JP2000054068A - High strength prehardening steel material excellent in machinability - Google Patents

High strength prehardening steel material excellent in machinability

Info

Publication number
JP2000054068A
JP2000054068A JP10218421A JP21842198A JP2000054068A JP 2000054068 A JP2000054068 A JP 2000054068A JP 10218421 A JP10218421 A JP 10218421A JP 21842198 A JP21842198 A JP 21842198A JP 2000054068 A JP2000054068 A JP 2000054068A
Authority
JP
Japan
Prior art keywords
machinability
steel material
less
strength
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10218421A
Other languages
Japanese (ja)
Other versions
JP4232128B2 (en
Inventor
Eiji Nakatsu
英司 中津
Yoshiyuki Murakawa
義行 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP21842198A priority Critical patent/JP4232128B2/en
Publication of JP2000054068A publication Critical patent/JP2000054068A/en
Application granted granted Critical
Publication of JP4232128B2 publication Critical patent/JP4232128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength prehardening steel material improved in machinability without damaging the advantage of being well-balanced between strength and ductility, which is the characteristic of a steel material composed essentially of martensitic structure, and particularly useble as a steel for metal mold for plastic molding. SOLUTION: This is a high strength prehardening steel material excellent in machinability, which has a structure composed essentially of martensite and in which the size of a packet constituting the structure is equal to or larger than No.8 when evaluated by austenite grain size number. To be concrete, it is preferable to regulate the chemical composition of the steel material so that it consists of, by weight, <=0.2% C, <=1.5% Si, <=2.0% Mn, 3.0-<8.0% Cr, 1.0-4.0% Ni, 0.5-2.0% Al, 0.3-3.5% Cu, and the balance essentially Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マルテンサイト組
織による高強度と被削性を兼備した高強度プリハードン
鋼材にするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength prehardened steel material having both high strength and machinability due to a martensite structure.

【0002】[0002]

【従来の技術】従来プラスチック製品を成形するための
金型で被削性にすぐれた金型としては、炭素鋼系、SC
M系やさらにこれらにS、Pbなどの快削性元素を含む
材質が使用されている。また、金型材料としては上記の
炭素鋼系、SCM系のほかに、適量のNiおよびAlを
添加してそれらの金属間化合物を析出させて硬さを確保
したものが提案されている(特開平2−179845
号)。この組織は、60%以上のフェライトと残りのパ
ーライトとからなる2相で、被削性は十分とはいえな
い。
2. Description of the Related Art Conventionally, molds for molding plastic products which have excellent machinability include carbon steel, SC and the like.
M-based materials and materials containing free-cutting elements such as S and Pb are also used. As a mold material, in addition to the above-described carbon steel and SCM, there has been proposed a material in which an appropriate amount of Ni and Al is added to precipitate an intermetallic compound thereof to secure hardness (particularly). Kaihei 2-179845
issue). This structure has two phases composed of 60% or more of ferrite and the remaining pearlite, and the machinability is not sufficient.

【0003】とくに大型の金型の材料に適するものとし
て、特定量のCr、MoおよびCuを必須成分として比
較的多量に含有するプリハードン鋼も提案されている
(特開平2−263953号)。この材料は硬さがHR
C34程度まで高められ、組織は上部ベイナイトに調整
されている。これはSなどの快削元素を添加しなくても
比較的良好な被削性を実現しているが、広範囲な硬さ領
域での被削性は十分ではない。さらに、上記のような材
料では耐食性が劣るため長期保管中あるいは水溶性切削
油が付着した状態で放置された場合には発錆などの問題
を生じることがある。
[0003] Prehardened steel containing a relatively large amount of a specific amount of Cr, Mo and Cu as essential components has also been proposed as a material particularly suitable for a large mold material (Japanese Patent Laid-Open No. 2-263953). This material has hardness HR
The structure is increased to about C34, and the structure is adjusted to upper bainite. Although this achieves relatively good machinability without adding a free-cutting element such as S, the machinability in a wide range of hardness is not sufficient. Further, the above-mentioned materials have poor corrosion resistance, and may cause problems such as rusting during long-term storage or when left in a state where water-soluble cutting oil is adhered thereto.

【0004】一方、従来から耐食性のすぐれた金型とし
ては、SUS420系、SUS630系などのステンレ
ス系の材料が使用されされたり、特開平3―75333
号にも類似金型鋼が開示されている。これらは難燃性樹
脂など腐食性の強い樹脂を成形するための金型材であ
り、耐食性に優れ当然保管中の発錆などの問題は無いも
のの、被削性が劣るため金型加工工数の増加、納期、価
格などの面で不具合を生じている。
[0004] On the other hand, as a mold having excellent corrosion resistance, stainless steel materials such as SUS420 and SUS630 have been used.
No. 3 discloses a similar mold steel. These are mold materials for molding highly corrosive resins such as flame-retardant resins. Although they have excellent corrosion resistance and naturally have no problems such as rusting during storage, they are inferior in machinability and increase the number of mold processing steps. , Delivery time, price, etc.

