 to 0.6, preferably 0.25 to 0.4 Cobalt (Co) 1.4 to 7.9, preferably 1.6 to 2.9 Aluminum (Al) 1.6 to 2.9, preferably 2.1 to 2.8
Legierung nach Anspruch 1 oder 2, enthaltend ein oder mehrere der Begleit- und Verunreinigungselemente mit folgenden MAXIMAL-Konzentrationen in Gew.-%: Phosphor (P) 0,02, vorzugsweise 0,005 Schwefel (S) 0,008, vorzugsweise 0,003 Kupfer (Cu) 0,15, vorzugsweise 0,06 Titan (Ti) 0,01, vorzugsweise 0,005 Niob (Nb) 0,001, vorzugsweise 0,0005 Stickstoff (N) 0,025, vorzugsweise 0,015 Sauerstoff (O) 0,009, vorzugsweise 0,002 Calzium (Ca) 0,003, vorzugsweise 0,001 Magnesium (Mg) 0,003, vorzugsweise 0,001 Zinn (Sn) 0,01, vorzugsweise 0,005 Tantal (Ta) 0,001, vorzugsweise 0,0005
An alloy according to claim 1 or 2, comprising one or more of the companion and impurity elements having the following MAX concentrations in wt%: Phosphorus (P) 0.02, preferably 0.005 Sulfur (S) 0,008, preferably 0,003 Copper (Cu) 0.15 preferably 0.06 Titanium (Ti) 0.01, preferably 0.005 Niobium (Nb) 0.001, preferably 0.0005 Nitrogen (N) 0,025, preferably 0,015 Oxygen (O) 0.009, preferably 0,002 Calcium (Ca) 0.003, preferably 0.001 Magnesium (Mg) 0,003, preferably 0.001 Tin (Sn) 0.01, preferably 0.005 Tantalum (Ta) 0.001, preferably 0.0005
Legierung nach einem der Ansprüche 1 bis 3, wobei der Wert Nickelgehalt gebrochen durch Aluminiumgehalt jeweils in Gew.-% zwischen 1,8 und 4,2, vorzugsweise zwischen 2,1 und 3,9 beträgt NiAl = 1,8 bis 4,2, vorzugsweise 2,1 bis 3,9 Alloy according to one of claims 1 to 3, wherein the value of nickel content broken by aluminum content in each case in wt .-% between 1.8 and 4.2, preferably between 2.1 and 3.9 Ni al = 1.8 to 4.2, preferably 2.1 to 3.9 Warmarbeitsstahl-Gegenstand mit hoher Härte, hoher Warmfestigkeit und hoher thermischer Stabilität, wobei ein nach einem schmelzmetallurgischen oder pulvermetallugischen Verfahren hergestelltes Vormaterial bevorzugt mit einer in den vorgeordneten Ansprüchen gekennzeichneten chemischen Zusammensetzung, insbesondere durch Warmumformung und Bearbeitung in Form gebracht wurde, welcher geformte Gegenstand nach einer aushärtenden Wärmebehandlung im Gefüge sekundär ausgeschiedene Karbide, sowie intermetallische Ausscheidungen aufweist.Hot work tool steel with high hardness, high heat resistance and high thermal stability, one after a melt metallurgical or Prefabricated material produced by powder metallurgical process preferably with a in the ancillary claims characterized chemical composition, was shaped in particular by hot forming and machining, which molded article after a curing heat treatment in Structure secondary precipitated carbides, as well as intermetallic precipitations having. Warmarbeitsstahlgegenstand nach Anspruch 5, der im Gefüge ein Verhältnis intermetallischer Ausscheidungen gebrochen durch sekundär ausgeschiedene Karbide jeweils in Vol.-% von kleiner 3,0, vorzugsweise von 1,0 und kleiner, jedoch über 0,38, besitzt.A hot-rolled steel article according to claim 5, having a ratio in the microstructure intermetallic precipitates broken by secondary precipitated Carbides in Vol .-% of less than 3.0, preferably 1.0 and smaller, however over 0.38, owns. Warmarbeitsstahlgegenstand nach Anspruch 5 oder 6, welcher sekundär im Gefüge ausgeschiedene Chrom-Molybdän-Vanadin-Mischkarbide und im Wesentlichen intermetallische Phasen des Types Al Fe2 Ni im Gefüge aufweist.Hot-rolled steel article according to claim 5 or 6, which has chromium-molybdenum-vanadium mixed carbides secondarily microstructured in the microstructure and essentially Al Fe 2 Ni intermetallic phases in the microstructure. Warmarbeitsstahl-Gegenstand nach einem der Ansprüche 5 bis 7, welcher in seiner chemischen Zusammensetzung einen Verhältniswert von Chrom + Molybdän + Vanadin gebrochen durch Kohlenstoff jeweils in Gew.-% von größer 12, jedoch kleiner 19 besitzt. 12 < Cr + Mo + VC < 19 A hot work tool steel article according to any one of claims 5 to 7, which has in its chemical composition a ratio of chromium + molybdenum + vanadium broken by carbon each in wt% greater than 12 but less than 19. 12 < Cr + Mo + V C <19
EP04450025.4A 2003-02-10 2004-02-10 Alloy and article with high heat resistance and high heat stability Expired - Lifetime EP1445339B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1962003A AT411905B (en) 2003-02-10 2003-02-10 Iron-based alloy for producing a hot working steel object contains alloying additions of silicon, manganese, chromium, molybdenum, nickel, vanadium, cobalt and aluminum
AT1962003 2003-02-10