【0005】[0005]

【発明が解決しようとする課題】上述した上部ベイナイ
ト組織を主体とするプリハードン鋼材は比較的良好な被
削性を実現しているが、この分野で特に要求される生産
コスト低減、リードタイム短縮の観点からの金型の切削
加工工数の低減にとって十分な被削性を有しているとは
いえない。また安定した被削性を実現する上部ベイナイ
ト組織を得るためには、製造時の熱処理工程で冷却速度
のコントロールが不可欠であり、多大な熱処理工数がか
かるという欠点も有している。
Although the above-described pre-hardened steel material mainly composed of the upper bainite structure realizes relatively good machinability, it is necessary to reduce production costs and lead time particularly required in this field. It cannot be said that it has sufficient machinability to reduce the number of steps for cutting the mold from the viewpoint. In addition, in order to obtain an upper bainite structure that realizes stable machinability, it is necessary to control a cooling rate in a heat treatment step during manufacturing, and there is a disadvantage that a large number of heat treatment steps are required.

【0006】一方、マルテンサイト組織を主体とする鉄
鋼材料は、オーステナイトからマルテンサイト変態させ
ることで、強度が大きく上昇するにもかかわらず延性・
靭性がほとんど低下しないという特徴を最大限に利用し
て種々の用途に用いられている。しかし、マルテンサイ
トは被削性に問題があると考えられており、マルテンサ
イト組織に調整した後での機械加工は通常行われていな
い。本発明の目的は、以上のような問題点を解決するた
めのものであって、マルテンサイト組織を主体とする鋼
材の特徴である強度・延性バランスに優れる利点を害す
ることなく、被削性を改善した特にはプラスチック成型
金型用鋼として使用できる高強度プリハードン鋼材を提
供することである。
[0006] On the other hand, a steel material mainly composed of a martensite structure is transformed into a martensite from austenite, so that although its strength is greatly increased, its ductility and
It is used for various applications by making full use of the feature that toughness hardly decreases. However, martensite is considered to have a problem in machinability, and machining after adjusting to martensite structure is not usually performed. An object of the present invention is to solve the above problems, and without impairing the machinability without impairing the advantage of excellent strength-ductility balance, which is a characteristic of a steel material mainly composed of a martensite structure. It is an object of the present invention to provide a high-strength pre-hardened steel material which can be used as an improved steel for plastic molds.

【0007】[0007]

【課題を解決するための手段】本発明者は、マルテンサ
イト組織と被削性について検討し、焼入れ時にオーステ
ナイト組織から生じるマルテンサイトのパケットの大き
さをできるだけ大きく調整することにより、焼入れ・焼
戻し後の被削性が大きく改善されることを見出し本発明
に到達した。
Means for Solving the Problems The present inventor studied the martensite structure and machinability, and adjusted the size of the martensite packet generated from the austenite structure during quenching as large as possible to thereby improve the hardness after quenching and tempering. The present inventors have found that the machinability of the steel is greatly improved and arrived at the present invention.

【0008】すなわち本発明は、マルテンサイトを主体
とした組織を有し、組織を構成するパケットサイズがオ
ーステナイト結晶粒度番号で評価したとき8番と同等か
それより大きいサイズを有する被削性に優れた高強度プ
リハードン鋼材に関するものである。
That is, the present invention is excellent in machinability having a structure mainly composed of martensite and having a packet size constituting the structure equal to or larger than No. 8 when evaluated by austenite grain size number. High strength pre-hardened steel.

【0009】上述した被削性を害することなく、例えば
プラスチック成形金型用鋼材としてのシボ加工性、磨き
性に優れ、さらには切削、加工放電加工などの加工後そ
のまま放置しても錆び発生等の問題を生じないためには
重量比でC:0.2%以下、Si:1.5%以下、M
n:2.0%以下、Cr:3.0〜8.0%未満、N
i:1.0〜4.0%、Al:0.5〜2.0%、C
u:0.3〜3.5%を含み、残部実質的にFeの化学
組成に調整することが好ましい。
Without deteriorating the machinability described above, for example, it is excellent in graining workability and polishing property as a steel material for plastic molding dies. In order to avoid the problem described above, C: 0.2% or less, Si: 1.5% or less, M
n: 2.0% or less, Cr: 3.0 to less than 8.0%, N
i: 1.0 to 4.0%, Al: 0.5 to 2.0%, C
u: 0.3 to 3.5%, and preferably the balance is substantially adjusted to the chemical composition of Fe.

【0010】本発明においては、上述した組織と化学組
成による基本的な作用を損なわない範囲において耐食性
向上元素や、靱性改善元素あるいはさらに被削性改善元
素を添加することができる。例えば、耐食性改善元素と
しては、Mo:1.0%以下、靱性改善元素としては、
重量比でV:0.5%以下、被削性改善元素としては、
S:0.20%以下を含有させることができる。また、
本発明において、さらに基地の硬さを向上するためには
重量比で0.2%<Si≦1.5%を満足させることが
好ましい。もちろん、Co≦1.0%のような靭性改善
元素を加えても良い。
In the present invention, an element for improving corrosion resistance, an element for improving toughness, or an element for improving machinability can be added within a range that does not impair the basic function of the above-mentioned structure and chemical composition. For example, as the corrosion resistance improving element, Mo: 1.0% or less, and as the toughness improving element,
V: 0.5% or less by weight ratio, and as a machinability improving element,
S: 0.20% or less can be contained. Also,
In the present invention, in order to further improve the hardness of the matrix, it is preferable that the weight ratio satisfies 0.2% <Si ≦ 1.5%. Of course, a toughness improving element such as Co ≦ 1.0% may be added.