Publications (2)

Publication Number Publication Date
EP1445339A1 true EP1445339A1 (en) 2004-08-11
EP1445339B1 EP1445339B1 (en) 2016-08-03

Family

ID=29588323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04450025.4A Expired - Lifetime EP1445339B1 (en) 2003-02-10 2004-02-10 Alloy and article with high heat resistance and high heat stability

Country Status (8)

Country Link
EP (1) EP1445339B1 (en)
AT (1) AT411905B (en)
BR (1) BRPI0400488B1 (en)
CA (1) CA2457183C (en)
DK (1) DK1445339T3 (en)
ES (1) ES2592714T3 (en)
HU (1) HUE030391T2 (en)
PT (1) PT1445339T (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015260A1 (en) * 2006-08-03 2008-02-07 Aubert & Duval Method for transforming steel blanks
WO2008084108A1 (en) * 2007-01-12 2008-07-17 Rovalma Sa Cold work tool steel with outstanding weldability
US8101004B2 (en) 2006-08-03 2012-01-24 Aubert & Duval Process for manufacturing steel blanks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083428A1 (en) * 2008-01-22 2009-07-29 Imphy Alloys Fe-Co alloy for highly dynamic electromagnetic actuator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB669396A (en) * 1938-12-06 1952-04-02 Boehler & Co Ag Geb Hot working tools and alloys therefor
US2715576A (en) * 1954-04-21 1955-08-16 Crucible Steel Co America Age hardening alloy steel of high hardenability and toughness
US3453152A (en) * 1963-11-12 1969-07-01 Republic Steel Corp High-strength alloy steel compositions and process of producing high strength steel including hot-cold working
US3453151A (en) 1965-03-09 1969-07-01 Park Chem Co Thermocouple with leak detector
US4729872A (en) * 1985-09-18 1988-03-08 Hitachi Metals, Ltd. Isotropic tool steel
JPH07228945A (en) 1994-02-21 1995-08-29 Kobe Steel Ltd High strength spring steel excellent in corrosion resistance
JP2000054068A (en) * 1998-08-03 2000-02-22 Hitachi Metals Ltd High strength prehardening steel material excellent in machinability
JP2000119799A (en) * 1998-10-07 2000-04-25 Hitachi Metals Ltd High strength steel excellent in machinability and toughness and having corrosion resistance
EP1036852A1 (en) * 1999-02-12 2000-09-20 Hitachi Metals, Ltd. High strength steel for dies with excellent machinability