【0011】[0011]

【発明の実施の形態】上述したように、本発明の最も重
要な特徴の1つは、焼入れ時にオーステナイト組織から
生じるマルテンサイトのパケットサイズをオーステナイ
ト結晶粒度番号で評価して8番と同等もしくは、それよ
り大きく調整したことである。鋼のマルテンサイトには
種々の形態のものがあるが、大半の実用熱処理用鋼に現
れるマルテンサイトはラス状を呈する。ラスマルテンサ
イトは極めて細かい(幅が約0.2μm程度)組織であ
るが、個々のラス晶はフェライト組織のような1つの結
晶粒としての作用をもたない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, one of the most important features of the present invention is that the martensite packet size generated from the austenite structure during quenching is evaluated by austenite grain size number and is equal to or equal to No. 8. It is a bigger adjustment. There are various forms of martensite in steel, but martensite appearing in most practical heat treatment steels has a lath shape. Lath martensite has a very fine structure (having a width of about 0.2 μm), but individual lath crystals do not act as one crystal grain like a ferrite structure.

【0012】それは、ラスマルテンサイトはほとんど同
じ結晶方位(同じバリアント)のものが多数隣接して生
成する傾向があり、これらのラスが合体した境界は小傾
角粒界になるからである。光学顕微鏡では、1つのオー
ステナイト粒は数個のパケットにより分割され、各パケ
ットはさらにいくつかのほぼ平行な帯状のブロックによ
り分割されている。
This is because a large number of lath martensites having almost the same crystal orientation (same variant) tend to be formed adjacent to each other, and the boundary where these laths are united becomes a small-angle grain boundary. In an optical microscope, one austenite grain is divided by several packets, and each packet is further divided by several substantially parallel strip-shaped blocks.

【0013】パケットは平行に並んだ(つまり同じ晶へ
き面の)多くのラスの集団からなる領域であり、ブロッ
クは平行でかつ同じ結晶方位をもつラスの集団からなる
領域である。このようにパケットあるいはブロックはマ
ルテンサイトの強靱性を支配する基本的組織単位とな
る。炭素鋼や低合金鋼の場合にはブロックの発達が不十
分なため、強靱性は主としてパケットによって支配され
ると考えて良い。具体的には図1に示す組織を有するこ
とになる。
A packet is a region composed of a group of many laths arranged in parallel (that is, the same crystallographic plane), and a block is a region composed of a group of laths which are parallel and have the same crystal orientation. Thus, the packet or block is the basic organizational unit that governs the martensite toughness. In the case of carbon steel or low alloy steel, the toughness can be considered to be mainly controlled by the packet, because the development of the block is insufficient. Specifically, it will have the organization shown in FIG.

【0014】以上のように、ラスマルテンサイト組織で
はパケットが、フェライト組織における結晶粒に対応す
る組織単位であり、これらは母相オーステナイトが微細
になるほど細かくなる。つまり、超強力鋼に代表される
これまでの開発では、延性・靭性を害せずさらなる高強
度化をめざすためにラスマルテンサイト組織の微細化に
精力を費やしていたが、反面被削性の劣化が助長されて
いた。
As described above, in the lath martensite structure, the packet is a structural unit corresponding to the crystal grain in the ferrite structure, and these become finer as the matrix austenite becomes finer. In other words, in the past developments represented by super-strength steels, intensive efforts were made to refine the lath martensite structure in order to achieve even higher strength without impairing ductility and toughness. Deterioration was promoted.

【0015】本発明では、機械的性質の基本的組織単位
であるマルテンサイトのパケットサイズをオーステナイ
ト結晶粒度番号で評価して8番と同等かそれより大きく
調整したことで、マルテンサイト組織を主体とする鋼材
の特徴である強度・延性バランスに優れる利点を害する
ことなく、焼入れ・焼戻し後の被削性が大きく改善され
ることを実現した。即ち、改削性の優れたプリハードン
用鋼として使用できるマルテンサイト組織を見いだした
のである。実用上は、35〜45HRCの硬さにおける
優れた被削性を兼備させることが可能である。
In the present invention, the packet size of martensite, which is a basic structural unit of mechanical properties, is evaluated using an austenite crystal grain size number and adjusted to be equal to or larger than No. 8, so that the martensite structure is mainly contained. It has realized that the machinability after quenching and tempering is greatly improved without impairing the advantage of excellent balance between strength and ductility, which is a feature of the steel material to be quenched. That is, they have found a martensite structure that can be used as a prehardened steel with excellent renovation properties. In practice, it is possible to combine excellent machinability with a hardness of 35 to 45 HRC.

【0016】本発明における好ましい成分範囲の基本と
するところは、被削性を害さないで優れた耐食性を付与
するためにCrあるいはさらにMoなどを固溶し、焼入
れされた低Cマルテンサイト組織を主体とする基地を、
焼戻し時に金属間化合物や炭化物を析出させて硬さを高
めようとするものである。本発明の金型用鋼材の好まし
い成分範囲の限定理由について説明する。
The basis of the preferred component range in the present invention is that a low-C martensite structure obtained by solid-dissolving Cr or Mo and the like in order to impart excellent corrosion resistance without impairing machinability is used. The main base is
This is to increase the hardness by precipitating intermetallic compounds and carbides during tempering. The reason for limiting the preferable component range of the steel material for a mold of the present invention will be described.

【0017】C:0.20%以下 Cは、フェライトの生成を防ぎ、硬さ、強度向上に有効
な元素である。0.20%を超えると、炭化物を形成し
切削時の工具摩耗を増長する原因となったり、基地中の
Cr量が減じるため耐食性を劣化するので、0.20%
以下とする。なお、含有量が0.02%未満では十分な
強度を確保することができない場合があるので好ましく
は0.02%以上とする。 Si:1.5%以下、好ましくは0.2<Si≦1.5
% Siは、通常脱酸剤として使用されるが、一方、靭性を
低下させる反面被削性を改善する。したがって両者の作
用バランスを考慮して1.5%以下が好ましい。さらに
望ましくは、上述の両者の作用バランスを害せず基地の
硬さを向上させるために0.2<Si≦1.5%とす
る。
C: 0.20% or less C is an element effective for preventing the formation of ferrite and improving hardness and strength. If the content exceeds 0.20%, carbides are formed and the wear of the tool at the time of cutting is increased, or the corrosion resistance is deteriorated because the amount of Cr in the matrix is reduced.
The following is assumed. If the content is less than 0.02%, sufficient strength may not be ensured in some cases. Therefore, the content is preferably set to 0.02% or more. Si: 1.5% or less, preferably 0.2 <Si ≦ 1.5
% Si is usually used as a deoxidizing agent, but on the other hand, it improves machinability while reducing toughness. Therefore, it is preferably 1.5% or less in consideration of the balance between the two. More desirably, 0.2 <Si ≦ 1.5% in order to improve the hardness of the matrix without impairing the balance between the above-mentioned actions.

【0018】Mn:2.0%以下 Mnは、Siと同様に脱酸剤として使用されるほか、焼
入れ性を高めてフェライトの生成を阻止する作用がある
が、多すぎると組織に延性を増し被削性を低下するので
2.0%以下とした。 Cr:3.0〜8.0%未満 Crは、耐食性を付与するのに有効な元素であり、明ら
かな効果を示すには3.0%以上の含有が必要である。
しかし、8.0%以上含有すると、耐食性は一層向上す
るがフェライトの形成が増長され必要硬さが確保できな
くなったり、過剰の靭性により被削性が劣化することと
なるので3.0〜8.0%未満と規定した。
Mn: 2.0% or less Mn is used as a deoxidizing agent in the same manner as Si, and also has the effect of increasing the hardenability and inhibiting the formation of ferrite. Since the machinability is reduced, the content is set to 2.0% or less. Cr: 3.0 to less than 8.0% Cr is an element effective for imparting corrosion resistance, and it is necessary to contain 3.0% or more to show a clear effect.
However, when the content is 8.0% or more, the corrosion resistance is further improved, but the formation of ferrite is increased and the required hardness cannot be secured, or the machinability is deteriorated due to excessive toughness, so that the content is 3.0 to 8. 0.0%.

【0019】Ni:1.0〜4.0% Niは、変態点を下げ、冷却時に主体組織であるマルテ
ンサイト組織を均一に生成させる作用と、Alとの金属
間化合物を形成して析出させて硬さを高める作用があ
り、1.0%未満ではこの作用が認められなく、4.0
%を超えてもその効果は添加量の割りには顕著になら
ず、また、オーステナイトを生成し必要以上に粘くなり
被削性を劣化させるので1.0%〜4.0%とする。 Al:0.5〜2.0% Alは、Niと結合し金属間化合物NiAlを形成して
析出させ、硬さを高める作用があり、その効果のために
は0.5%以上を必要とするが、2.0%を越えてもN
iとのバランスの点から析出硬化に効果が期待出来ない
こと、酸化物系の硬い介在物を形成し工具摩耗の原因と
なったり、鏡面研摩性、シボ加工性なども害するので
0.5〜2.0%とした。
Ni: 1.0 to 4.0% Ni lowers the transformation point, uniformly forms a martensite structure as a main structure during cooling, and forms and precipitates an intermetallic compound with Al. When less than 1.0%, this effect is not observed, and is 4.0%.
%, The effect is not remarkable in proportion to the amount of addition, and austenite is formed and becomes unnecessarily viscous to deteriorate machinability. Therefore, the content is set to 1.0% to 4.0%. Al: 0.5 to 2.0% Al has an action of bonding with Ni to form and precipitate an intermetallic compound NiAl, thereby increasing the hardness. To achieve this effect, 0.5% or more is required. However, even if it exceeds 2.0%, N
The effect of precipitation hardening cannot be expected from the point of balance with i, forming hard oxide-based inclusions, causing tool wear, and impairing mirror polishing, graining, etc. 2.0%.