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB669396A (en) * 1938-12-06 1952-04-02 Boehler & Co Ag Geb Hot working tools and alloys therefor
US2715576A (en) * 1954-04-21 1955-08-16 Crucible Steel Co America Age hardening alloy steel of high hardenability and toughness
US3453152A (en) * 1963-11-12 1969-07-01 Republic Steel Corp High-strength alloy steel compositions and process of producing high strength steel including hot-cold working
US3453151A (en) 1965-03-09 1969-07-01 Park Chem Co Thermocouple with leak detector
US4729872A (en) * 1985-09-18 1988-03-08 Hitachi Metals, Ltd. Isotropic tool steel
JPH07228945A (en) 1994-02-21 1995-08-29 Kobe Steel Ltd High strength spring steel excellent in corrosion resistance
JP2000054068A (en) * 1998-08-03 2000-02-22 Hitachi Metals Ltd High strength prehardening steel material excellent in machinability
JP2000119799A (en) * 1998-10-07 2000-04-25 Hitachi Metals Ltd High strength steel excellent in machinability and toughness and having corrosion resistance
EP1036852A1 (en) * 1999-02-12 2000-09-20 Hitachi Metals, Ltd. High strength steel for dies with excellent machinability

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 11 26 December 1995 (1995-12-26) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 05 14 September 2000 (2000-09-14) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 07 29 September 2000 (2000-09-29) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015260A1 (en) * 2006-08-03 2008-02-07 Aubert & Duval Method for transforming steel blanks
FR2904635A1 (en) * 2006-08-03 2008-02-08 Aubert & Duval Soc Par Actions PROCESS FOR MANUFACTURING STEEL ELBOWS
US8101004B2 (en) 2006-08-03 2012-01-24 Aubert & Duval Process for manufacturing steel blanks
US8252129B2 (en) 2006-08-03 2012-08-28 Aubert & Duval Method for transforming steel blanks
US8551397B2 (en) 2006-08-03 2013-10-08 Aubert & Duval Process for manufacturing steel blanks
CN101553590B (en) * 2006-08-03 2014-08-06 奥贝尔&杜瓦尔公司 Method for transforming steel blanks
WO2008084108A1 (en) * 2007-01-12 2008-07-17 Rovalma Sa Cold work tool steel with outstanding weldability
US9249485B2 (en) 2007-01-12 2016-02-02 Rovalma Sa Cold work tool steel with outstanding weldability

Also Published As

Publication number Publication date
BRPI0400488A (en) 2005-07-12
AT411905B (en) 2004-07-26
BRPI0400488B1 (en) 2014-04-15
ATA1962003A (en) 2003-12-15
PT1445339T (en) 2016-09-27
CA2457183C (en) 2009-07-14
EP1445339B1 (en) 2016-08-03
HUE030391T2 (en) 2017-05-29
DK1445339T3 (en) 2016-09-26
ES2592714T3 (en) 2016-12-01
CA2457183A1 (en) 2004-08-10