【0020】Cu:0.3〜3.5% Cuは、少量のFeを固溶した固溶体(ε相)を生成す
るとされ、Niと同様に析出硬化に寄与する。その効果
のためには0.3%以上が必要である。しかし、Cu
は、反面靭性を低下させたり、高温で母材の結晶粒界に
浸潤して、熱間加工性を害する作用をするため3.5%
以下とした。 Mo:1.0%以下 Moは、固溶により耐食性の向上に極めて有効であるの
で必要に応じて添加するとよい。しかし、炭化物を形成
して、工具摩耗を増加させるので、上限を1.0%とす
る。
Cu: 0.3 to 3.5% Cu is considered to form a solid solution (ε phase) in which a small amount of Fe is dissolved, and contributes to precipitation hardening like Ni. 0.3% or more is necessary for the effect. However, Cu
On the other hand, 3.5% is considered to reduce the toughness or to infiltrate the crystal grain boundaries of the base material at a high temperature, thereby deteriorating hot workability.
It was as follows. Mo: 1.0% or less Mo is extremely effective in improving corrosion resistance due to solid solution, and may be added as necessary. However, since carbides are formed to increase tool wear, the upper limit is made 1.0%.

【0021】V:0.5%以下 Vは、結晶粒の細粒化に有効で材料の靭性改善作用を有
し、本発明鋼の特性をさらに改善する効果を示すので、
必要により添加するが、多量に含有すると炭化物を形成
して、工具摩耗を増加させるので上限値は、0.5%と
した。 S:0.20%以下 Sは、Mnと結合してMnS介在物を形成し被削性を向
上させる。しかし、MnSは孔食の起点となり易く耐食
性を劣化させるので必要に応じて添加する。しかし、
0.20%を越えても耐食性の低下に見合う被削性向上
は望めないので上限は0.20%とした。
V: 0.5% or less V is effective for refining the crystal grains and has an effect of improving the toughness of the material, and has the effect of further improving the properties of the steel of the present invention.
It is added as needed, but if it is contained in a large amount, carbides are formed and tool wear is increased. Therefore, the upper limit is set to 0.5%. S: 0.20% or less S combines with Mn to form MnS inclusions and improve machinability. However, MnS is easily added as a starting point of pitting corrosion and deteriorates corrosion resistance. But,
Even if it exceeds 0.20%, improvement in machinability corresponding to the decrease in corrosion resistance cannot be expected, so the upper limit was made 0.20%.

【0022】[0022]

【実施例】(実施例1)表1に示す成分を有する供試鋼
を30kg高周波溶解炉にて溶解し、40mm×40m
mの角棒に鍛伸後、熱処理を施し実験に供した。なお、
試料FはSUS420に、試料GはSUS630にそれぞれ相当する
ものである。熱処理は以下に示す、Type1、Type2、Ty
pe3の焼き入れを行い、続いてすべての加工熱処理材に
対して、硬さ40HRC±5を得るように、焼戻しとし
て520℃から580℃の20℃刻みの適正温度で1時
間加熱後空冷するものである。 Type1:1000℃で1時間加熱してから約20℃/mi
nの冷却速度で空冷 Type2:1100℃で1時間加熱してから約5℃/minの
冷却速度で徐冷 Type3:1000℃で1時間加熱してから冷却過程でオ
ースフォーミングしたのち約100℃/minの冷却速度
で空冷
EXAMPLES (Example 1) A test steel having the components shown in Table 1 was melted in a 30 kg high-frequency melting furnace to obtain 40 mm x 40 m.
After forging a square bar of m, the bar was subjected to a heat treatment and subjected to an experiment. In addition,
Sample F corresponds to SUS420, and sample G corresponds to SUS630. Heat treatment is shown below for Type 1, Type 2, Ty
The pe3 is quenched, and then tempered for 1 hour at an appropriate temperature of 520 ° C to 580 ° C in 20 ° C increments, and then air-cooled to obtain a hardness of 40HRC ± 5 for all the heat-treated materials. It is. Type 1: Heated at 1000 ° C for 1 hour, then about 20 ° C / mi
Air cooling at a cooling rate of n Type 2: heating at 1100 ° C. for 1 hour, then slowly cooling at a cooling rate of about 5 ° C./min Type 3: heating at 1000 ° C. for 1 hour, then ausforming in the cooling process, then about 100 ° C. Air cooling at min cooling rate

【0023】[0023]

【表1】 [Table 1]

【0024】表2は、熱処理して得られた試料のミクロ
組織におけるマルテンサイトのパケットサイズ、被削
性、硬さ、耐食性を測定した結果を示すものである。ま
たマルテンサイトのパケットサイズを熱処理にて調整し
た代表的な鋼種Aにおけるパケットサイズの違いを組織
写真として図2に示す。図2に示すように、熱処理によ
って、パケットサイズが大きくことなることが確認でき
る。なお、実際の測定評価におけるマルテンサイトのパ
ケットサイズは、まず光学顕微鏡組織をASTMで規定され
ている100倍での標準粒度図と比較して粒度を決定し、
各試料において6枚の写真についてこれらの測定を行い
平均パケットサイズを求めた。
Table 2 shows the results of measuring the packet size, machinability, hardness, and corrosion resistance of martensite in the microstructure of the sample obtained by the heat treatment. FIG. 2 is a microstructure photograph showing the difference in the packet size of typical steel type A in which the martensite packet size was adjusted by heat treatment. As shown in FIG. 2, it can be confirmed that the packet size is increased by the heat treatment. In addition, the packet size of martensite in the actual measurement evaluation was determined by first comparing the optical microscopic structure with the standard particle size diagram at 100 times specified by ASTM,
These measurements were performed on six photographs in each sample to determine the average packet size.

【0025】被削性の評価は、エンドミル切削試験を実
施し、切削長6m時での工具逃げ面の最大摩耗巾(Vbm
ax)を測定した。切削条件は、2枚刃φ10ハイス・エ
ンドミル、切削速度23m/min、送り速度0.06mm
/刃、湿式で行った。耐食試験として、塩水噴霧試験
(5%NaCl,35℃,1hr)水道水浸せき試験
(室温,1分浸せき後大気中放置)を実施し、外観観察
により発錆状況を比較しその程度により◎(良好:発錆
ゼロ)、○(良:発錆面積率10%未満)、×(不良:
発錆面積率30%以上)、△(中間:発錆面積率10〜
30%未満)で評価した。
The evaluation of the machinability was carried out by performing an end mill cutting test and determining the maximum wear width (Vbm) of the tool flank at a cutting length of 6 m.
ax) was measured. Cutting conditions are 2-flute φ10 high speed end mill, cutting speed 23m / min, feed speed 0.06mm.
/ Wet, using a wet method. As a corrosion resistance test, a salt spray test (5% NaCl, 35 ° C., 1 hour), a tap water immersion test (room temperature, 1 minute immersion, and then left in the air) were performed. Good: No rusting, ○ (Good: Less than 10% rusting area ratio), × (Poor:
Rust area ratio 30% or more), Δ (middle: rust area ratio 10 to 10)
(Less than 30%).

【0026】[0026]

【表2】 [Table 2]

【0027】いずれの試料も熱処理により硬さ40±5
HRCを満たすものとなっている。試料A〜Eでは、組織
を構成するパケットサイズがオーステナイト結晶粒度番
号で評価したとき8番より大きいサイズを有している場
合には良好な被削性を有しているが、それ未満の小さい
サイズでは被削性が劣化しているのがわかる。また従来
鋼F,Gにおいても、パケットサイズが8番の場合には
被削性の改善傾向が確認された。また、従来鋼F,Gに
おいては、パケットサイズが8番より細粒の場合は、被
削性が非常に悪く、従来鋼Gでは欠けが生じた。さらに
パケットサイズを変化させた種々の鋼種の耐食性は、各
鋼種や試験条件によってやや異なっているものの、どの
鋼種においても長期保管中あるいは水溶性切削油が付着
した状態で放置された場合にも発錆などの問題が生じな
い程度の耐食性を有していることがわかる。
Each sample had a hardness of 40 ± 5 by heat treatment.
It satisfies HRC. Samples A to E have good machinability when the packet size constituting the structure has a size larger than 8 when evaluated by austenite grain size number, but smaller than that It can be seen that the machinability is deteriorated in the size. Also, in the case of the conventional steels F and G, when the packet size was 8, a tendency of improvement in machinability was confirmed. Further, in the conventional steels F and G, when the packet size was finer than No. 8, the machinability was very poor, and the conventional steel G was chipped. Furthermore, the corrosion resistance of various steel types with different packet sizes varies slightly depending on each steel type and test conditions.However, any steel type can be found during long-term storage or when left with water-soluble cutting oil attached. It can be seen that it has corrosion resistance to such an extent that problems such as rust do not occur.

【0028】(実施例2)表3に示す成分を有する供試
鋼を30kg高周波溶解炉にて溶解し、40mm×40
mmの角棒に鍛伸後、熱処理を施し実験に供した。熱処
理は硬さ40HRC±5を得るように、焼入れは100
0℃で1時間加熱してから空冷し、その後焼戻しとして
520℃から580℃の20℃刻みの適正温度で1時間
加熱後空冷するものである。
Example 2 30 kg of a test steel having the components shown in Table 3 was melted in a high-frequency melting furnace, and was heated to 40 mm × 40 mm.
After forging a square bar of mm, the bar was subjected to a heat treatment and subjected to an experiment. Heat treatment is performed to obtain hardness of 40HRC ± 5, and quenching is performed for 100 hours.
After heating at 0 ° C. for 1 hour, air-cooling is performed, followed by tempering at an appropriate temperature of 520 ° C. to 580 ° C. in steps of 20 ° C. for 1 hour, followed by air cooling.