Similar Documents

Publication Publication Date Title
DE602004000140T2 (en) Stainless austenitic steel
DE3310693C2 (en)
EP3323902B1 (en) Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP3591078A1 (en) Use of a steel for an additive production method, method for producing a steel component and steel component
WO2021084025A1 (en) Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component
EP1300482B1 (en) Hot-work tool-steel article
DE2800444C2 (en) Use of a Cr-Mo steel
AT409636B (en) STEEL FOR PLASTIC MOLDS AND METHOD FOR HEAT TREATING THE SAME
DE60024495T2 (en) Steel with excellent forgeability and machinability
EP0455625B1 (en) High strength corrosion-resistant duplex alloy
DE10124393B4 (en) Heat-resistant steel, process for the thermal treatment of heat-resistant steel, and components made of heat-resistant steel
EP0897018B1 (en) Duplex stainless steel with high tensile strength and good corrosion properties
DE4231695C2 (en) Use of steel for tools
EP0733719B1 (en) Iron base alloy for use at high temperature
AT411905B (en) Iron-based alloy for producing a hot working steel object contains alloying additions of silicon, manganese, chromium, molybdenum, nickel, vanadium, cobalt and aluminum
DE202009017752U1 (en) hardened steel
EP3225702B1 (en) Steel with reduced density and method for producing a steel flat or long product made from such steel
DE102017215222A1 (en) Case hardenable stainless steel alloy
DE19628350A1 (en) Rustproof ferritic-austenitic cast steel alloy
EP0694622B1 (en) Corrosion resistant alloy and method for making corrosion resistant cutting tools
DE2634403A1 (en) STAINLESS ALLOY CAST STEEL
EP1382704B1 (en) Cold work steel with high wear resistance
EP2809818B1 (en) Duplex steel with improved notch-impact strength and machinability
EP1052304A1 (en) Martensitic corrosion resistant chromium steel
DE2118697B2 (en) Process for the production of a high-strength, low-carbon structural steel with good weldability

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040918

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1069854

Country of ref document: HK

17Q First examination report despatched

Effective date: 20070515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004015268

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0006000000

Ipc: C21D0006020000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/44 20060101ALI20151222BHEP

Ipc: C22C 38/04 20060101ALI20151222BHEP

Ipc: C22C 38/06 20060101ALI20151222BHEP

Ipc: C21D 6/02 20060101AFI20151222BHEP

Ipc: C22C 38/02 20060101ALI20151222BHEP

Ipc: C22C 38/52 20060101ALI20151222BHEP

Ipc: C22C 38/46 20060101ALI20151222BHEP

Ipc: C21D 6/00 20060101ALI20151222BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160224

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 817385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015268

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160922

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 1445339

Country of ref document: PT

Date of ref document: 20160927

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160921

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004015268

Country of ref document: DE

Owner name: BOEHLER EDELSTAHL GMBH & CO. KG, AT

Free format text: FORMER OWNER: BOEHLER EDELSTAHL GMBH, KAPFENBERG, AT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2592714

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161104

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 22585

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015268

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E030391

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1069854

Country of ref document: HK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004015268

Country of ref document: DE

Representative=s name: HGF EUROPE LP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004015268

Country of ref document: DE

Representative=s name: HGF EUROPE LLP, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200227

Year of fee payment: 17

Ref country code: DK

Payment date: 20200227

Year of fee payment: 17

Ref country code: ES

Payment date: 20200302

Year of fee payment: 17

Ref country code: FI

Payment date: 20200227

Year of fee payment: 17

Ref country code: IE

Payment date: 20200227

Year of fee payment: 17

Ref country code: SE

Payment date: 20200227

Year of fee payment: 17

Ref country code: HU

Payment date: 20200129

Year of fee payment: 17

Ref country code: DE

Payment date: 20200227

Year of fee payment: 17

Ref country code: BG

Payment date: 20200224

Year of fee payment: 17

Ref country code: AT

Payment date: 20200121

Year of fee payment: 17

Ref country code: IT

Payment date: 20200220

Year of fee payment: 17

Ref country code: NL

Payment date: 20200226

Year of fee payment: 17

Ref country code: PT

Payment date: 20200124

Year of fee payment: 17

Ref country code: RO

Payment date: 20200121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20200120

Year of fee payment: 17

Ref country code: BE

Payment date: 20200227

Year of fee payment: 17

Ref country code: CH

Payment date: 20200304

Year of fee payment: 17

Ref country code: CZ

Payment date: 20200130

Year of fee payment: 17

Ref country code: SI

Payment date: 20200121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200225

Year of fee payment: 17

Ref country code: TR

Payment date: 20200128

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015268

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 817385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210210

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 22585

Country of ref document: SK

Effective date: 20210210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210810

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20211203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210211

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228