【0029】[0029]

【表3】 [Table 3]

【0030】得られた試料に対して、実施例1と同様に
パケットサイズ、硬さ、耐食性、被削性を測定評価し
た。結果を表4に示す。本発明の好ましい組成範囲であ
るC:0.2%以下、Si:1.5%以下、Mn:2.
0%以下、Cr:3.0〜8.0%未満、Ni:1.0
〜4.0%、Al:0.5〜2.0%、Cu:0.3〜
3.5%を含み、残部実質的にFeを満たす、試料1〜
9は、いずれも熱処理により硬さ40±5HRCを満た
す硬さが得られ、被削性および耐食性も優れたものであ
った。
The obtained sample was measured and evaluated for packet size, hardness, corrosion resistance and machinability in the same manner as in Example 1. Table 4 shows the results. In the preferred composition range of the present invention, C: 0.2% or less, Si: 1.5% or less, Mn: 2.
0% or less, Cr: 3.0 to less than 8.0%, Ni: 1.0
-4.0%, Al: 0.5-2.0%, Cu: 0.3-
Sample 1 containing 3.5% and substantially satisfying the balance of Fe
In No. 9, the hardness satisfying the hardness of 40 ± 5 HRC was obtained by the heat treatment, and the machinability and the corrosion resistance were excellent.

【0031】一方、試料11、13、14、15は、C
が低いがNi,Cu,Alなどの析出硬化元素が不足の
ため硬さを高めることができなかった。また、試料1
0、12、16は、本発明の好ましい組成範囲の組成で
ある試料に比べてパケットサイズが粒度No.9と細粒化
し易く、被削性が劣る。また、Crの低い試料14や、
S量の多い試料17は錆び易く、Sを添加する試料7、
8、9、Cが高くCrが低い試料13、15もやや錆び
易い。
On the other hand, samples 11, 13, 14, and 15
However, the hardness could not be increased because of insufficient precipitation hardening elements such as Ni, Cu, and Al. Sample 1
The samples Nos. 0, 12, and 16 have a packet size of No. 9 which is easily reduced to particles, and are inferior in machinability as compared with the samples having compositions within the preferable composition range of the present invention. In addition, a sample 14 with low Cr,
Sample 17 having a large amount of S is easily rusted, and Sample 7 to which S is added is used.
Samples 13 and 15 in which 8, 9, C are high and Cr is low are also easily rusted.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】本発明によればマルテンサイト組織を主
体とする鋼材の熱処理後の加工性を飛躍的に高めるた
め、生産コスト低減、リードタイム短縮の観点からの金
型の切削加工工数の低減にとって欠くことのできない高
強度プリハードン鋼材となる。特に本発明の好ましい組
成範囲を満たすことにより、強度・延性バランスに優れ
る利点を害することなく、35〜45HRCの硬さを有
し、耐食性に優れ、かつ被削性を飛躍的に改善すること
ができるというプラスチック成形用金型用鋼材として極
めて有用である。
According to the present invention, since the workability of a steel material having a martensite structure as a main component after heat treatment is remarkably improved, the number of steps for cutting a die from the viewpoint of reduction of production cost and lead time is reduced. It becomes a high-strength pre-hardened steel material that is indispensable to steel. In particular, by satisfying the preferred composition range of the present invention, it is possible to have a hardness of 35 to 45 HRC, excellent corrosion resistance, and dramatically improve machinability without impairing the advantage of excellent strength-ductility balance. It is very useful as a steel material for plastic molds that can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋼材の有する金属ミクロ組織の模式図
である。
FIG. 1 is a schematic view of a metal microstructure of a steel material according to the present invention.

【図2】本発明の鋼材の典型的なミクロ組織とパケット
を示す金属ミクロ組織写真と模式図である。
FIG. 2 is a metal microstructure photograph and a schematic diagram showing a typical microstructure and a packet of the steel material of the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 マルテンサイトを主体とした組織を有
し、該マルテンサイト組織を構成するパケットサイズが
オーステナイト結晶粒度番号で評価したとき8番と同等
かそれより大きいサイズを有することを特徴とする被削
性に優れた高強度プリハードン鋼材。
1. A structure mainly composed of martensite, wherein a packet size constituting the martensite structure is equal to or larger than No. 8 when evaluated by an austenite grain size number. High-strength pre-hardened steel with excellent machinability.
【請求項2】 重量比でC:0.2%以下、Si:1.
5%以下、Mn:2.0%以下、Cr:3.0〜8.0
%未満、Ni:1.0〜4.0%、Al:0.5〜2.
0%、Cu:0.3〜3.5%を含有し、残部実質的に
Feよりなることを特徴とする請求項1に記載の被削性
に優れた高強度プリハードン鋼材。
2. C: 0.2% or less by weight ratio, Si: 1.
5% or less, Mn: 2.0% or less, Cr: 3.0 to 8.0
%, Ni: 1.0-4.0%, Al: 0.5-2.
The high-strength pre-hardened steel material excellent in machinability according to claim 1, wherein the steel material contains 0% and Cu: 0.3 to 3.5%, and the balance substantially consists of Fe.
【請求項3】 重量比でC:0.02〜0.2%を含有
することを特徴とする請求項2に記載の被削性に優れた
高強度プリハードン鋼材。
3. The high-strength pre-hardened steel material having excellent machinability according to claim 2, comprising 0.02 to 0.2% of C by weight.
【請求項4】 重量比でMo:1.0%以下を含有する
ことを特徴とする請求項2または3に記載の被削性に優
れた高強度プリハードン鋼材。
4. The high-strength prehardened steel material excellent in machinability according to claim 2, wherein Mo: 1.0% or less is contained in a weight ratio.
【請求項5】 重量比でV:0.5%以下を含有するこ
とを特徴とする請求項2ないし4のいずれかに記載の被
削性に優れた高強度プリハードン鋼材。
5. The high-strength pre-hardened steel material excellent in machinability according to claim 2, which contains V: 0.5% or less by weight.
【請求項6】 重量比で、S:0.20%以下を含有す
ることを特徴とする請求項2ないし5のいずれかに記載
の被削性に優れた高強度プリハードン鋼材。
6. The high-strength prehardened steel material excellent in machinability according to any one of claims 2 to 5, wherein the steel material contains S: 0.20% or less by weight.
【請求項7】 重量比で0.2%<Si≦1.5%を満
たすことを特徴とする請求項2ないし6のいずれかに記
載の被削性に優れた高強度プリハードン鋼材。
7. The high-strength prehardened steel material excellent in machinability according to claim 2, wherein the weight ratio satisfies 0.2% <Si ≦ 1.5%.
JP21842198A 1998-08-03 1998-08-03 High strength pre-hardened steel with excellent machinability Expired - Lifetime JP4232128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21842198A JP4232128B2 (en) 1998-08-03 1998-08-03 High strength pre-hardened steel with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21842198A JP4232128B2 (en) 1998-08-03 1998-08-03 High strength pre-hardened steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2000054068A true JP2000054068A (en) 2000-02-22
JP4232128B2 JP4232128B2 (en) 2009-03-04

Family

ID=16719659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21842198A Expired - Lifetime JP4232128B2 (en) 1998-08-03 1998-08-03 High strength pre-hardened steel with excellent machinability

Country Status (1)

Country Link
JP (1) JP4232128B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445339A1 (en) * 2003-02-10 2004-08-11 BÖHLER Edelstahl GmbH Alloy and article with high heat resistance and high heat stability
EP2660348A1 (en) * 2010-12-27 2013-11-06 Hitachi Metals, Ltd. Die steel having superior rusting resistance and thermal conductivity, and method for producing same
EP2722406A1 (en) * 2012-10-20 2014-04-23 Daido Steel Co.,Ltd. Steel for molding die having excellent thermal conductivity, mirror polishing properties and toughness
US11767569B2 (en) 2016-06-01 2023-09-26 Ovako Sweden Ab Precipitation hardening stainless steel and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445339A1 (en) * 2003-02-10 2004-08-11 BÖHLER Edelstahl GmbH Alloy and article with high heat resistance and high heat stability
EP2660348A1 (en) * 2010-12-27 2013-11-06 Hitachi Metals, Ltd. Die steel having superior rusting resistance and thermal conductivity, and method for producing same
EP2660348A4 (en) * 2010-12-27 2014-09-03 Hitachi Metals Ltd Die steel having superior rusting resistance and thermal conductivity, and method for producing same
EP2722406A1 (en) * 2012-10-20 2014-04-23 Daido Steel Co.,Ltd. Steel for molding die having excellent thermal conductivity, mirror polishing properties and toughness
CN103774047A (en) * 2012-10-20 2014-05-07 大同特殊钢株式会社 Steel for molding die having excellent thermal conductivity, mirror polishing properties and toughness
CN103774047B (en) * 2012-10-20 2017-03-01 大同特殊钢株式会社 There is the mould steel of excellent thermal conductance, mirror polishability and toughness
US11767569B2 (en) 2016-06-01 2023-09-26 Ovako Sweden Ab Precipitation hardening stainless steel and its manufacture

Also Published As

Publication number Publication date
JP4232128B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
KR100374980B1 (en) High strength steel for dies with excellent machinability
EP2218802A1 (en) Steel for mold for plastic molding and mold for plastic molding
JP2003226939A (en) Hot tool steel
CN107177774B (en) Steel for mold and mold
JP7144719B2 (en) Pre-hardened steel materials, molds and mold parts
KR100836699B1 (en) Die steel
US5433798A (en) High strength martensitic stainless steel having superior rusting resistance
EP2915895A2 (en) Steel for mold
JP3351766B2 (en) High strength steel for molds with excellent machinability
KR20190115423A (en) Steel for mold, and mold
JP2000054068A (en) High strength prehardening steel material excellent in machinability
JP4984319B2 (en) Method for producing pre-hardened steel with excellent machinability and toughness
JP2007262569A (en) Prehardened steel having excellent machinability and toughness and its production method
JP2005336553A (en) Hot tool steel
EP1381702B1 (en) Steel article
JP3360926B2 (en) Prehardened steel for plastic molding and method for producing the same
JP7392330B2 (en) Mold steel and molds
JPH11140591A (en) Corrosion resistant steel for metal mold for plastic molding
JP2000119799A (en) High strength steel excellent in machinability and toughness and having corrosion resistance
JP2001220646A (en) Prehardened steel for plastic molding die
JP2004035992A (en) High toughness steel for plastic molding metallic mold
JP6866692B2 (en) Mold steel and mold
JP2003034842A (en) Steel for cold forging superior in swarf treatment property
JP3327853B2 (en) Free cutting stainless steel mold steel with excellent rust resistance
JPS62112761A (en) Tool steel for warm and hot working

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

EXPY Cancellation because of completion of term